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Abstract

The otherwise straightforward analysis of randomized experiments is often complicated by
the presence of missing data. In such situations it is necessary to make assumptions about the
dependence of the selection mechanism on treatment, response, and covariates. The widely
used approach of assuming that the data is missing at random conditional on treatment and
other fully observed covariates is shown to be inadequate to describe data from a randomized
experiment when partially observed covariates are also present.

This paper presents an alternative to the missing at random model (MAR) which is both
consistent with the data and preserves the appeal of MAR. In particular, the proposed family
of models minimize the discrepancy with MAR while explaining observed deviations. We
apply this approach to data from the Restart job training program in the United Kingdom
as well as an artificial data set. Evaluation of the Restart program is not affected by the
assumption of MAR; both approaches suggest that the program increased the chances of
exiting unemployment by around 9% within six months. However, analysis of the artificial
data demonstrates that assuming MAR can easily lead to erroneous conclusions.
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1. Introduction

Randomized experiments offer many benefits to the researcher. The randomization of

treatment assignment ensures that treatment and control groups are comparable, and there-

fore causal inferences regarding the average effect of the treatment of interest can be drawn

without additional assumptions. Specifically, randomization avoids the need for modeling

the outcome distributions because it ensures that average causal effects can be estimated by

the difference between average treatment outcomes and average control outcomes.

These benefits, however, require that we have complete data on treatment and response

for all units. When follow-up surveys are used to collect data from an otherwise randomized

experiment, non-response frequently leads to missing data. For example, in the randomized

job-training experiment Restart discussed in this paper and analyzed previously by Dolton

and O’Neill (1996a, 1996b), the response variable and most covariates are missing for almost

half the sample due to nonresponse in a subsequent survey. Similarly, Imbens, Rubin, and

Sacerdote (1999) survey lottery winners to study the effect of an infusion of money on labor

supply, but although the lottery itself is random, response to the study’s survey is not. In

such cases where covariates are missing for some units, one cannot avoid making assumptions

regarding the dependence of the missing data mechanism on both treatment assignment and

the values of missing variables.

What distinguishes this problem from most missing data problems (e.g., Gourieroux and

Monfort 1981), is that there is indirect information relevant for the missing data process,

namely random assignment. In this paper we develop a framework for estimating average

treatment effects in randomized experiments where information on outcome and covariates

or pretreatment variables is missing for some units, but data on treatment assignment (and

possibly other covariates) is always available. In particular, we extend the standard approach

to modeling missing data in order to explain the observed covariate distribution, given an

initially random assignment of treatment.

The standard approach (Rubin 1976; Little and Rubin 1987) assumes that, conditional
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on treatment and any fully-observed covariates, the data are missing at random (MAR)

or, alternatively, the missing data process is ignorable. With missing covariates, however,

such assumptions are not necessarily adequate to describe the data. The reason is that the

two assumptions, (i) random assignment (RA) of treatment, and (ii) missing at random,

have implications that can be in conflict. Specifically, if we observe that among complete-

data Observations, those assigned treatment have different covariate distributions than those

assigned control, we can deduce that the missing data are not missing at random.

Motivated by this conflict, we develop alternative models for the analysis of data from

randomized experiments with missing pretreatment variables and outcomes. The families of

models we develop have two key properties. First, they are identified, meaning that for each

family in large samples there will always be a unique member of the family consistent with

both the distribution of the observed data as well as with the restrictions implied by random

assignment. Second, the estimated model can be interpreted as the model consistent with the

restriction implied by RA that is as close to MAR as possible. In other words, the imputed

distribution for the missing pretreatment variables will be as close to the distribution of the

observed pretreatment variables as is consistent with random assignment.

In the next section we set up the basic problem. In Section 3 we abstract from the presence

of the outcome variable and focus solely on imputing a single binary pretreatment variable.

Properly estimating the marginal distribution of the covariate will be central to our approach

to the general problem. In Section 4 we discuss an alternative derivation of this solution

which follows previous analyses of estimating probabilities in a two-way classification with

known marginals (e.g., Little and Wu 1991). A key difference is that rather than knowing the

marginal distribution of some variables as in Little and Wu, we know that some variables are

independent. Section 5 extends the basic model to include the response variable and more

general pretreatment variables. Section 6 contains an illustration of the techniques using

data from an experimental evaluation of a job training program in the United Kingdom.1

1We are grateful to P. Dolton for making this data available to us.
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Section 7 concludes.

2. Randomized Experiments with Missing Data

Consider a randomized experiment with N units, indexed by i = 1, . . . , N , and with two

treatment conditions denoted by Ti = 1 (treatment) and Ti = 0 (control). For each unit i

there are two outcomes, Yi(0) for the response with control, and Yi(1) for the response with

treatment. The actual, or observed, response is denoted by Yi = Yi(Ti) = Ti · Yi(1) + (1−

Ti) · Yi(0). For each unit i there is a vector of pretreatment variables Xi. The missing data

indicator is Di. We observe for each unit in the population the quintuple (Di, Ti, Yi ·Di, Xi ·

Di). In other words, for all units we observe Ti and Di, but only for units with Di = 1 do

we observe Yi and Xi.

Completely random assignment (RA) implies that the population covariate Xi is inde-

pendent of the treatment indicator Ti or Xi ⊥ Ti. Suppose Xi is missing at random (MAR)

so that the selection indicator Di is independent of Xi after conditioning on treatment Ti,

that is, Di ⊥ Xi|Ti. This implies that the conditional distribution of Xi given Ti is the

same as the conditional distribution of Xi given Ti and Di = 1, or Xi|(Ti, Di = 1) ∼ Xi|Ti.

Combining the implications of RA and MAR therefore implies that Xi ⊥ Ti|Di = 1. This is

a testable independence restriction because for all units with Di = 1 we observe Xi and Ti.

That is, the joint hypothesis of RA and MAR has testable implications which, if rejected,

force one to go beyond models characterized by MAR if RA is maintained.

In Table 1 the data from the actual Restart program as well as an artificial data set

are presented. We focus on the subgroup of males aged 20 to 50, isolated from the original

Restart data involving unemployed individuals in the United Kingdom. In principle unem-

ployed individuals are obliged, after a certain period of unemployment, to have a discussion

with officials from the local unemployment office about job search strategies and training op-

portunities. This is the treatment we wish to evaluate. In the Restart study a random sample

from this population was exempt from this obligation; this group serves as the control. The
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Table 1: Restart Data and

Artificial Data

number of individuals
Ti Di Xi Yi Restart Artificial

0 0 – – 133 1330
0 1 0 0 57 1310
0 1 0 1 7 160
0 1 1 0 56 20
0 1 1 1 30 10
1 0 – – 1814 18140
1 1 0 0 755 2180
1 1 0 1 324 940
1 1 1 0 630 11130
1 1 1 1 371 470

Total 4177 41770

Ti = 1 for those obliged to receive the interview;
Di = 1 for those who responded to the follow-up
survey; Xi = 1 if the individual had a driver’s li-
cense; Yi = 1 if the individual successfully exited
unemployment after six months.

treatment indicator is equal to one for those individuals obliged to receive the interview and

zero for those exempted. The outcome of interest is whether or not individuals successfully

exited unemployment within six months of being randomized to either receive or not receive

the discussion with a local employment official. The single pretreatment variable is whether

or not the individual has a driving license. The outcome and pretreatment variables are only

observed if the individual responded to a survey conducted six months after the interview.

For details of the data set and the training program see Dolton and O’Neill (1996a, 1996b).

In Table 2 we calculate a number of sample proportions. First, the marginal distribution

of assignment and the missing data indicator, qtd = Pr(Ti = t,Di = d). Second, we calculate

the mean of Xi given Ti and Di, ptd = Pr(Xi = 1|Ti = t,Di = d). For d = 0 this

mean cannot be calculated from the sample, and this is indicated in the table by giving the

range of values consistent with both the data and random assignment, ignoring sampling
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variation. This is similar to the bounds calculated by Horowitz and Manski (1995) and

Manski (1995).2 Third, we calculate the joint distribution of Ti and Xi given Di = 1,

πtx|1 = Pr(Ti = t,Xi = x|Di = 1). Fourth, we calculate the joint distribution of Ti and Xi

without conditioning on Di = 1, πtx = Pr(Ti = t,Xi = x). Again we cannot calculate these

probabilities exactly from the data but present ranges consistent with both the raw data and

RA, again ignoring sampling variation.

When p11 6= p01, the assumptions of random assignment and missing at random conflict.

RA implies Ti ⊥ Xi. MAR implies Di ⊥ Xi|Ti. Together they imply that Ti ⊥ Xi|Di = 1

and thus Pr(Xi = 1|Ti = 1, Di = 1) = Pr(Xi = 1|Ti = 0, Di = 1), or p11 = p01. In the

Restart data this is contradicted by the unequal values of p11 = 0.481 and p01 = 0.573. In

the artificial data, the contradiction is more pronounced with p11 = 0.850 and p01 = 0.020.

We now examine more flexible alternatives to the MAR model.

3. A Family of Nonignorable Missing Data Models

In this section we look at the problem where we always observe the random assignment

Ti, the missing data indicator Di, but only observe a single binary covariate Xi if Di = 1.

This ignores both the outcome variable and other covariates, allowing us to focus attention

on the missing data mechanism in the simplest possible case of interest. We also assume the

sample is large so that we can ignore sampling variation. In terms of the notation established

in the preceeding section, this implies we know the population values Pr(Ti = t,Di = d),

denoted by q∗td, for t, d = 0, 1 and the population values of Pr(Xi = 1|Ti = t,Di = 1),

denoted by p∗t1 for t = 0, 1. We do not know the values of pt0 for t = 0, 1 because we never

observe Xi if Di = 0. MAR implies that pt0 = p∗t1 for t = 0, 1.3

2Note that these ranges are more restrictive than simply pt0 ∈ (0, 1). This restriction arises because RA
implies Pr(Xi = 1|Ti = 0) must equal Pr(Xi = 1|Ti = 1) so that choosing either p00 or p10 subsequently
identifies the other. Extreme values of one parameter can result in Pr(Xi = 1|Ti = 0) ? Pr(Xi = 1|Ti = 1)
for all values (between zero and one) of the other and is therefore inconsistent with RA.

3Here and throughout this section we use stars to denote population values of directly estimable param-
eters; i.e., the parameters whose values we could deduce from an infinitely large sample (q∗td for t, d = 0, 1
and p∗td for t = 0, 1 and d = 1).
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Table 2: Sample Proportions and Ranges for Restart and

Artificial Data Sets

t d x Restart Data Artificial Data

qtd = Pr(Ti = t,Di = d) 0 0 0.032 0.032
0 1 0.036 0.036
1 0 0.434 0.434
1 1 0.498 0.498

ptd = Pr(Xi = 1|Ti = t,Di = d) 0 0 (0.000,0.892) (0.944,1.000)
0 1 0.573 0.020
1 0 (0.100,1.000) (0.000,0.057)
1 1 0.481 0.850

πtx|1 = Pr(Ti = t,Xi = x|Di = 1) 0 0 0.029 0.066
0 1 0.039 0.001
1 0 0.484 0.140
1 1 0.449 0.793

πtx = Pr(Ti = t,Xi = x) 0 0 (0.019,0.047) (0.035,0.037)
0 1 (0.021,0.049) (0.031,0.033)
1 0 (0.258,0.649) (0.484,0.509)
1 1 (0.283,0.674) (0.448,0.423)

For an explanation of variables see Table 1.
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Figure 1: Graphical implications of missing at random (×) and

random assignment (solid line)
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(a) Restart data
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(b) Artificial data

The randomization of the treatment assignment Ti implies a restriction on the joint

distribution of (Ti, Di, Xi), namely that Ti is independent of Xi, or Ti ⊥ Xi, which can be

written as a single restriction on the probabilities:

Pr(Xi = 1|Ti = 1) = Pr(Xi = 1|Ti = 0).

Given the population values of the directly estimable parameters, this restriction can be

written as a single linear restriction on the remaining parameters p00 and p10:

p∗11 · q∗11 + p10 · q∗10

q∗11 + q∗10

=
p∗01 · q∗01 + p00 · q∗00

q∗01 + q∗00

. (1)

This restriction is not necessarily satisfied when we substitute the MAR values for the ines-

timable parameters, p00 and p10, namely p00 = p∗01 and p10 = p∗11. Figures 1a and 1b illustrate

this for the Restart and artificial data sets by plotting in (p00, p10) space the set of values

satisfying the restriction implied by RA and shown in Equation (1) (indicated by the solid

line) alongside the values implied by MAR (indicated by the “×”).

The next step is to develop a family of selection models that allows for nonignorably

missing data. We wish to develop families of models satisfying two conditions:

7



Resources for the Future Imbens and Pizer

i. coupled with RA, the selection model should be exactly identified by the observed

data; and

ii. the selection model should encompass MAR as a special case.

Condition (i) indicates our interest in selection models leading to unique solutions that are

always consistent with both random assignment and all the observed data. Such a solution

includes a complete set of parameter values for the selection model and the data distribution

(e.g., including those parameters which cannot be observed directly, p00 and p10). Condition

(ii) implies that when MAR is in fact consistent with RA, the unique solution identified

according to Condition (i) will be a MAR missing data model.

Note that the aim is not to find the true values (p00, p10) that generated the data. Such

a search would be futile because the data do not contain enough information to uniquely

determine (p00, p10). Rather, we wish to develop a rule for picking a point in the intersection

of the set of parameter values consistent with the distribution of the observed variables and

the set of values consistent with independence of Ti and Xi (RA). In the simple context

studied in this section, this intersection is the solid line in Figures 1a and 1b, and the model

choice amounts to a rule for choosing a point along that line segment.4

We start by considering general missing data models. With both Ti and Xi binary, the

general form for these models can be captured by a four parameter specification with

Pr(Di = 1|Ti = t,Xi = x) = g(α0 + α1 · t+ α2 · x+ α3 · t · x) (2)

for a known, continuous, and increasing function g(·) satisfying lima→−∞ g(a) = 0 and

lima→∞ g(a) = 1 (assuming all four probabilities are between zero and one). Within this

family of models the members with MAR are characterized by α2 = α3 = 0. The parameters

4In some cases it may be of interest to find the entire set of parameter values consistent with the data and
RA; that is, the solid line in Figures 1a and 1b. Horowitz and Manski (1995) and Manski (1995) advocate
such a strategy. In the current context with all variables binary, this set is straightforward to identify.
However, in more complex situations with multiple, continuous-valued covariates, it could be difficult to find
the entire set of parameter values consistent with both the data and RA. In such cases it may be necessary
to settle for identifying one element of that set.
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of the missing data model, α0, α1, α2 and α3, and the remaining parameters p00 and p10 of

the conditional distribution of Xi given Di = 0 are related by the following definition of the

selection probability:

Pr(Di = 1|Ti = t,Xi = x) = g(α0 + α1 · t+ α2 · x+ α3 · t · x) (3)

=
q∗t1 · p∗t1x · (1− p∗t1)1−x

q∗t1 · p∗t1x · (1− p∗t1)1−x + q∗t0 · pxt0 · (1− pt0)1−x ,

for t, x = 0, 1 and the restriction implied by random assignment, Equation (1).

This general model, for a given choice of g(·), is not identifiable. For every pair of

values (p00, p10) ∈ (0, 1) × (0, 1) consistent with restriction (1) there is a unique quadruple

of values of (α0, α1, α2, α3) such that the other four restrictions implied by (3) are satisfied.

We therefore need at least one additional restriction on the four parameters α0, α1, α2 and

α3 to be able to identify the remaining parameters.

We propose the restriction α2 = −α3 · E[Ti]. The missing data model incorporating this

restriction can then be written as

Pr(Di = 1|Xi = x, Ti = t) = g(α0 + α1 · t+ α2 · x · (t− E[Ti])). (4)

For the two data sets, Figures 2a and 2b illustrate that there is a unique pair (p00, p10)

consistent with both the distribution of the observed variables as well as with the restriction

implied by random assignment. The dashed lines for the logistic and linear g(·) are the points

consistent with the observed values of {p∗td}t,d=1 and {q∗td}t,d and the particular missing data

model.5

It is clear that this selection model, for any choice of g(·), encompasses all possible MAR

models. Specifically, setting α2 = 0 generates the most general MAR model with selection

only depending on treatment Ti. For the first condition above to be satisfied, however, it has

5Formally the linear probability model does not satisfy the asymptotic conditions on g(·), but there
exist g(·) functions satisfying the restrictions which are arbitrarily close to the linear probability model. In
particular, such functions would trace the linear probability model up to the boundary of (p00, p10) ∈ [0, 1]2,
then trace the boundary of the space to the corners (0, 1) and (1, 0). For the artificial data set, this is where
the solution in fact lies. As with the Restart data, the logistic and linear models yield nearly identical results.
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Figure 2: Random assignment (solid) versus selection model

with α2 = −E[Ti]α3 (dashed)
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(a) Restart data
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(b) artificial data

to be determined, first, whether there always is at least one member of this family consistent

with both the data and the restriction implied by RA, and second, whether this member is

unique. The following lemma states that this is indeed the case.

Lemma 1 For all strictly increasing and continuous g(·) satisfying lima→−∞ g(a) = 0 and

lima→∞ g(a) = 1, and for all p∗tx ∈ (0, 1) and q∗tx ∈ (0, 1),
∑
q∗tx = 1, satisfying

p∗11 · q∗11 + p∗10 · q∗10

q∗11 + q∗10

=
p∗01 · q∗01 + p∗00 · q∗00

q∗01 + q∗00

, (5)

there is a unique solution (α0, α1, α2, p00, p10) such that

p∗11 · q∗11 + p10 · q∗10

q∗11 + q∗10

=
p∗01 · q∗01 + p00 · q∗00

q∗01 + q∗00

, (6)

and for t, x = 0, 1

Pr(Di = 1|Ti = t,Xi = x) = g(α0 + α1 · t+ α2 · x · (t− q∗10 − q∗11)) (7)

=
q∗t1 · (1− p∗t1)(1−x) · (p∗t1)x

q∗t1 · (1− p∗t1)(1−x) · (p∗t1)x + q∗t0 · (1− pt0)1−x · pxt0
.
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Figure 3: Random assignment (solid) versus selection model

with α2 = 0 and α3 = 0 (dashed)
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Proof: See appendix.

An obvious alternative to our proposed restriction is to allow for a main effect of the

missing variable and restrict the interaction of Ti and Xi to be zero, setting α3 = 0. A

third possibility is to restrict the main effect to be zero and allow only for an interaction

effect, setting α2 = 0. Both restrictions however imply that for some values of the directly

estimable parameters, {p∗td}t,d=1 and {q∗td}t,d=0,1, there are no values of α and p00 and p10

consistent with both the selection model and the restriction implied by random assignment.

To illustrate this point, Figure 3a and 3b plot the sets of values of (p00, p10) consistent with the

distribution of observed variables (for both Restart and artificial data sets) and the missing

data model with α3 = 0 or α2 = 0 (dashed lines). The choice for g(a) is the logistic function,

g(a) = exp(a)/(1+exp(a)). While both curves go through the MAR point (p∗01, p
∗
11), neither

is consistent with the restrictions implied by independence of Xi and Ti (the solid line) for

the artificial data, and the α3 = 0 curve is not consistent with the independence restriction

for the Restart data.6

6For example, the restriction α2 = 0 implies that Pr(Di = 1|Ti = 0, Xi = 0) = Pr(Di = 1|Ti = 0, Xi = 1),
and therefore q∗01(1 − p∗01)/(q

∗
01(1 − p∗01) + q∗00(1 − p00)) must equal q∗01p

∗
01/(q

∗
01p
∗
01 + q∗00p00). This in turn

implies p00 = p∗01.
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In addition to the existence and uniqueness properties given in Lemma 1, our choice

of the restriction α2 = α3 · E[Ti] also has an appealing interpretation as being as close as

possible to MAR while remaining consistent with RA. This interpretation is discussed next.

4. A Connection with Estimation of Contingency Tables

with Known Marginals

In this section we link the model developed in the previous section with models used to

estimate cell probabilities in a contingency table with known marginals. This connection

is useful as it highlights the fact that the solution proposed in Lemma 1 can be viewed

as being the set of missing probability values closest to MAR while remaining consistent

with auxiliary information. The choice of g(·) operationalizes the measure of closeness. In

Section 5, however, we will see that one advantage of the earlier approach is that, unlike the

contingency table approach, it extends easily to the continuous covariate case.

4.1 Estimation of Contingency Tables with Known Marginals

A number of estimators have been suggested for the problem of estimating cell proba-

bilities in a two-way classification with known marginal distributions (Deming and Stephan

1942; Ireland and Kullback 1968; Little and Wu 1991). Here we are particularly concerned

with the interpretation of these estimators when the marginal distributions fail to correspond

with the sampled row and column frequencies. Little and Wu (1991) show that the vari-

ous estimators can in that case be interpreted as corresponding to different models for the

relation between the target population (to which the marginal distribution refers) and the

sampled population (to which the cell frequencies refer). In our terminology, it is the selec-

tion model which identifies this relation. We show that by modifying the known marginals

problem – now imposing a marginal distribution for one variable along with independence

between the two variables – the previously developed estimators for the known marginals

problem lead to the models developed in Section 2. As in the previous section, we continue

to focus on large sample issues and ignore estimation problems.

12
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At this point it is convenient to reparameterize in terms of the joint distribution of Ti and

Xi. As in Table 2, let πtx = Pr(Ti = t,Xi = x) be the parameters of the joint distribution

of (Ti, Xi). In terms of the earlier notation,

πtx = pxt0(1− pt0)1−xqt0 + pxt1(1− pt1)1−xqt1.

In addition, let πtx|1 = Pr(Ti = t,Xi = x|Di = 1) be the parameters of the conditional

distribution of (Ti, Xi) given Di = 1. As shown in Table 2, in large samples we can estimate

the πtx|1 precisely, but we can only determine ranges for the πtx.

A simple version of the problem considered by Little and Wu (1991) is that of determining

πtx given a sample of (Ti, Xi) randomly drawn conditional on Di = 1 and given knowledge

of the two marginal distributions. The marginals are summarized by the two parameters

π1· = Pr(Ti = 1) = π10 + π11 and π·1 = Pr(Xi = 1) = π01 + π11. The solutions proposed

in the literature all amount to choosing πtx as close as possible to πtx|1 while validating the

known marginals. They differ in their choice of the measure of closeness. One solution,

based on a likelihood metric, estimates π by solving:

max
πtx

∑
t,x

πtx|1 lnπtx, (8)

subject to
∑
t,x

πtx = 1, π1· = π10 + π11, π·1 = π01 + π11,

where πtx|1 =
∑

i|Di=1 1{Ti = t,Xi = x}
/∑

i|Di=1 1 and 1{} is the indicator function,

assuming a value of one when the specified condition is true and zero otherwise. The data

(Ti, Xi) are given along with π1· and π·1. This leads to a solution for πtx which can be written

as

πtx = πtx|1

/[
1 + λ1 · (t− π1·) + λ2 · (x− π·1)

]
,

with λ1 and λ2 the Lagrange multipliers for the restrictions on π1· and π·1, respectively.

4.2 Imposing Independence

13
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In our problem with missing covariates in randomized trials, the restrictions are not on

the two marginal distributions. Rather, we can view the sample as containing a random

sample of (Ti, Xi) given Di = 1 combined with knowledge of: (i) the known distribution of

Ti, π10 + π11 = q∗10 + q∗11; and (ii) the independence of Ti and Xi, Pr(Xi = 1) · Pr(Ti =

1) = Pr(Ti = 1, Xi = 1), or (π01 + π11) · (π10 + π11) = π11. We can impose these two

restrictions using the likelihood metric and solve the same maximization program as (8) but

with different restrictions:

max
πtx

∑
t,x

πtx|1 lnπtx, (9)

subject to
∑
t,x

πtx = 1, π10 + π11 = q∗01 + q∗11, (π01 + π11) · (π10 + π11) = π11.

This leads to solutions for πtx which can be written as the solution to seven equations; the

first four from the first order conditions for πtx:

πtx = πtx|1

/[
µ+ λ1 · t+ λ2 · (x · (π10 + π11) + t · (π01 + π11)− x · t)

]
(10)

for t, x = 0, 1, and three equations from the restrictions:

π00 + π01 + π10 + π11 = 1,

π10 + π11 = q∗10 + q∗11,

(π01 + π11) · (π10 + π11) = π11,

where µ, λ1, and λ2 are the Lagrange multipliers for the three restrictions.

To connect this with the model analyzed in the previous section, consider the solution

(α0, α1, α2, p00, p10) in Lemma 1 corresponding to the linear probability specification g(a) = a.

Since g(α0 + α1 · t+ α2 · x · (t − E[Ti])) = Pr(Di = 1|Ti = t,Xi = x) according to (4), the

implied solution for the parameters πtx in terms of (α0, α1, α2), denoted by π̃tx is

π̃tx = πtx|1 · Pr(Di = 1)/Pr(Di = 1|Ti = t,Xi = x)

= πtx|1 · (q∗01 + q∗11)/g(α0 + α1 · t+ α2 · x · (t− q∗10 − q∗11))

14
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With g(·) linear, this expresion simplifies to

π̃tx = πtx|1 · (q∗01 + q∗11)/(α0 + α1 · t+ α2 · x · (t− q∗10 − q∗11)).

By setting µ = α0/(q∗01 + q∗11), λ1 = (α1 +α2(π01 +π11))/(q∗01 + q∗11), and λ2 = −α2/(q∗01 + q∗11)

in (10) and checking that π̃tx satisfies the restrictions
∑
πtx = 1, π10 + π11 = q∗10 + q∗11, and

(π01 +π11) · (π10 +π11) = π11, it follows that π̃tx—based on Lemma 1 with g(a) = a— is also

the solution to optimization program (9).

Using a different g(·) function in the model of Section 3 corresponds to using a different

metric in (9). This is formalized in the following lemma:

Lemma 2 For given q∗td, p
∗
t1, and a continuous and increasing function g(·) satisfying

lima→−∞ g(a) = 0, lima→∞ g(a) = 1, let (p00, p10, α0, α1, α2) be the unique solution to (6)-(7)

in Lemma 1 with the implied solution for πtx equal to

πtx = pxt0(1− pt0)(1−x)q∗t0 + (p∗t1)
x(1− p∗t1)1−xq∗t1. (11)

Furthermore, let h(·) be a continuously differentiable and convex function with the inverse of

its derivative denoted by k(·); let πtx|1 = (p∗t1)
x(1− p∗t1)1−xq∗t1; and let πtx be the solution to:

max
πtx

∑
t,x

πtx|1h(πtx/πtx|1), (12)

subject to
∑
t,x

πtx = 1, π10 + π11 = q∗10 + q∗11, (π01 + π11) · (π10 + π11) = π11.

Then, if k(·) = (q∗01 + q∗11)/g(·), the solution for πtx is the same as that in Lemma 1:

πtx = pxt0(1− pt0)(1−x)q∗t0 + (p∗t1)
x(1− p∗t1)1−xq∗t1.

Proof: See appendix.

A popular choice for the convex function h(z) is the likelihood metric h(z) = log(z)

corresponding to the linear probability function g(y) = y · (q∗01+q∗11). More generally one can

15
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use the function corresponding to the Cressie–Read (1984) family of divergence measures

(see also Baggerly 1995 and Corcoran 1995):

h(z) = −(z−λ − 1)/(λ · (λ + 1)),

corresponding to

g(y) = (q∗01 + q∗11)(y · (λ+ 1))1/(1+λ),

for values of λ on the real line. Another interesting metric is obtained by using the limit of

the Cressie–Read divergence measure

max
πtx

lim
λ→−1

∑
t,x

πtx|1
1

λ · (λ+ 1)
·
[(

πtx
πtx|1

)−λ
− 1

]
,

which reduces to the Kullback–Leibler criterion:

max
πtx

∑
t,x

πtx log(πtx|1/πtx).

This criterion leads to the selection model g(y) = exp(−y) · (q∗01 + q∗11). Finally, choosing

h(z) = −(z− q∗01− q∗11) log(z − q∗01− q∗11) + z − q∗01− q∗11 corresponds to the logistic selection

model g(y) = exp(y)/(1 + exp(y)). It is interesting to note (see also Little and Wu 1991)

that conventional choices for the discrepancy measure (e.g., the likelihood metric) do not

correspond to conventional choices for the selection probability (e.g., logistic).

5. Response Variables and General Pretreatment variables

In the previous sections the analysis was limited to the case without a response variable

and with a single binary pretreatment variable. Extending the basic approach to more

general cases is straightforward and will be discussed briefly in this section.

Suppose that the partially observed pretreatment variable Xi takes on K + 1 different

values. For notational convenience we assume these values are 0, 1, . . . , K. We extend

the notation from the previous sections by defining pxtd = Pr(Xi = x|Ti = t,Di = d).

Independence of Ti and Xi then implies K restrictions of the type Pr(Xi = x|Ti = 1) =

16
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Pr(Xi = x|Ti = 0) for x = 0, 1 . . . , K. Imposing these restrictions using the approach

presented in the last section leads to specifications of the missing data model of the form

Pr(Di = 1|Ti = t,Xi = x) = g(ψ + αx · (t− E[Ti])).

The following lemma shows that this model has the same properties as the model for binary

pretreatment variables discussed in the previous section.

Lemma 3 Let Xi ∈ {0, 1, . . . , K} take on K + 1 different values. Let g(·) be a continuous,

strictly increasing function satisfying lima→∞ g(a) = 1 and lima→−∞ g(a) = 0. For any

q∗td ∈ (0, 1) with
∑

t,d q
∗
td = 1, and any p∗xtd ∈ (0, 1) satisfying

p∗x01q
∗
01 + p∗x00q

∗
00

q∗01 + q∗00

=
p∗x10q

∗
10 + p∗x11q

∗
11

q∗10 + q∗11

,

there is a unique solution (ψ, α0, . . . , αK , p000, . . . , pK00, p010 . . . , pK10) such that for all t and

x

g(ψ + αx · (t− q∗10 − q∗11)) = q∗t1p
∗
xt1/(q

∗
t1p
∗
xt1 + q∗t0pxt0),

and

p∗x01q
∗
01 + px00q

∗
00

q∗01 + q∗00

=
px10q

∗
10 + p∗x11q

∗
11

q∗10 + q∗11

.

Proof: See appendix.

The second step is to allow for pretreatment variables that are always observed. This

implies that the parameters ψ and αx can depend on the value of the additional pretreatment

variableX1i. The final extension is to allow for the presence of the response variable Yi. There

is no direct evidence that the missing data mechanism depends on the outcome variable and

we assume, as in the MAR approach, that the probability of the data missing does not

depend on the value of Yi. This leads to the following selection model for the general case:

Pr(Di = 1|Yi = y, Ti = t,X1i = x1, X2i = x2) = g(ψx1 + αx1,x2 · (t− E[T ])),

17
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where the parameter ψx1 can depend in an unrestricted way on X1i, and the parameter αx1,x2

on both X1i and X2i (X2i, previously referred to as Xi, is the partially observed pretreatment

variable). The response variable is, in turn, specified as a probabilistic function of all the

covariates and the treatment.

6. An Application

In this section we use the aforementioned methods to estimate the effect of a training

program in the United Kingdom. Randomly chosen unemployed individuals were either

required to have a conversation with an official from the local employment office about job

search strategies (Ti = 1), or not (Ti = 0). We are interested in the effect this conversation

has on future employment. The outcome is whether the individual has successfully exited

from unemployment within six months from the date of randomization (Yi = 1) or not (Yi =

0). The covariate is whether the individual has a driving licence (Xi = 1) or not (Xi = 0).

Both covariate and outcome are only observed for individuals who filled in a survey six

months after the randomization date (Di = 1). We have data on 8,189 individuals and focus

our attention on the subset of 4,177 males ages 20 to 50. Among the 4,177 observations, 3,894

received the search strategy conversation; 283 did not. Only 2,230 individuals returned the

survey revealing both the outcome (exit from unemployment) Yi and the covariate (possession

of a driver’s license) Xi.7 We also analyze an artificial data set that is similar to the original

data set but exacerbates the MAR and RA conflict (Table 1 summarizes both sets of data).

We specify the model as follows:

Pr(Ti = 1) = µt,

Pr(Xi = 1) = µx,

and for t, x = 0, 1, the conditional distribution of the response variable,

Pr(Yi = 1|Xi = x, Ti = t) =
exp(β0 + β1 · x+ β2 · t+ β3 · x · t)

1 + exp(β0 + β1 · x+ β2 · t+ β3 · x · t)
, (13)

7Gender and age information are available for all individuals.
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and, for t, x, y = 0, 1, the probability of responding to the survey,

Pr(Di = 1|Yi = y, Ti = t,Xi = x) =
exp(α0 + α1 · t+ α2 · x · (t− µt))

1 + exp(α0 + α1 · t+ α2 · x · (t− µt))
, (14)

Note that the selection model (14) follows the form given in Lemma 1 with logistic g(·).

We are interested in the population average effect of the employment conversation on future

employment probability. In terms of the parameters defined above, this is

τ = µx ·
(

exp(β0 + β1 + β2 + β3)

1 + exp(β0 + β1 + β2 + β3)
− exp(β0 + β1)

1 + exp(β0 + β1)

)
(15)

+ (1− µx) ·
(

exp(β0 + β2)

1 + exp(β0 + β2)
− exp(β0)

1 + exp(β0)

)
.

In other words, we wish to compute a population effect averaged over licensed (Xi = 1) and

unlicensed (Xi = 0) individuals. In addition we may be interested in the parameters of the

missing data mechanism, particularly in deviations from the missing at random assumption.

This is captured by non-zero values of the parameter α2 in Equation (13).

We estimate the model in two parts. First we multiply impute the missing values Yi and

Xi when Di = 0 (Rubin, 1987, 1996), creating a number of simulated data sets with complete

data on Xi and Yi. Then, for each complete data set we estimate the average treatment

effect using standard methods. The variance of the estimate of the average treatment effect

is then estimated as the average of the complete data variances plus the variance between

the estimates over the complete data sets.

To impute the missingXi and Yi we use the (DA) Data Augmentation algorithm proposed

by Tanner and Wong (1990). Given initial estimates of the full parameter vector, denoted by

θ = (α0, α1, α2, β0, β1, β2, β3, µt, µx), the conditional distribution of Xi given Ti and Di = 0

is Bernoulli with probability

Pr(Xi = 1|Ti = t,Di = 0, θ) =

µx/(1 + exp(α0 + α1 · t+ α2 · (t− µt)))
µx/(1 + exp(α0 + α1 · t+ α2 · (t− µt))) + (1− µx)/(1 + exp(α0 + α1 · t))

.
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With Xi imputed we then impute the missing values for Yi by using the fact Yi and Di are

independent conditional on Xi and Ti. Conditional on θ, Xi, Ti and Di = 0 the distribution

of Yi is Bernoulli with probability

Pr(Yi = 1|Xi = x, Ti = t,Di = 0, θ) = Pr(Yi = 1|Xi = x, Ti = t, θ)

=
exp(β0 + β1 · x+ β2 · t+ β3 · x · t)

1 + exp(β0 + β1 · x+ β2 · t+ β3 · x · t)
.

Given imputed values for Xi and Yi, we then sequentially draw parameters in the vector θ

based on their conditional posterior distributions. For the population proportions µx and µt,

the distribution is Beta. For the logistic regression parameters (α0, α1, α2, β0, β1, β2, β3), the

distribution is non-standard and we use the Metropolis-Hasting algorithm (Metropolis and

Ulam 1949; Metropolis et al. 1953; Hastings 1970). The entire process is repeated, generating

a Markov chain of parameter estimates which converges to the posterior distribution.

Table 3 summarizes the estimation results for four cases. We estimate both the nonignor-

able model described above and the MAR model for the Restart and artificial data sets. Esti-

mating the MAR model involves restricting the selection parameter α2 to be zero and simulta-

neously ignoring random assignment by permitting Pr(Xi = 1|Ti = 1) 6= Pr(Xi = 1|Ti = 0)

(these are parameters p1x and p0x in Table 3). The prior distributions for α and β in all four

cases are of the conjugate form discussed by Clogg, Rubin, Schenker, Schultz, and Weidman

(1991) and Rubin and Schenker (1987). This is equivalent to “adding” observations of the

24 different binary (Yi, Xi, Ti, Di) combinations. We choose to add 2.5 observations of each

combination which, for the Restart data at least, should have little influence on the posterior.

Priors for the remaining parameters (µx and µt for the non-ignorable model and p0x, p1x and

µt for the ignorable model) were similarly modeled as conjugate Beta(2,2).

The parameters we wish to focus attention on are τ , describing the average treatment

effect of the interview, and α2, describing the degree to which MAR is violated. For the

Restart data, the treatment effect is significantly positive and essentially the same for both

the ignorable and non-ignorable models. Receiving the interview increases the probability
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Table 3: Estimation results

(posterior means and standard deviations)

Restart Data Artificial Data
parameter non-ignorable ignorable non-ignorable ignorable

α0 –0.217 0.116 36.346 0.120
(0.192) (0.117) (0.459) (0.038)

α1 0.378 –0.021 –37.825 0.016
(0.204) (0.121) (0.468) (0.039)

α2 –0.753 – 43.176 –
(0.366) (0.542)

β0 –1.873 –1.881 –2.092 –2.091
(0.356) (0.359) (0.083) (0.082)

β1 1.031 1.039 1.252 1.250
(0.362) (0.366) (0.091) (0.091)

β2 1.287 1.285 1.477 1.449
(0.417) (0.420) (0.394) (0.356)

β3 –0.971 –0.974 –1.167 –1.139
(0.428) (0.430) (0.396) (0.359)

p0x – 0.571 – 0.021
(0.040) (0.004)

p1x – 0.481 – 0.850
(0.011) (0.002)

µx 0.488 0.487 0.553 0.794
(0.011) (0.011) (0.005) (0.003)

µt 0.932 0.932 0.932 0.932
(0.004) (0.004) (0.001) (0.001)

τ 0.089 0.091 0.094 0.056
(0.034) (0.034) (0.047) (0.061)
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of exiting from unemployment within six months by 8.9%, with a 95% probability interval

of 1.8% to 15.3%.

This similarity is perhaps surprising given the inconsistency of the MAR and RA as-

sumptions observed in the data. Estimating the MAR model, we see that p0x 6= p1x. That

is, the probability of having a license is different among the treatment and control groups—a

violation of random assignment. When we estimate the non-ignorable selection model, we

similarly find a statistically significant estimate of −0.753 for α2—indicating a violation of

missing at random.

Despite these differences, the estimate of µx remains the same in both models. This

is important. The distinction between the models is how they impute the demographic

features of the population, not how they compute the conditional treatment effect (the βs

are identical). In this case, the only demographic variable is the fraction of the population

that possesses a driver’s license.

Looking at Figure 2a, we could surmise this result. As we are drawn away from the

point representing MAR using the logistic model, the value of p10 (probability of possessing

a driver’s license among the missing treatment observations) remains unchanged until the

boundary of the diagram. Since 92% of the population receive the treatment, this is the bulk

of the missing observations. If the imputed value of their likelihood of possessing a license

is unchanged, the value for the entire population will be unchanged.

This is a more general consequence when we consider the discrepancy-based approach.

Since the measure being minimized is weighted by the probabilities observed in the sample,

πtx|1 in Equation (12), the model places greater weight on maintaining the characteristics of

larger subgroups. This inevitably preserves the marginal probabilities such as µx as much

as possible.

Therefore, to see a difference between the models we have to exacerbate the selection

bias to the point where the value of p10 is no longer roughly 50%—namely, the border of

Figure 2a. In terms of the underlying data, described by qtd and pt1, we have to exacerbate
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the fact that p11 6= p01. This is exactly the approach we took with the artificial data where

p11 = 0.85, p01 = 0.02, but the other data frequencies remain unchanged (see Table 2).

The only other difference between the Restart and artificial data is the total number of

observations. In order to avoid having priors influence the results, we increase the number

of observations by a factor of ten (see Table 1).8 The results are shown in the right half of

Table 3.

Now, we see a much larger contradiction between MAR and RA. The unequal values

of p0x and p1x in the MAR model refute RA, while the significant value of α2 in the non-

ignorable model refutes MAR—in both cases by much larger margins than observed in the

original Restart data. More importantly, this leads to a significantly different estimate of µx:

0.55 in the non-ignorable model versus 0.79 under MAR. When we use these different values

of µx to weight the treatment effect among individuals with and without driver’s licenses, we

come to qualitatively different conclusions. The treatment effect under the ignorable model

appears insignificant while the effect under the non-ignorable model is significant. Again,

we note that the estimates of β and µt are unchanged (compared to the Restart data) since

we preserved the remaining features of the data.

What are the essential elements that create a distinction between the two models? The

first is that there must be a significant covariate-treatment interaction. In the Restart data,

the discussion concerning job search strategies raises the likelihood of successfully exiting

unemployment by 18% among individuals without a driver’s license. There is virtually no

effect for individuals possessing a license. Since we care about the average treatment effect,

however, we need to weight these two effects by the fraction of the population with and with-

out licenses. This is where the missing data assumptions enter: The second requirement for

a distinction between the models is that they must result in significantly different estimates

8The priors place equal probability—equivalent to 2.5 observations—on each of the 24 = 16 possible
(Yi, Xi, Ti, Di) combinations. Since some categories would have only one or two observations based on the
artificial sample frequencies and the original sample size of 4,177, the priors would tend to make the extreme
data frequencies appear less extreme.
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of the population value of the covariate. Not only must the MAR and RA assumptions

be in conflict, they must conflict to the point that the imputed covariates lead to different

marginal distributions among the two models.

7. Conclusion

Missing data complicates the simple and straightforward estimation of average treatment

effects afforded by experiments with randomized assignment (RA). The standard approach

to modeling the selection process (MAR) is inadequate in cases where available covariates

are also missing. Such an approach fails to explain why the observed covariate distribution

may be different for the treatment and control groups, in spite of randomized assignment.

The proposed non-ignorable selection model developed in this paper attempts to preserve the

spirit of MAR while explaining observed deviations. It does so by minimizing the discrepancy

with MAR while incorporating our knowledge of randomized assignment as explained in

Section 4.

Applied to data on a U.K. job-training program, we find a statistically significant con-

flict between MAR and RA. However, this has no practical consequence for the estimated

treatment effect using the more general model developed herein compared to the standard

MAR approach. Both lead us to conclude that the program raised the probability of exiting

unemployment within six months by about 9%. However, we show that for similar data with

a more significant MAR/RA conflict, the two selection models can generate qualitatively dif-

ferent results, as evidenced by the analysis of an artificial data set. The most effective means

of ascertaining such a discrepancy is to estimate both models. We therefore recommend

our more general selection model for analyzing missing data in the context of a randomized

experiment with missing covariates.
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Appendix

Proof of Lemma 1: We prove this in three steps. First, we show that there is an implicit

function p10 = h(p00) defined by this model, with limp→0 h(p) = 1, limp→1 h(p) = 0, and h(p)

strictly decreasing in p. Then, we show that the restriction implied by random assignment

defines an implicit function p10 = f(p00) which is increasing, and which is defined for p00 ∈

[a, b] where either a = 0 or f(a) = 0, and either b = 1 or f(b) = 1. With both functions

continuous there is always a unique solution to f(p) = h(p), with p00 = p ∈ [0, 1] and

p10 = h(p) ∈ [0, 1], which gives the uniqueness for (p00, p10). Finally we show uniqueness of

the solutions for α0, α1 and α2.

By assumption g(·) is invertible, and therefore we can simplify the four restrictions in (7)

by concentrating out α0, α1, and α2 to get

f1(p10) = f0(p00), (16)

where

f0(p00) = (q10 + q11)
−1 · g−1

(
q01 · (1− p01)

q01 · (1− p01) + q00 · (1− p00)

)

− (q10 + q11)
−1 · g−1

(
q01 · p01

q01 · p01 + q00 · p00

)
,

f1(p10) = (q00 + q01)
−1 · g−1

(
q11 · p11

q11 · p11 + q10 · p10

)

− (q00 + q01)
−1 · g−1

(
q11 · (1− p11)

q11 · (1− p11) + q10 · (1− p10)

)
.

Because g(·) is increasing, so is its inverse g−1(·). It therefore follows that f1(·) is strictly

decreasing and f0(·) is strictly increasing in their respective arguments, implying that the

implicit function p10 = h(p00) defined by f1(p10) = f0(p00) is strictly decreasing in its argu-

ment.

The second part of this first step is to show that for all ε > 0 there is a solution (p00, p10)

to the equation f0(p00) = f1(p10) with 0 < p00 ≤ ε and 1 − ε ≤ p10 < 1, as well as a
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solution with 1 − ε ≤ p00 < 1 and 0 < p10 ≤ ε. This would prove that limp→0 h(p) = 1

and limp→1 h(p) = 0. Suppose that f1(1 − ε) < f0(ε). Then, since limp00→0 f0(p00) =

(q10 + q11)−1g−1(q01(1− p01)/(q01(1− p01) + q00))− (q10 + q11)−1 lima→1 g−1(a) = −∞, there

must be a solution (p00, p10) with p10 = 1 − ε and p00 < ε. Similarly if f1(1 − ε) > f0(ε),

there must be a solution with p10 > 1− ε and p00 = ε. Hence there always is a solution with

p10 ≥ 1 − ε and p00 ≤ ε. A similar argument can be used to show that there is always a

solution with p00 ≥ 1− ε and p10 ≤ ε. 2

From the proof of the lemma it can readily be seen that the missing data model defines

an implicit function p10 = p10(p00) that is downward sloping in p00 and passes through the

MAR point (p∗01, p
∗
11). This is true regardless of the choice of g(·) or the values of the observed

variables q∗td and p∗t1. This implies that not all points in the set of (p00, p10) consistent with

independence of Ti and Xi are consistent with a missing data model based on alternative

functions g(·). Specifically, one cannot have both p00 and p10 larger than the values implied

by MAR, and one cannot have both p00 and p10 smaller than the values implied by MAR.

There is a second restriction implied by the selection model (4). Consider ranking the

four selection probabilities, Pr(Di = 1|Ti = t,Xi = x) for Xi = {0, 1} and Ti = {0, 1}. Any

ranking implies a set of three inequality relations, for example,

Pr(Di = 1|Ti = 1, Xi = 0) >
Pr(Di = 1|Ti = 0, Xi = 0) >
Pr(Di = 1|Ti = 0, Xi = 1) >
Pr(Di = 1|Ti = 1, Xi = 1)

(17)

The monotonicity of g(·) maps such relations into the two-dimensional parameter space

(α1, α2). The parameter α0 has no effect on the ranking. The above ranking leads to

α1 > 0
0 > α2 · (−q∗10 − q∗11)

α2 · (−q∗10 − q∗11) > α1 + α2 · (1− q∗10 − q∗11)
(18)

Since three inequality relations in a two-dimensional space can easily have an empty intersec-

tion, certain orderings of the selection probabilities are simply inconsistent with our selection
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Figure 4: Restrictions implied by second side condition (shaded areas),

logistic choice of g(·), and random assignment (solid lines)
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model – for any g(·) function. The relations in (18) demonstrate this: The first relation in-

dicates that α1 is positive. The second relation indicates that α2 is positive. However, the

third relation indicates that α1 + α2 is negative. It is therefore impossible to generate the

ordering in (17) using the proposed selection model (4).

Such a restriction against certain orderings of selection probabilities translates into a set of

inequality restrictions on p00 and p10 through the relations (3). For the Restart and artificial

data given in Table 1, the regions where this restriction eliminates potential solutions are

shown in Figures 4a and 4b.

The restriction that p00 and p10 cannot be either simultaneously larger or smaller than

the values implied by MAR, as well as the more complicated restrictions shown in Figure

4, represents side consequences of the identifying assumption (4), much like the absence of

an interaction between Xi and Ti is a consequence of setting α3 = 0 in (2). However, these

side restrictions also turn out to be sufficient to characterize the set of possible solutions

corresponding to choices of g(·). This is formalized in the following lemma.

Lemma 1a For all p∗tx ∈ (0, 1) and q∗tx ∈ (0, 1) satisfying (5), there exists a monotonic

27



Resources for the Future Imbens and Pizer

function g(·) with lima→∞ g(a) = 1 and lima→−∞ g(a) = 0 such that the unique solution

(α0, α1, α2, p00, p10) satisfying (6) and (3) has p00 = p∗00 and p10 = p∗10 if the following two

conditions are satisfied:

i. sgn(p∗11 − p∗10) = − sgn(p∗01 − p∗00).

ii. Assume pt > 0.5. p∗10 cannot be either simultaneously greater or simultaneously smaller

than the following four expressions:

(a) 1− q∗01·q∗10

q∗00·q∗11
· 1−p∗11

p∗01
· p∗00

(b)
q∗11·q∗00

q∗01·q∗10
· p∗11

1−p∗01
· (1− p∗00)

(c)
q∗11·q∗00

q∗01·q∗10
· p
∗
01

p∗11
· p∗00

(d) 1− q∗11·q∗00

q∗01·q∗10
· 1−p∗11

1−p∗01
· (1− p∗00)

Proof of Lemma 1a: We prove this lemma by constructing a function g(·) which, when cou-

pled with the independence restriction and the observable quantities {q∗00, q
∗
01, q

∗
10, q

∗
11, p

∗
01, p

∗
11},

exactly identifies any (feasible) chosen set of true values {p∗00, p
∗
10}.

From the proof of Lemma 1, we know that a function g(·), which is monotonic and

satisfies lima→−∞ g(a) = 0 and lima→+∞ g(a) = 1, identifies a downward sloping implicit

function p10 = f(p00) given by (16). Defining

rtx(pt0) = Pr(Di = 1|Xi = x, Ti = t) =
(p∗t1)

x(1− p∗t1)1−xq∗t1
(p∗t1)

x(1− p∗t1)1−xq∗t1 + (pt0)x(1− pt0)1−xq∗t0
,

this can be rewritten compactly as

p∗t · g−1(r11(p10)) + (1− p∗t ) · g−1(r01(p00)) = p∗t · g−1(r10(p10)) + (1− p∗t )g−1(r00(p00))
(19)

where p∗t = q∗10 + q∗11 = Pr(Ti = 1). If our constructed g(·) satisfies (19) at {p∗00, p
∗
10} and

those values also satisfy the independence restriction, Lemma 1 proves that this solution is

unique and therefore identified by our choice of g(·).
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The proof will be expedited by rewriting the side restrictions in terms of rtx. Defining

r∗1x = r1x(p∗10) and r∗0x = r0x(p∗00),

i. sgn(r∗11 − r∗10) = − sgn(r∗01 − r∗00)

ii. assuming pt > 0.5, the following four inequalities (or the four reciprocal inequalities)

cannot simultaneously hold true:

(a) r∗10 > r∗01

(b) r∗00 > r∗11

(c) r∗01 > r∗11

(d) r∗10 > r∗00

We construct g(·) by first defining values of g−1(r∗tx) which satisfy the monotonicity

assumption on g(·) and by extension g−1(·). The remainder of g−1(·) is then defined as a

piecewise linear function between the values r∗tx combined with end pieces such that g−1(b)→

±∞ as b→ 1 or 0. The monotonic function g(·) is then formed by inverting g−1(·).

WLOG, assume pt > 0.5 and |r∗11−r∗01| > |r∗10−r∗00| (if not, redefine the treatment/control

groups or covariate groups as necessary). Set g−1(r∗00) = 0 and define s = sgn(r10− r00). Set

g−1(r∗10) = s.

We now consider all possible cases given by the side restrictions,

i. Suppose s · r∗01 > s · r∗11. With this assumption, coupled with |r∗11 − r∗01| > |r∗10 − r∗00|

and sgn(r∗11 − r∗10) = − sgn(r∗01 − r∗00), there are three possible orderings (×2 values of

s):

s · r∗10 > s · r∗01 > s · r∗00 > s · r∗11

s · r∗01 > s · r∗10 > s · r∗00 > s · r∗11

s · r∗01 > s · r∗10 > s · r∗11 > s · r∗00

(20)

However, since two of the four inequalities, (iic) and (iid), run in the same direction,

at least one of the two remaining inequalities, (iia) or (iib), must run in the opposite
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Figure 5: Construction of g(·) for particular choice of {p∗00, p
∗
10}

direction. This rules out the first ordering. To construct the rest of the g−1(·) function,

set g−1(r∗01) = s · (1 + φ) and g−1(r∗11) = s · (1− 1−p∗t
p∗t

(1 + φ)). Choose φ > 0 such that

1 − 1−p∗t
p∗t

(1 + φ) ? 0 as r∗11 ? r∗00; this is possible since p∗t > 1 − p∗t by assumption.

Hence, g−1(·) is monotone for either of the two possible orderings in (20). These values

also satisfy (19) and, in fact, we have α0 = 0, α1 = s, α2 = −s · 1+φ
p∗t

as the unique

solution for any monotone function g(·) passing through these four points.

The remainder of the function is constructed by making g−1(·) linear between these four

points and defining g−1(a) = g−1(rmin)+
1

rmin
− 1

a
for a < rmin and g−1(a) = g−1(rmax)−

1
1−rmax

+ 1
1−a for a > rmax where rmin = mint,x∈{0,1}(r

∗
tx) and rmax = maxt,x∈{0,1}(r

∗
tx).

This construction is illustrated in Figure 5 for the Restart data in Table 1 and p∗00 =

0.100, p∗10 = 0.804 with φ = 100.

ii. Suppose instead s·r∗01 < s·r∗11. Coupled with |r∗11−r∗01| > |r∗10−r∗00| and sgn(r∗11−r∗10) =

− sgn(r∗01 − r∗00), there is only one possibility:

s · r∗11 > s · r∗10 > s · r∗00 > s · r∗01.

To construct the rest of g−1(·), set g−1(r∗01) = −s and g−1(r11) = s · (1 + 1−p∗t
p∗t

).

These values of g(·) satisfy both monotonicity and (19). They lead to unique values
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of α0 = 0, α1 = s, α2 = s
p∗t

for any monotonic g(·) passing through these four points.

The remainder of g−1(·) can be constructed as described in the previous paragraph.�

Note that the first condition prevents p∗00 and p∗10 from being simultaneously greater or

smaller than the MAR values, p∗00 = p∗01 and p∗10 = p∗11. The second condition reflects the

more complex restrictions on ordering. For example, the ordering given in (17) leads to p∗10

being greater than each the four expressions given in condition (ii) as represented by the

upper shaded area in Figure 4a (e.g., a value of (p∗00, p
∗
10) = (0.4, 0.9)). Such a combination

cannot be identified for any choice of monotonic g(·) along with (4).

Proof of Lemma 2: The first order conditions for (12) are

h′
(
π00

π00|1

)
− µ = 0

h′
(
π01

π01|1

)
− µ− λ2(π10 + π11)

h′
(
π10

π10|1

)
− µ− λ1 − λ2(π01 + π11)

h′
(
π11

π11|1

)
− µ− λ1 − λ2(2π11 + π01 + π10 − 1)

combined with the restrictions∑
t,x

πtx = 1, π10 + π11 = π1· = q∗10 + q∗11, (π01 + π11)(π10 + π11) = π11.

We now argue that the implied solution (11) for πtx from Lemma 1 satisfies these seven

conditions. By construction, the last three conditions are trivially satisfied based on (11)

and (6) from Lemma 1. Using the assumption that h′(z) = g−1((q∗01 + q∗11)/z), the first-order

conditions become equivalent to (7), setting µ = α0, λ2 = −α2 and λ1 = α1 + α2(π01 + π11),

and are also satisfied by the solution to Lemma 1.2
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Proof of Lemma 3: First we show that there is a unique solution to the raking form of

the problem, and then we show that the raking solution translates into a solution for the

problem at hand.

Define

πxt|1 = pxt1qt1/(q01 + q11).

Then there is a unique solution to the set of equations

πtx =
πtx|1 · (q01 + q11)

g(µ+ λx(t− q10 − q11))
,

and

π1x

q10 + q11
=

π0x

q00 + q01
,

for all t and x.

Substituting for πtx we have, for x = 0, 1, . . . , K,

π0x|1 · (q01 + q11)

g(µ− λx · (q10 + q11)) · (q00 + q01)
=

π1x|1 · (q01 + q11)

g(µ + λx · (1− q10 − q11)) · (q10 + q11)
. (21)

Given µ, there is a unique solution λx(µ) because the left-hand side is strictly increasing in

λx, going to infinity as λx goes to infinity, and the right-hand side is strictly decreasing in

λx, with limit infinity as λx goes to minus infinity.

To establish uniqueness of the solution for µ we need to bound the derivative of λx

from below. Specifically, we need the result that (t − q1·)
∂λx
∂µ

> −1 for t = 0, 1 (where

q1· = q10 + q11). To establish this, take derivatives of both sides of (21) with respect to µ

and solve for ∂λx/∂µ to get

∂λx
∂µ

=
π1x|1 · (1− q1·)g

′(µ− λxq1·)− π0x|1q1·g
′(µ+ λx(1− q1·))

π1x|1q1·(1− q1·)g′(µ− λxq1·) + π0x|1q1·(1− q1·)g′(µ+ λx(1− q1·))

Because g′(·), the derivative of g(·), is positive, it follows that (t − q1·)∂λx/∂µ > −1 for

t = 0, 1.

32



Resources for the Future Imbens and Pizer

The equation characterizing µ is
∑
πtx = 1. Substituting for πtx we get∑

t,x

πtx|1 · (q01 + q11)

g(µ + λx(µ)(t− q10 − q11))
= 1.

The derivative of the left–hand size with respect to µ is

−
∑
tx

πtx|1 · (q01 + q11) · g′(µ+ (t− q10 − q11)λx(µ)) · (1 + (t− q10 − q11) · ∂λx∂µ)

(g(µ + λx(µ)(t− q10 − q11)))2
< 0.

Because the limit as µ goes to minus infinity is infinity, and the limit as µ goes to infinity is

q01 + q11 < 1, there is a unique solution to the equation, and therefore a unique solution for

λx and πtx.

Given the solution πtx let

pxt0 = (πtx − pxt1qt1)/qt0.

The two remaining parts of the proof show that: (1) the pxt0 thus defined satisfy the inde-

pendence conditions, and (2) g(·) is the conditional probability of Di = 1.

For the first part we need to show that

px01q01 + px00q00

q01 + q00
=
px11q11 + px10q10

q11 + q10
.

Substitute (πtx − pxt1 − qt1)/qt0 for pxt0 to get

p01 + q01 + q00(π0x − px01q01)/q00

q01 + q00

=
p11 + q11 + q10(π1x − px11q11)/q10

q11 + q10

,

which simplifies to

π0x

q00 + q01
=

π1x

q10 + q11
,

which is one of the restrictions imposed in the definition of πtx, and therefore satisfied by

assumption.

For the second part, consider the conditional probability of Di = 1 given Ti = t and

Xi = x:

Pr(Di = 1|Ti = t,Xi = x) =
qt1pxt1

qt1pxt1 + qt0pxt0
.
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Substituting for pxt0 leads to

qt1pxt1
qt1pxt1 + qt0(πtx − qt1pxt1)/qt0

.

Substituting for πtx then gives

qt1pxt1g(µ+ λx(t− q10 − q11))

πtx|1(q01 + q11)
.

Finally, substituting Pxt1qt1/(q01 + q11) for πtx|1 gives the result that

Pr(Di = 1|Ti = t,Xi = x) = g(µ + λx(t− q10 − q11)).

2
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