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How Much Should Highway Fuels Be Taxed? 

Ian W.H. Parry 

Abstract 
This paper provides an updated assessment of economically efficient taxes on gasoline (used by 

light-duty vehicles) and diesel (used by heavy-duty trucks) to address various highway externalities in the 
United States. The (second-best) corrective fuel taxes are estimated, and we discuss the implications of 
fuel economy regulations and prospective (nationwide) controls on carbon emissions. We also examine 
how optimal fuel taxes depend on how they interact with the broader fiscal system. Our baseline estimates 
of the corrective taxes on gasoline and diesel are $1.23 and $1.15 per gallon, respectively. However, 
optimal fuel taxes can be substantially higher if extra revenues are used to reduce distortionary income 
taxes, or substantially lower if revenues are not used to enhance economic efficiency. 
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How Much Should Highway Fuels Be Taxed? 

Ian W.H. Parry∗ 

1. Introduction 

The United States imposes, at the federal and state level, excise taxes of about 40 
cents/gallon on gasoline and 45 cents/gallon on diesel for heavy trucks; the federal tax on these 
fuels is currently 18.4 and 24.4 cents/gallon, respectively (FHWA 2007, Tables 8.2.1 and 8.2.3). 
U.S. tax rates are low by international standards—for example, in many European countries 
gasoline taxes exceed $2/gallon—though the United States is somewhat unusual in taxing diesel 
more heavily than gasoline, albeit only slightly (see Figure 1).  

Traditionally, the level of fuel taxes in the United States has been governed by highway 
spending needs: fuel tax revenues account for about two-thirds of the approximately $100 billion 
in revenues raised from all highway user fees.1 However, there is growing debate about both the 
appropriate level of federal fuel taxes and their status as a dedicated revenue source.  

One reason is the weakening link between fuel taxes and highway spending, since a 
rising portion of this spending has been financed through nonhighway revenues (e.g., local sales 
and property taxes) and some fuel tax revenues have been diverted for other purposes (e.g., 
transit projects). Moreover, there is concern about the erosion of real fuel tax revenues per 
vehicle mile, especially with the recent tightening of fuel economy regulations, and the failure of 
nominal tax rates to rise with inflation (federal gasoline and diesel taxes were last increased in 
1993). However, whether revenues are earmarked or not, the critical (though poorly understood) 
economic issue is what level of fuel taxation is warranted on fiscal grounds.  

Another reason for interest in fuel taxes is the increasingly apparent disparity—due to 
inadequate taxation—between the societal cost of automobile trips and the private cost borne by 
motorists. These broader costs reflect the global warming potential of CO2 emissions and, 
possibly, consequences from the economy’s dependence on a volatile world oil market under the 
influence of unstable suppliers (see Figure 2). Gasoline and (truck) diesel fuel accounted for 20 

                                                 
∗ Resources for the Future, 1616 P Street NW, Washington DC, 20036. Phone (202) 328-5151; email parry@rff.org; 
web www.rff.org/parry.cfm. I am grateful to Dan Greenbaum and Roberton Williams for very helpful comments on 
an earlier draft. 
1 TRB (2006). Other revenue comes from vehicle license and registration fees, tolls, and various taxes on 
commercial trucks. 
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and 6 percent, respectively, of nationwide carbon emissions in 2008, and for 46 and 13 percent 
of oil use, respectively.2  

Meanwhile, road congestion worsens as relentlessly expanding demand for highway 
travel outpaces capacity growth (see Figure 3). The average motorist in very large urban areas in 
the United States lost 54 hours to traffic delays in 2005, up from 21 hours in 1982 (BTS 2008, 
Table 1.63). Traffic accidents are yet another major externality. About 40,000 people have been 
killed on U.S. highways each year for the past 25 years (BTS 2008, Table 2.18). 

Finally, recent and prospective developments in related policies have implications for 
efficient fuel taxation, including the new fuel economy regulations and the possibility of a 
nationwide greenhouse gas cap-and-trade program. Furthermore, advances in electronic metering 
technology and experience with area pricing in London have raised the prospects for vehicle 
mileage tolls in the United States; tolls are a far better tool for congestion management than fuel 
taxes (Santos and Fraser 2006). Similarly, there is growing interest in pay-as-you-drive 
automobile insurance as a way to internalize accident externalities (Bordhoff and Noel 2008; 
Greenberg 2009). 

Now is therefore an opportune time for an updated assessment of the appropriate role of 
fuel taxes. Here we focus largely on efficiency considerations—that is, what the ideal tax system 
should look like from a purely economic perspective. The conceptual framework for optimal fuel 
taxes has been developed previously. Moreover, there is substantial empirical literature on U.S. 
highway externalities and behavioral responses to fuel prices, though in some cases (e.g., global 
warming damages) the literature remains highly unsettled. This paper pulls together prior 
analytical studies, updates parameter values, and provides some new findings. The latter relate to 
the implications of recent policy developments and of alternative revenue recycling options. The 
paper also provides a comparison of optimal gasoline and diesel taxes for the United States, 
using consistent methodology and assumptions. We summarize some major points as follows.  

In our baseline assessment, the corrective gasoline tax is $1.23/gallon, with congestion 
and accidents together accounting for about three-quarters of this tax. This estimate might be 
viewed as a lower bound because we use conservative values for global warming and perhaps for 
oil dependence externalities, both of which are highly unsettled. However, if a binding, 
nationwide cap-and-trade program were introduced, there would be no global warming benefit, 
since emissions are fixed. On the other hand, the corrective tax may rise to $2/gallon in the 

                                                 
2 From www.eia.gov and BTS (2009), Tables 4.13 and 4.14. 
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presence of (pervasively binding) fuel economy regulations. In this case, more of a given tax-
induced gasoline reduction must come from reduced driving (and less from fuel economy 
improvements), which magnifies the congestion and accident benefits per gallon of fuel 
reduction. Conversely, pricing of congestion and other externalities through mileage tolls would 
dramatically lower the corrective gasoline tax, conceivably even below its current level, though 
such comprehensive tolling is likely a long way off.  

However, an unbiased assessment must account for how fuel taxes interact with 
distortions in the economy created by the broader fiscal system. In fact, the optimal gasoline tax 
is extremely sensitive to alternative revenue uses. Conceivably, it could rise to $3/gallon if 
revenues are recycled in highly efficient ways, most notably cuts in income taxes that distort 
factor markets and create a bias toward tax-favored spending. On the other hand, if recycling 
does not increase efficiency, the case for higher gasoline taxes appears to be reversed. This is 
because efficiency gains from externality mitigation are counteracted by efficiency losses in the 
labor market as higher fuel prices drive up transportation prices relative to leisure. 

Under baseline parameters, we put the corrective diesel tax at $1.15/gallon, though 
underlying determinants are different than for the corrective gasoline tax. Road damage plays a 
significant role in the corrective diesel tax. Congestion and accidents are less important (even 
though trucks take up more road space) because a given tax-induced reduction in diesel saves 
only about a third as many vehicle miles as the same reduction in gasoline (because heavy trucks 
travel fewer miles per gallon). Again, however, when we account for interactions with the 
broader fiscal system, the optimal tax is highly dependent on revenue use and varies between 
essentially zero, when revenues are returned lump-sum, and $3 per gallon, when revenues 
finance income tax reductions.  

Our optimal tax estimates should not be taken too literally because we are relying on 
parameter evidence that is tentative if not highly speculative in some cases (e.g., for oil 
dependence externalities). No doubt fuel tax assessments will evolve over time, perhaps even 
radically, with refinements in valuation methodologies, changes in transportation characteristics 
(e.g., emission rates, congestion levels), and related policy developments (e.g., the spread of 
congestion pricing).   

The rest of the paper is organized as follows. Section 2 provides conceptual details on the 
corrective gasoline tax. Section 3 presents calculations of this tax. Section 4 discusses linkages 
between fuel taxes and the broader fiscal system. Section 5 discusses optimal diesel taxes. A 
final section offers concluding remarks and briefly discusses some caveats, including 
distributional concerns, feasibility, and the role of induced innovation. 
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2. Corrective Gasoline Tax: Analytical Underpinnings 

Currently, for the United States, it is reasonable to assume that gasoline and diesel are 
used exclusively by passenger vehicles and heavy trucks, respectively. Therefore we can focus 
on passenger vehicle externalities when assessing gasoline taxes and heavy truck externalities 
when assessing diesel taxes (with one caveat, noted later).3 

Consider, based on a modified version of Parry and Small (2005), a long-run static model 
where the representative household solves the following optimization problem:  

(1a) { { }XpvgcmtgmtpGOVIMEGEXmvuMax XMGGMG
Xgvm

−+++−++ )]()[())(),(,,,(
,,,

λ  

(1b) gMG = , vmM =  

All variables are in per capita terms and a bar denotes an economy-wide variable 
perceived as exogenous by individuals.  

v denotes the vehicle stock (vehicle choice is a continuous variable because we are 
averaging over many households), m is miles driven per vehicle, and g is gasoline consumption 
per mile driven, or the inverse of fuel economy. G and M are therefore aggregate gasoline 
consumption and miles driven, respectively. X is a general consumption good. EG(.) and EM(.) are 
externalities that vary in proportion with gasoline and mileage, respectively (see below). I 
denotes (fixed) household income and GOV is a government transfer, to capture the recycling of 
fuel tax revenues (alternative revenue uses are discussed later). c(g) is the fixed cost of vehicle 
ownership, which is higher for more fuel-efficient vehicles, reflecting the added production costs 
of incorporating fuel-saving technologies. pG and pX denote the fixed producer prices for gasoline 
and the general good, while tG is the (nationwide average) gasoline excise tax. tM is a unit tax on 
vehicle mileage. Households choose v, m, g, and X to maximize utility u(.) subject to a budget 
constraint equating income with spending on gasoline, mileage taxes, vehicles, and other goods 
(λ is a Lagrange multiplier).4 

EG(.) includes greenhouse gases and possible energy security externalities associated with 
dependence on oil. EM(.) includes accident risk and road congestion. Local tailpipe emissions are 

                                                 
3 In many European countries a substantial portion of the car fleet runs on diesel. In this case the corrective diesel 
tax will reflect a weighted average of externalities from passenger vehicles and heavy trucks, while substitution 
among gasoline and diesel passenger vehicles would affect the corrective gasoline tax. 
4 Our analysis abstracts from the possibility of a market failure associated with consumer undervaluation of fuel 
economy. Whether and to what extent there is such a market failure remains an unsettled issue in the empirical 
literature.  
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also included in EM(.), given that all new passenger vehicles must meet the same emissions-per-
mile standards, regardless of their fuel economy, and that (because of the durability of emissions 
control systems as well as emissions inspection programs) emission rates now show relatively 
modest deterioration as vehicles age (Fischer et al. 2007).5 Road wear and tear and noise are 
ignored because they are primarily caused by heavy trucks (FWHA 2000). 

The corrective gasoline tax, denoted C
Gt , is (see Appendix):  

(2a) gteet MMG
C
G /)( −⋅+= β  

 

(2b) λ/GEG Eue
G

′−= , λ/MEM Eue
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G

G

dtdG
dtdMg

/
/⋅
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eG and eM denote the marginal external costs (or monetized disutility) from gasoline use 
and mileage in $/gallon and $/mile, respectively.  

The corrective tax in (2a) consists of the marginal external cost from greenhouse gases 
and from oil dependence. It also includes combined marginal external costs from congestion, 
accidents, and local emissions, net of any internalization through mileage taxes, scaled by two 
factors. First is miles per gallon (1/g), to convert costs into $/gallon. However, miles per gallon is 
endogenous and will rise as higher fuel prices raise the demand for more fuel-efficient vehicles. 
In turn, this multiplies the contribution of mileage-related externalities to the corrective tax, 
because an incremental reduction in gasoline use is now associated with a larger reduction in 
vehicle miles. The second factor, denoted β and defined in (2b), is the fraction of the incremental 
reduction in gasoline use that comes from reduced mileage, as opposed to improved fuel 
economy. The smaller is β, the smaller the contribution of mileage-related externalities to the 
corrective gasoline tax. In fact, if all of the incremental fuel reduction came from improved fuel 
economy, and none from reduced driving, then β = 0 and congestion, accidents, and local 
pollution would not affect the corrective tax.  

We adopt the following functional forms: 

                                                 
5 Besides tailpipe emissions, local pollutants are also released upstream during oil shipping, refining, and fuel 
distribution. However, partly because of tight regulations, the resulting environmental damages are relatively 
small—about 2 cents/gallon, according to NRC (2002).  
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Mη  and gη  denote, respectively, the elasticity of vehicle mileage and gasoline/mile with 
respect to gasoline prices, and 0 denotes an initial value. The gasoline demand elasticity Gη  is 

the sum of these two elasticities. We take all elasticities as constant (a common assumption) 
which implies β is also constant. 

The welfare gain ( GW ) from raising the gasoline tax from its current level to the 

corrective level is (see Appendix): 
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Thus, GW  is given by the shaded triangle in Figure 4.  
  
3. Computing the Corrective Gasoline Tax 

In this section, we discuss the corrective tax under benchmark parameter assumptions and 
alternative scenarios. Benchmark parameters are representative of year 2007 or thereabouts.  

A. Global Warming Externalities 

A gallon of gasoline produces 0.0088 tons of CO2. Some studies (e.g., Nordhaus 2008) 
put the marginal damage from current CO2 emissions at about $10/ton, while others value it at 
about $80/ton (e.g., Stern 2007), implying damages of $0.09 or $0.70/gallon.6 To be 
conservative, we use the former for our benchmark case and the latter for sensitivity analysis.  

One reason for the different estimates is that—due to long atmospheric residence times 
and the gradual adjustment of the climate system—today’s emissions have intergenerational 
impacts and the present value of their damages is highly sensitive to assumed discount rates. 
Some analysts (e.g., Heal 2009) argue for using low rates to discount intergenerational impacts 
on ethical grounds (i.e., to avoid discriminating against people just because they are born in the 
future). Others (e.g., Nordhaus 2007) view market discounting as essential for meaningful policy 
analysis (i.e., to avoid perverse policy implications in other contexts). 

                                                 
6 Marginal damages in Stern (2007) are substantially reduced if future global climate is rapidly stabilized through 
aggressive mitigation policies.   
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A second reason for different CO2 damage assessments (though not between Nordhaus 
and Stern) has to do with the treatment of extreme catastrophic risks. In particular, it is possible 
that the marginal damages from CO2 emissions are arbitrarily large if the probability distribution 
over future climate damages has “fat tails”—that is, the probability of increasingly catastrophic 
outcomes falls more slowly than marginal utility rises (with diminished consumption) in those 
outcomes (Weitzman 2009). This reflects the possibility of unstable feedback mechanisms in the 
climate system, such as a warming-induced release of underground methane (itself a greenhouse 
gas) leading to a truly catastrophic warming. Others (e.g., Nordhaus 2009) have critiqued the fat 
tails hypothesis on the grounds that we can head off a future catastrophic outcome by radical 
mitigation measures and deployment of last-resort technologies (e.g., by removing atmospheric 
carbon, or by scattering particulates in the atmosphere to deflect incoming sunlight) in response 
to future learning about the seriousness of climate change.   

For our purposes, the above controversies would be redundant if a binding cap-and-trade 
system is imposed on nationwide CO2 emissions. In this case, any CO2 reductions from higher 
gasoline taxes would be offset by higher emissions in other sectors. In contrast, under an 
economy-wide CO2 tax, higher gasoline taxes would reduce nationwide emissions, though 
benefits per ton would be net of the CO2 tax.  

B. Oil Dependence 

One possible externality from oil dependence is macroeconomic disruption costs from the 
risk of oil price shocks. However, to what extent private markets adequately internalize these 
risks (in inventory decisions, financial hedging, purchase of high fuel economy vehicles, etc.) is 
much disputed. The most widely cited study is Leiby (2007), who puts the uninternalized 
macroeconomic disruption cost at about $0.10/gallon for 2004; Brown and Huntington (2009) 
reach similar conclusions. Some analysts also suggest that a gasoline tax can proxy for an oil 
import tariff, which could increase U.S. welfare given its monopsony power in the world oil 
market. However, whether this component should factor into fuel tax assessments is unclear 
given that an oil import tariff would reduce welfare from a global, as opposed to U.S., 
perspective, and could even reduce U.S. welfare if other countries retaliated with trade protection 
measures. 

Oil dependence may also constrain U.S. foreign policy, for example, by making U.S. 
governments reluctant to press for human rights and democratic freedoms in oil-exporting 
nations. And oil revenue flows may also help fund terrorist activities and unsavory governments. 
However, valuing these types of geopolitical costs is extremely difficult. Moreover, even if U.S. 
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oil consumption were significantly curtailed, the proportionate reduction in these petrodollar 
flows would be relatively small unless other major oil-consuming countries followed suit.  

We assume $0.10/gallon for oil dependence externalities, though this might be viewed as 
a (probably conservative) “placeholder” until we have a better handle on externality valuation.  

C. Other Externalities 

There is reasonable consensus on local pollution damages from automobiles. We follow 
Small and Verhoef (2007, 104–105) and assume damages of $0.01/mile nationwide. Mortality 
effects (caused primarily by particulates rather than ozone) account for the vast bulk of damages. 
Small and Verhoef assume that the value of a statistical life (VSL) for quantifying mortality is 
$4.15 million, after accounting for discounting of the time lag between pollution exposure and 
mortality, and a smaller VSL for seniors who are most at risk. Local pollution damages will 
likely continue their downward trend over time as the fleet turns over and a greater share of 
vehicles will have been subject to recently tightened new-vehicle emissions standards.7 

Parry and Small (2005) assume marginal congestion costs of $0.035/mile. This is based 
on a Federal Highway Administration (FHWA 2000) assessment that averages the marginal 
congestion costs for representative road classes across urban and rural areas and time of day. 
Marginal traffic delays are inferred from traffic speed and traffic flow curves and are monetized 
assuming that the value of travel time is half the market wage. The $0.035/mile figure includes 
an adjustment for the relatively weaker sensitivity of congested, peak-period driving (which is 
dominated by commuting) to fuel prices, compared with off-peak driving. We use an updated 
value of $0.045/mile, given that nominal wages grew about 22 percent between 2000 and 2007 
while congestion delays increased by about 8 percent (CEA 2009, Table B 47; Schrank and 
Lomax 2009, Table 4).8   

For accidents, Parry and Small (2005) assume a marginal external cost of $0.03/mile. 
External costs include injury risks to pedestrians, a large portion of the medical and property 
damage costs borne by third parties, and the tax revenue component of injury-induced workplace 
productivity losses (other accident costs, such as injury risks in single-vehicle collisions, and 

                                                 
7 The “Tier Two” standards imply emission rates for new vehicles of just 0.8-5.0 percent of pre-1970 rates.  
8 We view the congestion cost figure as conservative. For example, based on extrapolating congestion costs 
nationwide from a network model of the Washington, D.C., road network, Fischer et al. (2007) put marginal 
congestion costs at $0.065/mile. 
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forgone take-home wages from productivity losses, are assumed internal).9 We use a value of 
$0.035/mile for the marginal externality, after updating for a VSL of $5.8 million, now used by 
U.S. Department of Transportation (this VSL is higher than for pollution deaths because people 
killed on roads are typically younger and die more quickly).10  

D. Elasticities and Other Data 

We assume the pre-tax fuel price pG is $2.30/gallon, the combined federal and state 
gasoline tax is $0.40/gallon, and initial gasoline consumption is 140 billion gallons.11 For the 
benchmark case we assume initial on-road fuel economy (1/g) is 22 mpg (BTS 2008, Table 
4.23). The long run gasoline demand elasticity is assumed to be -0.4, with half of the response 
coming from improved fuel economy and half from reduced mileage (some combination of 
reduced vehicle demand and reduced miles per vehicle). Thus gη = -0.2, Mη = -0.2 and β = 0.5. 

These assumptions are based largely on Small and Van Dender (2006).12  

As a result of legislation in 2007 and administrative action begun in 2009, fuel economy 
standards were fully integrated with new targets for reducing CO2 emissions per mile for new 
automobiles. By 2016, manufacturers will be required to meet standards equivalent to 39 mpg for 
the average fuel economy of their new car fleets, and 30 mpg for their light-truck fleets (prior 
standards were 27.5 mpg for cars and 24.0 mpg for light trucks). To the extent that these 
regulations will be binding on all auto manufacturers, as opposed to a subset, the gasoline/mile 
elasticity will be substantially reduced, implying a much smaller β. In fact, the regulations will 
likely be binding even if fuel prices increase by more than $2/gallon, though there will still be 
some price responsiveness because motorists can substitute new cars for new light trucks and use 
existing high-mpg vehicles more intensively (Small 2009). In the sensitivity analysis, we 
consider a case when the fuel economy elasticity is 0.1 (based approximately on Small 2009), 
implying β = 0.67. For this case we set initial (on-road) fuel economy for passenger vehicles at 

                                                 
9 Whether and to what extent external costs should also include injury risk to other vehicle occupants in multivehicle 
collisions is unsettled. All else the same, the presence of one extra vehicle on the road raises the collision risk for all 
other vehicles (because they have less road space); however, an offsetting factor is that people may drive more 
slowly or more carefully in heavier traffic. 
10 To the extent that higher fuel taxes encourage consumers to purchase cars instead of light trucks, there may be an 
added externality gain that our figure does not capture. This is because accident externalities appear to be larger for 
light trucks (e.g., Li 2009; White 2004). 
11 From Parry and Small (2005) and www.eia.gov. 
12 The estimated magnitude of gasoline demand elasticities has declined over time, reflecting the declining share of 
fuel costs in total (i.e., time plus money) travel costs. In addition, the relatively low cost technological opportunities 
for improving vehicle fuel economy have been progressively exploited. 
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29 mpg (on-road fuel economy is lower than certified fuel economy for new vehicles by about 15 
percent). 

Finally, we set tM = 0 in the benchmark case, since the nationwide revenue from 
automobile tolls is very small relative to gasoline tax revenues. In sensitivity analysis we 
consider full internalization of mileage-related externalities through mileage tolls ( MM et = ).13 

E. Optimal Tax Estimates 

Table 1 summarizes the corrective gasoline tax (in 2007 dollars), its impacts under our 
benchmark parameters, and various sensitivity analyses, in which the parameters are varied one 
at a time. 

Under benchmark parameters, the corrective tax is $1.23/gallon. Congestion and 
accidents contribute most to the corrective tax, $0.52 and $0.41/gallon, respectively. Global 
warming, oil dependence, and local pollution each contribute about the same, $0.09–
$0.12/gallon. Increasing the tax from the current rate of $0.40/gallon to the corrective level 
moderately increases fuel economy to 23.2 mpg and reduces overall gasoline use by 10 percent. 
The resulting welfare gain is $5.9 billion, and tax revenues increase by 180 percent, from $56 
billion to $157 billion.  

 In the high global warming case, the optimal gasoline tax rises to $1.88/gallon, and 
welfare gains are almost three times as large (as both the height and the base of the shaded 
triangle in Figure 4 increase). However, the corrective tax falls to $1.14/gallon if there is a 
preexisting CO2 cap-and-trade policy (or a Pigouvian CO2 tax that fully internalizes global 
warming damages).  

In the (future) case with (binding) preexisting fuel economy regulations, the corrective 
tax rises to $2.01/gallon. Here the mileage-related externalities—local pollution, congestion, and 
accidents—each contribute about 80 percent more to the corrective tax than they do in the 
benchmark case. This is because the reduction in mileage associated with a given reduction in 
gasoline use is now higher, for two reasons. First, an assumed 67 percent (rather than 50 percent) 
of the marginal reduction in fuel use comes from reduced driving. Second, the distance traveled 
per gallon of gasoline is about a third higher than in the benchmark case. 

                                                 
13 For the cases with preexisting fuel economy standards, and preexisting mileage taxes, we scale back initial 
gasoline use accordingly, using (3), and with the mileage tax converted to its fuel tax equivalent.  
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Finally, with a preexisting tax that fully corrects all of the mileage-related externalities, 
the corrective gasoline tax falls dramatically to $0.19/gallon, or about half its current rate. In this 
case, the tax reflects global warming and oil dependence externalities only.  

4. The Fiscal Rationale for Gasoline Taxes 

Gasoline taxes (or any corrective tax or regulation for that matter) interact with 
distortions in the economy created by the broader tax system, and these interactions should be 
taken into account to obtain an unbiased assessment of the welfare effects, and optimal level, of 
the tax. Here we represent the broader tax system by collapsing it into a single tax of tL on labor 
income, which reflects the wedge between the gross wage (which we normalize to unity) and the 
net wage received by households. The gross wage reflects the value marginal product of labor, 
and the net wage reflects the marginal cost of labor supply in terms of forgone time in nonmarket 
activities. Changes in labor supply induced by fuel taxes therefore induce welfare effects equal to 
the change multiplied by tL. We first discuss adjustments to the corrective gasoline tax to account 
for broader fiscal interactions and then provide some sense of the empirical importance of these 
adjustments.  

A. Fiscal Adjustments to the Corrective Gasoline Tax 

As discussed in the literature on environmental tax shifts (e.g., Goulder 1995), broader 
fiscal interactions take two forms.  

First is the tax interaction effect. This is the efficiency loss in the labor market that results 
when a new product tax drives up the general consumer price level, thereby reducing the real 
household wage and discouraging labor supply. Of course, the proportionate impact of the 
product tax on economy-wide labor supply will be extremely small. However, the resulting 
efficiency loss may still substantially change the overall welfare effect of the tax, given the huge 
size of the labor market in the economy, and the large wedge that results from federal and state 
income taxes, payroll taxes, and sales taxes.14 

Second is the revenue-recycling effect. In the literature this is usually taken to reflect the 
efficiency gain from recycling environmental tax revenues in broader income tax reductions. 
Alternatively, however, revenues from higher fuel taxes might be used to fund highway spending 
or, more generally, public goods, transfer payments, or deficit reduction.  

                                                 
14 That is, the welfare change rectangle in the labor market has a small base but a large height.  
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There is no need to repeat here the derivations for fiscal adjustments to corrective taxes 
from other papers that integrate models of externalities into general equilibrium models with 
prior tax distortions. Instead, we simply start with the following formula derived in Parry et al. 
(2009):  

(5) =*
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In this expression, δ is the efficiency gain associated with an extra dollar of government 
revenue (see below), and * denotes an optimal (as opposed to corrective) tax.  

In equation (5), the first adjustment to the corrective tax is the revenue-recycling effect. It 
equals the product of δ and the extra revenue per gallon reduction in gasoline induced by the 
higher fuel tax. The second adjustment is the tax interaction effect. This includes the change in 
labor supply from a marginal increase in the gasoline price, multiplied by the increase in gasoline 
tax, per gallon reduction in gasoline. This labor supply change is multiplied by the labor tax 
wedge and also by , to account for the efficiency cost of lost labor tax revenues.  

Some manipulation gives, after decomposing the labor supply effect using the Slutsky 
equation, and using the Slutsky symmetry property (Parry et al. 2009):  
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comp
Glη  is the (compensated) cross-price elasticity of gasoline use with respect to the household 

wage or price of leisure and 0<LIη  is the income elasticity of labor supply. 

Suppose for now that extra revenues are used to cut labor taxes. In this case, δ is the 
efficiency cost of raising an extra dollar of revenue through labor taxes, or the efficiency cost 
from an incremental increase in tL divided by the marginal increase in revenue. Thus:  
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where Lε  is the uncompensated labor supply elasticity. This is related to the compensated labor 
supply elasticity, comp

Lε , and the income elasticity of labor supply, via the Slutsky equation.   
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B. Quantitative Importance of Fiscal Linkages 

Although there is considerable dispersion in empirical estimates, a plausible benchmark 
assumption is that Lε  = 0.2 (e.g., Blundell and MacCurdy 1999). This value represents an 

average over labor supply responses due to changes in average hours worked per employee, and 
labor force participation rates, across male and female workers. We use a standard value of 0.4 
for the labor tax wedge, representing a compromise between the average tax rate (which affects 
the participation margin) and the marginal tax rate (which affects the hours on the job margin). 
Our values imply δ = $0.15. This corresponds to a value of 1.15 for the marginal cost of public 
funds (equal to 1+ δ). Note that δ is defined here relative to when revenue is not recycled, and 
therefore the behavioral responses underlying δ are uncompensated. In contrast, for example, if 
we were raising income taxes and returning revenue in lump-sum transfers to households, 
efficiency effects would depend in part on the compensated labor supply elasticity, implying a 
larger value for δ. This larger value corresponds to the marginal excess burden of taxation, as 
commonly defined. 

If gasoline exhibits the same degree of substitution with leisure as consumption goods in 
general, then comp

L
comp
Gl εη = , that is, gasoline changes in the same proportion to aggregate 

consumption, or labor supply, following a compensated increase in the price of leisure (Parry et 
al. 2009). From manipulating (6) and (7), we can easily show )1/(* δ+= C

GG tt . In this case, using 

our value for δ, the optimal tax is about 15 percent smaller than the corrective tax. This 
downward adjustment reflects the balance between the externality benefit per gallon of gasoline 
reduced and the efficiency cost per gallon reduced, where the latter is the tax per gallon, times 
1+δ, to account for the erosion of the base of the gasoline tax (which must be offset by higher 
labor taxes).  

If all auto passenger travel were work related, it might be reasonable to assume gasoline 
is an average substitute for leisure, as travel would change in rough proportion to hours worked 
(or total consumption) following a change in the price of leisure. However, evidence in West and 
Williams (2007) suggests that gasoline is a relatively weak substitute for leisure (i.e., 

comp
L

comp
Gl εη < ), a plausible explanation being that a large portion of passenger-vehicle trips are 

leisure-related rather than work-related. Based on West and Williams (2007), we set 
1.0=+ LI

comp
Gl ηη . With this assumption, the optimal gasoline tax rises to $1.71/gallon or about 40 

percent more than the corrective tax (from equations (6), (7) and the benchmark value for C
Gt ). 

However, the U.S. fiscal system distorts not only factor markets but also the allocation of 
spending across ordinary consumption and tax-favored goods, like owner-occupied housing and 
employer-provided medical insurance. Although the tax-favored sector is small relative to the 
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labor market, it is relatively more responsive to income tax changes than labor supply. This 
means that the efficiency costs of higher income taxes caused by exacerbating distortions in the 
pattern of spending can still be significant relative to efficiency costs in factor markets. Based on 
empirical evidence, Parry (2002) suggests that the efficiency gain from recycling a dollar of 
revenue in income tax reductions (relative to not recycling the dollar) might be on the order of 
$0.30 rather than $0.15. If so, the optimal gasoline tax rises dramatically because the revenue-
recycling effect is doubled. As indicated in Figure 5, which is obtained from equation (6) with 
alternative values for δ in both the revenue-recycling and tax interaction components, the optimal 
gasoline tax rises above $3/gallon. 

On the other hand, additional fuel tax revenue might be used to fund highway 
maintenance and expansion projects. It is difficult to put a general figure on the marginal value 
of highway spending, given that it will be highly project specific and that transportation agencies 
do not routinely conduct economic valuations of projects. In fact, a longstanding concern has 
been the lack of pressure for efficient allocation of highway spending, given that federal grants to 
states (which account for more than half of federal highway spending) are largely allocated in 
proportion to vehicle miles rather than degree of congestion or road quality. Empirical estimates 
of the social rate of return to highway spending are typically within a range of 0-30 percent 
(TRB 2006, Ch. 3). If the social discount rate is 5 percent, this would imply δ is between about 
0.05 and 0.25 for highway spending.15 As indicated in Figure 5, this would imply an optimal 
gasoline tax of anywhere between about $0.50 and $2.50/gallon.  

More generally, extra revenues might fund (nontransport-related) public spending or 
deficit reduction, though without more specifics, it is difficult to know how efficiency gains 
would compare with those from cutting distortionary taxes.16 The general point here is that 
optimal gasoline taxes are very sensitive to alternative forms of revenue recycling: if revenues 
are not used to increase efficiency, the case for higher fuel taxes is considerably undermined. 
Correspondingly, annualized welfare gains from optimizing the gasoline tax vary enormously 
under alternative revenue-recycling options, from close to zero to more than $30 billion (Figure 
5). 

                                                 
15 The benefit of highway spending, 1+δ, is (1+the rate of return on spending)/(1+the social discount rate).  
16 For pure transfer spending, according to Parry et al. (2009) there is an efficiency loss of 7 cents per dollar of 
revenue recycled (δ = –0.07). This is because labor supply falls slightly as higher household income increases the 
demand for leisure (a normal good), thereby exacerbating the labor tax distortion. 
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One caveat here is that the baseline against which the policy change should be measured 
is not always clear. For example, fuel tax revenues may fund a spending project that would have 
gone ahead anyway, even without the fuel tax increase. In this case, fuel tax revenues effectively 
substitute for an increase in other distortionary taxes, rather than fund extra spending.   

5. Optimal Taxes on Diesel for Heavy Trucks 

A. Conceptual Framework 

The corrective tax on diesel fuel consumed by heavy-duty trucks (i.e., single-unit and 
combination, commercial trucks) is given by17 

(8) { })/)(()/( gteteteget GGMM
T
M

T
MD

T
D

C
D −+−⋅−−+= γβ  

Here, subscript D refers to diesel rather than gasoline: gD is diesel consumption per truck 
mile and eD is external costs per gallon of diesel. Superscript T refers to trucks rather than light-
duty vehicles: βT is the portion of the marginal, price-induced, reduction in diesel that comes 
from reduced truck mileage; T

Me  is external costs per truck mile; and T
Mt  is a possible tax per 

truck mile.     

γ is the increase in automobile miles per unit reduction in truck miles. γ > 0 to the extent 
that travel speeds on congested roads increase as they are vacated by trucks (Calthrop et al. 
2007). If γ = 0, the corrective diesel tax would be essentially analogous to the corrective gasoline 
tax, with parameters related to heavy truck characteristics. One exception to this is that local 
emissions for trucks vary (approximately) in proportion to fuel use rather than mileage because 
emissions standards are defined relative to engine capacity (specifically, grams per brake 
horsepower-hour) rather than mileage. In addition, road damage is a significant mileage-related 
externality for heavy trucks, and to lesser extent, so is noise. 

To the extent that γ > 0, the corrective diesel tax is adjusted downward, to account for the 
induced increase in (fuel- and mileage-related) auto externalities. The latter are defined net of 
any auto mileage tolls and gasoline taxes. Net auto externalities are expressed in $/auto mile, 
then converted into $/gallon of diesel (via dividing by gD), and scaled back by the portion of the 

                                                 
17 The formula below is adapted from Parry (2008), after aggregating his analysis, which distinguishes truck mileage 
by region and vehicle type.    



Resources for the Future Parry 

16 

reduction in diesel use that comes from reduced truck mileage, as opposed to increased fuel 
economy.18  

We assume analogous functional forms for truck mileage and fuel/mile as in (3) and 
assume that γ is constant. 

Finally, the general presumption is that freight is an average substitute for leisure because 
essentially all heavy-truck trips are work-related and are therefore likely to exhibit a similar 
degree of substitution with leisure compared with goods in general (e.g., Diamond and Mirrlees 
1971). Thus, we compute the overall optimal tax using the analogous expression to (6), with 

comp
L

comp
Gl εη = .  

B. Parameters 

Combusting a gallon of diesel produces about 16 percent more CO2 than combusting a 
gallon of gasoline,19 and therefore we adopt a (conservative) value of $0.10/gallon for global 
warming damages from diesel (using a higher value, or zero to reflect a preexisting cap-and-
trade program, would have comparable effects to those discussed above for gasoline taxes). We 
use the same placeholder value as above, $0.10/gallon, for oil dependence costs. 

Based on a source-apportionment study for year 2000 by the U.S. Environmental 
Protection Agency, FHWA (2000, Table 13) puts local air pollution costs from heavy trucks at 
about $0.40/gallon. We make two adjustments to this figure. First, we multiply by 4.15/2.7, 
which is the ratio of the VSL for local pollution assumed above to the VSL in FWHA (2000). 
Second, we multiply by 0.6 to account for the decline in heavy-truck emission rates (see BTS 
2008, Table 4.38). The resulting air pollution cost is $0.36/gallon. 

Based on FHWA (2000), marginal congestion costs are assumed to be twice as large as 
for automobiles, or $0.09/truck-mile. Trucks take up more road space and drive more slowly 
than autos, though a partly offsetting factor is that a greater share of nationwide truck mileage 
occurs under free-flow conditions (in rural areas and at off-peak hours) than for autos.  

Marginal accident costs are assumed to be 83 percent of those for autos, or $0.029/mile, 
based on FHWA (2000). Although, for given speeds at impact, trucks have far greater damage 

                                                 
18 In principle, higher gasoline taxes might lead, through a fall in road congestion, to a proportionate increase in 
truck mileage. However, given that trucks account for a relatively small share of highway traffic, this feedback 
effect likely makes very little difference to the optimal gasoline tax. 
19 See http://bioenergy.ornl.gov/papers/misc/energy_conv.html. 
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potential than cars, an offsetting factor is that trucks are traveling at slower speeds and crash less 
often, in part because they are driven by professionals.  

Road damage externalities for heavy trucks have been assessed in studies that apportion 
road maintenance expenditures to different vehicle classes, and noise costs have been estimated 
based on hedonic studies measuring how proximity to highways affects property values. We 
assume external costs of $0.055/mile and $0.015/mile respectively based on FHWA (2000), after 
updating to 2007 using the consumer price index.  

We assume the same pretax price of diesel as for gasoline, an initial tax of $0.44/gallon, 
initial truck fuel consumption of 38 billion gallons, and fuel economy of 6 mpg.20 Although the 
limited evidence available suggests that diesel fuel elasticities are in the same ballpark as 
gasoline price elasticities (Dahl 1993, 122–23; Small and Winston 1999, Table 2.2), we might 
expect the fuel economy elasticity to be smaller for diesel, since technological opportunities for 
improving fuel economy are more limited for trucks than for cars given the high power 
requirements necessary to move freight (EIA 1998). We assume a diesel price elasticity of –0.25, 
with 40 and 60 percent, respectively, due to the responsiveness of fuel economy and mileage.  

As regards the feedback effect on auto externalities, about 55 percent of truck travel 
occurs in rural areas (FHWA 2000), where congestion is minimal, and therefore a reduction in 
truck driving would have little impact on encouraging more auto travel. For typical urban roads, 
a reasonable rule of thumb appears to be that roughly 70 percent of reduced truck congestion 
would be offset by extra auto travel (Cervero and Hansen 2002; Calthrop et al. 2007). We 
assume, nationwide, that 31 percent (70 percent times 0.45) of any reduction in congestion from 
trucks would be offset by extra auto travel. We double this, based on the assumption that two car 
miles is equivalent to one truck mile in terms of congestion, to obtain γ = 0.62 (Santos and Fraser 
2006). If diesel taxes were increased substantially, it is highly likely that gasoline taxes would go 
up in tandem. Therefore, in computing the auto feedback effect in (8), we use the corrective 
gasoline tax (and fuel economy at that tax), though we also note the implications of assuming the 
current gasoline tax.  

C. Optimal Tax Estimates 

We begin with the corrective portion of the optimal diesel tax, as summarized in Table 2. 
Even though all parameters, aside from global warming and oil dependence externalities, are 

                                                 
20 From www.eia.gov, FHWA (2003), Table MF-121T, and BTS (2008), Tables 4.13 and 4.14. 
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notably (if not substantially) different, overall the corrective tax is very close to that for 
gasoline—$1.15/gallon compared with $1.23/gallon.  

On the one hand, road damage and noise combined contribute $0.26/gallon to the 
corrective diesel tax (versus zero to the corrective gasoline tax), and the contribution of local 
pollution is higher for diesel, since emissions vary with all fuel reductions rather than just the 
portion from reduced mileage.  

On the other hand, congestion contributes $0.33/gallon to the corrective diesel tax 
compared with $0.52/gallon for gasoline. Congestion per mile is twice as large for trucks as for 
autos, and a larger portion of the tax-induced reduction in diesel is assumed to come from 
reduced vehicle mileage. However, these factors are more than offset by the much lower fuel 
economy of trucks, which implies that a gallon reduction in diesel fuel is associated with a much 
smaller reduction in vehicle miles than a gallon reduction in gasoline. For the same reason, 
accidents play a smaller role in the corrective diesel tax. Moreover, accident costs per truck mile 
are roughly the same (rather than twice as large) as for an auto mile. The auto feedback effect 
shaves a further $0.10/gallon off the corrective diesel tax. This effect would be $0.18 if evaluated 
at the current, rather than corrective, gasoline tax.  

Given our assumptions, the proportionate improvement in vehicle fuel economy and the 
proportionate reduction in fuel use from optimizing fuel taxes are smaller for diesel than for 
gasoline. Moreover, current diesel fuel consumption is only 27 percent of that for gasoline. For 
these reasons, welfare gains under benchmark parameters—ignoring fiscal linkages—are $1.3 
billion per year from raising diesel taxes to their corrective level, compared with $5.9 billion for 
the analogous gasoline tax reform. 

A final point from Table 2 is that if mileage-related externalities were fully internalized 
through vehicle tolls, the corrective diesel tax would be $0.56/gallon (this assumes that auto 
externalities are fully internalized, thereby eliminating the auto feedback effect). 

Figure 6 underscores the critical role of broader fiscal interactions for the diesel tax 
(under baseline parameters). If the efficiency gain per dollar of recycled revenue is $0.15, the 
optimal diesel tax is $1.06, or moderately lower than the corrective tax. Thus, the net adjustment 
for fiscal interactions is in the opposite direction to that for the gasoline tax, reflecting the 
assumption that diesel is an average, rather than a relatively weak, leisure substitute. On the other 
hand, if the efficiency gain from revenue recycling is $0.30 per dollar (e.g., because income 
taxes distort spending patterns in addition to the labor market), the optimal diesel fuel tax can 
rise to $3/gallon. Conversely, if revenue recycling does not increase efficiency, the optimal 
diesel tax not only falls below its current level but essentially falls to zero. In this case the 
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efficiency loss from the tax interaction effect is large enough to offset the entire efficiency gain 
from externality mitigation! 

6. Conclusion 

At first glance, there appears to be a strong efficiency case for substantially increasing 
taxes on highway fuels—to more than $1/gallon—at least for the foreseeable future, before other 
(more efficient) policies to largely internalize mileage-related externalities (e.g., peak-period 
road pricing) are widely implemented. This presumes efficient use of additional fuel tax 
revenues. Ideally, from an efficiency perspective, such revenues would finance reductions in 
distortionary income taxes, in which case the argument for higher fuel taxes is even stronger. On 
the other hand, the case for higher taxes is more qualified if there is some risk that revenues will 
not be used productively.  

Our discussion ignores the distributional impact of higher fuel taxes. Studies suggest that 
gasoline taxes are regressive, though less so if income is measured on a lifetime rather than 
annual basis (e.g., Poterba 1991; West and Williams 2004). One approach to addressing these 
concerns is to make adjustments to the broader tax and benefit system. Williams (2009) finds 
that the distributional effects of gasoline taxes can be approximately offset through such 
adjustments, with modest overall implications for the optimal gasoline tax. 

Substantially higher fuel taxes appear to have little political traction at present, though it 
is not difficult to think of examples of policy reforms that, at some earlier date, seemed 
impossible to implement (e.g., industry deregulation or the use of market-based instruments for 
pollution control). At any rate, the economist’s role is to inform policymakers about the potential 
net benefits from overcoming obstacles to more efficient policy.  

Finally, over the long haul, the development of new technologies is critical for any effort 
to wean motorists off conventional fuels. Does this mean we should implement even stiffer fuel 
taxes? Perhaps not. A common view among economists seems to be that innovation incentives 
are more efficiently addressed through supplementary technology policies than by raising energy 
taxes above levels warranted on externality and fiscal grounds (e.g., Fischer and Newell 2007; 
Goulder and Schneider 1999). These additional measures might include funding for basic 
research, inducements for applied private sector R&D, and possible interventions at the 
technology deployment stage, though more research is needed on the appropriate stringency and 
design of such supplementary measures. 
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Appendix: Analytical Derivations 

Deriving Equation (2): The corrective gasoline tax. The optimal tax is derived using a standard two-
step procedure. First, we solve the household optimization problem in (1), where externalities, and 
government variables, are taken as given. This yields the first order conditions: 
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The second step is to totally differentiate the household’s indirect utility function, which is simply 
equivalent to the expression in (1), with respect to the gasoline tax. In this step, economy-wide 
changes in externalities and the government transfer are taken into account. Using the first order 
conditions in (A1) to eliminate terms in Gdtdm / , Gdtdv / , Gdtdg / , and GdtdX / , the total 

differential is given by: 
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The government budget constraint, equating spending with gasoline tax revenue, is GtGOV G= . 

Totally differentiating this expression gives: 
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From differentiating the expression for gasoline use in (1b): 
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Equating (A2) to zero, to obtain the corrective tax, and substituting (A3), gives: 
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Substituting expressions in (2b) in (A5), gives the corrective tax formula in (2a), with β defined in 
(2c). 
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Figures and Tables 
 

Figure 1. Taxation of Motor Fuels: Selected Countries (2008) 
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Source: OECD (2009). 
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Source: Oil and Gas Journal, January 2008. 
Note: Canadian figure includes 150 billion barrels from oil sands. 
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Source: FHWA (2007), Table 4.2.1. 
Note: Figure includes mileage from light and heavy vehicles. 
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Note: Efficiency gain is defined relative to withholding revenues from the economy and therefore depends on 

uncompensated behavioral responses.   
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Figure 6. Optimal Diesel Tax and Welfare Gains 
with Alternative Revenue Recycling

Optimal Tax Welfare Gain

 
Note: Efficiency gain is defined relative to withholding revenues from the economy and therefore depends on 
uncompensated behavioral responses. 
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Benchmark case
Corrective tax, $/gallon 1.23
Contribution from

global warming 0.09
oil dependence 0.10
local pollution 0.12
congestion 0.52
accidents 0.41

Miles/gallon at corrective tax 23.2
Proportionate reduction in gasoline use 0.10
Welfare gain, $ billiona 5.9
Proportionate increase in tax revenue 2.8

High global warming damages
Corrective tax, $/gallon 1.88
Miles/gallon at corrective tax 24.0
Proportionate reduction in gasoline use 0.16
Welfare gain, $ billiona 16.6

With pre-existing climate policy
Corrective tax, $/gallon 1.14

Binding fuel economy regulations
Corrective tax, $/gallon 2.01
Miles/gallon at corrective tax 30.4
Proportionate reduction in gasoline use 0.17
Welfare gain, $ billiona 12.3

With pre-existing corrective mileage tax
Corrective tax, $/gallon 0.19
Proportionate reduction in gasoline use -0.03
Welfare gain, $ billiona 0.43

Notes: a Ignores welfare effects from broader fiscal linkages.

Sources: See discussion in text

Table 1. Calculations of the Corrective Gasoline Tax
(Year 2007 $)
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