
 

 
 
 

Hosted by Resources for the Future 
1616 P Street, NW 

Washington, DC 20036 
202.328.5000 

www.rff.org/frontiersconference 

Apri l  2007 ,  revised July 2007     RFF DP 07-27 -REV  

D
IS

C
U

SS
IO

N
 P

A
PE

R  

 

The Economics of 
Spatial-Dynamic 
Processes 

Applications to Renewable Resources 
 

Mar t in  D .  Smi th ,  James  N .  Sanch i r i co ,   

and  James  E .  Wi len



The Economics of Spatial-Dynamic Processes:  
Applications to Renewable Resources 

 
 
 

Martin D. Smith 
Nicholas School of the Environment and Earth Sciences 

Duke University 
 

James N. Sanchirico 
Dept. of Environmental Science and Policy 

University of California, Davis 
 

James E. Wilen 
Dept. of Agricultural and Resource Economics 

University of California, Davis 
 

Abstract 
 

Spatial-dynamic processes in renewable resource economics pose difficult conceptual, analytical, 
empirical, and institutional challenges that are distinct from either spatial or dynamic problems. 
We describe the challenges and conceptual approaches using both continuous and discrete 
depictions of space and summarize key findings. Using a metapopulation model of the fishery 
and simulated economic and ecological data, we show that it is possible in certain circumstances 
to recover both biological and economic parameters of a linked spatial-dynamic system from 
only economic data. We illustrate the application empirically with data from the Gulf of Mexico 
reef-fish fishery. We conclude with a discussion of key policy and institutional design involved 
in managing spatial-dynamic systems.  
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The Economics of Spatial-Dynamic Processes: 
Applications to Renewable Resources 

 
“When one tugs at a single thing in nature, he finds it attached to the rest of the world.” John 
Muir 
 

I. Introduction 

A challenging class of environmental/natural resource problems emerges when ecological, 

physical, and economic systems are linked by spatial-dynamic processes. Some examples include 

epidemics, invasive species spread, animal disease transmission, subsurface contamination of 

porous aquifers, shoreline change, biological reserve site selection, provision of ecosystem 

services, and management of marine and terrestrial species. Each of these examples depend upon 

biophysical mechanisms that can be characterized by diffusion or dispersal processes. From a 

policy perspective, these problems pose familiar questions about when and how much regulatory 

effort should be used to mitigate the problems but also less familiar questions about where 

control efforts should be applied over spatial landscapes.  

The individual components of spatial-dynamic problems, namely space and time, are not 

new. For example, natural resource economics has a long-standing and well developed set of 

concepts formulated to address dynamic aspects of resource use. Early analyses of optimal 

intertemporal use of specific resources include Faustmann for forest resources [26], Hotelling for 

mineral resource extraction [38],1 Scott  for conservation issues [71], and Crutchfield and Zellner  

for fishery resources [19]. These treatments were refined in the 1970s, using newly developed 

dynamic programming and optimal control methods, ultimately becoming core concepts of the 

field of natural resource economics [90]. 

In a similar manner, economics has a long-standing tradition dealing with spatial aspects of 

economic activity. Early work by von Thünen [89] shows how autonomous economic decisions 
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produce spatial patterns of economic activity that exhibit, even on a flat featureless plain, 

heterogeneity in economic variables such as rents, crop choices, and production techniques. 

Modern variants of von Thünen models explain urban structure and the emergence of cities or 

patterns of production and consumption across space [28].2  Other advances introduce 

environmental amenities to explain how patterns of urban development are altered as a 

consequence [92,93,94].3   

In addition to conceptual work based on von Thünen, there is a considerable amount of 

research exploiting spatial variation and patterns in order to address important valuation 

questions. Using spatial sorting equilibrium concepts developed by Tiebout [84], a new class of 

models relies on spatial patterns in urban structure to infer values of local public goods (school 

quality) or public bads (air pollution) [25,52]. This line of inquiry has led to new methods for 

disentangling agglomeration and congestion externalities [5] and an empirical literature on 

valuing non-marginal environmental quality changes [73]. 

In two other papers in this issue, local environmental amenities play a central role. In 

Phaneuf et al. [57], environmental quality (of lakes) induces spatial sorting across recreation 

sites, but unlike traditional recreation demand models, the sorting process creates feedbacks on 

environmental quality.4 In Irwin et al. [41], local environmental amenities are the drivers of 

regional development, but their paper focuses on how human-environment interactions give rise 

to different dynamic paths and steady states.5  

While there are long-standing and evolving separate literatures on dynamic analysis of 

resource use and spatial processes in economic activity, there has been comparatively little 

analysis of problems for which spatial patterns are the outcome of the underlying dynamics. For 

a number of reasons, research addressing integrated spatial-dynamic processes is both needed 

and arguably overdue. For instance, many of the specific problems that motivate this general 
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class of problems are increasingly in the public eye. While epidemics and invasions are not new, 

they are certainly more visible recently and likely to become more prevalent as globalization 

intensifies. In addition, technological developments in remote sensing, GIS, and enhanced 

computational capacity are generating spatially explicit data at a very fine spatial resolution. As 

scientists examine these data, they are discovering patterns in the organization of the biosphere 

and human activities that beg explanation. Also, most scientific disciplines from which 

environmental and resource economics draw have become more spatially focused over the past 

two decades [9]. Finally, problems governed by spatial-dynamic processes pose interesting 

questions about how to design policies and institutions that account for how problems unfold 

over landscapes with predictable spatial-dynamics. 

This paper surveys recent and ongoing research on the economics of spatial-dynamic 

processes in renewable resources, provides an empirical application, and discusses opportunities 

for further analysis. Fundamental characteristics of spatial-dynamic problems in renewable 

resources include spatial heterogeneity in ecological features and the patterns of dispersal of 

organisms across space. For example, some habitats may be more productive or have special 

attributes that make them more suitable for some species than others. Spatial heterogeneity by 

itself, however, is not remarkable. The more important role is in conditioning patterns of 

dispersal. For example, if organisms disperse from high density to low density areas, population 

dynamics will be at least partially governed by movement and flow of organisms over the 

landscape. The dispersal processes that determine movement over space may reflect 

environmental forces, or they may be endogenous and dependent upon relative populations sizes 

over space. As we show, spatial heterogeneity and spatial interconnectivity pose special 

challenges on multiple fronts, from analytical and technical modeling, to derivation and 
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interpretation of optimality conditions, to challenging empirical problems, to the synthesis of 

policy conclusions from analytical work.  

In the next section, we discuss two analytical frameworks for spatial-dynamic problems, 

focusing particularly on the importance of dispersal and diffusion mechanisms. In the third 

section, we demonstrate, using a simulated data experiment, how coupled natural-human 

empirical modeling can be used to measure both economic and ecological parameters. Our 

particular focus is on whether we can recover the dispersal parameters in a discrete spatial model 

of fish population. We find that, in some circumstances, economic data alone are sufficient to 

understand linked spatial-dynamic systems. We then briefly illustrate the model with real data 

from the Gulf of Mexico reef-fish fishery. Though the application is a step towards empirically 

based spatial-dynamic management, converting it into practice for policy design will involve 

further empirical challenges. The final section discusses new institutional and policy design 

questions raised by spatial-dynamic processes. 

II. Modeling Spatial-Dynamic Processes 

The heart of spatial-dynamic models is the process that depicts the interaction between the 

object of study and time/space. When modeling these interactions, a methodological question 

arises on whether to model space continuously or discretely. The answer, of course, depends on 

the resource characteristics under consideration and the questions being posed. If the focus is rent 

gradients on land around a regional center, then a continuous framework might be appropriate. 

On the other hand, if the resource consists of sub-populations inhabiting patchy habitats with 

corridors linking sub-populations, then a discrete spatial formulation might be most appropriate. 

Mathematically, it is sometimes more convenient to work with continuous formulations when 

developing conceptual models. However, even with simple spatial-dynamic processes, 

researchers quickly reach the limits of finding analytical solutions. For insights about systems 
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with even modest complexity, numerical methods using discrete approximations are necessary 

[8]. This is not uncommon in mathematical modeling and does not necessarily undermine the 

generality of results, because a discrete space can be thought of as an approximation of a 

continuous spatial domain [46].  

In what follows, we begin with some models of diffusion based on a continuous spatial 

framework. We then switch to a discrete formulation in order to discuss specific results 

pertaining to realistic renewable resource systems.   

A. Continuous spatial processes 

Spatial-dynamic problems have characteristics that are relatively unfamiliar to economic 

modelers, namely 1) diffusion or dispersal processes; 2) boundary conditions; and 3) spatial 

geometry.  

Real biophysical processes exhibit a range of qualitatively different kinds of dispersal or 

diffusion processes.6 The simplest kind of diffusion process begins by assuming that a 

population (eg. cells, bacteria, animals, fish, insects) diffuses randomly over space. Consider a 

one-dimensional representation of space over a line. Suppose that the probability that a unit of 

the population N(x,t) will move left or right is equal. Then such a random diffusion process can 

be represented by the partial differential equation (PDE): 

2

2

N ND D
t x x x

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
N        (1) 

where time is indexed with t , space is indexed with x , and the (constant) diffusion coefficient is 

. This well known PDE describes Fick’s Law of diffusion. Equation D (1) generates a process 

whereby the flux of a concentration of particles (individuals) at a point will be proportional to the 

gradient of the concentration. 
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Suppose now that we have a population that disperses in a way described by (1) and that 

there is a release of  units at the origin. Then the concentration at some distance N0 x  at date t is: 

N(x, t) =
N0

2 π Dt
exp

−x2

4Dt
⎧
⎨
⎩

⎫
⎬
⎭

       (2) 

Equation (2), which is a closed-form solution of (1), describes a process by which the population 

spreads over space (Figure 1). Notice that units of the population diffuse from high density 

locations to low density locations at a rate that depends upon the diffusion coefficient .D 7  

The diffusion process depicted by the partial differential equation (1) and its solution in (2) is 

essentially the simplest spatial-dynamic processes that one might imagine. One generalization is 

an increase in dimensionality to depict diffusion in a 2-dimensional plane or 3-dimensional 

spherical space. Another generalization is to make the diffusion coefficient density dependent. 

For example, many insect populations are attracted (via pheromones) to high concentrations 

rather than repelled. Let the diffusion coefficient be density dependent so that: 

          (3) D(c) = D0 (N / N0 )m

where  and are constants and m > 0. The solution to a PDE with this type of dispersal is 

much more complicated than (2), and has a cross-sectional profile for which the concentration is 

more bunched near the original release point and there is no tail on the leading edge.  

D0 N0

Another natural generalization particularly important for describing renewable resource 

populations involves combining the diffusion process that describes how something spreads over 

space with a differential equation description of a growth process that occurs at each point. The 

most famous is the so-called Fisher reaction-diffusion equation [27]: 

 
2

2 (1 )N ND rN
t x

∂ ∂
= + −

∂ ∂
N        (4) 
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where r is the intrinsic growth rate. This spatial-dynamic equation describes a population as 

being influenced by random diffusion (the first part of the RHS) and density dependent growth at 

each point in space (the second part). This equation is impossible to solve in closed form, but the 

solution has been shown to exhibit a traveling wave characteristic, in that as time unfolds, the 

population moves as a wave front with a constant velocity 2v r= D . The speed of the 

wavefront thus depends upon the product of the diffusion coefficient and the intrinsic growth 

rate. 

Finally, physical forcing can affect the direction of movement in some biophysical media in 

an otherwise diffusive environment. For example, larvae in a marine environment may be 

influenced by dominant currents, so that whether an organism moves up or down-current is 

asymmetric. This is called advection. Suppose there is a small bias so that the probability of a 

particle moving right is larger than the probability of moving left, where V is the directional 

constant. Then the Fickian diffusion equation becomes: 

∂N
∂t

= D
∂2N
∂x2 − V

∂N
∂x

        (5) 

the solution of which exhibits an asymmetric spatial dispersal pattern relative to the origin [56].  

B. Boundaries and Spatial Geometry  

While the fundamental characteristic of spatial-dynamic processes is the diffusion or 

dispersal process, other important components are the geometry of space and the boundary 

conditions. In the real world, we see great diversity in both geometry and boundaries. One of the 

simplest and natural cases of a boundary condition for a terrestrial species is the perimeter of an 

island. The gypsy moth, which is radiating out in a wave front from its known point of 

introduction in 1869 near Boston, Massachusetts and moving at a rate of about 20 kilometers per 

year [49], will bump up against a fixed barrier when it reaches the Western edge of the continent. 
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Boundary conditions may be relevant because they influence the qualitative nature of the 

dispersal process, or they may be relevant because a policy setting suggests a boundary. For 

example, a government may view the relevant boundaries for control of an invasive as its 

political boundaries, even though the pest might actually move through these boundaries to 

neighboring political entities. As another example, plumes of subsurface contaminants spread 

through soils and into aquifers in ways well predicted by Fickian diffusion and hydrodynamic 

dispersion [43], calibrated by diffusion relationships that reflect the porosity and conductivity of 

soil. But the geometry and boundaries of particular cases may be fixed by aquifer edges, cap 

rocks, and other impermeable media. Similarly, every year flu epidemics spread from Asia to 

North America, entering at ports on the West Coast like Seattle and San Francisco, jumping to 

other airline hubs in Denver, Chicago and New York, and radiating out from those cities [88]. 

From a modeling perspective, some processes are sensibly modeled over an infinite one- or two-

dimensional space that absorbs an asymptotically disappearing concentration of particles. For 

other processes, the actual physical boundary is important because it constrains the damages. 

Modelers generally depict boundaries as absorbing, reflecting, or some hybrid characterized 

in terms of gradients. Absorbing boundaries imply that the state variable is zero at the boundary. 

This assumption is appropriate for species with passive dispersal that once pushed over a 

continental edge or boundary of an island can not return and experience 100 percent mortality. 

Reflecting boundaries bounce the diffusing particles back into the space (an enclosed aquifer), 

and zero flux boundaries depict a particle as orthogonal or at some other angle at the boundary. 

Finally, spatial geometry is important and dependent upon the mosaic that contains the spatial-

dynamic process. It matters whether the medium is homogeneous, or whether it contains spatial 

character such as bottlenecks, edges, hostile patches, and heterogeneous productivity.  

C. Bioeconomic Models with Continuous Spatial-dynamic Processes 
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Aside from characterizing the diffusion, boundary and spatial geometry of spatial-dynamic 

processes, the other analytical challenge relates to: 1) linking biological and physical system 

descriptions to economic system descriptions; and then 2) describing policy consequences, 

particularly under different institutional settings. We have models of open access, regulated open 

access, regulated restricted access, and sole-owner optimization that can be adapted to spatial-

dynamic settings. Consider the case of the first-best optimal exploitation plan for a resource. 

Resource economists are familiar with applications of dynamic optimization theory to 

conventional resource use problems that express the dynamics of resource stocks as ordinary 

differential equations (ODEs). The mathematics of these problems yields well-known solutions 

that are also systems of ODEs in the stock equations and the control or co-state equations.  

To illustrate how optimization of a system characterized by spatial-dynamic processes differs 

from conventional results, consider a renewable resource characterized by a Fisher reaction 

diffusion equation on a one-dimensional line. The population would then evolve over space and 

time in a manner determined by the harvest rate at each point, which we might assume to depend 

upon effort, E(x,t) , and a catchability coefficient, q(x,t), and biomass according to: 

 
2

2 ( , )(1 ( , )) ( , ) ( , ) ( , )N ND rN x t N x t q x t E x t N x t
t x

∂ ∂
= + − −

∂ ∂
   (6) 

Now, suppose that we define the relevant space over which this resource can survive in terms of 

some boundaries [ . Then the optimization problem can be written as: xl , xu ]

       (7) 
0

max exp( ){ [ , ]}
u

l

x

x

t B E N dtdxρ
∞

−∫ ∫

 subject to:  
2 2

2 2(1 ) { , }N N ND rN N qEN D g E
t x x

∂ ∂ ∂
= + − − ≡ +

∂ ∂ ∂
N  
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where the objective is to maximize some concave benefit function subject to the PDE state 

equation , spatial boundary conditions, and a set of initial conditions. Brock and Xepapadeas 

[10], hereafter B/X, characterize the solution to this problem. An important conclusion is that 

when the underlying system is a continuous spatial-dynamic system, the fundamental state and 

co-state equations of the optimized Hamiltonian are diffusion equations, expressed as partial 

differential equations (PDEs) in both time and space. The solutions to spatial-dynamic problems 

thus are derived from systems of PDEs that are notoriously more difficult to solve and 

characterize than systems of ODEs.   

 B/X find that the PDE system is “self-adjoint” in the sense that both PDEs have a common 

diffusion coefficient appearing with negative and positive signs. In the steady state, this property 

suggests that areas where the biomass variable generates flux (diffusion flowing from high 

biomass to low biomass areas) across a particular stretch of space, the corresponding co-state 

variables generates flux in the opposite direction (eg. from low shadow values to high shadow 

values). This mirrors a property of non-spatial systems, namely that low biomass levels imply 

high shadow values but it also suggests that the shadow value of another unit of biomass may 

differ depending upon where the biomass is located in space.8  

Aside from the structure that emerges from the modified spatial Pontryagin conditions, the 

set of assumptions made about boundary conditions also influence the nature of the solution. 

Boundary conditions generally characterize how the system’s initial conditions are embedded, 

and they also characterize conditions at the boundary of the spatial domain and at the terminal 

period. B/X derive modified Pontryagin conditions for the above spatial-dynamic problem that 

encompass various special cases regarding boundary assumptions. For example, B/X show that 

an absorbing boundary is equivalent to the non-spatial case with a fixed endpoint and a reflecting 

boundary is equivalent to requiring a solution to terminate on a spatial manifold. Finally, if one 
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wanted to eliminate the role of boundary conditions, it might be assumed that space is configured 

in a circle, so that the end point and beginning points are equal and the state and co-state 

variables do not jump at the boundary.9  

Any of these may be appropriate in a particular setting, depending upon the nature of the 

geometry and other features of the setting. The important point is that B/X [10] derive spatial 

transversality conditions that are analogous to more familiar conditions for non-spatial 

intertemporal optimization problems. These spatial transversality conditions can be chosen to fit 

the particular geometry and boundary conditions appropriate to the problem at hand, and they 

will influence the nature of the optimal solution accordingly. 

D. Discrete spatial-dynamics models 

In modeling populations over space, ecologists and population biologists often use 

formulations that are discrete in space for at least three reasons. First, populations are often 

distributed in discrete patches that reflect the underlying spatial heterogeneity in habitats, 

currents, and other biophysical conditions. Second, even if populations are distributed 

continuously over space, it is unlikely that policy instruments would be developed that are 

continuous rather than discrete. Policies such as a zonal access charges are more feasible than, 

for example, spatial taxes on harvesting effort that vary continuously across an entire coast or 

terrestrial landscape. Finally, the mathematical challenges of solving PDEs almost always lead 

researchers to approximate the continuous spatial domain by a “sufficiently finely reticulated 

patchy environment” [46, p. 288].  

A discrete approximation to the continuous Fisher reaction diffusion in equation (4) is  

 
1

(1 )
j

j j
j j jk k j j j

kj

dN N
r N d N q E N

dt K

Ω

=

= − + −∑      (8) 

 12



where the spatial domain (x) is subdivided up into a set of discrete patches j=1,…,Ω  and the 

continuous dispersal process is replaced by the terms in the summation.10 The dispersal 

coefficients, djk, reflect the rate at which biomass moves from one patch to another. The own 

dispersal rate (rate of emigration) is assumed negative (djk<0 with j=k) and the cross patch 

dispersal rates are positive when the patches are connected to each other (djk>0 with j≠k). 

Restrictions can characterize various features of dispersal. For example, the “adding up” 

assumption that whatever leaves patch j for patch k arrives in patch k from patch j is consistent 

with no mortality in the dispersal process and no deviations in movement along the dispersal 

route.11 Because not every patch need be connected to every other, Ωj represents the set of 

patches in Ω  that are connected to patch j. 

A typical assumption regarding the dispersal mechanism in these models is that biomass 

moves from areas of high concentration to areas of low concentration, everything else being 

equal. This is a passive dispersal mechanism, as opposed to migration which is directed 

movement in space.12 The simplest representation of such a process depicts the dispersal 

mechanism between patch one and two as 11 1 12 2 2 2 1 1[( / ) ( / )]d N d N a N K N K+ ≡ − , and between 

patch two and one as , where a is a common dispersal rate 

and Kj is the carrying capacity in patch j. The intuition is that patches with higher density generate 

greater competition for food and space, driving organisms to seek more favorable conditions in 

lower density patches. 

22 2 21 1 1 1 2 2[( / ) ( / )]d N d N a N K N K+ ≡ −

In a discrete system, advection processes that led to organisms or particles moving in one 

direction with more likelihood than another can be modeled through differences in rates of 

dispersal. For example, a limiting case of advection is a source-sink system where the source 

patch j contributes biomass at rate djk to sink patch k (djk>0) but no biomass from patch k 
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disperses to patch j (dkj=0). A stepping stone model, where patches are aligned linearly and 

dispersal is unidirectional from one end to the other, is an alternative structure that can capture an 

advection process. Other spatial configurations reflecting either spatial geometry or physical 

processes can be depicted with restrictions on the dispersal rates; examples include a circle, 

nearest neighbor, fully-integrated, and independent systems [65]. 

The patchy population dynamics depicted in (8) describe a class of models from ecology 

called metapopulation models. A metapopulation is a system of local populations occupying 

discrete habitat patches with significant demographic connectivity between patches [62].13 While 

the concept of a metapopulation is the cornerstone of the main paradigms in terrestrial 

conservation biology [62], its application to the marine context is relative new. As Joan 

Roughgarden, a prominent mathematical ecologist stated, the “m[M]etapopulation concept is 

here to stay in marine ecology. Science demands it, fisheries management needs it, and it is the 

last hope for marine conservation. …it marks the most important milestone of marine ecology in 

more than 50 years.” [44, p. xix] 

A spatial bioeconomic metapopulation model integrates the population dynamics in equation 

(8) with a model of user behavior that incorporates economic determinants of the distribution of 

effort across space and time. One determinant of the effort distribution is the institutional context 

within which exploitation takes place.  If the ownership scale encompasses the whole range of 

the metapopulation, then we might expect that effort distributions are made to optimize utility or 

profits. Some noteworthy examples of models of optimization-based bioeconomic 

metapopulations include analyses of how to control dispersal of a pest population (beaver) from 

an unmanaged patch to a managed patch [6,7,8,39,45] and a model of the spatial movements of 

elephants that generate value from wildlife viewing but also create damages by destroying crops 

[70,75]. Clark presents an optimized two patch model of a biological population dispersing 
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between inshore and offshore areas[13],14 Brown and Roughgarden illustrate the optimal value 

of a larval pool to system wide fishery profits [11], and Janmaat investigates the implications of 

different governance regimes across a patchy system [42].15  

In the marine context, it is often assumed that fishing is conducted under open access, where 

effort responds myopically to profitability via entry and exit [29,82]. Sanchirico and Wilen 

generalize the open-access entry/exit adjustment mechanism to a spatial-dynamic fishery to 

characterize the way effort moves across space and over time [66]. Other things equal, these 

spatial forces tend to redistribute effort in a manner that, in the long run, equalizes average net 

rents across all patches at the common opportunity cost. While the dynamic path in each patch 

exhibits oscillatory convergence that we see in a one-patch system [82], the interactions between 

the biology and profitability of each patch generate more intricate paths of convergence with this 

bioeconomic system. For example, patches that are closer to their natural carrying capacities will 

"feed" other patches via dispersal, thus speeding the process of system convergence to long run 

equilibrium. In addition, other things equal, patches with higher biomass levels will attract 

vessels from other patches with lower levels, also reinforcing the ability of low biomass patches 

to catch up with higher biomass counterparts. Biological and economic dispersal thus both act as 

system averaging forces, smoothing out the influence of bioeconomic heterogeneity, and linking 

the inherently dynamic process of convergence across space [67].  

 Once the system converges to the steady-state, the level of own biological growth in each 

patch will be exactly offset by the total net dispersal between the patch and other linked patches, 

and the harvest in the patch in question. In addition, in an open-access fishery, net rents will be 

identically equal to zero in each patch, leading to a rent-dissipated economic equilibrium over 

time and space. This combined bioeconomic equilibrium will be a non-homogeneous equilibrium 

in the sense that there will be some dispersal of the population across space in equilibrium, even 

 15



though the population size and the fleet size in each patch is constant [66]. The flux in the system 

arises out of the biological system and not the economic system, however, since each patch’s 

population size is maintained by the balance between own patch natural growth and harvesting, 

and system wide immigration or emigration to and from the other patches. This is not something 

we see regularly in economic models and it is a particular feature of some systems driven by 

spatial-dynamic processes. Finally, the open-access spatial equilibrium will not be the optimal 

way to distribute effort over space, of course, since it is the outcome of a myopic, open-access 

process and it will also be the case that too much effort will be drawn into the whole system.  

III. Empirical Challenges and Opportunities 

We argue in Sections I and II that a critical component of spatial-dynamic systems is the 

dispersal or diffusion mechanism linking space and time. The degree of scientific knowledge 

about these processes depends on whether the system is easily observed and measured. For 

example, measuring diffusion of liquids (water, oil, contaminants) in permeable soils is difficult 

because of the heterogeneities in subsurface soil structure as well as inclusions and barriers that 

are difficult to observe. Similarly, populations of adults and juveniles moving in time and space 

in marine systems are hard to measure because they often cannot be directly observed. But the 

manner is which spatial-dynamics are determined jointly from both biophysical and economic 

processes raises a provocative question: can bioeconomic observations be exploited in order to 

infer and measure unobserved dispersal coefficients?  In other words, can we observe human 

users of a spatial-dynamic marine system and infer anything about the underlying biological 

structure generating their behavior? 

The logic behind these questions exploits the fact that harvesting may perturb metapopulation 

dynamics in ways that generate useful variation in biomass levels and dispersal [66,68]. For 

marine populations, these perturbations may reveal system characteristics in ways that are 
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measurable by observing the behavior of fishermen on the surface of the system. In this section, 

we demonstrate that it is indeed possible to observe fishing behavior in ways that facilitate 

estimating the parameters of a spatial-dynamic system.  

There is a long history of estimating biological parameters from economic data in a fishery 

that dates back to Schaefer [69], but to our knowledge, fishery data has not been used previously 

to recover parameters of a spatial-dynamic process.16 The essence of Schaefer’s problem is that 

fish stocks are unobserved, but catches and fishing effort are observed. These quantities from the 

fishery are linked to fish stocks through a production function, and this linkage allows one to 

substitute observables recursively into the biological state equation and estimate parameters.17  

In what follows, we generalize these methods to estimate bio-physical parameters of spatial-

dynamic processes using a discrete-time version of the Sanchirico and Wilen model [66]. Using 

simulated data that represents the data often available in fishery settings, we estimate biological 

parameters of a three-patch source-sink and fully integrated system. We also show how in a 

second stage regression we can recover the relevant economic parameters. We then expand our 

analysis to consider observation error (e.g., error in the observed harvest rates) into the analysis 

to see how it affects parameter recovery in a spatial-dynamic context. Finally, we illustrate our 

method with real data from the Gulf of Mexico reef-fish fishery. 

A. Modeling spatial-dynamic process with fishing micro-data 

Let j index own patch population dynamics in a metapopulation system with J total patches. 

Following equation (8), the state equations are of the following form: 

1 1 jt
jt jt j jt jj jt jk kt jt jt

k jj

N
N N r N d N d N H

K
ε+

≠

⎛ ⎞
= + − + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑      (9) 

In the ecology literature,ε is known as a process error. As in (8), we use a Schaefer harvest 

function to link the economics: 
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TOT
jt jt jtH qN E= ,        (10) 

where 
1

n
TOT
jt ijt

i

E E
=

= ∑ is the total effort in patch j at time t adding up across all i=1,..,n fishery 

participants, where i represents a fisherman. Defining the aggregate patch catch-per-unit effort as 

z, we can rewrite the state equation as: 

( ) ( )21
2

1 j jjjt j kt
jt jt jk j

k jj

r dz r zz z d H
q q q K q t jtε+

≠

+ + ⎛ ⎞−
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ + .  (11) 

Note that we are assuming no observation error, i.e. the harvest functions hold without error.18 

Multiplying both sides by q, we have a linear estimating equation for each patch (with a total of J 

patches) that is solely in terms of observables: 

( )2 *
1 1 2

1

J

jt jk kt jJ jt jJ jt jt
k

z z z Hβ β β ε+ + +
=

= + −∑ +      (12) 

Two notes are in order. First, the number of parameters in each equation grows with the number 

of patches, and the number of equations also grows with the number of patches. Together, the 

total number of parameters grows by the square of the number of patches. In a similar manner, a 

spatial weighting matrix in spatial econometrics grows with the square of spatial 

interconnections, increasing the computational burden. But in our case, the issue is identification 

and not necessarily computation. Second, the diagonal elements of the dispersal matrix are not 

separately identified from intrinsic growth. In what follows, we discuss various approaches to 

address this problem depending on the structure of the interconnectedness in the metapopulation.  

One could proceed to generate simulated data from the biological state equations and 

generate random economic data as a Monte Carlo design. However, we are interested in querying 

the system to find circumstances—both bio-physical and economic—that are likely to generate 

data that will resolve the true structure. Thus, we choose a behavioral model structure that is 
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consistent with empirical studies of fishing behavior over space and time [23,24,35,78]. To that 

end, we use a discrete choice framework to generate the economic data. Suppose that there are n 

permitted fishing vessels in a limited entry fishery. We index the vessels by i. For simplicity, we 

match the time scale of fishing choice occasions to the time scale of the biological dynamics, so t 

indexes the choice occasion.19 Denote fishing site as j as in the biological model, and following 

Smith [76], we also model the alternative of not fishing ( j = 0 ). The utility of each choice ( U ) 

can be broken into a deterministic and random component: 

 ijt itj ijtU v η= +          (13) 

For simplicity, as a starting point we will assume that the ijtη ’s are i.i.d. Type I Extreme Value. 

The deterministic portion of utility from not fishing is value of some outside opportunity (α), 

which reflects the value of leisure or wages from another employment activity. The deterministic 

portion of a fishing alternative is the profitability of fishing, which includes revenues from 

fishing, a fixed cost of taking a trip (bait, ice, etc.) denoted by c, and travel cost ( lφ ): 

 
, 0

, 1,2,3,...itj
t ijt ij

for j
v

p h c l for j J
α

φ
=⎧

= ⎨ − − =⎩
     (14) 

where h is individual expected harvest, p is price of fish, and is the pairwise length of roundtrip 

travel distance from individual i’s port to patch j. These distances introduce a source of spatial 

variation in the spatial gradient of costs that is potentially independent of spatial variation in the 

bio-physical gradient. Outside opportunities (α) could also vary systematically over space and 

time in ways that are uncorrelated with spatial-dynamic processes in the water, but we assume 

this away initially. Our assumption of no observation error effectively means that actual harvest 

is expected harvest, but it is important to note that in empirical settings the two are not 

ijl
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equivalent. Given the Schaefer production function and noting that E takes on a value of 1 if the 

site is chosen and 0 otherwise, we can substitute to form the random utility: 

 
, 0

, 1,2,3,...
ijt

ijt
t jt ij ijt

for j
U

p qN c l for j J

α η

φ η

+ =⎧⎪= ⎨ − − + =⎪⎩
    (15) 

Here we see that the spatial bio-physical gradient enters through the patch-specific stocks.  

In the static random utility maximization framework (RUM), the individual is assumed to 

select the choice with the highest utility for each choice occasion. The analyst observes 

components of deterministic utility but not the idiosyncratic error term. As a statistical problem, 

with data on trips to each location, prices (varying over time), stocks (varying over time and 

space), and travel distance (varying over space), one could estimate three parameters from this 

model: q, φ, and (-c-α). In McFadden’s conditional logit model [50], these parameters are only 

estimated up to scale. Note also that only the sum of the outside opportunity and the trip fixed 

cost can be identified because there is only one constant in the utility differences. In what 

follows, we use the RUM framework combined with the spatial-dynamic state equations to 

generate simulated data, then recover bio-physical parameters in a first stage using aggregate 

data, and recover economic parameters in a second stage using disaggregate data. Because 

catchability is identified in the first stage, we can recover the scale coefficient in a second stage 

by substituting in the stock index. This allows us to give an explicit structural interpretation to 

each parameter.  

B. Modeling a source-sink system 

As a starting place, we assume a 3-patch (j=3) source-sink dispersal system. The source-sink 

system captures the potential for oceanographic features such as currents and bathymetry to 

influence the spatial diffusion process by influencing flows of larvae and/or adults. In a source-

 20



sink system as long as the spatial adding up exists ( jj kjk j
d

≠
= − d∑ ), the issue of identification is 

not a problem. In words, the outflow from patch j must exactly equal the inflow from patch j to 

all other patches. Appendix A describes the algorithm for generating simulated data. 

To recover the bio-physical spatial-dynamic parameters from the simulated data set, we first 

estimate the reduced-form parameters in (12). Note that only aggregated catches and catch-per-

unit-efforts enter the estimation equations, so in the first stage we add up across all of the 

individuals. Because the model is linear in all of the observables, estimation can be done using 

Seemingly Unrelated Regression (SUR) and imposing the cross-equation restriction 

2 2 , ,jJ kJ j kβ β+ += ∀  (to account for the assumption that catchability is the same over space). The 

next step is to transform the reduced-form parameters into the structural parameters using (11) 

and (12). See Appendix B. 

Table 1 contains a summary of 100 simulated data experiments with 100 periods (T=100) and 

100 individuals (n=100). Individuals are distributed randomly over space with mean travel 

distances of 3, 2, and 1 for patches 1, 2, and 3. The top set of results in Table 1 reports summary 

statistics of the recovered structural parameters assuming that we know the true connectivity 

structure of the spatial system. That is, we know which elements of the full dispersal matrix are 

zero. In this case, the form of the source-sink system imposes four restrictions. There are thus 

nine free parameters to estimate (compared to 13 in a system where each patch is connected to 

every other patch). For all parameters, the mean and median are close to the true value. Even the 

minima and maxima are qualitatively correct for all parameters except d21 and d31, for which the 

minima are negative. As in any Monte Carlo experiment with an unbiased estimator, the spread 

of the resulting parameter estimates is a function of how much noise the analyst injects into the 

system. Thus, the top half of Table 1 primarily serves to illustrate that, in principle, one could 
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recover all of the bio-physical parameters of a spatial-dynamic system from economic data alone. 

To our knowledge, this type of analysis is novel, though the availability and reliability of 

spatially-explicit fishing logbook data makes the exercise possible.20

The bottom half of Table 1 demonstrates that in some circumstances, a lack of information on 

the structure of the dispersal matrix does not preclude the recovery of the structural parameters. 

The structural coefficients do not appear to be biased in spite of including regressors that should 

not be included. This is a reflection of the underlying structure of our data generating process and 

the properties of SUR; inclusion of additional regressors should only affect efficiency. We can 

see this efficiency loss simply by comparing the standard deviations across sets of coefficients in 

the top and bottom half. There is more spread in the bottom half. Appendix C reports results for 

increased process error and a different set of source-sink parameters. Qualitatively, the same 

conclusions hold.  

In principle, one could test down from the unrestricted model to the true model. Suppose that 

we know which joint restriction to test. In each 100 cases summarized in Table 1, we perform a 

likelihood ratio test and find that we fail to reject the restriction 98 times. That is, when we know 

the proper restriction to impose, we only incorrectly reject it 2 times out of 100. Nevertheless, it 

is important to consider that real world data will not necessarily conform to the data generating 

process of our simulated data environment. Quantitatively, we may be able to recover the 

parameters from economic data alone, but the efficiency of these estimates is hampered by 

spending degrees of freedom on incidental spatial parameters. This problem is likely exacerbated 

by the multicollinearity of stocks over space.  

Our ability to understand bio-physical spatial-dynamic processes may require that 

metapopulation ecologists, population geneticists, and physical oceanographers specify the 

qualitative structure of spatial dispersal. With the expansion of remote sensing, GIS, GPS, and 
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fish tagging technologies, the provision of qualitative information is not an unrealistic possibility. 

If scientists are able to tell us that the probability of something flowing from A to B is very low 

but the probability of something flowing from B to C is high,21 economic data may be able to 

tease out how much.  

In the absence of qualitative information about spatial structure, our simulated data 

experiment raises questions about the circumstances under which economic data can reveal the 

true structure under various spatial configurations. Given our data generating process, when we 

know the set of restrictions to test, we are able to test down accordingly. A natural question to 

ask is: is there is a logical order in which to test down from the general dispersal matrix when we 

do not know the restriction to impose? Since we have established that the economic data can, in 

principle, allow the recovery of spatial parameters, designing an econometric approach that will 

distinguish different types of spatial structure becomes an important question for future research. 

This endeavor will be complicated by empirical realities of matching spatial scales. Fishing 

grounds, as reported in logbooks, are not necessarily the same as patches in a metapopulation. 

Moreover, the stacked-equation approach that we develop above implicitly assumes a discrete 

rather than continuous space. Matching the discreteness of spatial locations in logbooks with a 

continuous-space model will provide a different set of challenges. 

 Though there are further issues to address in the recovery of bio-physical spatial-dynamic 

parameters, we can use a second stage to recover economic parameters. Continuing with the 

assumption that we do not observe stocks directly, we use catch-per-unit effort as a proxy in the 

second stage. Because jt
jt

z
N

q
= , q cancels in (15) and the coefficient on  is one.t jtp z 22 The 

simplicity of the stock index is a result of the Schaefer production function, but the result is 

general; we can substitute out the stock in individual expected harvest with an aggregate measure 
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because individuals fishing in the same place at the same time are facing the same stock. By 

estimating the conditional logit model, we thus recover the otherwise unidentified scale 

coefficient. Note that whether we know the true structure of the bio-physical system does not 

affect the second stage estimation; the model and data are the same, and we need only know the 

linking function (a production function in this application). Table 2 contains results of 100 runs 

to recover structural economic parameters. The true scale coefficient is 2.0, so not surprisingly 

we see that the raw estimates are approximately one half their true values. After using the 

revenue coefficient to transform the remaining coefficients, the recovered structural parameters 

are close to the true values. These results, combined with Table 1, illustrate a complex sorting 

equilibrium that emerges from the interaction of human agents with a spatially heterogeneous 

natural system [57]. Our ability to measure all parameters of interest is not due to the system 

being in a spatial-dynamic steady state; instead, we are able to exploit a sequence of non-price 

equilbria that are imposed bio-physically by virtue of the state equations holding in each period 

and our knowledge of a bioeconomic link through the production function. Nevertheless, it is 

critical to note that by assumption we avoid cross-scale interactions studied in Irwin et al. [40]. 

Our human-environment interaction unfolds on the same time and spatial scale, an assumption 

that facilitates tractability but may be problematic for real systems.  

C.  Modeling a fully-integrated system 

In contrast to a source-sink system, a fully-integrated system is expected to characterize 

spatial dispersal of adults where they can get from any patch to any other in the system directly. 

The dispersal mechanisms are due to ecological effects such as crowding and competition for 

food resources [66]. If the population in patch 1 relative to its carrying capacity is higher than the 

population in patch 2 relative its carrying capacity, then we expect flow from patch 1 to patch 2. 

Dispersal based on relative densities in a fully-integrated system imposes a particular structure 
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on the dispersal parameters in equation (9). Because of symmetry in the state equations, we only 

illustrate the equation for patch 1 in a three-patch system: 

1 32 1 1
1 1 1 1 1 1 2 1 1

1 2 1 3 1

1 t
t t t t

N NN N NN N r N a a H
K K K K K tε+

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + − + − + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (16) 

Rearranging equation (16) and the correspond equations for the other patches, the dispersal 

system can be expressed with the following dispersal matrix D: 
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As in the source-sink system, there are three adding up restrictions. However, the complication 

of estimating this model with SUR is that the model is overidentified, and restrictions on the 

model to exactly identify it involve nonlinear implicit functions.  

Table 3 reports results from the SUR estimates based on 100 Monte Carlo data sets generated 

by a fully-integrated system. In spite of overidentification, the means and medians of the 

parameter estimates track the true parameters. The true value of a1 is 0.25. Using d21 and K1 to 

recover a1, we find 0.23019, whereas using d12 and K2, we find 0.2569. Although these values 

differ, for purposes of optimizing the spatial-dynamic bioeconomic system (as in [68]), we need 

the dispersal matrix itself and not necessarily the underlying structural parameters of it (a1, a2 , 

and a3). Thus, we argue that our numerical experiments provide some reason for optimism in 

using economic data to estimate bio-physical parameters of a spatial-dynamic system. 

Nevertheless, as the number of patches grows, the number of structural parameters in a density-
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dependent system also grows. Whether an estimated overidentified dispersal matrix diverges 

more or less from the true dispersal matrix requires further exploration.  

Setting aside the qualitative spatial structure, our simulated data experiments provide 

quantitatively reasonable estimates of the true parameters because we build in sufficient variation 

in the data generating process. When will this be true for real-world data sets? Many systems are 

either limited entry (like our simulated data experiment), open access, or regulated open access. 

In all cases, participants over the long run have an incentive to dissipate rents over space [63]. 

For our particular setting, this generates spatial correlation in stocks. Biological and economic 

gradients may combine in a manner that generates large or small amounts of variation in 

economic data. One hypothesis worth examining is that offsetting biological and economic 

gradients will generate more variation and make it easier to recover spatial parameters from 

economic data.23

D. Incorporating observation error 

The empirical population dynamics literature has long recognized that process error, i.e. 

stochasticity in stock-recruitment relationships, is just one complication; models that construct 

observable indices for the unobservable stock must also account for observation error. Here we 

conduct experiments in the fully-integrated system that include observation and process error.  

In the context of using economic data from a fishery to recover stock dynamics, the 

observation error problem amounts to the production function, i.e. our equation (10), involving 

an error term. When the catch-per-unit effort is then substituted into the state equation, the 

resulting estimation problem will suffer from errors-in-variables bias. This problem was 

diagnosed in the fisheries literature by an economist [87] and has since drawn considerable 

intellectual attention from biologists, fisheries managers, and economists. To add observation 

error, we rewrite equation (10) with an individual-level error as:  
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where ( 2ln ~ 0,ijt N )ξξ σ . While still a simple production function, this error structure is 

consistent with much of the fisheries production literature that estimates harvest functions in 

logarithms.24 Because we know that intrinsic growth and carrying capacity in a single-equation 

model will be biased, we explore the spatial system with a larger number of simulations in order 

to see how significant these biases are.  

Table 4 reports simulations of the fully-integrated system with 5,000 Monte Carlo data sets 

for three different levels of observation error ξσ : 0.1, 1.0, and 2.0. Not surprisingly, biases are 

small with low observation error. This is consistent with the literature that empirically estimates 

single-equation stock dynamics. As observation error increases, bias grows but in a way that is 

different across types of parameters. In particular, the traditional logistic growth parameters and 

catchability become nonsensical as observation error becomes very large ( ). In these 

cases, median intrinsic growths and catchability are negative, and median carrying capacities are 

more than three times their true values. These results echo a principal concern of population 

biologists, namely that observation error can render the recovered population parameters 

misleading for management purposes [58]. However, the biases in the dispersal matrix remain 

relatively small even in the presence of very large observation error. Qualitatively, the means and 

medians all have the correct signs, and all of the dispersal parameter medians are within a factor 

of two of the true values. This suggests that economic data, even without accounting for 

observation error, can be helpful in understanding spatial-dynamic bio-physical processes. 

Although this result is surprising, our numerical experiments do not establish its generality, 

warranting further research.  

2.0ξσ =
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E. An Empirical Example 

We use data from the Gulf of Mexico reef-fish fishery to estimate the first stage of a three-

patch model of population dynamics. The goal is to illustrate how spatial-dynamic parameters of 

the biophysical process can be recovered from economic data alone. As such, we do not attempt 

to control for observation error and simply acknowledge this as a limitation. The data set 

aggregates across individual vessels, species in the reef-fish complex (a collection of 60 species), 

and gear types reported in vessel logbooks (from NOAA Fisheries).25 See Smith et al. [81] for a 

full description of the data. We also aggregate across days into monthly time steps and across 

space from thirteen National Marine Fisheries Service zones into three areas. Fishing effort is 

defined as a vessel trip day, and catch is the total pounds of reef-fish caught in the month. Our 

Area 1 contains NMFS zones 1-4 from the southern tip of the Florida Keys to roughly one third 

of the way up the peninsula. Our Area 2 includes NMFS zones 5-8 from the Tampa area up the 

rest of the peninsula and wrapping around to midway across the panhandle. Our Area 3 includes 

NMFS zones 9-13 extending west across Alabama and Mississippi to the mouth of the 

Mississippi River. By assumption, our total spatial domain neither interacts with areas further 

west in the Gulf nor with the South Atlantic and Caribbean.  

The top panel of Table 5 reports reduced-form parameter estimates from the unrestricted 

SUR model on our empirical application, and the bottom panel reports the recovered structural 

parameters of the spatial-dynamic system. Unlike in the Monte Carlo experiments, we allow for 

spatially-explicit catchability coefficients. Moreover, to account for the fact that some reef-fish 

species aggregate to spawn (generally in the first four months of the year), we add dummy 

variables to introduce spawning variability in catchability. Because of how q enters the reduced-

form equation (14), the seasonal feature adds two parameters to each estimating equation in the 

SUR system. We recover the structural parameters from the first five rows of the top panel and 
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simply allow the other parameters to absorb seasonal noise. While admittedly somewhat ad hoc, 

this allows us to avoid estimating a structural model that is nonlinear in the parameters.  

Conditional on our assumption above, the recovered parameters in the bottom panel of Table 

5 are all reasonable. The intrinsic growth rates, cathabilities, and carrying capacities are all 

positive as theory predicts. The differences in these parameters across areas suggest that there is 

spatial heterogeneity in this system, though we do not do a formal statistical test. Examining just 

the point estimates, the spatial system is one in which the resource flows counterclockwise from 

Area 1 to Area 3 (note the negative own dispersals for Areas 1 and 2 and the positive own 

dispersal for Area 1). This apparent flow is in the opposite direction of the Loop Current in the 

Gulf of Mexico [34], though it is unclear how that current affects reef fish.26 A closer 

examination shows that only three of the dispersal parameters are statistically significant. Both 

d21 and d12 are positive and significant, suggesting flows back and forth between these areas. 

This could be an indication of a fully-integrated system and flows based on relative densities. 

Perhaps the most interesting feature of the recovered parameters in Table 5 is that adding up the 

implied carrying capacities (roughly 35 million pounds) is consistent with spatially aggregated 

estimate from a naïve estimator in Zhang and Smith [96] (roughly 39 million pounds).27  

IV.  Institutional and Policy Design Issues 

The purpose of modeling spatial-dynamic processes, estimating parameters, constructing 

simulation models, and subjecting these to various optimization techniques is not only to 

understand the nature of the human/ecosystem interactions, but also to suggest policies that 

might be used to control such systems. A few preliminary points have emerged from the small 

number of papers developed in this area to date. First, for renewable resource models, there is an 

optimal shadow price of biomass that varies over both time and space [68]. The shadow price at 

any point in space accounts not only for the contribution of a marginal biomass change to own 
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profits at that point in space, but also to the marginal contribution (via diffusion or dispersal) to 

profits in all other patches. This implies that optimal policies must be determined over the entire 

landscape, or at least over subsets of systems that are linked and connected. The policy questions 

that are raised by this finding are several. What kinds of policies (e.g. taxes, quotas) are capable 

of resolving the spatial-dynamic externalities?   How costly are spatially (and temporally) 

differentiated instruments to implement and monitor, and what is the efficiency payoff of doing 

so?  How do the costs and benefits depend upon fundamental bioeconomic parameters and the 

structural nature of the diffusion system?  What kinds of decentralized institutions are feasible 

and how should they be designed?  Is there a role for decentralized cross-patch negotiation to 

resolve spatial externalities?  What kinds of institutional designs would foster spontaneous 

decentralized arbitrage? 

Given the complexity of these spatial-dynamic systems and the challenges of designing 

policies in such a context, another critical role for empirical work is to parameterize ex ante 

policy analyses of real spatial policy proposals. Even if real-world proposals do not originate 

with empirical estimates of spatial-dynamic processes, empirical estimates can answer positive 

questions about how these policies are likely to perform. Consider, for example, the proliferation 

of proposals from natural scientists to form new marine reserves or no-take zones. Most of these 

have been proposed with little concrete understanding of either the underlying spatial dynamics 

or information about economic costs and benefits.28 In an empirically-based ex ante spatial-

dynamic model, Smith and Wilen [79] show that conclusions about the fishery effects of marine 

reserves reverse when one accounts for fishing behavior, and these reversals are reinforced in a 

model that allows for spatial adjustments across fishing ports [80]. Sanchirico et al. [65] and 

Costello and Polasky [16] illustrate that the optimality of reserves hinges on the ability to control 

effort spatially in other locations.  
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Sanchirico and Wilen [68] examine conceptual issues of institutional design by 

characterizing first- and second-best optimal policies in a simple two patch metapopulation 

model. A system with bioeconomic heterogeneity will call for integrated system-wide solutions 

that account for parameter differences as well as the nature of interconnections. In an example 

with adult migration responsive to relative densities, it is optimal to adjust biomass so that 

dispersal flows from low profit to high profit patches. The equilibrium is a “flux equilibrium” in 

which effort and population densities are constant, but which maintains the equilibrium with flux 

across patch boundaries. The task of management in this spatial-dynamic system is thus one that 

jointly manages not only patch-specific profit differences, but also the flows of dispersal between 

patches in order to maximize system-wide returns. 

These results suggest that the conventional “whole fishery” paradigm of managing a fishery 

as if it is a homogeneous single stock will be inefficient if it is a metapopulation. A 

metapopulation will require the spatial differentiation of policy instruments in ways that account 

for spatial externalities. For a fishery, this could mean, for example, patch-specific total 

allowable catches (TACs), or patch specific limited entry licensing programs, or patch specific 

landings taxes and/or individual quota programs. This kind of instrument proliferation would be 

costly of course, raising the question: what if the regulator is unable to set policies at the 

necessary spatially scale for a first-best outcome? Suppose that it is only possible to use one a 

single, undifferentiated instrument, such as a landings tax rather than spatially differentiated 

landings taxes. How would one optimally set such a tax and what would the implications be?  In 

a two-patch fishery example, the inability to implement spatially explicit policies leads the 

regulatory authority to “over-conserve” the high cost patch and “under-conserve” the low cost 

patch where the magnitude depends on the degree and nature of connectivity in the system [68]. 

Similar conclusions are in Wilson et al. [92], who also investigate the policy implications of 
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mismatched scales in a fishery context. In general, the results accord with intuition in the sense 

that optimal second best policies average or blend the spatially differentiated results. With an 

inability to utilize spatially differentiated instruments, the system cannot be as finely tuned as 

with first best instruments. As a result, overall fishery rents are lower, total effort is mismatched 

over space, and the biomass levels are not optimally adjusted to take advantage of the possibility 

of “farming” the system or aligning the dispersal and economic gradient.  

These conceptual descriptions of optimal policies also raise important practical institutional 

design questions. How do we induce cooperation among autonomous agents and agencies in a 

system that is linked by spatial-dynamic processes?  How do we reward users of patches that 

generate system-wide externalities to allow those external effects to propagate?  Parkhurst et al. 

[55] investigate the potential for using an agglomeration bonus to get landowners to better 

coordinate land set-asides as a means to conserve contiguous parcels of habitat. While this 

research is illustrative of possibilities, it also raises many questions about possible uniqueness of 

Nash equilibria in a spatial context. More recently, Bhat and Huffaker [6] design self-reinforcing 

cooperative agreements within a differential game context for two landowners that share a 

biological resource (beaver population) that disperses between the properties.  

Similar questions arise for point-input systems like invasive species problems [60,72]. How 

do we induce individuals who are first impacted to account for the spillover benefits of early 

control of invasions?  What kinds of regional institutions are needed to tackle problems such as 

controlling invasive weed species?  What kinds of international institutions are feasible to tackle 

phenomena like the avian flu or other potential pandemics?  Many of these issues have features 

like the familiar commons game, but, in addition, they have structures such that the position of 

particular decision makers in time and space matter for the system outcome. As this frontier area 
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is subjected to more analysis, the answers to these and similar questions will become clearer as 

economists synthesize principles from conceptual and empirical understanding.  

An important aspect of our understanding of spatial systems undoubtedly will come from 

measuring the effects of spatial policies ex post. Our experience with marine reserves and other 

spatial policies is growing over time, and we will have opportunities to test whether policies to 

address spatial-dynamic features of coupled human-natural systems work as our ex ante models 

predict. Most evaluation of marine reserves is being done by non-economists who consider 

spatial policy interventions as if they are randomized experimental trials. However, the treatment 

and control groups in most of these policy interventions are not randomly assigned because, in 

coupled systems, humans interact with the resource base [81]. This suggests that program 

evaluation will also serve an important role for understanding spatial-dynamic systems. Program 

evaluation is now widely being used for environmental policy, and there are circumstances in 

which spatial variation or spatial geometry can be used to isolate policy treatment effects [31]. 

Spatial policies in renewable resource management will potentially generate the means to 

identify treatment effects through analyzing outcomes in spatially-explicit longitudinal data sets, 

whereas evaluating traditional non-spatial fishery management policies must identify treatment 

effects strictly from time series data. Program evaluation of spatial renewable resource policies 

will complement empirical work that is used either to design optimal spatial policies or predict 

the performance of second-best alternatives. 
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Figure 1 – Illustration of Fick’s Law of Diffusion 
 
Note: Derived with N0=5 and D=0.1.  

 42



Table 1- Results of 100 Monte Carlo Simulations to Recover the Structural Spatial-
Dynamic Parameters Using Seemingly Unrelated Regression in a Source-sink System 
J  = 3, n =100, T =100, 100, 10, 0.075pp εσ σ= = =  

True Standard
Parameter Value Mean Min Max Median Deviation

Restricted Model - Form of Dispersal Matrix Is Known A Priori

q 0.015 0.0149 0.0124 0.0166 0.0150 0.0008
d21 0.15 0.1370 0.0239 0.2771 0.1398 0.0485
d31 0.05 0.0453 -0.0891 0.1740 0.0506 0.0573
r1 1.4 1.3755 1.0907 1.6550 1.3813 0.0995
r2 0.5 0.5467 0.1961 0.8646 0.5394 0.1306
r3 0.8 0.8160 0.4994 1.1835 0.8209 0.1409
k1 3 2.9935 2.4892 3.6546 2.9893 0.2082
k2 2 1.9986 1.3754 2.3138 2.0030 0.1414
k3 2 2.0047 1.7430 2.2530 2.0050 0.1143

Unrestricted Model - Form of Dispersal Matrix Not Known A Priori

q 0.015 0.0149 0.0124 0.0166 0.0150 0.0008
d12 0 -0.0071 -0.1178 0.0833 -0.0012 0.0453
d13 0 0.0101 -0.0865 0.1128 0.0046 0.0451
d21 0.15 0.1360 0.0029 0.2874 0.1375 0.0516
d23 0 0.0049 -0.1182 0.1239 0.0044 0.0505
d31 0.05 0.0433 -0.1053 0.1939 0.0451 0.0588
d32 0 0.0094 -0.0962 0.1114 0.0092 0.0430
r1 1.4 1.3688 1.0324 1.6196 1.3689 0.1089
r2 0.5 0.5446 0.1303 0.8978 0.5591 0.1522
r3 0.8 0.8236 0.5004 1.2395 0.8149 0.1563
k1 3 2.9811 2.4832 3.7387 2.9893 0.2152
k2 2 1.9899 0.9033 2.8532 1.9905 0.3411
k3 2 2.0295 1.5785 2.9698 2.0286 0.2199

 
Table 2- Results of 100 Monte Carlo Simulations to Recover the Structural Economic 
Parameters in Second Stage 

True Standard
Parameter Value Mean Median Min Max Deviation

Raw Estimates

α+ c 1.000 0.5211 0.5153 0.2823 0.9824 0.1165
φ 0.500 0.2491 0.2485 0.2263 0.2715 0.0090

Revenue 1 0.5095 0.5047 0.4129 0.7006 0.0519

Transformed by Estimated Scale - True Scale = 2.0

α+ c 1.000 1.0115 0.9990 0.6837 1.4022 0.1252
φ 0.500 0.4944 0.4948 0.3274 0.6433 0.0562  
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Table 3 - Results of 100 Monte Carlo Simulations to Recover the Structural Spatial-
Dynamic Parameters Using Seemingly Unrelated Regression 
Density-Dependent System 
J  = 3, n =100, T =100, 100, 10, 0.15pp εσ σ= = =  

True Standard
Parameter Value Mean Median Min Max Deviation

Overidentfied Density-Dependent Model

q 0.015 0.0149 0.0149 0.0133 0.0160 0.0006
d11 -0.250 -0.2380 -0.2364 -0.3828 -0.1039 0.0605
d12 0.083 0.0850 0.0866 -0.0487 0.1919 0.0472
d13 0.167 0.1690 0.1745 0.0714 0.2559 0.0404
d21 0.083 0.0771 0.0805 -0.0424 0.1786 0.0475
d22 -0.333 -0.3372 -0.3449 -0.4425 -0.1135 0.0661
d23 0.250 0.2438 0.2473 0.1206 0.3854 0.0480
d31 0.167 0.1609 0.1648 0.0414 0.2555 0.0488
d32 0.250 0.2522 0.2550 0.1302 0.3644 0.0478
d33 -0.417 -0.4127 -0.4104 -0.5947 -0.2390 0.0625
r1 1.000 0.9748 0.9471 0.5735 1.6273 0.1933
r2 1.000 1.0359 1.0473 0.4571 1.5451 0.1917
r3 1.000 1.0030 1.0034 0.6053 1.3843 0.1764
k1 3.000 2.9856 3.0147 2.4304 3.4663 0.2267
k2 3.000 3.0225 3.0523 2.4211 3.5426 0.2155
k3 3.000 2.9991 2.9926 2.3346 3.5571 0.2174  
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Table 4 - Results of 5,000 Monte Carlo Simulations to Recover the Structural Spatial-
Dynamic Parameters Using Seemingly Unrelated Regression 
Density-Dependent System With Observation Error 
J  = 3, n =100, T =100, 100, 10, 0.15pp εσ σ= = =  

True Standard Not a
Parameter Value Mean Median Min Max Deviation Number*

Overidentfied Density-Dependent Model - Observation Error Sig=0.1

q 0.0150 0.0149 0.0149 0.0125 0.0172 0.001 0
d11 -0.2500 -0.2215 -0.2229 -0.5286 0.1075 0.082 0
d12 0.0833 0.0725 0.0728 -0.1332 0.2588 0.051 0
d13 0.1667 0.1492 0.1502 -0.0763 0.3360 0.050 0
d21 0.0833 0.0701 0.0689 -0.1373 0.2725 0.055 0
d22 -0.3333 -0.3015 -0.3010 -0.5594 0.0107 0.076 0
d23 0.2500 0.2275 0.2278 0.0700 0.4101 0.049 0
d31 0.1667 0.1514 0.1522 -0.0792 0.3720 0.059 0
d32 0.2500 0.2290 0.2285 0.0229 0.4117 0.053 0
d33 -0.4167 -0.3768 -0.3769 -0.6591 -0.1183 0.072 0
r1 1.0000 1.0669 1.0674 0.2314 1.8718 0.215 0
r2 1.0000 1.0717 1.0690 0.3119 2.0024 0.201 0
r3 1.0000 1.0556 1.0575 0.3460 1.8596 0.201 0
k1 3 2.8942 2.8875 1.5036 4.1394 0.279 0
k2 3 2.9116 2.9101 1.5285 3.9205 0.255 0
k3 3 2.9058 2.9027 1.7163 3.8868 0.254 0

Overidentfied Density-Dependent Model - Observation Error Sig=1.0
q 0.015 0.0153 0.0153 -0.0037 0.0303 0.0044 1

d11 -0.250 -0.4309 -0.4194 -1.2442 0.1768 0.2015 1
d12 0.083 0.1350 0.1315 -0.1641 0.5095 0.0935 1
d13 0.167 0.1384 0.1344 -0.1314 0.5331 0.0853 1
d21 0.083 0.1872 0.1813 -0.1980 0.7879 0.1239 1
d22 -0.333 -0.3725 -0.3637 -1.1123 0.1563 0.1674 1
d23 0.250 0.1872 0.1815 -0.1210 0.6542 0.1011 1
d31 0.167 0.2433 0.2363 -0.2073 0.9236 0.1380 1
d32 0.250 0.2371 0.2308 -0.2282 0.7633 0.1232 1
d33 -0.417 -0.3260 -0.3193 -0.9288 0.1115 0.1431 1
r1 1.000 1.3427 1.3745 -0.4952 2.8021 0.4548 1
r2 1.000 1.1518 1.1821 -0.7502 2.7089 0.4609 1
r3 1.000 0.9287 0.9565 -0.8888 2.1696 0.4403 1
k1 3.000 2.9387 3.1285 -1605 61.2 23.4 1
k2 3.000 2.8915 3.1214 -1557.2 305.5 22.9 1
k3 3.000 2.7209 2.9505 -373.164 398.2688 11.3839 1

Overidentfied Density-Dependent Model - Observation Error Sig=2.0

q 0.015 -0.0142 -0.0128 -0.3298 0.3686 0.0307 2
d11 -0.250 -0.4874 -0.3686 -12.9063 1.9023 0.6196 2
d12 0.083 0.1589 0.1037 -1.9886 7.5357 0.2772 2
d13 0.167 0.1281 0.0842 -3.5595 6.5235 0.2586 2
d21 0.083 0.2347 0.1601 -3.3590 9.7365 0.4143 2
d22 -0.333 -0.3597 -0.2644 -9.0540 7.7592 0.4699 2
d23 0.250 0.1478 0.0999 -4.3462 5.3882 0.2809 2
d31 0.167 0.2527 0.1757 -1.6992 11.8684 0.4032 2
d32 0.250 0.2008 0.1381 -8.4907 7.6496 0.3406 2
d33 -0.417 -0.2759 -0.2045 -6.8424 4.1885 0.4039 2
r1 1.000 0.0072 -0.0540 -6.7300 15.3708 1.1412 2
r2 1.000 -0.1438 -0.1668 -6.1892 11.0015 0.9329 2
r3 1.000 -0.2581 -0.2782 -5.6480 7.7297 0.8213 2
k1 3.000 25.7282 9.1508 -52890 105430 2390 2
k2 3.000 -16.6114 10.9632 -487770 107030 7540 2
k3 3.000 -483.906 12.0781 -398980 128510 6070 2

* Number of occurences out of 5,000 with a divide by zero error or other error in the estimation.  
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Table 5a – Raw Parameter Estimates from the Gulf of Mexico Reef-Fish Fishery Data 
 

Coefficient t-stat Coefficient t-stat Coefficient t-stat

βj1 0.9057 2.32 0.4497 3.589 1.3543 7.064
βj2 -5.85E-04 -0.431 -1.50E-03 -3.441 -0.0032 -4.792
βj3 0.542 2.24 0.7246 9.33 0.0815 2.099
βj4 -0.1483 -0.687 0.0861 1.243 0.1189 1.09
βj5 -1.25E-04 -1.008 -2.40E-05 -0.602 -3.98E-06 -0.097
βj6 0.0002 1.237 -0.0001 -2.506 -0.0001 -1.472
βj7 -0.0006 -0.478 0.0012 3.183 0.0015 1.652  

 
 
Table 5b – Recovered Parameters from the Gulf of Mexico Reef-Fish Fishery Data 
 
 

Parameter Estimate Parameter Estimate

q1 1.25E-04 d11 -0.8061
q2 2.40E-05 d12 0.5420
q3 3.98E-06 d13 -0.1483
r1 0.7119 d21 0.7246
r2 0.1106 d22 -0.6235
r3 0.2921 d23 0.0861
k1 9.70E+06 d31 0.0815
k2 3.07E+06 d32 0.1189
k3 2.28E+07 d33 0.0622  
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1 Hotelling also explored questions about spatial equilibrium but in a context without dynamics 

[37]. 

2 Emergence of urban features in the “new economic geography” often depends on a tension 

between economic forces that attract and repel [28]. See Irwin and Bockstael [40] for an early 

empirical application that accounts for environmental amenities. 

3 An important problem in conservation that hinges on spatial heterogeneity is the reserve site 

selection problem. To conserve biodiversity cost effectively, managers choose reserve sites based 

on spatially-varying conditions [2,59]. While the early literature focused on choosing sites in a 

static framework, recent extensions incorporate dynamics through the timing of site selection and 

risk of future development for unprotected sites [15], and through the feedbacks that local land 

markets can create when purchasing large areas for conservation [3]. 

4 Phaneuf et al. [57] recover non-market values from the resulting spatial equilibrium assuming 

implicitly that the dynamics of environmental amenities are in equilibrium. 

5 Of particular importance in Irwin et al. [41] is how the presence of multiple time scales (some 

processes are faster/slower than others) affect results (see also [32]). They show that coupled 

economic and ecological models produce qualitatively different equilibria than those that would 

emerge from treating subsystems separately.  

6 For a comprehensive treatment of the mathematics of diffusion, see [51,54]. 

7 Evolution of coastline shapes are also governed by spatial diffusion, where small perturbations 

can propagate over large spatial scales [4].  

8 Sanchirico and Wilen [68] illustrate this property in a discrete formulation of space. This 

property also resembles the manner in which agricultural rents depend upon transportation costs 
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at that point in space in the original von Thünen model of the isolated town. See Fujita et al. [28] 

for a discussion. 

9 In the new economic geography, the circle setting is consistent with the geometry of the 

“racetrack” economy [28].  

10 See [64] for a discrete model of a fish population that includes other forms of dispersal 

processes.  

11 The assumption of no mortality in the dispersal process is not a requirement and one can easily 

assume that there is some loss in the dispersal process. In that case, the dispersal parameters 

would sum to less than one.  

12 For example, for some species, such as salmon or grouper, there is a seasonal migration to 

certain areas for spawning every year. 

13 The metapopulation concept is attributed to Levins [47,48], who focused on terrestrial species 

and considered only whether a patch was occupied or not. Over time, the concept has been 

expanded to consider within patch population dynamics and local abundances and is being 

applied and adapted for the marine environment. See also the work of Hanski [33]. 

14 Using a similar formulation, Tuck and Possingham [86] and Supriatna and Possingham [83] 

investigate optimal management in a two-patch source-sink system with no economic 

heterogeneity 

15 Some recent work by other economists on the spatial implications of resource use include 

[1,12,30,36,61,92]. Costello and Polasky [16] consider a more general metapopulation structure 

that includes multiple types of random events that correspond to own growth and dispersal. 

16 A few noteworthy examples in economics include [14,21,91]. 
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17 While our application is a fishery, the general requirements for adapting this type of analysis 

for other resource contexts are: 1) population growth and dispersal are additively separable; 2) 

there is a functional link between populations—which may not be directly observed—and human 

activities (e.g. a harvest or extermination function); and 3) spatially explicit time series data exist 

on inputs (e.g. harvest effort) and outputs (e.g. catches).  

18 In general, observation error that is not modeled in empirical settings will lead to errors-in-

variables bias in the biological parameter estimates [87]. We assume initially no observation 

error to obtain a tractable starting point in our simulations. Ecologists are continuing to develop 

models that incorporate both process error and observation error [20]. Recent work by 

economists in a non-spatial system exploits the panel structure of fishery data to address 

simultaneously process error, observation error, and the limitations of the Schaefer production 

function [96]. 

19 In general, the relative time scale over which the biological and economic processes unfold 

over space is an important factor in determining the underlying spatial-dynamic processes.  

20 It is important to note that the mandatory use of electronic logbooks is increasing throughout 

the world’s fisheries, which makes one even more optimistic that such exercises will be more 

feasible in the future.  

21 See, for example, the recent work on connectivity structures [17,18]. 

22 Recall that this result does hinge on the strong assumption of a Schaefer harvest function. 

23 A possible source of an offsetting economic gradient is the location of fishing ports relative to 

heterogeneous subpopulations. However, the intensity of effort fishing from a particular port in 

real systems can be endogenously determined by the overall spatial productivity of the resource 

[80]. 
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24 Note that everyone fishing at the same time in the same place is facing the same stock. This is 

the sense in which disaggregated data can be used to estimate production functions, but it is also 

the key point that allows Zhang and Smith [96] to difference out the stock and use panel methods 

to account for observation and process error. This method has not yet been extended to the 

spatial domain. 

25 The authors thank Junjie Zhang for research assistance preparing the data. 

26 We are not in a position use our model to test hypotheses about physical oceanography. Our 

results are nonetheless provocative given the predominant Loop Current. Still, there is some 

evidence that deep water currents in the Gulf flow in the opposite direction [22], which is 

consistent with the flow of our dispersal matrix. Naturally, this raises questions about where in 

the water column fish larvae are transported.  

27 By correcting errors-in-variables bias and allowing curvature in the production function, 

Zhang and Smith [96] show that the implied carrying capacity is less than half that from the 

naïve estimator. 

28 Conceptual studies have shown that under some circumstances, reserves are part of the optimal 

policy [16,53,65]. However, theoretical predictions about reserve performance are sensitive to 

assumptions about how fishing effort is distributed over space in the remaining fishing area [77]. 
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Appendix A – Simulated Data Algorithm  
 

We use the following algorithm to simulate data from the bioeconomic model. First, we 

determine the number of individuals (n), choices (J+1), and choice occasions (T); assign true 

values to all of the bioeconomic parameters including the mean and standard deviation of price; 

draw a vector of prices; and set initial conditions on the stocks ( N0j ). Second, we form the 

deterministic portion of utility at t=0 in (14) for each individual in each location. Third, we draw 

i.i.d. Type I Extreme Value errors ijtη  by inverting a uniform distribution (u~U[0,1]) using the 

cdf of Type I (denoted F(η ) to recover the errors that we need: ( ){ }ln lnbη ⎡= − −⎣ u ⎤⎦ , where b 

controls the variance of the distribution). See Train (2003) for details on the inversion method for 

drawing from distributions. Fourth, we fill in the random component of utility in (14) and 

simulate individual choices: 

( )0 1 21, max , , ,...,

0,
ijt i t i t i t iJt

ijt

if U U U U U
E

otherwise

⎧ =⎪= ⎨
⎪⎩

     (A) 

Fifth, we add up individual-, space-, and time-specific effort in (A) and substitute into (10) to 

obtain total harvest by patch. Sixth, total harvest is substituted into (9). Finally, we draw an i.i.d. 

normally distributed process error in (9) and iterate the state equation. We return to step two and 

follow the process for t=1, and so forth.  

 

Reference 

Train, K.E. 2003. Discrete Choice Methods with Simulation.Cambridge: Cambridge Univ. Press. 
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Appendix B – Recovering Structural Bio-Physical Parameters in 3-Patch System 

 
When adding up holds, we can recover all of the structural bio-physical parameters of the spatial-
dynamic system from the reduced-form parameters. In the 3-patch system, there are thirteen total 
parameters.  
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Appendix C – Additional Experiments  
 
Table C-1- Results of 100 Monte Carlo Simulations to Recover the Structural Spatial-
Dynamic Parameters Using Seemingly Unrelated Regression 
Increased Process Error 
J  = 3, n =100, T =100, 100, 10, 0.3pp εσ σ= = =  

True Standard
Parameter Value Mean Min Max Median Deviation

Restricted Model - Form of Dispersal Matrix Is Known A Priori

q 0.015 0.0148 0.0071 0.0210 0.0149 0.0024
d21 0.15 0.1549 -0.0486 0.3172 0.1545 0.0777
d31 0.05 0.0387 -0.1192 0.2001 0.0376 0.0804
r1 1.4 1.3724 0.9752 1.8141 1.3855 0.1747
r2 0.5 0.5213 0.0981 0.9915 0.5074 0.2037
r3 0.8 0.8490 0.1103 1.4017 0.8477 0.2297
k1 3 3.1719 2.2285 5.5090 2.9961 0.5851
k2 2 1.9411 1.1134 3.3591 1.9378 0.3388
k3 2 2.0382 1.6438 3.0297 2.0135 0.2382

Unrestricted Model - Form of Dispersal Matrix Not Known A Priori

q 0.015 0.0148 0.0071 0.0216 0.0147 0.0028
d12 0 0.0051 -0.2275 0.1809 0.0100 0.0756
d13 0 -0.0033 -0.1428 0.1599 -0.0029 0.0610
d21 0.15 0.1499 -0.0750 0.3449 0.1485 0.0839
d23 0 0.0140 -0.1321 0.1830 0.0145 0.0659
d31 0.05 0.0406 -0.1329 0.2234 0.0461 0.0876
d32 0 -0.0008 -0.1568 0.2764 -0.0037 0.0690
r1 1.4 1.3696 0.8398 1.7293 1.3782 0.2021
r2 0.5 0.5119 -0.1311 1.1734 0.5120 0.2263
r3 0.8 0.8552 0.0564 1.4827 0.8117 0.2645
k1 3 3.1719 2.2212 5.2493 2.9790 0.5951
k2 2 1.9034 -5.2289 4.9334 1.9727 0.9686
k3 2 2.0844 0.8823 4.1149 2.0019 0.4933  
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Table C-2 - Results of 100 Monte Carlo Simulations to Recover the Structural Economic 
Parameters in Second Stage  
Increased Process Error 
J  = 3, n =100, T =100, 100, 10, 0.3pp εσ σ= = =  

True Standard
Parameter Value Mean Median Min Max Deviation

Raw Estimates

α+ c 1.000 0.5211 0.5153 0.2823 0.9824 0.1165
φ 0.500 0.2491 0.2485 0.2263 0.2715 0.0090

Revenue 1 0.5095 0.5047 0.4129 0.7006 0.0519

Transformed by Estimated Scale - True Scale = 2.0

α+ c 1.000 0.9996 0.9981 0.7372 1.1481 0.0704
φ 0.500 0.5008 0.4967 0.3972 0.6602 0.0437  
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Table C-3- Results of 100 Monte Carlo Simulations to Recover the Structural Spatial-
Dynamic Parameters Using Seemingly Unrelated Regression 
Fix r and K across patches 
J  = 3, n =100, T =100, 100, 10, 0.15pp εσ σ= = =  

True Standard
Parameter Value Mean Min Max Median Deviation

Restricted Model - Form of Dispersal Matrix Is Known A Priori

q 0.015 0.0151 0.0090 0.0207 0.0151 0.0018
d21 0.15 0.1643 -0.1232 0.3690 0.1653 0.0843
d31 0.05 0.0397 -0.1563 0.2126 0.0387 0.0750
r1 0.8 0.8160 0.5247 1.1606 0.8292 0.1391
r2 0.8 0.7978 0.5183 1.0674 0.7924 0.1216
r3 0.8 0.8318 0.5434 1.2003 0.8168 0.1170
k1 2 2.1094 0.9652 5.8733 1.9296 0.7162
k2 2 1.9961 1.5963 2.7447 1.9769 0.1669
k3 2 1.9939 1.6107 2.5536 1.9663 0.1610

Unrestricted Model - Form of Dispersal Matrix Not Known A Priori

q 0.015 0.0151 0.0096 0.0205 0.0151 0.0018
d12 0 0.0014 -0.1347 0.1400 0.0016 0.0569
d13 0 0.0057 -0.1421 0.1576 0.0038 0.0604
d21 0.15 0.1683 -0.1196 0.4054 0.1765 0.0883
d23 0 -0.0112 -0.1415 0.1542 -0.0153 0.0608
d31 0.05 0.0430 -0.1876 0.2428 0.0448 0.0801
d32 0 -0.0007 -0.1883 0.1491 -0.0026 0.0647
r1 0.8 0.8086 0.4944 1.2848 0.8091 0.1639
r2 0.8 0.8104 0.4527 1.1887 0.8281 0.1502
r3 0.8 0.8256 0.3595 1.1791 0.8327 0.1606
k1 2 2.1211 0.9737 5.9289 1.9667 0.7099
k2 2 2.0156 1.3369 3.2140 1.9766 0.3178
k3 2 1.9721 1.3677 2.8348 1.9422 0.2906  
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