Skip Ribbon Commands
Skip to main content
Home | Support RFF | Join E-mail List | Contact
RFF Logo
Skip navigation links
RESEARCH TOPICS
CENTERS
PUBLICATIONS
NEWS
EVENTS
RESEARCHERS
ABOUT RFF
 

 

 
Join E-mail List
Please provide your e-mail address to receive periodic newsletters and invitations to public events
 
 
Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment
Magnus Hennlock
RFF Discussion Paper 09-19 | May 2009
RESEARCH TOPICS:
Abstract
Imperfect measurement of uncertainty (deeper uncertainty) in climate sensitivity is introduced in a two-sectoral integrated assessment model (IAM) with endogenous growth, based on an extension of DICE. The household expresses ambiguity aversion and can use robust control via a 'shadow ambiguity premium' on social carbon cost to identify robust climate policy feedback rules that work well over a range such as the IPCC climate sensitivity range (IPCC, 2007a). Ambiguity aversion, in combination with linear damage, increases carbon cost in a similar way as a low pure rate of time preference. However, ambiguity aversion in combination with non-linear damage would also make policy more responsive to changes in climate data observations. Perfect ambiguity aversion results in an infinite expected shadow carbon cost and a zero carbon consumption path. Dynamic programming identifies an analytically tractable solution to the IAM.
RFF Home | RFF Press: An Imprint of Routledge Terms of Use | Privacy Policy | Copyright Notice
1616 P St. NW, Washington, DC 20036 ยท 202.328.5000 Feedback | Contact Us