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Abstract 
We estimate residential electricity demand for different regions of the country, assuming that 

consumers respond to average electricity prices. We circumvent the need for individual billing 
information by developing a novel generalized method of moments approach that allows us to estimate 
demand based on household electricity expenditure data from the Consumer Expenditure Survey, which 
does not have quantity and price information. We find that price elasticity estimates vary across the four 
census regions—the South at –1.02 is the most price-elastic region and the Northeast at –0.82 is the 
least—and are essentially equivalent across income quartiles. In general, these price elasticity estimates 
are considerably larger in magnitude than those found in other studies using household-level data that 
assume that consumers respond to marginal prices. We also apply our elasticity estimates in a U.S. 
climate policy simulation to determine how these elasticity estimates alter consumption and price 
outcomes compared to the more conservative elasticity estimates commonly used in policy analysis. 
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A New Look at Residential Electricity Demand Using Household 
Expenditure Data 

Harrison Fell, Shanjun Li, and Anthony Paul∗ 

I. Introduction 

The recent focus of the U.S. Congress on federal energy policy, which could substantially 
alter electricity prices, has elevated the importance of characterizing electricity demand behavior. 
This is particularly true for the burgeoning literature on the incidence of such policies (e.g., 
Burtraw et al. 2009; Hassett et al. 2009; and Shammin and Bullard 2009). A key parameter in 
incidence analysis is the household-level price elasticity of demand for electricity. Studies on 
residential electricity demand have been conducted for many decades, but few of them are based 
on household data, are national in scope, and allow for regional price elasticity heterogeneity.1 
This paper offers a new technique to estimate residential electricity demand for different regions 
in the U.S. using household expenditure data, under the assumption that consumers respond to 
average prices. 

Many of the residential electricity demand estimations that use nationwide data are based 
on panel data, aggregated at the state level (e.g., Houthakker 1980; Maddala et al. 1997; and 
Bernstein and Griffin 2005). These studies have the advantage of being able to provide regional 
elasticities, both long-run and short-run, across the nation. However, one should use caution 
when applying elasticity estimates from these aggregate studies to policy analysis at the 
household level, as is often done in incidence analyses of climate policy. As Dubin and 
McFadden (1984) point out, demand estimations using aggregate data may be subject to 
misspecification bias due to aggregation over electricity usage and price. For example, if the 
underlying electricity demand at the household level takes nonlinear form (e.g., log–log), 
demand elasticities estimated using aggregate data (e.g., at the state level) will not represent 
household-level demand behavior. 

                                                 
∗ Fell and Li are fellows, and Paul is the Center for Climate and Electricity Policy fellow, at Resources for the 
Future, Washington, DC. The authors thank Dallas Burtraw for comments and discussions about this work and Josh 
Blonz for his excellent research assistance. This work was partially funded by a grant from the Center for 
International Climate and Environmental Research – Norway. 
1 See Taylor (1975) and Bohi (1981) for surveys of early electricity demand studies and Espey and Espey (2004) for 
a more recent collection of residential electricity demand elasticity estimates. 
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Several studies employ household-level data (e.g., Barnes et al. 1981; Dubin and 
McFadden 1984; Herriges and King 1994; and Reiss and White 2005), but these studies are 
constrained to geographically narrow regions because there is no national data set of electricity 
rate structures or of household-specific billing information. Given regional household 
heterogeneity, it may be inappropriate to apply estimates from these area-specific studies to all 
areas of the country. On a more practical note, getting geographically specific rate structure data 
for the entire nation and appropriately matching it up to individual households or obtaining 
household billing information for large geographic areas of the country is quite difficult because 
of the diversity of rate structures across the country and the proprietary nature of individual 
billing information.2 

More importantly, all of the aforementioned studies using household-level data are based 
on the assumption that households know their marginal rate schedules and optimize accordingly. 
Although assuming that households respond to marginal prices is theoretically consistent in a 
utility-maximizing framework, it may not be a realistic representation of consumer behavior in 
electricity markets. The first reason for this is that many electric utilities, like some other public 
utilities, offer multitariff pricing where the marginal price for a household depends on the 
household’s consumption. Deciphering an electricity bill to determine the rate structure is often 
not straightforward, and usually the bill arrives after the period of consumption has concluded. 
Thus, in many instances consumers may not be aware of their actual rate structure or their 
marginal price. Second, it may be unrealistic to assume that consumers can monitor and control 
their consumption at any given point in time during a billing period. If this is the case, then even 
if consumers know the rate structure, it is difficult for them to optimize consumption based on 
the marginal price. 

Given these attributes of residential electricity consumption, the assumption that 
consumers respond to marginal price would be unlikely to hold for the average consumer. 
Indeed, this has been supported by increasing empirical evidence. Using data from seven Ohio 
utilities with decreasing-block rate schedules, Shin (1985) finds evidence that consumers respond 
to average prices from the utility bill rather than marginal prices. Based on residential billing 
data from Southern California Edison, which implements increasing-block pricing, Borenstein 

                                                 
2 For example, in Reiss and White (2005), a study using rate structure data from Southern California, electricity 
rates had to be matched up indirectly with individual household data. Applying such techniques nationwide would 
quickly become intractable. 
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(2009) finds no evidence of bunching around the points where the marginal price increases, 
contrary to what a model of perfectly informed and optimizing consumers would imply.3 In 
addition, he shows that the average price is a better indicator of consumer demand response than 
the marginal price. A recent paper by Ito (2010) using household billing data from two utilities in 
Southern California obtains the same finding that consumers are more likely to respond to 
average prices than to marginal prices.  

Our study contributes to the literature by addressing the need for nationwide elasticity 
estimates using household-level data, under the assumption that consumers respond to average 
prices. Because gathering detailed rate structure data at the national level is impractical, we 
develop an empirical strategy based on the generalized method of moments (GMM) that allows 
demand estimation based on publicly available data sets. The main source of data is the Bureau 
of Labor Statistics’ Consumer Expenditure Survey (CEX), which are supplemented with state-
level data from the Electric Power Monthly reports produced by the Energy Information 
Administration (EIA). Though the CEX provides only expenditure data, our empirical approach 
permits estimations of household-level demand functions without observing household 
electricity usage or price schedules. 

Our results show considerable differences in price elasticities across census regions, with 
elasticities ranging from –0.82 to –1.02 in the baseline model. These estimates are noticeably 
larger than other residential demand estimates using household-level data. However, as we 
demonstrate below, this difference is most likely attributable to the assumption that households 
respond to average electricity prices as opposed to marginal prices. This result suggests that 
further research is warranted to understand the prices to which consumers really respond in 
electricity demand. In addition to price elasticity, we also find small income elasticities, as is 
common in the electricity demand literature.  

The remainder of the paper is organized as follows. In section 2, we present our data. 
This is followed with a discussion of our empirical method and a Monte Carlo analysis to gauge 
the effectiveness of the empirical method in section 3. In section 4, we use a simple graphic 
example to illustrate potential differences that can emerge in demand estimations based on 
average- or marginal-price responsiveness. Section 5 presents the results of the demand 

                                                 
3 If consumers were responding to marginal prices, then in a multipart tariff rate structure one would expect to see a 
concentration of households at consumption levels just below the cut-off points for the rate change. Instead, 
Borenstein (2009) finds a much smoother distribution of consumption. 
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estimation, and section 6 illustrates the significance of demand elasticity assumptions in a policy 
analysis context. In the final section we give concluding remarks. 

II. Data 

Two data sets on household-level electricity usage are national in scope and publicly 
available: CEX and EIA’s Residential Energy Consumption Survey (RECS). The CEX collects 
data through quarterly interviews of about 7,500 households.4 The survey asks respondents to 
provide detailed expenditure information, including monthly electricity expenditures, but does 
not address quantity or price information for electricity use. The RECS collects information on 
residential energy use from fewer than 5,000 households and is conducted about every five years. 
It provides both electricity consumption (quantity) and expenditure data. Both surveys collect 
data on housing characteristics, appliances holdings, and household demographics. 

We use the CEX data for our analysis for the following reasons. First, the CEX data have 
a much larger sample, with approximately 90,000 observations (7,500 households for 12 months) 
each year compared to fewer than 5,000 annual observations from RECS. Second, as mentioned 
above, the expenditure data from the CEX are available at the month level, the decision period 
we use in the demand analysis, whereas the data from RECS are at the annual level.5 Finally, the 
state information for households is available only for the four most populous states in RECS for 
the purpose of confidentiality. On the other hand, the CEX data provide location information at 
the state level for all households. Because they lack state location, use of the RECS data would 
prevent us from using state-level cost shifters as the instruments for electricity price in the 
demand analysis and would restrict our ability to get regional price elasticities.  

Our empirical analysis is conducted using the CEX data from 2004 to 2006. To reduce 
sampling errors and avoid instances of no observations in some months, we keep only the states 
that have at least 2,500 total observations in the survey over the period 2004–2006. This 
elimination process gives us a final sample of observations spanning 22 different states. The 
average number of observations in a month for each state ranges from 38 to 537 with a mean of 
140. As will be shown in the next section, some of the moment conditions used for estimation 

                                                 
4 The survey program also conducts a diary survey, in which respondents record all expenditures. However, we only 
use data from the program’s quarterly interview survey. For more information on how the survey is conducted and 
the data available through the survey see http://www.bls.gov/cex/. 
5 Though the interviews are conducted quarterly, they ask questions about month-specific expenditures. 
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match average monthly household electricity usage predicted by the model to observed data for 
each state. Table 1 lists the states used in our analysis and the total number of observations by 
census region. 

Table 2 provides summary statistics for monthly household electricity expenditure, 
average electricity price, imputed average household usage, and other variables that are treated 
as demand covariates. Average monthly household electricity expenditure, derived from the 
CEX, is highest in the South region at an average of $143, whereas it is lowest in the Midwest 
region at an average of $96. The average electricity price is based on state-level EIA data from 
Electric Power Monthly (based on EIA Form 826), where it is computed as the total revenue of 
electricity suppliers divided by the total electricity supplied. The state average price is highest in 
the Northeast region and lowest in the Midwest region. Based on the EIA average prices and the 
CEX expenditure data, we impute the naïve electricity usage for each household, shown as the 
“Quantity” row in the table.6 The households in the South region use the most, whereas those in 
the Northeast region use the least. 

The other explanatory variables in the demand analysis include house demographics, 
housing characteristics, and electric appliance holdings from the CEX data. We also obtain 
monthly heating degree days (HDD) and cooling degree days (CDD) for each state from the 
National Oceanic and Atmospheric Administration. These two temperature variables are 
interacted with appliances in the demand equation.  

Our empirical method shown below necessitates instrument variables for electricity price. 
These variables should shift price schedules but do not affect consumption directly. Although 
local distribution companies, the entities that typically sell electricity to households, have largely 
regulated price schedules, these schedules often allow for built-in adjustments based on 
fluctuations in electricity generation costs, especially fuel costs. In addition, utilities often obtain 
power supply through procurements in advance to meet a larger share of their service 
obligations. We therefore use, as cost shifters, lagged prices of natural gas and coal (quarterly 
and yearly moving averages), as well as states’ electricity generation profiles and the interaction 
between generation profiles and generation fuel prices. Coal and natural gas prices come from 

                                                 
6 We consider this a “naïve” electricity usage measure because dividing household-level expenditures by a state 
average price neglects the reality that average prices at the household level will depend on a household’s usage. 
Thus, basing a demand estimation on these naïve usage and state average price measures will pose not only standard 
simultaneity issues, but also measurement error issues. These points are discussed in more detail below. 
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EIA. Because these price data are often missing at the state level, we use national-level prices. 
The electricity generation profile data, which give the percentage breakdown of total generation 
by fuel type in each state, are also available through EIA.7 We use the lagged values of these 
variables because electric utilities often procure a large of portion of power to be distributed 
ahead of schedule. In addition, lagged cost shifters are more likely to be exogenous to current 
demand shocks. 

Figure 1 plots monthly national prices for residential electricity, coal, and natural gas 
from 2003 to 2006. All three series are trending up, with natural gas prices the most volatile and 
coal prices the least. Table 3 provides summary statistics of generation fuel profile variables. 
Across the four census regions, natural gas accounts for the largest share of generation in the 
West region (36 percent) whereas coal is used most extensively in the Midwest (70 percent). 
Nuclear and hydropower have the largest share in the West (40 percent) and Northeast regions 
(39 percent).  

III. Empirical Strategy 

Utilities frequently use nonlinear price schedules in selling electricity. The nonlinearity 
could be due to an up-front fixed charge, such as a transmission charge, and/or block pricing. 
The assumption maintained in most of the literature on electricity demand since Taylor’s (1975) 
survey is that consumers are perfectly informed about the price schedule and are able to perfectly 
optimize on the margin at every moment: consuming the amount where the marginal value of 
electricity is equal to the marginal price. Although this assumption is theoretically appealing, it is 
unlikely to hold in reality. First, it is costly for consumers to obtain their price schedules because 
they are often not explicitly shown on electricity bills and because electricity bills arrive after 
consumption choices are made. In addition, price schedules are subject to month-to-month 
changes. Second, as electricity is billed from month-to-month, the above assumptions require 
consumers to make perfect predictions about their demand shocks, like a heat wave that raises 
the value of air-conditioning, for the whole month at the beginning of each month. 

                                                 
7 Data for coal prices were downloaded from http://www.eia.doe.gov/cneaf/electricity/page/ferc423.html, and 
natural gas prices were downloaded from http://tonto.eia.doe.gov/dnav/ng/ng_sum_lsum_a_epg0_peu_dmcf_m.htm. 
State-specific electricity generation mix data were downloaded from 
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html. 
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In light of increasing empirical evidence that consumers are more likely to respond to 
average prices rather than marginal prices (e.g., Shin 1985; Borenstein 2009; and Ito 2010), the 
goal of this paper is to obtain demand estimates under the assumption that consumers respond to 
average prices. This is a departure from, and in our view an improvement upon, the conventional 
assumption that consumers respond to marginal prices. At the very least, it offers an alternative 
demand estimation to the marginal price-response literature.  

Method 

Our empirical framework is set up based on the CEX data. As discussed above, although 
CEX provides a national representative sample, it does not have information on electricity price 
and quantity. Rather, it reports monthly household expenditure on electricity. Some previous 
studies using CEX data, such as Branch (1993), have used monthly state average prices from 
EIA as the price variable and constructed the quantity variable by dividing expenditure by the 
state average price, as we did above for our naïve usage variable. Although this method appears 
to be straightforward, the estimates could be biased due to at least two sources: measurement 
error and simultaneity. Measurement error arises because the average price faced by a given 
household will depend on its quantity consumed and, thus, will not typically be the same as the 
state average price given by EIA.  

To illustrate the simultaneity problem, one can assume that the underlying demand 
function takes a double-log form commonly used in the literature on electricity demand 

  ln ln ,ist ist ist istq p x eβ γ= + +   (1)                         

where t is the month index, s the state index, and i the household index. qist is the quantity of 
electricity used by household i in state s and month t, and pist is the average price for that 
household in month t. Under nonlinear price schedules, the average price depends on the 
quantity—in other words, pist is a function of qist. The simultaneous determination of household 
electricity usage and the price for that level of usage underlies the traditional simultaneity 
problem. The vector istx contains other variables that affect electricity demand, such as household 
demographics, appliance holdings, and weather conditions. The final variable, iste , is the demand 

shock and is assumed to be normally distributed with mean zero and 2var( ) .ist ee σ=  

Without observing both pist and qist, one could apply the naïve method that uses state 

average price stp and imputed quantity ist
ist

st

cq
p

= , where cist is monthly household expenditure, 

in equation (1), and it would become 
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ln ln (ln ln ) (ln ln )

ln [ln( ) ln( )] (ln ln )

ln (1 )(ln ln )
ln ,

ist st ist ist ist ist st ist

ist ist
st ist ist st ist

st ist

st ist ist st ist

st ist ist

q p x q q p p e
c cp x p p e
p p

p x p p e
p x v

β γ β

β γ β

β γ β
β γ

= + + − + − +

= + + − + − +

= + + + − +
= + +

  (2) 

where vist is the composite error term. If one were to estimate (2) taking vist as the error term, the 
estimates of both β and γ would be biased for two reasons, as long as β is not equal to –1. First, 
because the error term vist includes the state average price variable stp , ln stp is endogenous. 

Second, because demand factors xist affect electricity usage qist, which in turn would determine 
the average price paid by the household pist, xist is also endogenous as a result of the inclusion of

istp in the error term. Because of the large number of endogenous variables in the equation, it 

would be impractical to use instrumental variable methods. In addition, the a priori direction of 
bias from the ordinary least squares (OLS) estimate is unknown: both stp and xist are correlated 

with the error term, and it is unclear what direction the partial correlation between 
(ln ln )ist stp p−  and the explanatory variable takes. 

We develop a new empirical strategy using GMM to estimate the demand function with 
the expenditure data from CEX and some auxiliary data that do not rely on the naïve quantity 
variable imputed from state average prices. Because we do not observe qist and pist, we cannot 
take equation (1) directly to the data. Instead, we further specify the average-price schedule faced 
by the household as the following 

 ln lnist s ist ist istp q zα δ ε= + +   (3) 

where αs is the state-specific slope for the price schedule, and zist is a vector of observed 
variables that shift the price schedule, such as cost shifters, month dummies, and state dummies. 
This specification allows both the intercept and the slope of the average-price schedule to vary 
across states. εist is the approximation error and is assumed to be normally distributed with mean 
zero and variance 2var( ) .ist εε σ=   

Household electricity usage and average price are determined by the demand equation 
and the price schedule. Solving for qist and pist from (1) and (3), we get 

  ln / (1 ) / (1 ) ( ) / (1 )ist ist s ist s ist ist sq x z eγ βα δβ βα βε βα= − + − + + −   (4) 

  ln / (1 ) / (1 ) ( ) / (1 )ist ist s s ist s s ist ist sp x z eγα βα δ βα α ε βα= − + − + + −   (5) 
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Given that the total expenditure cist = qist ൈ qist, ln ln lnist ist istc q p= + . With this, equations (4) 

and (5) allow us to express the total expenditure in logarithm as the following 

 
ln (1 ) / (1 ) (1 ) / (1 )

[(1 ) (1 ) ] / (1 )
ist ist s s ist s

s ist ist s

c x z
a e

γ α βα δ β βα
β ε βα

= + − + + −
+ + + + −

  (6) 

Because we have data on electricity expenditure, equation (6) provides us with the basis 
for the first set of moment conditions. We define the predicted value of the log expenditure as 

  ˆln (1 ) / (1 ) (1 ) / (1 )ist ist s s ist sc x zγ α βα δ β βα= + − + + −   (7) 

And the first set of moment conditions is given by 

 , , ˆ([   ]' ( ln ln )) 0i s t ist ist ist istE x z c c− =   (8) 

Recognizing that some variables, such as month dummies and state dummies, are 
common in both xist and zist, we write the moment conditions this way to save notation. In 
essence, these moment conditions match the predicted expenditures (in log) with the observed 
ones. The first set of moment conditions alone does not provide enough restrictions to identify 
the model parameters. This is intuitive: one cannot separately identify the demand and price 
functions with only data on expenditure. 

Taking advantage of state average prices available from EIA, we construct the second set 
of moment conditions.8 Based on the state-level average price, we compute the state-level 
average quantity of household electricity usage, denoted by stq . The second set of moment 
conditions match the average quantity stq  with the predictions from our model. From equation 
(4), the expected value of electricity usage for a household, ˆistq , is given by 

  2 2 2 2ˆ ( ) exp( / (1 ) / (1 ) 0.5( ) / (1 ) )ist ist ist s ist s e sq E q x z εγ βα δβ βα σ β σ βα= = − + − + + −   (9) 

where the last term in the parenthesis is half of the variance of the composite error term in 
equation (4).9 We define ˆ

stq as the average of ˆistq for all households in state s and month t (i.e., 

                                                 
8 EIA’s Electric Power Monthly report, available for download at http://www.eia.doe.gov/fuelelectric.html, gives 
monthly average electricity prices by state. 
9 Given that eist and εist are independent normally distributed random variables, ln qist is normally distributed. This 
implies that qist is log-normally distributed. Equation (9) is thus the expected value of a log-normally distributed 
variable. 
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1

1ˆ ( )
I

st ist
i

q E q
I =

= ∑ ). Based on ˆ[ | , ] 0ist ist ist istE q q x z− = , the second set of moment conditions can 

be constructed as 

 ˆ([   z ]'( )) 0ist ist ist st stE x q q− =   (10) 

 Although the number of moment conditions constructed so far is larger than the number 
of model parameters, the standard errors of the two errors terms, eσ and εσ , cannot be separately 

identified, given that they both enter moment conditions only through the last term in equation 
(9). We add another set of moment conditions based on the variance of errors in predicting log 
expenditure. Following equation (6), we get 

  2 2 2 2 2 2ˆ(ln ln ) [(1 ) (1 ) ] / (1 ) 0ist ist ist s e sE c c a εσ β σ βα− − + + + − =   (11) 

We stack the three sets of moment conditions and use an iterative GMM procedure to 
estimate all the model parameters. In obtaining the starting values for the GMM procedure, we 
first estimate equations (1) and (3) using two-stage least squares, where we take the state-level 
average prices as the price variable for all households in the corresponding state. We use the 
identity matrix as the initial weighting matrix and construct the efficient weighting matrix based 
on parameter estimates from the first iteration.  

 The underlying model of our analysis assumes that consumers respond to average price 
in their electricity usage decisions. The interaction between the household demand function and 
the average-price schedule determines monthly electricity usage and average price at the 
household level. In addition to the challenge of not observing either household quantity or price 
data directly, we also face the common simultaneity identification challenge in the empirical 
demand and supply analysis: quantity and price are determined simultaneously. To deal with the 
simultaneity problem, our procedure, cast in a system of two equations (i.e., equations (1) and 
(3)), essentially uses demand-side variables, such as household demographics and appliance 
holding, to serve as instruments for the quantity variable in the price equation (3), and uses cost 
shifters, such as shares of fuel types in electricity generation and their interactions with fuel cost, 
to serve as instruments for the price variable in the demand equation (1).  

Notably, although the nature of the CEX gives us some longitudinal information, the 
relatively short time span analyzed and the lack of detailed product information does not give us 
sufficient information to estimate the relationship between electricity prices and appliance 
replacement. We therefore consider our estimates short-run demand estimates. 
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Monte Carlo Analysis 

The empirical strategy outlined above aims to estimate the demand function for 
residential electricity at the household level for different regions of the country in the absence of 
household-level price and quantity data. It uses the expenditure data from CEX together with 
state average electricity prices in a GMM framework. Before showing the estimation results, we 
present a Monte Carlo analysis to illustrate the effectiveness of the empirical strategy. 

The Monte Carlo analysis is based on four states, each of which has more than 2,500 
households in the CEX in the Northeast Region (Massachusetts, New Jersey, New York, and 
Pennsylvania). We first generate price and quantity data for each household, using the demand 
and price equations (4) and (5) and based on a vector of household characteristics from CEX, 
cost shifters, and a given set of parameters. The household characteristics, a subset of those listed 
in Table 2, include household income, number of rooms in the house, and household size. The 
cost shifters, a subset of those listed in Table 3, include the share of electricity generated using 
natural gas during the past three months, the share of electricity from coal, and that from nuclear 
and hydropower. Based on these variables and parameters, we generate monthly expenditure data 
at the household level and monthly state average electricity price and quantity. We then use both 
OLS and the GMM approach discussed above to recover the parameters used to generate the 
data. The OLS approach uses equation (2), where state average electricity prices are used in 
place of household average prices and quantities are imputed using monthly expenditure divided 
by state average prices. 

Table 4 compares the values of the parameters used to generate the data (the true 
parameters) to their estimates from OLS and GMM for the different average-price schedules. In 
all three cases, the GMM method is able to recover the true parameters in the demand equation, 
whereas the OLS method gives the biased estimates, especially for log(price), the key variable of 
interest. To save space, we do not report the results for the 17 dummy variables (4 state 
dummies, 2 year dummies, and 11 month dummies). 

The first panel presents the results for the demand equation where the average-price 
schedules in all four states are assumed to be upward sloping, with slopes of 0.4, 0.3, 0.2, and 
0.1, respectively. The true parameter for log(price) in the demand equation is –0.8. Whereas the 
OLS provides an estimate of –0.512 with a standard error of 0.096, the estimate from the GMM 
approach is –0.837 with a standard error of 0.088. In addition, the OLS estimate on 
log(household size) is also statistically different from its true value of 0.4, whereas the GMM 
estimate is not at any conventional significance level. 
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The second case is based on simulations where the average-price schedules in all four 
states are downward sloping, with slopes of –0.4, –0.3, –0.2, and –0.1, respectively. All other 
parameters are kept the same as in the first panel. The parameter estimates from OLS for the four 
demand variables shown in the table are all statistically different from their true values, whereas 
none of the GMM estimates are. The most striking bias from OLS is still in the parameter 
estimate for log(price). The estimate from OLS is –1.117 with a standard error of 0.059, 
compared with the true value of 0.8.  

The third panel provides results for simulations that assume positive slopes for the 
average-price schedule in the first two states but negative slopes in the other two states. In this 
case, the OLS results are closer to the true values than in the previous cases. Nevertheless, the 
coefficient estimate on log(price) is still statistically different from the true parameter at the 10 
percent significance level.  

The key finding of the simulations is that the GMM approach is effectively able to 
recover the true parameters, whereas the OLS estimates could result in substantial bias. Although 
the bias for the coefficient estimate on log(price) has the same direction as the slopes of the 
average-price schedules in the first two cases, this finding may not be robust to the addition of 
more demand-side variables in the regression. As discussed above from equation (2), the 
direction of bias depends on the partial correlation between a particular variable (e.g., log(price)) 
and the error term. 

IV. Price Elasticities: Average-Price vs. Marginal-Price Response 

Assuming that consumers are marginal-price responders in empirical studies if they 
actually respond to average price could have important implications for price elasticity estimates. 
In the case of block pricing, a change in average price would imply a larger change in marginal 
price. Therefore, one would expect demand curves estimated based on average-price 
responsiveness to be more price elastic than those based on marginal-price responsiveness. 

To illustrate the potential for differences in price elasticity estimates based on the two 
different assumptions, consider the following simple example presented graphically in Figure 2. 
To understand how the price elasticity is identified, assume that the market consists of three 
households, A, B, and C, where A and B are on the lower tier of the price schedule and C is on 
the higher tier. Assume that the quantity demanded, Qi, is linear and fully determined by income, 
Xi, and price, Pi, such that Qi = αXi – βPi, i = (A, B, C). Pi is the price that consumers respond to 
and it could either be the marginal price or the average price. For concreteness, suppose we 
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observe that (QA = 3, XA = 15), (QB = 4, XB = 20), (QC = 6, XC = 40). We assume that there is no 
fixed cost, and because A and B pay the same marginal price, they also pay an identical average 
price, say P1 = 0.10. Household C pays a marginal price on the higher portion of the two-part 
marginal pricing schedule, and it is assumed to be P2 = 0.15.  

We now show how to identify demand parameters under the assumption that consumers 
respond to marginal prices in their electricity usage decisions. Given that households A and B 
face the same price, the parameter α can be identified by dividing the difference in quantity 
consumed between households A and B by the difference in X. In this example, that leads to an 
estimate of α = (4 – 3)/(20 – 15) = 0.2. The effect of a change in marginal price on demand can 
be determined by adjusting C’s income level to that of B’s. Given α = 0.2, if B and C paid the 
same price for electricity, then C would consume four more units than B. Thus, if a hypothetical 
household, B′ , had the same income level as B but faced the same marginal price as C (P2 = 
0.15), it would consume four fewer units than C, resulting in two units of electricity. Connecting 
points X, corresponding to P2 = 0.15 and BQ′  = 2, and Z, corresponding to P1 = 0.10 and QB = 4, 

where both have the same income but different marginal prices, we obtain the demand curve for 
the case where consumers respond to marginal prices. The slope of the demand curve, DMP, is β 
= (4 – 2)/(0.1 – 0.15) = –40. This implies a price elasticity, evaluated at QB, for the marginal-
price demand curve of εm = β/QB ൈ P1 = –1. This way of identifying the price elasticity underlies 
the identification strategy used by Reiss and White (2005), where consumers are assumed to 
respond to marginal prices. 

To identify the demand curve for the case where consumers respond to average prices, 
note that if the cut-off quantity Q* = 4.5, average prices paid by the three households are 

0.10A BP P= =  and CP = 0.1125. Using the same identification strategy as described above, α 

would again be 0.2. Again, a hypothetical household, B′ , with the same income level as B but 
facing the same average price of 0.1125 as C, would therefore consume two units of electricity 
(four units less than C). Connecting points Y, corresponding to P2 = 0.1125 and BQ′  = 2, and Z, 

where both have the same income but different average prices, we obtain the demand curve 
under the assumption of average-price response, DAP. This results in a much flatter demand slope 
of β = –160 and price elasticity at QB of εa = –4. 

This simple illustration shows that, for the same observations, estimating the demand 
function under the assumption of average-price responsiveness will result in much more elastic 
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demand than that estimated under the assumption of marginal-price responsiveness.10 The degree 
to which the price elasticities will differ is, of course, a function of the data used. Because we do 
not have individual rate structures for all individuals in our sample, we are not able to estimate 
the corresponding demand curves under the assumption of marginal-price responsiveness. 
However, using rate structure data for households served by Southern California Edison, 
Borenstein (2009) is able to estimate elasticities with respect to both marginal prices and average 
prices. He finds that the demand function specified over average prices results in an elasticity 
estimate at least double (in magnitude) that from the demand function specified over marginal 
prices. 

V. Estimation Results 

In this section, we first present estimation results for the baseline model, in which price 
elasticities are assumed to be invariant to income levels. We then present results for models 
relaxing this assumption. Note that the term baseline refers not the method of estimation, but to 
the set of variables and observations included in the model. The baseline and alternative models 
are estimated by the GMM procedure described above and by OLS. 

Baseline Model 

We estimate the empirical model outlined in the sections above separately for each of the 
four census regions—Midwest, Northeast, South, and West. We do this for two reasons. First, as 
a result of differences in weather conditions and appliance holdings, for example, demand 
parameters (e.g., on electricity price and month dummies) differ across regions. Estimation by 
region allows for region-specific demand parameters. Ideally, we would like to have even more 
regionally specific demand parameters by estimating the model state by state. However, state-
level estimations are infeasible because there is not enough variation in instrumental variables 
for electricity prices (i.e., cost shifters) to identify the model. Second, the empirical method is 
data-intensive and computationally intensive because of the larger number of moment conditions 
and parameters. Estimating the model by region made the problem computationally tractable. 

In the baseline model, we drop observations in the upper and lower 2.5 percentiles of 
electricity expenditure from each region to avoid the effects of outliers (e.g., college 

                                                 
10 Note also that a similar example using a decreasing-block price schedule would yield the same result with respect 
to price elasticities as the increasing-block price schedule example described above.  
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dormitories), possible data entry errors, and households generating a large proportion of 
electricity by themselves (e.g., through solar panels). For example, the maximum monthly 
electricity expenditure is $2,946 by a household with an annual income of $157,720. Assuming 
constant monthly income implies the highly unlikely possibility that more than 22 percent of 
monthly income was spent on electricity. At the other extreme, we have 31 observations with a 
monthly expenditure of $10. Among these observations, the household income ranges from 
$4,071 to $440,910 with a mean of $61,229. We suspect that, if this is not due to data entry error, 
then some of the observations may come from households that have used self-generated 
electricity or subsidized electricity through a low-income assistance program. In addition, the use 
of a linear function to approximate a nonlinear average-price function may not work well at low 
or high values of consumption in the case of tiered pricing. As mentioned above, we also drop 
states with fewer than 2,500 observations from the sample to ensure a reasonably large number 
of observations in each state for each month, which is particularly important for the consistency 
of the second set of moment conditions. We perform robustness checks with respect to data 
censoring, and the results are provided below. 

Table 5 presents parameter estimates for the baseline model by census region from OLS. 
The electricity demand also includes state dummies, year dummies, and month dummies, but the 
parameters associated with these variables were omitted for brevity. Due to the log–log 
specification used, the parameter on log(price) in the first row provides price elasticity estimates. 
The differences in price elasticities across the four regions are substantial and are challenging to 
explain. According to the OLS results, the West region is the most price elastic with an elasticity 
of –1.02, whereas the Northeast region is the least price elastic with an elasticity of –0.385. 
Income elasticities, on the other hand, are very similar across the regions, ranging from 0.061 in 
the Midwest to 0.072 in the West. Other demand parameters generally have intuitive signs. The 
appliances in the table, especially electric space heating, increase electricity demand 
significantly. In the Northeast region, having electric heating increases electricity demand by 
almost 31 percent at the mean level of HDD (4.55). As discussed above, the OLS estimates could 
suffer bias as a result of both simultaneity and measurement error issues, and the direction of 
bias is unknown a priori. 

Table 6 presents estimation results from GMM. The first row presents price elasticity 
estimates and their standard errors. Comparing this with the OLS results, two differences are 
obvious. First, the estimates of price elasticities from GMM in all four regions are noticeably 
different from their OLS counterparts. The GMM estimates in the first three regions are at least 
double the OLS results, whereas the elasticity estimate for the West region changes less 
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substantially from –1.02 to –0.88. Second, although significant differences in elasticities remain 
across regions in the GMM results, the differences are much smaller than those observed from 
OLS. 

Based on the GMM results, the Northeast region is the least price elastic with an 
elasticity of –0.82, whereas the South region is the most price elastic with an elasticity of –1.02. 
This result is as expected. Electricity usage is a result of the flow of services from a household’s 
electricity-using appliances. Therefore, a household’s ability to respond to a change in electricity 
price will depend largely on the type and number of appliances for which usage can easily be 
adjusted. For example, using an end-use demand specification, Reiss and White (2005) show that 
electricity price changes have the largest demand effects among households with electric space 
heating and air conditioning, two appliances that often account for a large portion of total 
household consumption and have easy-to-vary usage. The South region has the highest share of 
electric space heating at 54 percent compared to only 10 percent in the Northeast. In addition, air 
conditioning ownership (both central and window air conditioning) is 99 percent in the South 
compared to only 80 percent in the Northeast region, as shown in Table 2. Altering the use of 
these appliances is a significant end-use margin on which households can adjust electricity 
usage. Thus, households with electric space heating and air conditioning are likely to have more 
price-elastic demands. In the Northeast and Midwest regions, home heating often plays a 
relatively more significant role than home cooling, but because many homes have natural gas 
heating, there is not as obvious an end use on which to alter electricity consumption.  

The other noticeable feature of our price elasticity estimates is that we find demand to be 
roughly twice to three times more price elastic than do several other studies using household-
level data (e.g., Barnes et al. 1981; Dubin and McFadden 1984; Herriges and King 1994; Reiss 
and White 2005). All of these studies are based on household-level data matched with actual rate 
schedules faced by households in specific geographic areas. As pointed out by Dubin and 
McFadden (1984), household-level data are preferred over aggregate data (e.g., aggregated at the 
state level) because it could avoid misspecification bias due to date aggregation over electricity 
usage and price. Using household data in 23 large U.S. metropolitan areas from 1972 to 1973 in 
the CEX, Barnes et al. (1981) obtain a price elasticity estimate of –0.55. Dubin and McFadden 
(1984) use a 1975 household survey and estimate a price elasticity of –0.26. Based on data from 
a controlled experiment in Wisconsin from 1984 to 1985, in which participants were subject to 
five different rate schedules, Herriges and King (1994) obtain a price elasticity of –0.02 for the 
summer season and –0.04 for the winter. Reiss and White (2005) use the California subsample of 
the 1993 and 1997 survey waves of RECS and obtain a price elasticity of –0.39. 
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The first difference between our study and those four studies is that we are using 
representative national-level data rather than data from a particular region. More importantly, 
those studies assume that households respond to marginal prices, whereas we assume that 
households respond to average prices. As illustrated in the previous section, this difference can 
lead to drastically different estimated price elasticities. The question of which price consumers 
respond to in electricity demand is beyond the scope of this study but, as previously mentioned, 
mounting evidence suggests that consumers respond to average prices, and that result stands to 
reason. Nevertheless, the importance of this question is underscored by the significant difference 
between our results and those from studies assuming marginal-price responsiveness. 

The second row of Table 6 shows estimates of income elasticities across four regions 
from the GMM procedure. Differences also exist between these estimates and those from OLS, 
although the differences are not as large as those in the price elasticity estimates. For example, 
the largest disparity in estimates comes from the income elasticity estimate for the Midwest 
region, which is 0.061 from OLS and 0.109 from GMM. The South region has the smallest 
income elasticity of 0.051 based on GMM results. Unlike the price elasticity estimates, these 
small income elasticity estimates are within the range found in previous studies. Barnes et al. 
(1981) obtain an income elasticity estimate of 0.20, whereas Dubin and McFadden (1984) get an 
estimate of 0.02. Herriges and King (1994) provide an estimate of 0.45, whereas Reiss and White 
(2005) find no statistically significant income effect. 

The remaining parameter estimates in Table 6 correspond to housing characteristics, 
demographic information, and appliance holding variables. The characteristics of the housing 
unit we control for include a variable for house size (# of rooms), variables on housing unit age, 
a dummy if the housing unit is owned (Owned House), and a dummy if the unit is a single-
family dwelling (Single House). As expected, we find that electricity consumption increases with 
increasing house size in all regions. Interpretation of the remaining housing characteristics is not 
as straightforward.  

With respect to the house age characteristics, we control for the age of the house (House 
Age), a dummy equaling one if the house was built before 1970 (D70), and the interaction 
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between these variables (D70*House Age).11 The positive parameter estimates on House Age in 
all regions except the Midwest imply that electricity usage increases with house age for those 
built after 1970. The interaction between D70 and House Age allows the age effect on electricity 
usage to be different for houses built before 1970 from those built after. Except for the Midwest 
region, the parameter estimates on the interaction term are all negative, suggesting that the age 
effect in these regions is smaller for pre-1970 houses than for post-1970 houses. This result could 
be because much older houses have been renovated and, consequently, have been made more 
energy efficient.  

For the house ownership dummy variable, we find a positive and statistically significant 
effect of homeownership on electricity consumption. This may seem surprising at first glance. 
One would expect that homeowners would be more likely to purchase an energy-efficient capital 
stock because they will accrue the benefits from such stock over a longer period, leading to 
conditionally lower electricity consumption than renters. Indeed, in a recent study using RECS 
data, Davis (2010) finds that renters are more likely to have fewer Energy Star appliances than 
homeowners. However, the ownership of energy-efficient appliances may be counteracted by 
more time spent in the housing unit and/or a greater frequency of appliance usage. Though we 
have no specific data on these issues, some evidence from our data appears to be consistent with 
the notion that homeowners are at home more often and/or use appliances more frequently. For 
example, if more senior individuals are more likely to spend time in the home than younger 
individuals, given our positive homeownership effect, we would expect that seniors would 
occupy a greater percentage of owned homes than rented homes. Indeed, our data show that 40 
percent of homeowners, but only 18 percent of renters, are over the age of 64. Similarly, one 
might also expect that having more children may lead to more hours spent in the home and 
greater use of energy-intensive appliances such as washers and dryers. Again, our data show that 
the average number of children under the age of 18 in owned homes for individuals under the 
age of 64 is 0.9, compared to 0.8 for renters under the age of 64.  

With respect to appliance holdings, we find that most of the parameter estimates for 
appliance holding have statistically significant values and intuitive signs. For instance, our 

                                                 
11 We use 1970 as a somewhat arbitrary cut-off point between “older” construction and “newer” construction. We 
have also tried cut-off years above and below 1970 and these do not substantially change our results. Additionally, if 
this was a totally arbitrary and meaningless cut-off, we would expect to find a statistically insignificant parameter 
estimate on D70. 
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demand estimation shows that electricity demand increases when households have electric space 
heating, air conditioners (window units or central air conditioning), a swimming pool, or an 
electric cooking appliance. Except for the interaction term between CDD and Swimming Pool in 
the South region, all of the interaction terms between appliance and weather variables (CDD and 
HDD) have positive signs, as intuition would suggest.  

Although our paper is focused on electricity demand, the identification relies on using 
cost shifters as instruments, a common strategy in demand estimation. The baseline model uses 
10 instruments: quarterly and yearly moving average lagged share of electricity generation from 
coal, the share from natural gas, that from hydro and nuclear, the interaction between the share 
from coal with lagged coal price, and the interaction between the share from natural gas with 
lagged natural gas price. The estimation results show that most of the cost shifters are 
statistically significant. The yearly moving average variables generally have a larger effect than 
do the quarterly variables, indicating that electricity prices are often affected by supply 
conditions even one year prior to production. We conduct a robustness check on the use of 
instruments in the next section, together with other sensitivity analyses. 

Additional Specifications 

In considering the distributional impacts of policies that affect electricity prices, like 
federal energy or climate policy, policymakers are concerned not only with geographical 
distributions of cost, but also with distributional effects across income groups. That is, 
households with different income levels may be affected differently by policies that affect 
electricity price. Our first alternative specification is therefore to examine if there is 
heterogeneity in price sensitivity across income groups. To that end, we interact log(price) with 
income interval dummies that capture four levels of household income: below $25,000, between 
$25,000 and $45,000, between $45,000 and $80,000, and above 80,000.  

Table 7 shows parameter estimates for the four interaction terms between price and 
income dummies. Parameter estimates for the other variables are very close to those reported in 
the previous two tables and are omitted from this table. Panel 1 of Table 7 shows the OLS 
results, and Panel 2 shows the GMM results. Both panels show no economically significant 
differences in price elasticities across income categories. There could be multiple reasons why 
we fail to detect significant differences in price elasticities across income groups. First, although 
lower income groups respond to higher prices by using electricity-consuming products less, 
higher income groups may respond to higher prices by buying more energy-efficient products 
but maintaining product use levels. Second, lower-income households may cut back their usage 
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of many commonly found electricity-intensive appliances (e.g., air conditioning) more than 
higher-income households, but high-income households may also have more nonessential 
electricity-consuming products (not controlled in the estimation) that can easily be used less 
when electricity prices are high. If this is the case, elasticity estimates should be relatively 
constant across income classes. 

As stated above, the data exclusion made on the presented results was to remove 
households with the top and bottom 2.5 percent of electricity expenditure and individuals from 
states with fewer than 2,500 observations. Additional estimations were conducted in which we 
also dropped all individuals with household incomes below $10,000, in an attempt to exclude 
those with potentially subsidized electricity prices (e.g., in subsidized housing) or nondeclared 
income sources. The results of this estimation, by GMM, are presented in Table 8. The price 
elasticity estimates are nearly identical to those in Table 6, where there was no censoring based 
on income. The changes in income elasticities are more noticeable. For example, it increases 
from 0.071 to 0.102 for the Northeast region. This suggests that households with incomes below 
$10,000 have smaller income elasticities. 

The purpose of dropping observations in the top and bottom 2.5 percent of electricity 
expenditure is to remove outliers and to obtain a better approximation of the average-price 
schedule using a linear function. The next specification, in which we drop observations in the top 
and bottom 1 percent of electricity expenditure, examines the sensitivity of the results with 
respect to this censoring. The results, presented in Table 9, are close to the results from the 
baseline model in Table 6. The biggest change in price elasticity estimates is for the West region, 
where it changes from 0.878 to 0.915. 

All previous specifications use 10 cost shifters as instruments for electricity price to form 
moment conditions. The last alternative specification uses 5 of the 10 lagged cost shifters 
employed in the baseline model: the average share of electricity generated by coal during the 
past 12 months, that by natural gas, that by nuclear and hydropower, the interaction between the 
average coal price during the past 12 months and the coal share of generation, and the interaction 
between natural gas price and the natural gas share of generation. The other five variables not 
used in this specification are those measured based on quarterly averages. Table 10 shows the 
parameter estimates for the demand equations for the four regions. Most of the estimates are very 
similar to those from the baseline model in Table 6. The noticeable differences are in price 
elasticity estimates for the Northeast and Midwest regions: they are 0.74 and 1.02 in this 
specification compared to 0.82 and 0.96 in the baseline model. Nevertheless, demand is still 
more price elastic in the South and Midwest regions than in the other two regions. 
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VI. Policy Analysis Simulations 

As discussed above, our price elasticity estimates are considerably larger than those 
based on the assumption of marginal-price responsiveness. The question, however, remains as to 
how these different estimates will alter analyses of federal policies that affect electricity prices. 
To examine this issue, we use simulations to study a federal carbon dioxide (CO2) emissions 
regulation similar to that proposed in H.R. 2454 (U.S. House of Representatives 2009), the 
Waxman–Markey climate bill.  

The simulations are conducted using Resource for the Future’s Haiku electricity market 
model,12 a deterministic and highly parameterized simulation model of the electricity sector in 
the 48 contiguous U.S. states. It calculates information similar to that of the Electricity Market 
Module of the National Energy Modeling System that is maintained and used by EIA. This 
analysis hinges on the demand side of the Haiku model, which employs a partial adjustment 
specification of electricity demand. 

We conduct the simulations under three different residential price elasticity of demand 
parameterizations. In the first parameterization, we use the rather low short-run price elasticity 
estimates generated by Paul et al. (2009b) that vary by region and season. We denote this the εL 
case to signify the low elasticity estimates.13 The Paul et al. (2009b) model was based on state-
aggregated data and includes both short-run and long-run elasticity estimates. In the second 
parameterization, we replace the short-run price elasticities of Paul et al. (2009b) with a more 
moderate estimate of –0.4, the εM case. This value is in line with the price elasticity estimated in 
Reiss and White (2005) which, as stated above, is based on marginal-price responsiveness from 
household-level data in California.14 This elasticity is applied to all regions covered under the 
simulation. In our final parameterization, we use the region-specific price elasticities estimated 
above as the short-run elasticity in the policy simulation. We denote this the εH case to signify 
our higher elasticity estimates. All other features of the model, such as long-run price elasticities, 
other residential demand covariates, and all of the coefficients for the industrial and commercial 
sector demand functions, are those estimated in Paul et al. (2009b). 

                                                 
12 Complete model documentation is available in Paul et al. (2009a).  
13 The regionally specific residential short-run elasticity estimates in Paul et al. (2009b) range from –0.01 to –0.32, 
with a national average of –0.13. 
14 Note that Reiss and White (2005) estimate end use-specific elasticities. The value –0.4 is in line with their 
average elasticity estimate across these end uses and across households in their sample. 
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The simulation outputs give us, among many other variables, average residential 
electricity prices and total consumption at the region level and national CO2 emissions allowance 
prices. The model is run over the 2010 to 2035 horizon, with the CO2 emissions control policy 
beginning in 2012 and holding cumulative economywide CO2 emissions constant across 
scenarios.15 We show the policy simulation results for four years (2012, 2016, 2025, and 2035) 
for each of the parameterization cases. We also show percentage changes relative to the Annual 
Energy Outlook 2010 reference case (U.S. EIA 2010). National results are given in Table 11, and 
regional results are in Table 12. 

The national-level results show that the policy tends to increase electricity prices relative 
to the reference case and that the price impact tends to grow over time. The details of why this 
pattern emerges are not important for this analysis, but it hinges on a leftward shift of the 
electricity supply curves, and we are interested in how the assumption about short-run price 
elasticities impacts consumption, electricity prices, and allowance prices under this supply-side 
shift. The simulations show that, especially in the long run, federal climate policy will engender 
a significantly greater reduction in electricity consumption if consumers are more price elastic. 
This may have important negative welfare consequences for households, though it will be partly 
offset by a corresponding reduction in allowance prices. By 2035, the allowance price under the 
εH scenario is 4 percent lower than under the εL scenario. This would have a positive welfare 
impact on households because, under an economywide emissions cap, all goods and services that 
have any carbon intensity of production will become more expansive as allowance prices rise. 

Another factor that mitigates the household welfare impacts of consumption reductions is 
the electricity price. Table 11 shows an approximate $3/MWh difference in electricity prices 
from the εL case to the εH that holds fairly constant throughout the time span examined. The price 
difference may seem surprisingly low given the rather large differences in electricity 
consumption from εL to εH, however the demand parameters of the other customer classes 
(commercial and industrial) are held constant across these scenarios, and these residential 
consumption reductions represent only a part of total electricity demand. Furthermore, the 
electricity price reductions that emerge under the higher elasticity scenarios result in an increase 
in consumption by the other customer classes. These factors, along with the observation that the 

                                                 
15 Haiku includes a marginal abatement cost curve that allows for allowance price-responsive rest-of-economy 
emissions. It also includes supply curves for domestic and international carbon offsets that are constrained according 
to the offsets specification of H.R. 2454.  
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long-run supply curves for electricity production in Haiku are relatively elastic, yield relatively 
small changes in electricity price. 

The region-specific price and consumption patterns largely follow the national patterns, 
but there are some differences. For instance, in the West region, we find very little difference in 
electricity prices across elasticity parameterizations, whereas in the Midwest, the price 
differences from εL to εH are much more pronounced. This is largely due to the differences 
between these regions in production technologies. The West region has significant hydroelectric 
generation and resources for nonemitting renewable electricity production. Thus, the region will 
incur a relatively small shift in electricity production costs as a result of this cap-and-trade 
system, and therefore small price increases. Conversely, electricity generation in the Midwest 
region is predominantly from coal, which will incur the largest shift in production costs with the 
introduction of an emissions price. The larger shift in the supply curve will, of course, lead to 
larger price differentials across the elasticity parameterizations. We also find that, unlike the 
price pattern observed at the national level, electricity prices in the Northeast and Midwest 
regions are not strictly increasing over time. This is due to the timing of investment in nuclear 
capacity and the retirement of existing capacity in these regions. 

We generally find decreasing regional consumption as we go from the εL to εH 

parameterizations, as in the national results. An exception to this is the consumption pattern in 
the South region in 2012. For that year, we see that consumption under the εH setting is actually 
greater than that under the εL parameterization. How can this be? The answer is, in part, due to 
the complex dynamic investment decisions faced by generation capacity owners. In this 
particular case, the inclusion of an allowance price leads to greater generation revenues for 
marginal natural gas electricity generators, particularly in later years of the policy as allowance 
and electricity prices increase. Electricity prices also include the cost generators incur to have 
excess reserve capacity that is needed only in the highest demand periods, which we call the 
reserve cost. Because generators earn larger generation revenues in later periods under a cap-
and-trade policy, the equilibrium reserve costs are lower in the near term compared to a case 
with no emissions control policy. Depending on the price elasticity assumptions, which affect 
both the emissions allowance price in general and the electricity price, the long-run investment 
choices may be such that increasing allowance prices lead to a decrease in reserve costs that 
more than offset the increase in generation costs due to an emissions price. The elasticities under 
the εH setting, combined with the generation technologies of the South region, lead to just such 
an outcome. 
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In general, this simulation example yields mostly predictable results, particularly when 
viewed in aggregate at the national level. However, the results do show some regional 
differences that highlight how changes in the elasticity assumptions can lead to some particularly 
interesting and nonintuitive regional pricing and consumption patterns under an electricity price-
raising cap-and-trade policy. 

VII. Conclusion 

Given the recent push to craft a federal energy policy in the U.S., —in which alterations 
to the portfolio of electricity generators, and therefore to electricity prices and consumption, are 
likely to be central components—there is a pressing need to obtain accurate electricity demand 
estimates for all parts of the country. Undertaking such a task poses several challenges, most 
notably that electricity rate structure data for all parts of the U.S. are not easily obtainable. 
Hence, most electricity demand models that use household-level data are conducted for very 
specific regions for which the researchers were able to obtain specific rate structure data. 

To avoid the need for specific rate structure data, we develop a novel GMM approach 
that allows us to recover residential electricity demand parameters and average-price schedule 
parameters based on electricity expenditure data (along with demand covariates and some other 
easily obtainable aggregate price and quantity information). We then apply this technique to 
detailed household-level data in the CEX, which includes monthly household electricity 
expenditures, but not electricity prices or quantities, over the period 2004–2006. We estimate 
demand and average-price schedule equations for four census regions separately. 

We find that price elasticities vary across the four census regions, with the South region 
having the most price-elastic demand with an elasticity of –1.02 and the Northeast region having 
the least price-elastic demand at –0.82. In general, these price elasticity estimates are 
considerably larger in magnitude than those of other studies of residential electricity demand 
using household-level data. As we show through a simple example, it is not unreasonable for our 
estimates to be larger than those derived in studies that assume that households respond to 
marginal electricity prices because we explicitly assume that households respond to average 
electricity prices. As noted above, several studies present some empirical evidence, albeit 
confined to specific geographic regions, to support the notion that average-price responsiveness 
is a more appropriate assumption than marginal-price responsiveness.  

To put these elasticity estimates into a policy-relevant perspective, we conducted a policy 
study, using a model parameterization based on the estimates derived here, to simulate the 
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recently proposed U.S. climate policy legislation, H.R. 2454 (Waxman–Markey). The outcomes 
from this policy study, in terms of regional and national electricity prices, consumption, and 
emissions allowance prices, were then compared to outcomes using more conservative price 
elasticity parameterizations, typical of marginal price-responsive demand estimation studies. Not 
surprisingly, we find that, on a national level, simulations using the elasticity estimates derived 
here compared to more conservative elasticity estimates leads to a greater reduction in electricity 
consumption as a result of the implementation of the policy and lower emissions allowance 
prices. From a regional perspective, we find that the decreases in consumption brought about by 
the policy are not uniform and have considerable heterogeneity depending on the elasticity used. 
In fact, we find that in the South region, using our larger price elasticities leads to a near-term 
increase in electricity consumption under the policy relative to the no-policy baseline and 
relative to the more conservative elasticity parameterizations. This result is due to the complex 
interaction of dynamic capital investment decisions and price elasticities embedded in our 
analysis framework. Furthermore, this regional result highlights the important role elasticity 
assumptions can play in expected policy outcomes. 

Though we believe this study provides a novel approach to estimating electricity demand 
without specific rate structure data and provides valuable regional elasticity estimates, it leaves 
several issues unexplored. First, because we do not have specific bill information, we cannot 
validate our average price-responsiveness assumption. This is clearly an important consideration 
that goes far beyond the current study. In addition, because of the short time frame examined, we 
do not account for capital adjustment by households. Estimating capital adjustment price 
responses, and how these responses vary across income groups, would be very valuable in 
determining the expected outcomes of national energy policies aimed at improving energy 
efficiency. However, such estimates would require more detailed data than what is available in 
the CEX. 
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Figures 

 
Figure 1. Monthly Prices of Electricity, Coal, and Natural Gas 2003–2006 

 
Notes: Btu, British thermal unit; kWh, kilowatt-hour. 
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Figure 2. Marginal-Price versus Average-Price Demand Curves 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: DAP denotes the implied demand curve when consumers respond to average 
price, whereas DMP is the demand curve when consumers respond to marginal 
price.  
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Tables 
 

Table 1. States in Analysis by U.S. Census Region 

ID Northeast South Midwest West 
1 Massachusetts Florida Illinois Arizona 
2 New Jersey Georgia Indiana California 
3 New York Maryland Michigan Colorado 
4 Pennsylvania South Carolina Minnesota Oregon 
5  Texas Missouri Washington 
6  Virginia Ohio  
7   Wisconsin  

Obs. 21,862 33,876 28,206 27,234 
Notes: Twenty-two states are used for the analysis, each with at least 
2,500 (household-month) observations in the CEX data from 2004 to 
2006.  
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Table 2. Summary Statistics of Demand-Side Variables by Census Region 

    Northeast South Midwest West 
Variables Description Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Expenditure Monthly expenditure in $ 112.7 68.8 142.8 73.8 95.8 52.2 98.0 63.6 
State Price Average price in ¢/kWh 12.87 2.65 9.87 1.46 8.81 0.96 11.07 2.78 
Quantity Imputed quantity in 100 kWh 8.90 5.24 14.54 7.29 10.97 6.05 9.46 6.62 
Income Income in $ 7.34 6.01 6.83 5.61 7.07 5.47 7.29 5.73 
# of Rooms Number of rooms in housing unit 6.51 2.12 6.41 1.97 6.65 2.02 6.09 1.89 
Household Size Number living in housing unit 2.60 1.40 2.65 1.40 2.61 1.39 2.81 1.61 
House Age Age of housing unit 5.40 3.77 2.92 2.28 4.18 3.01 3.36 2.30 
D70 D70 = 1 if unit built before 1970, 0 otherwise 0.68 0.47 0.34 0.47 0.54 0.50 0.42 0.49 
Respondent Age Survey respondent age 52.85 16.03 51.12 15.94 51.88 15.69 50.24 16.17
Electric Heat Equal to1 if unit has electric heat, 0 otherwise 0.10 0.30 0.54 0.50 0.09 0.28 0.24 0.43 
Central AC Equal to1 if unit has central AC, 0 otherwise 0.43 0.49 0.87 0.34 0.75 0.43 0.50 0.50 
Window AC Equal to1 if unit has window AC, 0 otherwise 0.37 0.48 0.12 0.32 0.17 0.37 0.09 0.29 
Swim Pool Equal to1 if unit has swimming pool, 0 otherwise 0.12 0.33 0.14 0.35 0.09 0.29 0.17 0.37 
Electric Cooking Equal to1 if unit has electric stove, 0 otherwise 0.45 0.50 0.72 0.45 0.53 0.50 0.51 0.50 
CDD 65 – pop. weighted mean temp; (°F), if temp < 65 0.67 1.03 1.96 1.93 0.68 1.02 0.90 1.48 
HDD Pop. weighted mean temp; (°F) – 65, if temp > 65 4.55 4.09 1.93 2.50 5.06 4.54 2.78 2.64 
Owned House Equal to 1 if housing unit is owned 0.83 0.37 0.86 0.35 0.89 0.31 0.79 0.41 
Single House Equal to 1 if housing unit is an unattached unit 0.68 0.47 0.75 0.43 0.81 0.39 0.74 0.44 

 Notes: AC is air conditioning. 
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Table 3. Summary Statistics of Cost Shifters by Census Region 

    Northeast South Midwest West 
Variables Description Mean S.D. Mean S.D. Mean S.D. Mean S.D.
% Nat. Gas1 % of generation from natural gas, last 3 months 0.20 0.15 0.25 0.20 0.04 0.04 0.36 0.15
% Coal1 % of generation from coal, last 3 months 0.33 0.18 0.44 0.13 0.70 0.16 0.15 0.23

1
NGP  

 

Average natural gas price, last 3 months 1.36 1.04 1.75 1.42 0.31 0.28 2.51 1.20

1
CP  Average coal price, last 3 months 0.50 0.29 0.66 0.20 1.05 0.25 0.22 0.34

% (Nuke+Hydro)1 
% of generation from nuclear+hydro, last 3 
months 0.39 0.12 0.24 0.14 0.23 0.15 0.40 0.20

% Nat. Gas2 % of generation from natural gas, last 12 months 0.19 0.14 0.25 0.19 0.04 0.03 0.36 0.15
% Coal2 % of generation from coal, last 12 months 0.33 0.18 0.44 0.12 0.71 0.16 0.15 0.23

2
NGP  

 

Average natural gas price, last 12 months 1.29 0.97 1.68 1.39 0.29 0.25 2.43 1.08

2
CP  Average coal price, last 12 months 0.48 0.27 0.64 0.19 1.02 0.24 0.22 0.33

% (Nuke+Hydro)2 
% of generation from nuclear+hydro, last 12 
months 0.39 0.12 0.24 0.14 0.23 0.15 0.40 0.20

Notes: Prices are in $/million Btu for coal and $/thousand feet3 for natural gas.  
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Table 4. Monte Carlo Results for the Demand Equation 

 Demand equation               OLS results            GMM results 
 Dependent variable: Log(quantity)              True  Estimates S.E. Estimates S.E.
 
Panel 1: Upward sloping price schedule (slopes: 0.4, 0.3, 0.2, 0.1)     
Log(price) –0.8 –0.512 0.096 –0.837 0.088
Log(income) 0.2 0.199 0.005 0.195 0.006
Log(room number) 0.3 0.306 0.011 0.301 0.012
Log(household size) 0.4 0.420 0.007 0.412 0.011
 2

eσ  0.2    0.211 0.093
 
Panel 2: Downward sloping price schedule (slopes: –0.4, –0.3, –0.2, –0.1)     
Log(price) –0.8 –1.117 0.059 –0.860 0.069
Log(income) 0.2 0.182 0.004 0.188 0.009
Log(room number) 0.3 0.280 0.01 0.290 0.016
Log(household size) 0.4 0.384 0.006 0.397 0.018
 2

eσ  0.2    0.188 0.052
 
Panel 3: Mixed sloping across state (slopes: 0.4, 0.3, –0.2, –0.1)        
Log(price) –0.8 –0.716 0.051 –0.820 0.045
Log(income) 0.2 0.191 0.004 0.196 0.006
Log(room number) 0.3 0.292 0.010 0.302 0.012
Log(household size) 0.4 0.406 0.006 0.414 0.01
 2

eσ  0.2    0.213 0.058
Notes: Monte Carlo simulations are based on observations from the four states in the Northeast region, each with at least 2,500 
observations in the CEX data from 2004 to 2006. Total number of observations: 21,862. Parameters are estimated using both OLS 
and GMM. Equations include four state dummies, two year dummies, and 11 month dummies.  
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Table 5. Demand Equation Estimates from OLS: Baseline Model 

   Northeast   South Midwest   West  
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Log(price) –0.385 0.064 –0.423 0.049 –0.472 0.068 –1.020 0.075 
Log(Income) 0.067 0.005 0.066 0.004 0.061 0.005 0.072 0.005 
Log(#of rooms) 0.279 0.013 0.310 0.010 0.299 0.012 0.339 0.013 
Log(household size) 0.265 0.007 0.212 0.005 0.247 0.006 0.211 0.007 
Log(house age) 0.038 0.008 0.043 0.004 0.001 0.006 0.039 0.006 
D70*Log(house age) –0.051 0.013 –0.035 0.015 0.054 0.013 –0.032 0.019 
D70 0.010 0.021 0.003 0.024 –0.080 0.020 0.024 0.030 
Log(respondent age) –0.007 0.012 0.031 0.009 0.105 0.010 0.128 0.011 
Electric Heat 0.181 0.017 0.167 0.008 0.166 0.015 0.104 0.012 
Central AC 0.081 0.011 0.009 0.015 0.023 0.012 0.098 0.009 
Window AC 0.023 0.010 0.046 0.016 0.008 0.013 0.042 0.014 
Swim Pool 0.089 0.012 0.146 0.011 0.031 0.012 0.150 0.011 
Electric Cooking 0.076 0.007 0.030 0.006 0.076 0.006 0.057 0.008 
CDD 0.029 0.014 0.037 0.008 0.005 0.012 0.032 0.008 
HDD –0.010 0.004 0.019 0.003 –0.003 0.003 0.010 0.004 
CDD*(Central AC) 0.047 0.009 0.023 0.006 0.045 0.010 0.061 0.006 
CDD*(Window AC) 0.020 0.009 0.005 0.006 0.005 0.011 0.025 0.009 
HDD*(Electric Heat) 0.028 0.003 0.021 0.002 0.017 0.002 0.040 0.003 
CDD*(Swim Pool) 0.003 0.010 –0.011 0.004 0.045 0.010 0.001 0.005 
Owned House 0.176 0.011 0.077 0.008 0.058 0.011 0.039 0.010 
Single House 0.022 0.009 0.045 0.007 0.134 0.010 0.191 0.010 
No. of observations 21,862   33,876   28,206   27,234   
Notes: The price variable using OLS is the monthly state average from EIA. The quantity is imputed using the household expenditure 
divided by this price variable. The demand equations also include state dummies, year dummies, and month dummies.  
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Table 6. Demand Equation Estimates from GMM: Baseline Model 

   Northeast   South Midwest   West  
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Log(price) –0.824 0.039 –1.021 0.006 –0.964 0.006 –0.879 0.008 
Log(Income) 0.071 0.005 0.051 0.003 0.109 0.005 0.089 0.005 
Log(#of rooms) 0.267 0.013 0.249 0.010 0.268 0.013 0.377 0.014 
Log(household size) 0.249 0.008 0.202 0.006 0.276 0.009 0.205 0.007 
Log(house age) 0.033 0.007 0.052 0.003 0.023 0.005 0.043 0.006 
D70*Log(house age) –0.051 0.012 –0.014 0.014 0.033 0.013 –0.044 0.020 
D70 0.016 0.019 –0.031 0.022 –0.033 0.022 0.033 0.032 
Log(respondent age) –0.006 0.011 0.012 0.007 0.126 0.011 0.179 0.012 
Electric Heat 0.190 0.014 0.241 0.008 0.313 0.013 0.073 0.012 
Central AC 0.051 0.010 0.000 0.009 0.064 0.012 0.083 0.009 
Window AC 0.010 0.010 0.069 0.008 0.017 0.014 0.050 0.014 
Swim Pool 0.093 0.011 0.090 0.008 0.128 0.010 0.142 0.011 
Electric Cooking 0.082 0.007 0.018 0.005 0.094 0.006 0.065 0.008 
CDD 0.024 0.008 –0.025 0.003 0.049 0.009 –0.032 0.003 
HDD –0.012 0.001 0.010 0.000 –0.003 0.000 –0.015 0.001 
CDD*(Central AC) 0.065 0.006 0.039 0.003 –0.031 0.008 0.074 0.004 
CDD*(Window AC) 0.030 0.008 –0.022 0.003 –0.054 0.011 0.019 0.009 
HDD*(Electric Heat) 0.020 0.002 –0.014 0.001 0.006 0.000 0.073 0.003 
CDD*(Swim Pool) –0.003 0.008 0.004 0.002 –0.095 0.007 –0.003 0.005 
Owned House 0.165 0.011 0.083 0.008 0.068 0.013 0.014 0.011 
Single House 0.011 0.009 0.056 0.006 0.125 0.011 0.227 0.011 

2
eσ  0.188 0.051 0.150 0.022 0.245 0.036 0.264 0.032 

No. of observations 21,862 33,876 28,206 27,234
Notes: The equations also include state dummies, year dummies, and month dummies.  
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Table 7. Income-Specific Price Elasticities by Census Region 

  Northeast South Midwest West 
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Panel 1: OLS Results 
Log(price)*1(Income<25k) –0.377 0.064 –0.416 0.050 –0.455 0.069 –1.008 0.075 
Log(price)*1(25k≤Income<45k) –0.397 0.064 –0.426 0.049 –0.473 0.068 –1.037 0.075 
Log(price)*1(45k≤Income<80k) –0.397 0.064 –0.432 0.049 –0.465 0.068 –1.047 0.075 
Log(price)*1(Income≥80k) –0.384 0.064 –0.407 0.049 –0.475 0.068 –1.026 0.075 
 
Panel 2: GMM Results 
Log(price)*1(Income<25k) –0.816 0.039 –1.023 0.006 –0.962 0.007 –0.876 0.010 
Log(price)*1(25k≤Income<45k) –0.841 0.039 –1.024 0.006 –0.969 0.006 –0.882 0.011 
Log(price)*1(45k≤Income<80k) –0.834 0.039 –1.024 0.007 –0.965 0.007 –0.880 0.011 
Log(price)*1(Income≥80k) –0.824 0.039 –1.006 0.008 –0.968 0.007 –0.866 0.011 
Notes: The equations include all of the other explanatory variables as shown in Tables 5 and 6. The coefficient estimates on those 
variables are omitted here. 
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Table 8. Demand Equation Estimates from GMM (Household Income ≥ $10,000) 

   Northeast   South Midwest   West  
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Log(price) –0.834 0.039 –1.022 0.006 –0.971 0.005 –0.881 0.008 
Log(Income) 0.102 0.006 0.067 0.004 0.125 0.006 0.113 0.006 
Log(#of rooms) 0.244 0.014 0.237 0.011 0.252 0.013 0.369 0.015 
Log(household size) 0.246 0.009 0.202 0.007 0.265 0.008 0.202 0.007 
Log(house age) 0.035 0.007 0.055 0.004 0.023 0.005 0.043 0.006 
D70*Log(house age) –0.044 0.013 0.000 0.014 0.019 0.013 –0.038 0.020 
D70 0.006 0.020 –0.052 0.022 –0.009 0.022 0.025 0.032 
Log(respondent age) 0.012 0.011 0.017 0.008 0.138 0.011 0.187 0.013 
Electric Heat 0.197 0.014 0.237 0.009 0.310 0.012 0.075 0.012 
Central AC 0.042 0.010 –0.006 0.010 0.060 0.012 0.082 0.009 
Window AC 0.004 0.010 0.063 0.008 0.018 0.014 0.046 0.015 
Swim Pool 0.097 0.011 0.086 0.008 0.127 0.010 0.146 0.011 
Electric Cooking 0.082 0.007 0.016 0.006 0.006 0.015 0.066 0.009 
CDD 0.018 0.009 –0.032 0.003 0.050 0.008 –0.033 0.003 
HDD –0.014 0.001 0.001 0.093 –0.003 0.000 –0.017 0.001 
CDD*(Central AC) 0.070 0.006 0.046 0.003 –0.035 0.008 0.078 0.004 
CDD*(Window AC) 0.031 0.008 –0.018 0.003 –0.051 0.011 0.015 0.010 
HDD*(Electric Heat) 0.022 0.002 –0.014 0.001 0.005 0.000 0.074 0.003 
CDD*(Swim Pool) 0.008 0.009 0.006 0.002 –0.085 0.007 –0.004 0.005 
Owned House 0.169 0.011 0.084 0.008 0.081 0.013 0.003 0.011 
Single House 0.003 0.009 0.058 0.006 0.123 0.011 0.226 0.011 

2
eσ  0.184 0.051 0.148 0.022 0.234 0.034 0.263 0.032 

No. of observations 21,197   32,752   27,497   26,475   
Notes: Observations with income less than $10,000 are dropped. The equations also include state dummies, year dummies, and 
month dummies.  
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Table 9. Demand Equation Estimates from GMM (without Lower and Upper 1 Percent of Households) 

   Northeast   South Midwest   West  
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Log(price) –0.824 0.042 –1.046 0.010 –0.975 0.005 –0.915 0.008 
Log(Income) 0.076 0.005 0.055 0.004 0.107 0.005 0.096 0.005 
Log(#of rooms) 0.296 0.015 0.257 0.012 0.304 0.013 0.440 0.015 
Log(household size) 0.260 0.009 0.215 0.008 0.288 0.008 0.241 0.008 
Log(house age) 0.033 0.008 0.047 0.004 0.013 0.005 0.036 0.006 
D70*Log(house age) –0.055 0.013 0.188 0.011 0.035 0.013 –0.070 0.021 
D70 0.026 0.020 –0.337 0.019 –0.023 0.022 0.093 0.033 
Log(respondent age) –0.013 0.011 0.026 0.007 0.134 0.011 0.180 0.013 
Electric Heat 0.157 0.015 0.187 0.008 0.340 0.011 0.084 0.012 
Central AC 0.057 0.010 0.016 0.011 0.061 0.012 0.098 0.009 
Window AC 0.000 0.010 0.073 0.011 –0.016 0.014 0.044 0.015 
Swim Pool 0.085 0.011 0.119 0.008 0.140 0.010 0.185 0.012 
Electric Cooking 0.087 0.007 0.041 0.006 0.085 0.007 0.079 0.009 
CDD 0.045 0.011 –0.033 0.004 0.015 0.010 –0.019 0.004 
HDD –0.014 0.001 0.005 0.000 –0.004 0.000 –0.012 0.001 
CDD*(Central AC) 0.066 0.006 0.043 0.004 0.004 0.009 0.074 0.005 
CDD*(Window AC) 0.032 0.008 0.002 0.003 0.012 0.011 0.001 0.010 
HDD*(Electric Heat) 0.032 0.002 –0.002 0.001 0.008 0.000 0.071 0.003 
CDD*(Swim Pool) 0.007 0.008 0.013 0.002 –0.090 0.006 –0.012 0.005 
Owned House 0.159 0.012 0.088 0.008 0.069 0.013 0.022 0.011 
Single House 0.016 0.009 0.042 0.006 0.146 0.011 0.243 0.011 

2
eσ  0.203 0.059 0.149 0.026 0.245 0.032 0.296 0.034 

No. of observations 22,532   34,929   29,086   28,112   
Notes: Observations below 1 percentile or above 1 percentile of the monthly expenditure distribution are dropped. The equations also 
include state dummies, year dummies and month dummies.  
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Table 10. Demand Equation Estimates from GMM (Five Cost Shifters) 

   Northeast   South Midwest   West  
  Para. S.E. Para. S.E. Para. S.E. Para. S.E. 
Log(price) –0.742 0.044 –1.031 0.008 –1.015 0.003 –0.868 0.009 
Log(Income) 0.065 0.005 0.049 0.003 0.080 0.005 0.074 0.005 
Log(#of rooms) 0.245 0.014 0.244 0.011 0.280 0.011 0.342 0.013 
Log(household size) 0.229 0.009 0.195 0.007 0.220 0.006 0.188 0.007 
Log(house age) 0.029 0.007 0.050 0.004 0.011 0.005 0.041 0.005 
D70*Log(house age) –0.045 0.012 –0.023 0.013 0.024 0.011 –0.032 0.018 
D70 0.013 0.018 –0.016 0.021 –0.027 0.018 0.020 0.029 
Log(respondent age) –0.006 0.010 0.011 0.007 0.116 0.009 0.135 0.011 
Electric Heat 0.147 0.014 0.240 0.009 0.149 0.011 0.092 0.011 
Central AC 0.043 0.009 –0.032 0.010 0.000 0.011 0.024 0.008 
Window AC 0.008 0.009 0.059 0.010 –0.034 0.012 0.042 0.013 
Swim Pool 0.085 0.010 0.093 0.008 0.164 0.007 0.115 0.010 
Electric Cooking 0.076 0.006 0.010 0.005 0.073 0.006 0.059 0.008 
CDD 0.039 0.009 –0.043 0.004 –0.019 0.009 –0.078 0.005 
HDD –0.011 0.001 0.010 0.001 –0.004 0.000 –0.007 0.001 
CDD*(Central AC) 0.068 0.006 0.055 0.004 0.037 0.009 0.131 0.005 
CDD*(Window AC) 0.028 0.008 –0.003 0.003 0.019 0.010 0.013 0.010 
HDD*(Electric Heat) 0.025 0.002 –0.014 0.001 0.016 0.001 0.052 0.002 
CDD*(Swim Pool) –0.003 0.008 0.010 0.002 –0.094 0.005 0.011 0.005 
Owned House 0.155 0.011 0.088 0.008 0.051 0.011 0.038 0.010 
Single House 0.008 0.008 0.055 0.006 0.111 0.009 0.188 0.010 

2
eσ  0.164 0.051 0.145 0.023 0.159 0.020 0.223 0.030 

No. of observations 21,862 33,876 28,206 27,234 
 Notes: The five instruments for electricity price used here are the five cost shifters measured during the past 12 months. The 
equations also include state dummies, year dummies, and month dummies.  
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Table 11. National Policy Simulation Results 

 2012 2016 2025 2035 
ε PE Q PA PE Q PA PE Q PA PE Q PA

εL 
114.2 1,377 11.4 118.8 1,350 15.6 121.6 1,467 31.1 139.5 1,577 67.0
7.5% –2.4%  9.9% –3.9%  10.2% –4.9%  17.6% –7.0%  

εM 112.8 1,343 11.1 117.4 1,276 15.1 120.3 1,393 30.1 138.3 1,430 65.4
6.2% –4.8%  8.6% –9.2%  9.0% –9.8%  16.6% –15.7%  

εH 111.4 1,294 10.9 116.7 1,163 14.9 118.7 1,281 29.7 136.7 1,222 64.5
4.8% –8.3%  7.9% –17.3%  7.5% –17.0%  15.3% –28.0%  

Notes: PE and Q are the national average residential electricity price ($/MWh) and national residential quantity 
consumed (TWh), respectively, for the year given. PA is the allowance price ($/ton CO2) in the cap-and-trade 
system for the given year.  
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Table 12. Regional Policy Simulation Results 

 
Northeast 

 2012  2016 2025 2035 
ε PE Q  PE Q PE Q PE Q 
εL 

153.1 182.1  153.9 177.9  149.0 197.5  173.5 212.4 
8.6% –2.3%  7.0% –2.9%  0.4% –1.1%  8.4% –2.8% 

εM 152.3 174.8  152.7 169.1  147.0 201.1  171.8 204.5 
8.0% –6.2%  6.2% –7.7%  –1.0% 0.7%  7.3% –6.4% 

εH 151.5 166.3  152.0 160.8  144.9 204.8  169.6 196.4 
7.5% –10.8%  5.8% –12.2%  –2.4% 2.5%  5.9% –10.0%

 
South 

 2012  2016 2025 2035 
ε PE Q  PE Q PE Q PE Q 
εL 

105.1 674.9  113.8 664.8  122.0 715.3  138.2 774.7 
4.4% –1.0%  11.0% –2.9%  16.4% –5.2%  21.6% –6.5% 

εM 103.4 674.0  112.0 636.4  120.2 662.4  136.5 690.4 
2.6% –1.2%  9.3% –7.1%  14.6% –12.2%  20.1% –16.7%

εH 102.2 675.9  111.2 585.7  118.6 572.4  134.7 559.8 
1.5% –0.9%  8.5% –14.5%  13.2% –24.1%  18.5% –32.5%

 
Midwest 

 2012  2016 2025 2035 
ε PE Q  PE Q PE Q PE Q 
εL 

111.1 281.9  113.6 272.3  103.6 302.5  124.6 317.1 
17.5% –5.0%  16.9% –7.3%  4.7% –5.2%  21.1% –9.3% 

εM 109.7 261.3  112.3 242.1  102.2 293.1  122.4 289.5 
16.1% –12.0%  15.5% –17.6%  3.3% –8.1%  19.0% –17.2%

εH 108.0 224.7  110.7 194.1  99.3 287.7  118.7 256.5 
14.3% –24.3%  13.8% –33.9%  0.4% –9.8%  15.3% –26.7%

 
West 

 2012  2016 2025 2035 
ε PE Q  PE Q PE Q PE Q 
εL 

114.0 237.6  112.5 235.0  120.8 252.1  134.1 273.2 
3.9% –3.0%  2.2% –3.5%  8.7% –6.8%  11.4% –8.9% 

εM 114.2 232.4  111.8 228.7  120.5 236.1  134.1 245.3 
4.0% –5.2%  1.6% –6.1%  8.5% –12.7%  11.4% –18.2%

εH 113.0 227.0  110.7 222.0  119.6 216.4  133.6 209.4 
2.9% –7.4%  0.6% –8.9%  7.6% –20.0%  11.0% –30.2%

Notes: PE and Q are the average residential electricity price ($/MWh) and total residential 
quantity consumed (TWh), respectively, for the year and region given. 


