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Abstract

Previous studies of poverty in developing countries have to a great extent focused on the

characteristics of the household head and used these as proxies for the underlying ability of

the household to generate income. This paper uses five rounds of panel data to investigate the

persistence of poverty in urban Ethiopia with a particular focus on the role of intra-household

heterogeneity in occupations. Dynamic probit and system GMM regression results suggest

that international remittances and labor market status of non-head household members are

important determinants of households’ poverty status. Results also show that controlling for

these variables and the initial conditions problem encountered in non-linear dynamic probit

models reduces the magnitude of estimated poverty persistence significantly for urban Ethiopia.

These findings have important implications for identifying the poor and formulating effective

poverty reduction and targeting strategies.
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1 Introduction

This paper uses panel data on urban households in Ethiopia to study the determinants and persis-

tence of poverty. Most previous studies of poverty and poverty dynamics in Sub-Saharan Africa have

focused on rural areas.1 While important, the results and insights generated by these studies do

not necessarily carry over to the urban context. For example, as discussed by Alem and Söderbom

(2012), urban households may be more vulnerable than rural households to high food prices because

there is little food production in urban areas. On the other hand, labor market opportunities are

likely to be more diverse in urban than in rural areas, implying that urban households are less

dependent on the developments in a single sector. Because the range of occupations available in

urban areas is relatively wide (at least compared to rural areas), it may be important to consider

intra-household heterogeneity in labor market status when studying urban poverty. Previous stud-

ies of poverty have typically focused on the characteristics of the household head and used these as

proxies for the underlying ability of the household to generate income. This may be appropriate in

a rural context, where family members typically work on the farm. In urban areas of developing

countries, however, a focus solely on the characteristics of the household head may be too narrow.

For instance, it could be that a household head is an uneducated housewife but has educated and

working children residing in the same house. In this paper, I use detailed data on the occupations

of all household members to investigate the effect on poverty of intra-household heterogeneity in

jobs. I also study the effects of remittances, which have become an important component of urban

households’ income over the last decade.

Much of the recent literature on poverty has focused on the dynamics of poverty. A household

may fall into poverty for many reasons, and the factors that caused poverty incidence in the first

place may impact the speed at which the household can find a pathway out of poverty. The

literature makes an important distinction between transient and chronic poverty, where chronic

poverty is of course the more serious state. In this paper, I assume that chronic poverty depends

on education and unobserved time-invariant factors specific to the household. On the other hand,

transient poverty is persistent but not permanent. This type of poverty may arise due to state

dependence, i.e., that poverty today has a causal effect on the likelihood of poverty tomorrow. If

the state dependence is strong, falling into poverty is likely to have adverse effects on future welfare.

However, exploiting the panel dimension in the data and using a robust dynamic probit model that

controls for a full set of household variables and the initial conditions problem encountered in such

models, I estimate the marginal effect of state dependence to be moderately low in urban Ethiopia.

Earlier studies analyzing the dynamics of poverty in urban Ethiopia are relatively few. Bigsten

1See, e.g., Dercon & Krishnan (1998), Dercon (2004), Dercon et al. (2005), Harrower & Hoddinott (2005), Barrett

et al. (2006), Dercon (2006), Dercon (2008), Beegle et al. (2008), and Litchfield & McGregor (2008).
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et al. (2003) used data on urban and rural households to investigate the impact of economic growth

on poverty and showed that education and occupational status of heads, dependency ratio and

geographical location are important determinants of poverty in urban areas. A similar analysis

of the correlates of chronic urban poverty was made by Keddir and McKay (2005) using data for

1995-1997. They find that high dependency ratios, low levels of education, lack of asset ownership,

insecurity in employment, and unemployment of household heads are important correlates of chronic

poverty. However, these papers do not focus on the dynamics of poverty and state dependence, or

on the effects of the labor market status of household members.

Using rural and urban household data, Bigsten and Shimeles (2008) investigate poverty transi-

tions and persistence in Ethiopia. Their results indicate that households move frequently in and out

of poverty with a speed which varies between male and female headed households, and that urban

households have a higher degree of poverty persistence than rural households. They also find that

poverty is closely related to household demographic characteristics and household head variables

such as occupational status. Bigsten and Shimeles do not, however, investigate the relationship

between poverty and the labor market status of household members. I show that not controlling

for these variables appears to overestimate the magnitude of poverty persistence. Moreover, the

last year covered in their study is 2004, whereas my data span the period 1994-2009. Given the

dramatic food price inflation in 2008 and the rapid economic growth in the country, expanding the

analysis to include this period is quite important. Finally, none of these previous studies look at the

effects of remittances, which have recently increased by an unprecedented level in urban Ethiopia. I

show that poverty rates would have been higher by at least 3.5 percentage points without the part

of consumption augmented by international remittances.

The econometric techniques used in the present paper are robust enough to address the research

questions. Poverty is modeled using a dynamic probit allowing for state dependence and unobserved

time-invariant heterogeneity in the underlying likelihood of poverty across households. I use the

most recent and advanced dynamic probit model - Wooldridge’s conditional maximum likelihood

estimator - to investigate the persistence of poverty and the role of intra-household heterogeneity in

occupations. I also check robustness of my results using Heckman’s two-step dynamic probit model,

the linear dynamic system GMM estimator developed by Arellano and Bover (1995) and Blundel

and Bond (1998), and using alternative definitions of poverty. Regression results suggest that, con-

trolling for the initial conditions problem encountered in non-linear dynamic models, labor market

status of all household members, and the full set of household-level variables significantly reduces

the magnitude of the coefficient of poverty persistence in urban Ethiopia. The paper’s findings have

important implications for identifying the poor and formulation of policies and interventions aimed

at reducing poverty.
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The remainder of the paper is structured as follows. Section 2 motivates and outlines the

empirical strategy applied in the paper. Section 3 discusses the data and provides descriptive

statistics. Section 4 presents estimation results from dynamic probit and system GMM models.

Finally, Section 5 concludes the paper.

2 Empirical Strategy

2.1 Modeling Poverty Dynamics

One of the main questions when determining poverty status and analyzing poverty dynamics is

whether to treat poverty status and transitions as changes in a continuous money metric welfare

measure (such as income or consumption) or a discrete variable (Baulch 2011). The former involves

modeling money metric welfare indicators or their change directly, using a fixed or random effects

estimation technique (as in Bigsten et al., 2003; Dercon, 2004; Dercon and Porter, 2011; May

et al., 2011). The fixed effect is the most robust panel data technique; it enables estimation by

taking care of time-invariant unobserved individual heterogeneity that is likely to be correlated

with the explanatory variables. The random-effects approach is based on a strong assumption of

orthogonality, which is very often unlikely to hold (Wooldridge, 2010). However, the fixed effect

doesn’t allow one to link changes in the welfare variable to poverty transitions; in some cases,

this can be handled by controlling initial poverty status, which can also be interacted with other

explanatory variables, and through interquantile regressions (Baulch, 2011).

Modeling poverty status and dynamics using a discrete indicator of welfare, on the other hand,

involves construction of a cut-off level of income - the poverty line - which is deemed to be the

minimum level of income needed to cover the cost of a consumption bundle considered adequate

for basic needs, and classifying those whose income falls below it as poor. Correlates of poverty

can therefore be examined using a binary model (such as the probit/logit). In order to study

poverty dynamics in developing countries, however, a number of studies (e.g., Bigsten et al., 2003;

Keddir and McKay, 2005; Quisumbing, 2011; Dercon and Porter, 2011) used the multinomial logit

(MNL) model. This model involves constructing a polytomous variable for both those who are out

of poverty and those who remain in poverty and examining their correlates. The main limitation

of the discrete choice models, including the MNL, bivariate poverty probits, and logits, is the loss

of information in converting a continuous variable to two or three discrete categories (Ravallion,

1996). In addition, consistent estimation of the parameters of the MNL model hinges on a strong

assumption of Independence of Irrelevant Alternatives (IIA). One could overcome the limitation of

this model by using other models which relax the IIA assumption, such as the sequential model

(Baulch and Vu, 2011), ordered logit (or probit), and stereotype logistic models (Baulch, 2011).
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Other more robust models of poverty transitions when there are a large number of rounds of

panel data includes Markov chains and hazard models, which have been used to model poverty

transitions using the British household panel survey (Cappelari and Jenkins, 2002; Davicienti 2001;

Jenkins and Rigg, 2001 cited in Baulch, 2011), and the US Panel Study of Income Dynamics (Bane

and Elwood, 1986; Stevens, 1999). This method allows for detailed analysis of poverty dynamics

through estimation of hazard rates for re-entry into and exit from poverty. The use of this method

in developing countries has, however, been very limited due to its requirement of a large number of

rounds of panel data, which are still difficult to find in developing counties.2 Because the method

involves using discrete categories of poverty status, it is subject to criticism, as is the case for the

the discrete choice models discussed above (Baulch, 2011). Dynamic probit models, which are used

in this paper and presented in detail in the next sub-section, are a class of discrete choice models

where current poverty is modeled as a function of poverty in the previous period.

Baulch (2011) argues that, while one could use either a discrete or continuous variable based

analysis of poverty, it is difficult to claim that one is better than the other, and each approach has

its own advantages and limitations, depending on the data available and the research problem one

is interested in. With the aim of providing robustness in the alternative modelling approaches, in

this paper, I investigate the persistence and correlates of poverty using a robust dynamic probit

model (a discrete choice model) and Arellano and Bover (1995)’s, and Blundell and Bond (1998)’s

system GMM estimator (a continuous dependent variable model), which takes care of endogeneity

of some of the correlates of poverty by using their lags as valid instruments.

2.2 State Dependence and Other Correlates of Poverty

The main rationale behind modeling poverty using a dynamic probit model is the presence of state

dependence. There is a large amount of evidence in several countries (mainly OECD countries)

that an individual or a household that is experiencing a poverty spell today is much more likely to

experience it again in the future (Duncan et al., 1993; Oxley et al., 2000; OECD, 2001; Giraldo et

al., 2006, and Biewen, 2009). Ahmed et al., (2007) identify at least seven major causes of persistent

poverty in the context of developing countries: (i) slow growth, inequality and conflict, which limit

the propensity of diversifying livelihood to escape poverty; (ii) adverse ecology and remoteness

of villages; (iii) the prevalence of shocks (adverse events) which often exert long-term impacts on

uninsured households; (iv) poor health and disability, which not only drain households’ resources

but also limit their members’ ability to work and earn income; (v) the inheritance of poverty; (vi)

lack of assets and inability to invest in education, which could help households come out of poverty;

2See Baulch and McCulloch (2003) for applications in rural Pakistan, and Bigsten and Shimeles (2008) for appli-

cations in rural and urban Ethiopia.
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and (vii) exclusion of some groups from access to resources, which perpetuates their poverty.3

Thus, a current state of poverty is modeled as a function of poverty in the previous period.

In addition, unobserved household or individual characteristics that make specific groups prone to

poverty should be accounted for while modeling poverty. These unobservables can be factors such

as individual motivation, parental effects, rate of time preference, and risk aversion parameters.

Because the outcome probability (poverty in this case) is hypothesized to depend on the outcome

in the previous period (poverty in previous period), I use a dynamic probit model specified as

p∗it = γpit−1 + x′itβ + αi + uit (1)

(i = 1, ..., N ; t = 2, ..., T ), where p∗it is a latent dependent variable; pit is the observed binary

outcome variable defined as

pit = 1[p∗it ≥ 0], t = 2, ..., T, (2)

xit represents a vector of explanatory variables; αi is a term capturing unobserved household

heterogeneity; and uit is a normally distributed error term with mean zero and variance normalized

to one. The subscripts i and t refer to households and time periods respectively. It is assumed

that N is large but T is small, which implies that asymptotics depend on N alone. In addition,

in the standard random effects probit model, it is assumed that, conditional on xit, αi is normally

distributed with mean zero and variance σ2
α, and independent of uit and xit.

Under the above assumptions, the probability that individual i is poor at time t, given αi, is

specified as

P [pit|xit, pit−1, αi] = Φ[(γpit−1 + x′itβ + αi)(2pit − 1)], (3)

where Φ is the cumulative distribution function of the standard normal distribution.

The presence of both the past value of the dependent variable and an unobserved individual

heterogeneity term in equation (4) will result in what is called the “initial conditions problem.”

This problem arises because the start of the initial panel wave does not coincide with the start

of the stochastic process generating households’ poverty experiences. The households in my data

existed as households before the initial panel wave and had already been at risk of poverty. Thus,

a household observed to be in a state of poverty in the initial period may be there because of an

earlier history of poverty, or because of some observed and/or unobserved characteristics affecting

its poverty status. Consequently, estimating equation (4) using the standard random effects probit,

which assumes that the initial state of poverty is exogenous, will result in inconsistent estimates. In

order to take care of the problem and estimate the equation consistently, the unobserved individual

heterogeneity term should be integrated out.

3See Biewen (2009) for possible reasons for poverty persistence in the context of industrialized countries.
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Heckman (1981) - who is the first to address the initial conditions problem - suggested a two-step

maximum likelihood estimator, which involves specification of a linearised reduced-form equation for

the initial value of the latent variable; the equation includes exogenous instruments and initial values

of the explanatory variables. The reduced-form equation can then be introduced in the likelihood

function of each individual/household and the integral in the likelihood function can be evaluated

using the Gauss-Hermite quadrature (Butler and Moffitt, 1982) to estimate the parameters of the

model in a consistent manner. Due to its huge computational cost, however, the use of this estimator

in applied research has been limited.

Another approach to deal with the initial conditions problem in non-linear dynamic panel da-

ta models is the Wooldridge conditional maximum likelihood (WCML) estimator proposed by

Wooldridge (2005). The WCML starts by stating the joint density for the observed sequence of the

dependent variable (p2, p3, ..., pT |p1) as (pT , pT−1, ..., p2|p1, x, α). By specifying an approximation

for the density of the unobserved individual heterogeneity term αi, conditional on the initial period

value of the dependent variable p1, Wooldridge integrates out αi from the equation and suggests

the specification

αi|pi1, zi ∼ N(ζ0 + ζ1pi1 + z′iζ, σ
2
a) (4)

where

αi = ζ0 + ζ1pi1 + z′iζ + ai (5)

Equation (8) alleviates the correlation between the initial value of the dependent variable and

the unobservable (pi1 and αi) and results in a new unobservable term ai that is uncorrelated with

the initial observation pi1.

Substituting equation (8) into equation (1) gives

Pr(pit = 1|ai, pi1) = Φ[(x′itβ + γpit−1 + ζ0 + ζ1pi1 + z′iζ + ai] t = 2, ..., T. (6)

Consequently, the likelihood function for household i is given by

Li =

∫
{
T∏
t=2

Φ[(x′itβ + γpit−1 + ζ0 + ζ1pi1 + z′iζ + a)(2pit − 1)]}g∗(a)da, (7)

where g∗(a) is the normal probability density function of the new unobservable term ai intro-

duced in equation (7). By incorporating a set of time dummies interacted with the initial value

of the dependent variable, the WCML estimator like Heckman’s estimator can be generalized to

allow for the initial condition error to be freely correlated with the errors in the other periods. One

other appealing feature of this estimator is the fact that it controls for period specific versions of
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the x variables, which also allows for correlation between xit and αi, following Mundlak’s (1978)

approach. I primarily use results from this estimator to analyze the persistence of poverty in urban

Ethiopia. Estimating Wooldridge’s estimator is straightforward in standard econometric software,

for example, by using the xtprobit command in Stata.

It is plausible to argue that one or more of the explanatory variables in the probability of poverty

model - for example, the remittance and occupational characteristics of household members - could

be endogenous. Giles and Murtazashvili (2012) point out that when one or more of the explanatory

variables is endogenous, the impact of the endogenous variable and the lagged poverty variable

on the likelihood of poverty can be significantly biased. Consequently, these authors propose a

“Control Function Approach” based on a two-step procedure to estimate a dynamic probit model

with endogenous explanatory variables. In the first stage, a reduced form equation of the endogenous

variable as a function of an exogenous instrumental variable and other exogenous variables of the

model is estimated using OLS. In the second stage, the residuals obtained from the first stage are

used as regressors along with other exogenous variables to estimate the dynamic probability of

poverty model. However, estimation of the dynamic probit model using the this approach hinges

on availability of an external instrumental variable.

Using a continuous dependent variable to capture welfare - such as income or consumption

expenditure - one can alternatively apply a linear dynamic model and address endogeneity of an

explanatory variable(s). Furthermore, the linear model would provide more information on the

magnitude of the impact of the explanatory variables given it is continuous, a key limitation of the

discrete choice models presented above.

A general dynamic model of consumption consistent with economic theory for household i at

time t can be specified as:

cit = γcit−1 + x′itβ + αi + uit (8)

The standard linear panel data models cannot be used to estimate the parameters of equation

(8) consistently. The lagged value cit−1 is positively correlated with uit because it is correlated

with the unobserved heterogeneity term αi, and thus the pooled OLS estimator of the lagged

dependent variable would be biased upward and inconsistent. The within (fixed effects) estimator

can address the correlation between αi and xit but not between cit−1 and uit. This problem arises

because the within-transformation of the lagged dependent variable is correlated with the error.

Consequently, it creates a large-sample bias in the parameter estimate of the coefficient of cit−1,

which is not alleviated even by increasing the number of individual units. A similar problem affects

the random-effects model because the unobserved individual heterogeneity term αi enters every

value of the dependent variable cit by assumption. Hence, the lagged dependent variable cannot be
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independent of the composite error process.

Writing equation [8] in first differences yields,

(cit − cit−1) = γ(cit−1 − cit−2) + β(x′it − x′it−1) + (uit − uit−1) (9)

or

∆cit = γ∆cit−1 + ∆x′itβ + ∆uit (10)

The individual effect term is removed. However there is still correlation between the differenced

lagged dependent variable and the disturbance process (the former contains cit−1 and the latter

contains uit−1). One can solve this problem and estimate the model using instruments for the

lagged dependent variable from the second and third lags of the dependent variable (either in the

form of differences or lagged levels). If the random disturbance term uit is i.i.d., those lags of c will

be highly correlated with the lagged dependent variable (and its difference) but uncorrelated with

the composite error process, satisfying the key requirements of a good instrument. The resulting

estimator is referred as the Anderson and Hsiao (1981) two-stage estimator (Wooldridge, 2010).

However, Arellano and Bond (1991) show that when T > 3, and with no serial correlation in

the random error terms, a more-efficient IV estimator can be obtained by estimating [10] using

more lags as instruments in a Generalised Method of Moments framework. This gives rise to what

is known in the literature as the Arellano and Bond or Difference GMM estimator. Later on,

Arellano and Bover (1995) and Blundell and Bond (1998) suggested a more advanced estimator -

known as system GMM estimator - which estimates the parameters using a two-equation model

(the level equation and a differenced equation) in an Instrumental Variable set up. By using lags

and differences of of the lags as instruments for the endogenous explanatory variables (including the

lagged dependent variable), one can deal with endogeneity without externatl instruments in this

model. Validity of the instruments can be verified using Sargan’s Overidentification Test. In this

paper, I use this estimator to check for robustness of my findings from the dynamic probit model.

3 Data and Descriptive Statistics

3.1 Data

This study uses five rounds of the Ethiopian Urban Socioeconomic Survey (EUSS) - a panel data

set collected in 1994, 1997, 2000, 2004, and 2008/09.4 The first four waves were collected by

the Department of Economics of Addis Ababa University in collaboration with the Department of

Economics, the University of Gothenburg. Originally, it covered seven major cities in Ethiopia -

4Data was collected in 1995 as well. However, because the dynamic probit model is sensitive to the spacing of the

data collection points, I excluded data collected in 1995 in order to maintain fairly even spacing between rounds.
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the capital Addis Ababa, Awassa, Bahir Dar, Dessie, Dire Dawa, Jimma, and Mekelle, which were

believed to represent the major socioeconomic characteristics of the Ethiopian urban population.

About 1,500 households were included and each city was represented in proportion to population.

Once the sample size for each city was set, the allocated sample size was distributed over all woredas

(districts) in each urban center. Households were then selected randomly from half of the kebeles

(the lowest administrative units) in each woreda, using the registration for residences available at

the urban administrative units.5,6

I conducted a sixth round survey from a sub-sample of the original sample covering four cities -

Addis Ababa, Awassa, Dessie, and Mekelle - and comprising 709 households in late 2008 and early

2009.7 The cities were selected carefully in order to represent major urban areas of the country

and the original sample. All panel households were surveyed in three of the cities, but not in Addis

Ababa, which constituted about 60 percent of the original sample. About 350 of the original house-

holds in Addis Ababa were selected following the sampling procedure discussed in the preceding

paragraph. Out of the total of 709 households surveyed in the sixth round, 128 are new households

randomly included in the survey. These new households were surveyed based on the concern that

the panel households might have become atypical since they were incorporated in the sample in

1994 and thus no longer very well representative of the Ethiopian urban population. No significant

difference was found between the new and the panel households in welfare measured by consump-

tion expenditure, conditional on observable household characteristics (Alem and Söderbom, 2012).

The analysis includes a total of 366 households that were surveyed in all rounds since 1994. The

dataset is comprehensive and addresses household living conditions, including income, expenditure,

demographics, health, educational status, occupation, production activities, asset ownership, and

other variables on the household and individual levels. In addition, new sections on shocks and

coping mechanisms, government support, and institutions were included in the 2008/09 survey.

To measure poverty, I followed the conventional approach for developing countries and used

consumption expenditure on a monthly and weekly basis as reported by the households. The

definition of consumption used in the analysis is comprehensive and incorporates both food and

non-food components. Food consumption includes the value of food purchased from the market and

food obtained in the form of gifts or aid. The non-food component includes expenditures on clothing,

energy, education, kitchen equipment, contributions, health, education, and transportation. The

cost of basic needs (CBN) approach (Ravallion and Bidani, 1994) was used to estimate poverty

lines. It consists of two steps: first the food poverty lines are estimated and then they are adjusted

to account for basic non-food consumption. I therefore estimated the food poverty line for each

5Refer to AAU & UG (1995) for details on sampling design.
6While tracking original households, unfortunately, household splits were not followed.
7Households in the other cities were not surveyed due to resource constraints.

10



city in each round by valuing a basket of food items that yield a minimum energy requirement of

2,200 kcal of energy per person per day, as stipulated by the World Health Organization (WHO).

This basket of goods was borrowed from earlier studies on urban poverty in Ethiopia (Dercon and

Tadesse, 1999; Tadesse, 1999; Gebremedihin and Whelan, 2005).

In order to estimate the non-food component of the poverty line, I followed Ravallion and Bidani

(1994) and divided the food poverty line in each city by the average food share of households deemed

to be below the food poverty line. I then used the poverty line of one of the cities (the capital, Addis

Ababa)8 in the initial period (1994) as a reference and divided all the other cities’ poverty lines

by the poverty line of the reference city, which yielded price deflators for the nominal expenditures

of households in the different cities.9 I then used these deflators to convert nominal household

consumption to real values, adjusting for spatial and temporal price differences. 10 A household

has been classified as poor if its real consumption per adult equivalent unit was below the poverty

line of Addis in the initial period, which was 78.66 Ethiopian birr per month.11, 12

The number of households belonging to the sample formed back in 1994 declined over time due

to attrition. In 2004, about 407 of the 1097 original households (representing 37 percent) in the four

cities were not surveyed.13 In addition, the number of panel households surveyed in the latest round

has been reduced due to resource constraints. It is therefore reasonable to be concerned about bias

in the estimation results as a result of attrition. I attempt to check for attrition bias using attrition

probits (Fitzgerald et al., 1998) and a BGLW test (Becketti et al., 1988). Attrition probits consist

of estimates of binary-choice models for the determinants of attrition in later periods as a function

8Addis Ababa has been chosen because of the fact that about 60 percent of the households in the sample are located

there. Moreover, the city contains diverse cultures and socioeconomic groups, which makes it a good representative

of other cities when it comes to patterns of household consumption.
9Ravallion (1998) provides a detailed discussion on the use of poverty lines as deflators.

10I use poverty lines constructed from the survey rather than the ones constructed by the Ministry of Finance and

Economic Development of Ethiopia because: i) the ministry’s poverty line, which was constructed in 1995/96 (see

MoFED, 2012) is too general and was constructed to analyze poverty in both urban and rural areas, which may have

different consumption patterns, while I use a basket of goods anchored in the lowest 40 percent of the distribution in

urban Ethiopia, which makes poverty comparison in urban Ethiopia relatively easy; ii) to analyse poverty in 2010/11

and adjust consumption for spatial and temporal price differences, the national poverty line was deflated using the

national and regional consumer price indices, which are too aggregated and general, while I use price data in the

respective cities to adjust for spatial and temporal price differences; and iii) with the basket of goods and poverty

lines I used, it is relatively straightforward to compare poverty figures over time with earlier studies (e.g., Dercon

and Tadesse, 1999; Tadesse, 1999; Gebremedihin and Whelan, 2005) who analyzed poverty using the same data set.
11Following the standard practice, I used adult equivalent units constructed by Dercon and Krishnan (1998) for

Ethiopia to adjust for household size and composition.
12One Ethiopian birr was about USD 0.20 in 1994.
13A large part of the attrition in the survey seems to have been a result of poor tracking. For instance, it is possible

to see original panel households not surveyed in one wave but tracked and surveyed in subsequent years. For the

dynamic probit analysis a balanced panel of the data containing 366 households observed in all waves is used.
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of base year characteristics. The BGLW test, on the other hand, involves investigating the effect of

future attrition on the initial period’s outcome variable. Two sets of the two tests (attrition probits

and BGLW test) are performed - one for attrition during 1994-2004, and another for 2004-2009.

Attrition probits presented in table A.1 in the appendix show that during 1994-2004, households

that were headed by males and by self-employed individuals had a higher correlation with future

attrition. It can also be seen that having a higher number of private sector employee members and

more children had a higher correlation with attrition in the future, although the coefficients are

statistically significant only at the ten percent level. The attrition probit regression for the 2004

-2009 period on the other hand, shows that only being headed by a casual worker was correlated

with attrition in 2009. Residing in the capital, Addis had a negative correlation with future attrition

in the first period but a negative correlation in the latter period. The positive coefficient for Addis

in the 2004 - 2009 round is not surprising given, the fact that a large proportion of the households

absent from the 2009 survey were from Addis.

Table A.2 and A.3 in the appendix present regression results investigating the effect of future

attrition on base year consumption variables for the period 1994-2004 and 2004-2009 respectively.

Separate regressions are estimated for households who were in the sample in future rounds, and

for the total sample in the initial years. For the period 1994-2004, the impact of being headed

by an individual with secondary education is different (at five percent) between the total and

nonattriting samples. For the 2004-2009 period, only the impact of being headed by an individual

who had completed primary schooling and the number of unemployed household members are

different between the two groups at the ten percent level, while there is no difference on the impact

of the rest of the variables. Overall, one can conclude that attrition in the sample would be less

likely to bias results from the sample of remaining households.14

3.2 Descriptive Statistics

The evolution of poverty in urban Ethiopia is presented in Table 1. The upper panel of the table

shows the headcount index for the study period for the unbalanced panel, including mean values,

and standard errors, whereas the lower panel shows the same figures in the same period for the

panel households that have been observed in all rounds. It can be seen that the poverty incidence,

as measured by the headcount index in adult equivalent units, was about 43 percent in 1994 but

then declined consistently and reached about 27 percent in 2009. The poverty figure in 2009 - the

period in which the country experienced rapid change in its economic setup - appears to be close

to the Ethiopian government’s statistics, which indicates a 26 percent urban poverty rate in 2010

14In addition, I performed Wald tests for the joint significance of the differences in all slope coefficients and

intercepts and did not reject the hypothesis of equality of the coefficients from the two samples.

12



(MoFED, 2012).

Table 1 here

Table 2 presents descriptive statistics of socioeconomic variables for households. These are used

as explanatory variables in the poverty probability model by poverty status. It can be seen that

the proportion of households that have never been poor is about 29 percent, while 8.5 percent have

always been poor (the chronic poor). Hence, most poor households experience poverty for a short

period of time, which makes the analysis of poverty dynamics important. Some important trends

can also be noted from the rest of the descriptive statistics. As expected, real consumption in adult

equivalent terms declines with the severity of poverty, with the “never poor” households having the

highest consumption while the “always poor” exhibit the lowest level. There are more female headed

households in the “always poor” category than in the “never poor” category, probably indicating

the vulnerability of female headed households to poverty in a poor setting like urban Ethiopia.

Education and international remittance variables show distinct differences between households who

have never been poor and those who have always been poor. For instance, only 6 percent of the

heads in the “always poor” category have completed secondary level schooling, while the figure is

about 30 percent for the “never poor”. Similarly, 20 percent of the household heads in the “never

poor” category have completed a tertiary level education, whereas the figure for the “always poor” is

only 1 percent. This provides some evidence on the strong negative relationship between education

and poverty status in urban Ethiopia.

Table 2 here

One can also note that the poverty status of households varies with the value of internation-

al remittances received by households. On average, the “never poor” households received about

875.79 birr/year in real terms from international remittances during the period analyzed, while the

figure was only 31.88 birr for the chronic poor.15 The growing role of international remittances in

urban Ethiopia is clearly evident from table 3 as well. The proportion of households that received

international remittances in 1994 for example was only 3.6 percent, while it reached 31.8 percent in

2009. A significant jump in the flow of remittances from foreign sources was observed from 2004 to

2009.16 One can finally note that there has not only been an increase in the number of households

receiving international remittances, but also in the mean value of remittances received over the past

15 years.

Table 3 here

The differences in labor market status of both heads and other members of the household

(which are the focus of this paper) are also clearly evident from table 2. Twenty-seven percent of

15Remittances are expressed in real terms using 1994 prices.
16Table 3 shows the flow of international remittances only in the form of cash. The reported values could be much

higher if in-kind remittances were included.
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the household heads who have never been poor are either civil or public sector employees, whereas

for the “always poor” the figure is only 8 percent. Only 6 percent of the heads of the “never poor”

households are casual workers, while 18 percent of those of the “always poor” households depend

on casual work to earn a living. There are also clear differences in terms of labor market status

and demographic characteristics of other household members. “Never poor” households have on

average 0.35 individuals working as civil/public sector employees, whereas those in the “always

poor” category have only 0.09 individuals in this sector of activity. There are more casual worker

household members (0.34) among the “always poor” than among the “never poor” households

(0.05). Similar differences are noticeable in the case of household demographic variables. All these

facts imply a close association between poverty status of households and the characteristics of

household heads and other household members.

4 Results

Table 4 presents marginal effects for a model of the probability of being poor as given by equation

(1). Column [1] presents marginal effects from a random effects probit model, which takes care of

unobserved household heterogeneity but treats initial conditions as exogenous. Column [2] shows

marginal effects from a dynamic probit model - Wooldridge’s conditional maximum likelihood es-

timator (WCML) - which takes care of the initial conditions problem in addition to unobserved

household heterogeneity.17 Both models control for time and city fixed effects and the WCML

estimator uses the time varying x variables in the z vector. One can see from the table that the

marginal effect of the state dependence parameter declines from 0.22 to 0.08 once I control for the

initial conditions problem. This indicates that a households which has been poor in any period

has only an 8 percent higher probability of being poor in the next period, unlike the estimate from

the random effects probit, which indicates a 22 percent higher probability of bing in poverty. The

initial state of poverty (poverty in 1994) is not only statistically significant at one percent in the

WCML estimator but is also larger than the coefficient of the lagged dependent variable, providing

strong evidence in favor of controlling for endogeneity of initial conditions.

Table 4 here

Marginal effects from Wooldridge’s conditional maximum likelihood regression results presented

in table 4 column [2] show that other household members’ occupation and demographic character-

istics are important determinants of poverty status in urban Ethiopia. Households with more own-

account workers, casual workers, unemployed members, out-of-the-labor-force members, and/or

17The marginal effects of the dummy variables represent the increase in the probability of poverty due to a change

from zero to one in the dummy explanatory variables. While for continuous variables, it represents the change in the

probability of poverty due to a one unit change in the continuous variable.
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child members are prone to poverty. This reflects the adverse welfare impact of depending on

volatile sources of income in the labor market, of being unable to have an income-generating job,

and of having more dependent members. The positive association with poverty of being an own-

account worker head (although the coefficient is not statistically significant) contradicts the negative

association of the variable when it comes to other household members. A significant proportion of

own-account worker household members in urban Ethiopia are engaged in low paying and unstable

jobs. For instance, in 2009, 67 percent were engaged in activities such as petty trading and prepar-

ing and selling food and drinks. Hence, it may not be surprising that members engaged in such

low-paying jobs would be likely to be in consumption poverty. However, the fact that own-account

worker heads have a lower likelihood of being in poverty may indicate that it is those individuals

with promising business activities that choose to form a family and become heads. This finding

implies that simply taking the labor market status of an individual as an indicator may not be

informative and that heterogeneity, even in a given type of occupation, should be considered in

analyzing poverty.

Results also reveal the strong and important role of international remittances in affecting the

likelihood of being in poverty. A one percent increase in the flow of international remittances

reduces the probability of being in poverty by 1.5 percent. In order to further investigate the role of

international remittances, I computed poverty head counts, excluding the amount of international

remittances reported to have been used to finance consumption by households. The descriptive

statistics presented in table 5 indicate that poverty would have been higher without international

remittances. In the year 2009, for instance, when the country experienced rapid economic growth,

poverty in adult equivalent terms would have been 34 percent, which would have been higher by

about 3.5 percentage points compared to poverty figures with international remittances. It is,

however, important to notice that this exercise of investigating the role of international remittances

would not be free of limitations, such as the likely differences between international recipient and

non-recipient households, measurement error in reporting on how remittances have been used, etc.,

which make inference of a causal relationship difficult. Nevertheless, the figures provide relatively

reliable clues about the important and increasing role of international remittances in the livelihoods

of households in urban Ethiopia. These findings are in line with descriptive statistics presented

in table 3, which indicate the rapid growth of international remittances, both in value and the

proportion of recipient households over time.

Table 5 here

The paper’s findings have important implications for the analysis of urban poverty and poverty

persistence. The important role of labor market status of other household members and internation-

al remittances implies that it is important to consider these variables - not only those of household
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heads’ - when designing anti-poverty policies. It is striking to find that the coefficient of the poverty

persistence variable significantly declined once I controlled for these important variables and the

initial conditions problem using a robust dynamic probit model. Previous studies (e.g., Bigsten &

Shimeles, 2008) did not control for these variables and found a significantly higher coefficient for the

state dependence variable using a simulation-based dynamic probit estimator. The findings of this

paper therefore imply that targeting these observable characteristics of households in anti-poverty

interventions would be welfare enhancing. For instance, policies that ensure skill and stable job

creation and those that protect household income variability would reduce poverty significantly.

Consistent with previous findings of poverty studies in SSA, which primarily consider household

heads’ characteristics, the regression results in the current paper confirm the importance of socio-

economic characteristics of heads. Households headed by educated heads are less likely to be in

poverty, with tertiary level of education having the largest marginal effect (0.21). This probably

indicates the increasing returns of higher education in urban Ethiopia. One also notes a negative

association between poverty and being headed by a non-working employer head. In fact, this

variable has the largest marginal effect of all the coefficients I controlled for. Controlling for the

whole set of determinants of poverty, households headed by an individual who is an employer have

a 34 percent lower probability of being in poverty.18 Being headed by a civil/public sector employee

head also reduces the probability of being in poverty. This may be due to the fact that workers in

this sector earn a stable stream of income and have a relatively better opportunity for saving and

credit, at least compared to casual workers, and own-account workers on small businesses in urban

Ethiopia.

Robustness Checks

As a robustness exercise, I also estimated Heckman’s dynamic probit estimator.19 In the Heckman

model, I addressed the initial conditions problem by making use of the initial period equation,

including three exogenous geographical location variables and the full set of period-specific versions

of the time-varying explanatory variables as described in the empirical strategy section. Similarly

here, the Heckman estimator yielded a significantly lower coefficient for the state dependence pa-

rameter compared to the random effects probit model but was slightly higher than the Wooldridge

model.

As mentioned in section 2, it is reasonable to argue that the main variables of interest - oc-

cupational characteristics of household members and remittances - could be endogenous, and this

may bias the coefficient of the variable that measures poverty persistence. In order to address

18There were very few observations for employer members other than heads which made controlling for “employer

members” in the regressions problematic.
19Results are available from the author up on request.
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endogeneity of these variables, I took advantage of the long panel data at hand and estimated a

linear model of poverty (where the dependent variable is the log of real consumption expenditure

in adult equivalent units) using the Arellano and Bover (1995), and Blundell and Bond (1998)

System GMM estimator. This estimator uses lagged values and differences in the lagged values of

the endogenous variables as valid instruments to estimate the impact of the endogenous variables

on the dependent variable. Two versions of the model are estimated and presented in table 6:

one in which only lagged consumption is treated as endogenous, and another one in which lagged

consumption, remittances, and labor market status of members are treated as endogenous. Regres-

sion results reveal that the impact of most of the variables of interest (including that of the lagged

dependent variable) changed very little after controlling for endogeneity of the main variables.20

Furthermore, the impact of most of the variables remained consistent with those obtained from

Wooldridge’s conditional maximum likelihood estimator.21 One can, however, note that household

head variables are not significant in the linear dynamic models, probably because these variables

changed very little over time.

Table 6 here

As a final robustness check, I estimated the dynamic poverty probability model by moving the

poverty line up and down by 10 percent to see the possible impact of measurement error on the

main findings. Reassuringly, the results remained robust to this adjustment.22

5 Conclusions

Using one of the few rich panel data sets in Sub-Saharan Africa spanning 15 years - the Ethiopian

Urban Socioeconomic survey - this paper investigated the persistence of poverty in urban Ethiopia

and the role of intra-household heterogeneity in poverty. Dynamic probit results from Wooldridge’s

conditional maximum likelihood estimator suggest that there is a statistically strong state depen-

dence in poverty in urban Ethiopia. However, the magnitude of the state dependence coefficient

declines significantly once I control for the role of the complete sets of household income diversifica-

tion activities and the initial conditions problem encountered in such non-linear dynamic panel data

models. A household which has been poor in any period has only an 8 percent higher probability

of being poor next period. Heckman’s dynamic probit and a linear dynamic system GMM model

have also been estimated to check for robustness of the results from the Wooldridge model.

The paper takes a more comprehensive view of the household than most previous studies,

20Controlling for endogeneity of the remittance and labor market status of household members actually reduced

the coefficient of the lagged consumption variable by only about 1.2 percentage points.
21The null hypothesis that the population moment conditions are correct is not rejected at the commonly accepted

5 percent level of significance.
22Regression results are available upon request.
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allowing poverty to depend on the occupational and demographic characteristics of all household

members. Regression results suggest that households with a higher number of own-account workers,

casual workers, unemployed members, out-of-the-labor-force members, and child members are more

likely to be in poverty. This reinforces the facts that, dependence on unsustainable sources of income

in the labor market, inability to have a job that generates income, and a higher number of dependent

household members expose households to consumption poverty. These results imply that it may be

important to consider occupational and demographic characteristics of all household members when

designing poverty reduction and targeting policies. I also find that remittances play significant roles

in determining poverty status in urban Ethiopia, and that poverty would have been higher by about

3.5 percentage points without the part of consumption augmented by international remittances.

I also find strong impacts of the characteristics of household heads, which is in line with previous

studies. Being headed by an educated household head reduced the probability of being in poverty.

However, the impact of education differs based on the level of education, with tertiary education

having the largest impact and primary education having the lowest impact on being out of poverty.

This finding most likely indicates the increasing returns to higher education in a growing economy.

In this context, previous studies (e.g., Bigsten and Shimeles, 2008), which controlled for only

completing primary schooling, may have underestimated the impact of education and overestimated

the state dependence coefficient. The paper also documents the important role of labor market

status of household heads. Compared to households headed by out-of-the-labor-force individuals,

being headed by a non-working employer has the largest marginal effect in reducing the likelihood

of being in poverty.

Some key policy implications follow from the findings of the paper. The finding that previous

history of poverty matters for current state of poverty implies that policies aimed at reducing

volatility in income of households and those aimed at supporting households stricken by shocks

would have significant impact on reducing poverty. Because labor market status and demographic

characteristics of all household members are important determinants of the likelihood of being

in poverty, poverty reduction and targeting strategies will be more effective if they take these

household characteristics into consideration to identify and support the poor. For instance, policies

aimed at focusing on skill and job creation for the unemployed and casual workers and those that

support children in schools located in low income areas could be welfare enhancing. Given that

the persistently poor lack the required resources to invest in human and other productive capital

important to generate income in an urban environment, it would be particularly important to

support these groups with tailored packages of interventions, say, through human capital enhancing

interventions and micro-finance supports to make them competitive in a rapidly growing urban

environment. Finally, because remittances from international sources play an increasingly positive
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role in poverty reduction, it would to be useful for policy makers to investigate the mechanisms

through which these remittances flow into the country and to design policies that encourage the flow,

which could in the long-run be combined with appropriate redistribution mechanisms. However,

given the fact that the findings of the paper are based on only 366 households - although observed

over a 15 year period of time - I acknowledge that these policy implications have to be taken with

caution.

Additional lessons can be learned from future research in relation to the underlying reasons for

the reduction in poverty in recent years and the impacts of education, international remittances,

and labor market access on poverty. The 2004-2009 period was characterized by rapid economic

growth, but also by double digit inflation, which had a significant negative impact on the welfare of

households in urban Ethiopia (Alem and Söderbom, 2012). During the same period, the proportion

of households receiving remittances from abroad and food items from relatives/friends increased

by 141 and 163 percent, respectively. This poses the important question of whether the poverty

reduction in urban Ethiopia has been driven by economic growth or by the households’ own efforts

to diversify income. Future research can shed light on these and other issues related to the question

of which sections of the community take advantage of a rapidly changing economic environment

to escape poverty. Furthermore, the rapidly expanding panel data sets such as the South African

National Panel of Income Dynamics, and the national panel surveys of Tanzania, and Uganda,

which have both rural and urban components, could be used to increase the knowledge of poverty

dynamics and labor market issues in the rapidly expanding urban areas of Africa.
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Table 1: Trends in poverty headcounts: 1994-2009* (%)

All households

Year City Obs Mean SE

1994 Addis 854 0.453 0.017

Other Cities 249 0.365 0.031

All Cities 1103 0.433 0.015

1997 Addis 826 0.390 0.017

Other Cities 227 0.396 0.033

All Cities 1053 0.391 0.015

2000 Addis 848 0.356 0.016

Other Cities 259 0.270 0.028

All Cities 1107 0.336 0.014

2004 Addis 830 0.324 0.016

Other Cities 288 0.295 0.027

All Cities 1118 0.317 0.014

2009 Addis 421 0.311 0.023

Other Cities 288 0.219 0.024

All Cities 709 0.274 0.017

Panel households

City Obs Mean SE

1994 Addis 292 0.476 0.029

Other Cities 74 0.378 0.057

All Cities 366 0.456 0.026

1997 Addis 292 0.421 0.029

Other Cities 74 0.351 0.056

All Cities 366 0.407 0.026

2000 Addis 292 0.390 0.029

Other Cities 74 0.297 0.053

All Cities 366 0.372 0.025

2004 Addis 292 0.370 0.028

Other Cities 74 0.257 0.051

All Cities 366 0.347 0.025

2009 Addis 292 0.329 0.028

Other Cities 74 0.216 0.048

All Cities 366 0.306 0.024

Notes: *Adjusted for adult equivalent units.
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Table 3: Trends in international remittances - panel households (%)

Year HHs (%) Mean RETB

1994 13 3.56 85.04

1997 23 6.30 222.26

2000 40 10.96 486.08

2004 48 13.15 425.16

2009 116 31.78 801.16

Notes: RETB - Real Ethiopian Birr in 1994 prices.
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Table 4: Determinants of poverty - marginal effects from dynamic probit regressions

[1] [2]

[ME-REPR] [ME-WCML]

Variable Coeff. SE Coeff. SE

Lagged poverty 0.216*** 0.020 0.084** 0.035

Age of head -0.003 0.004 0.005 0.006

Age of head squared/100 0.002 0.004 -0.004 0.005

Head Male -0.045* 0.025 -0.027 0.028

Head primary schooling completed -0.061** 0.029 -0.03 0.029

Head jun-sec schooling completed -0.085** 0.037 -0.061* 0.038

Head secondary schooling completed -0.131*** 0.037 -0.091** 0.038

Head tertiary schooling completed -0.273*** 0.0650 -0.207*** 0.069

Head-Employer -0.425** 0.169 -0.344** 0.166

Head-Own-account worker -0.038 0.029 -0.027 0.030

Head-civil/public servant -0.086** 0.039 -0.074* 0.039

Head Private sector employee 0.015 0.043 0.024 0.044

Head-casual worker 0.002 0.041 -0.001 0.042

No. Of own-account worker members 0.055*** 0.018 0.050** 0.023

No. Of civil/public servant members -0.025 0.020 0.015 0.025

No. Of private sector employee members -0.011 0.015 0.016 0.019

No. Of casual worker members 0.105*** 0.021 0.070*** 0.025

No. Of unemployed members 0.047*** 0.011 0.061*** 0.014

No. Of out of labor force members 0.040*** 0.008 0.068*** 0.011

No. Of children 0.054*** 0.007 0.057*** 0.011

No. Of elderly 0.031 0.039 0.034 0.051

Log of real value of remittances from abroad -0.024*** 0.005 -0.015*** 0.006

Resides in Addis 0.075*** 0.028 0.069** 0.032

Year 2000 0.023 0.032 -0.002 0.032

Year 2004 0.017 0.032 -0.011 0.033

Year 2009 0.039 0.035 -0.02 0.039

Initial poverty status (1994) - - 0.122*** 0.031

Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

ME-REPR represents marginal effects from the standard random effects estimator,

ME-WCML denotes marginal effects from the Wooldridge Conditional Maximum Likelihood Estimator.
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Table 5: Trends in poverty headcounts excluding international remittances (%)

City 1994 1997 2000 2004 2009

Addis 47.84 44.52 41.20 40.20 36.21

Awassa 46.43 35.71 42.86 25.00 28.57

Dessie 46.15 46.15 53.85 46.15 30.77

Mekelle 28.57 28.57 17.14 22.86 20.00

Overall 45.89 42.44 39.52 37.67 33.95

Notes: Adjusted for adult equivalent units.
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Table 6: Determinants of poverty - Dynamic System GMM Regression Results

[1] [2]

[SYS1] [SYS2]

Variable Coeff. SE Coeff. SE

Lagged log of real consumption per aeu 0.130** 0.061 0.118** 0.045

Age of head -0.007 0.014 -0.006 0.013

Age of head squared/100 0.004 0.013 0.004 0.012

Head Male 0.016 0.081 0.052 0.082

Head primary schooling completed 0.046 0.063 0.097 0.063

Head jun-sec schooling completed -0.076 0.087 -0.017 0.080

Head secondary schooling completed 0.033 0.077 0.071 0.074

Head tertiary schooling completed 0.064 0.107 0.072 0.115

Head employer 0.345 0.268 0.099 0.235

Head own-account worker 0.119 0.078 0.093 0.079

Head-civil/public servant 0.040 0.087 0.083 0.100

Head Private sector employee 0.130 0.089 0.144 0.092

Head casual worker 0.179 0.126 0.150 0.122

No. Of own-account worker members -0.075* 0.042 -0.055 0.051

No. Of civil/public servant members -0.080* 0.048 -0.008 0.045

No. Of private sector employee members -0.064** 0.029 -0.040 0.032

No. Of casual worker members -0.114*** 0.043 -0.104** 0.043

No. Of unemployed members -0.129*** 0.026 -0.113*** 0.024

No. Of out of labor force members -0.141*** 0.021 -0.135*** 0.021

No. Of children -0.162*** 0.021 -0.144*** 0.020

No. Of elderly -0.024 0.119 -0.045 0.136

Log of real value of remittances from abroad 0.030*** 0.009 0.034*** 0.008

City Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

AR(1) 0.000 0.000

AR(2) 0.112 0.231

Sargan 0.001 0.082

Observations 1463 1463

SYS1: System GMM estimaror - only lagged dependent variable endogenous.

SYS2: System GMM estimaror - lagged dependent variable, international remittances, and labor market

variables endogenous.

Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table A1: Ever out Attrition Probits 1994 - 2004 & 2004 - 2009

[1994-2004] [2004-2009]

Coeff. SE Coeff. SE

Log real consumption per aeu 0.005 0.058 0.061 0.062

Age of head -0.01 0.02 -0.016 0.016

Age of head sq. 0.008 0.019 0.016 0.016

Head, male 0.254** 0.104 -0.001 0.095

Head, primary schooling completed -0.177 0.111 0.088 0.109

Head, jun-sec schooling completed -0.183 0.158 0.002 0.144

Head, secondary schooling completed -0.366* 0.171 0.172 0.145

Head, tertiary schooling completed 0.148 0.195 0.192 0.18

Head, employer 0.476 0.282 0.022 0.354

Head, own-account worker 0.240** 0.115 -0.016 0.112

Head, civil/public servant 0.105 0.133 -0.019 0.134

Head, private sector employee 0.175 0.195 0.113 0.151

Head, casual worker 0.177 0.147 0.410** 0.159

No. of own-account worker members -0.071 0.092 -0.065 0.088

No. of civil/public servant members -0.103 0.066 -0.055 0.067

No. of private sector employee members 0.133* 0.069 -0.018 0.054

No. of casual worker members -0.137 0.099 -0.035 0.08

No. of unemployed members -0.023 0.04 -0.01 0.039

No. of out of labor force members -0.024 0.033 0.006 0.033

No. of children -0.072* 0.025 0.002 0.031

No. of elderly -0.057 0.113 0.302 0.194

Log real remittances from abroad -0.012 0.026 -0.008 0.015

Resides in Addis -0.721** 0.097 0.960*** 0.099

Intercept 0.565 0.586 -0.746 0.518

Pseudo R-squared 0.068 - 0.088

Sample Size 1100 1118

Number ever out 417 549

Log-likelihood -674.010 -706.376

Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table A2: Testing for the attrition bias 1994 -2004, log consumption regressions

[Total] [Present in 2004] [Difference]

Coef SE Coef SE Coef SE

Age of head 0.015 0.010 0.027** 0.012 -0.03 0.023

Age of head sq. -0.013 0.011 -0.020* 0.012 0.016 0.021

Head, male -0.004 0.054 0.065 0.066 -0.201* 0.114

Head, primary schooling completed 0.179*** 0.058 0.259*** 0.072 -0.189 0.121

Head, jun-sec schooling completed 0.394*** 0.082 0.516*** 0.102 -0.316* 0.171

Head, secondary schooling completed 0.552*** 0.088 0.741*** 0.108 -0.471** 0.185

Head, tertiary schooling completed 0.898*** 0.1 0.967*** 0.13 -0.175 0.205

Head, employer 0.613*** 0.147 0.705*** 0.207 -0.058 0.298

Head, own-account worker 0.144** 0.06 0.126* 0.075 0.057 0.125

Head, civil/public servant 0.065 0.069 0.093* 0.084 -0.020 0.147

Head, private sector employee 0.141 0.102 0.018 0.124 0.369* 0.215

Head, casual worker -0.123* 0.077 -0.185* 0.092 0.176 0.164

No. of own-account worker members -0.052 0.046 -0.044** 0.051 -0.030 0.116

No. of civil/public servant members 0.090*** 0.032 0.094** 0.036 -0.014 0.075

No. of private sector employee members 0.177*** 0.036 0.192** 0.05 -0.019 0.073

No. of casual worker members -0.220*** 0.05 -0.186** 0.058 -0.093 0.109

No. of unemployed members -0.119*** 0.021 -0.115** 0.025 0.0004 0.043

No. of out of labor force members -0.052*** 0.017 -0.074** 0.021 0.056 0.036

No. of children -0.123*** 0.013 -0.118*** 0.016 -0.014 0.027

No. of elderly -0.062 0.059 -0.050* 0.073 -0.001 0.124

Log real remittances from abroad 0.011 0.013 0.001** 0.016 0.029 0.028

Resides in Addis -0.121** 0.052 -0.109* 0.074 -0.026 0.108

Intercept 4.239*** 0.277 3.713 0.343 -0.527 0.349

Sample size 1097 690

R-squared 0.308 0.32

F-statistic 21.8 14.25
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Table A3: Testing for the attrition bias 2004 -2009, log consumption regressions

[Total] [Present in 2009] [Difference]

Coef SE Coef SE Coef SE

Age of head 0.007 0.008 0.012 0.012 -0.006 0.016

Age of head sq. -0.002 0.008 -0.010 0.012 0.009 0.016

Head, male 0.027 0.046 -0.002 0.067 0.062 0.094

Head, primary schooling completed 0.133** 0.053 0.228*** 0.075 -0.206* 0.108

Head, jun-sec schooling completed 0.353*** 0.069 0.315*** 0.096 0.056 0.140

Head, secondary schooling completed 0.515*** 0.069 0.490*** 0.102 0.032 0.141

Head, tertiary schooling completed 0.727*** 0.086 0.829*** 0.128 -0.193 0.174

Head, employer 0.289* 0.171 0.376 0.252 -0.201 0.346

Head, own-account worker 0.048 0.055 0.097 0.075 -0.110 0.111

Head, civil/public servant -0.023 0.065 -0.023 0.093 -0.026 0.132

Head, private sector employee -0.045 0.074 -0.009 0.111 -0.092 0.150

Head, casual worker -0.174** 0.076 -0.273** 0.123 0.127 0.158

No. of own-account worker members 0.002 0.043 -0.030 0.060 0.061 0.087

No. of civil/public servant members 0.058* 0.033 0.035 0.048 0.039 0.067

No. of private sector employee members 0.024 0.027 -0.019 0.039 0.081 0.055

No. of casual worker members -0.191*** 0.039 -0.183*** 0.059 -0.017 0.079

No. of unemployed members -0.125*** 0.019 -0.085*** 0.028 -0.069* 0.038

No. of out of labor force members -0.100*** 0.016 -0.112*** 0.022 0.029 0.032

No. of children -0.112*** 0.015 -0.122*** 0.021 0.016 0.030

No. of elderly -0.223*** 0.093 -0.310** 0.152 0.123 0.193

Log real remittances from abroad 0.046*** 0.007 0.052*** 0.011 -0.013 0.015

Resides in Addis -0.023 0.046 -0.051 0.060 0.042 0.106

Intercept 4.578*** 0.214 4.545*** 0.317 -0.033 0.315

Sample size 1118 569

R-squared 0.303 0.289

F-statistic 21.59 9.87
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