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Abstract

We derive conditions under which cost-increasing measures� consistent
with either regulatory constraints or fully expropriated taxes� can increase
the pro�ts of all agents active within a common-pool resource. This some-
what counterintuitive result is possible regardless of whether price is exoge-
nously �xed or endogenously determined. Consumers are made no worse
o¤ and, in the case of an endogenous price, can be made strictly better
o¤. The results simply require that total revenue be decreasing and con-
vex in aggregate e¤ort, which is an entirely reasonable condition, as we
demonstrate in the context of a renewable natural resource. We also show
that our results are robust to heterogeneity of agents and, under certain
conditions, to costless entry and exit. Finally, we generalize the analysis to
show its relation to earlier work on the e¤ects of raising costs in a model
of Cournot oligopoly.
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1 Introduction

Common-pool resources give rise to an important source of market failure. A
large economics literature investigates both positive and normative aspects of the
common-pool resource problem. Fundamental insights are most frequently made
through a comparison of two extreme cases of property rights: sole ownership
and open access. Under sole ownership, externalities are nonexistent and, in the
absence of price e¤ects, management of the resource is e¢ cient because rents are
maximized. Under open access, individual incentives result in overexploitation
(investment or production), and congestion externalities completely dissipate all
rents, giving rise to the so-called �Tragedy of the Commons.�1 Comparison of
these two polar cases provides the conceptual foundation for understanding a
range of policy instruments designed to manage the commons, including, but not
limited to, taxes, harvest limits, entry restrictions, technology constraints, and
individual transferable quotas.
The starting point of this paper is the intermediate case in which a �xed

number of agents is active in the commons. We take a game-theoretic approach
that is consistent with either a static game or the analysis of a steady-state.2 We
focus in particular on the ways in which policy instruments that increase marginal
costs� including taxes and regulatory constraints� a¤ect strategic incentives and
payo¤s. We identify what heretofore has been an unrecognized opportunity for
a Pareto improvement that does not require redistribution. Under conditions
we delineate, we �nd, for example, that a tax imposed on e¤ort can increase
both producer pro�ts and consumer surplus, even when the tax revenue is fully
expropriated. We �nd, in other words, a veritable �free lunch�in the commons.
Our treatment of an exogenous increase in marginal costs is consistent with

at least two di¤erent types of policy instruments. The �rst is a tax on each unit
of a single input. The second is a regulatory constraint that reduces the e¢ ciency
of the input. In the context of a �shery or wildlife extraction, for example, a tax
might take the form of a licensing fee, whereas the regulatory constraint might
consist of a technology restriction, size limit, or seasonal and area closures. In
what follows, we investigate how policies such as these a¤ect equilibrium pro�ts
of each agent and consumer surplus, in addition to overall social welfare.
The next section develops the base-case model of a limited-entry commons

with linear costs and identical agents. Section 3 derives the main result that a

1See Gordon (1954) for the �rst economics treatment of the problem, and see Hardin (1968)
for the description that gave the �Tragedy�its name.

2Existing studies that take a similar approach to the study of common-pool resources such
a �sheries include Cheung (1970), Dasgupta and Heal (1979), and Heintzelman, Salant, and
Schott (2009). Other analyses of contest games, which are isomorphic, include studies by Nitzan
(1991), Chung (1996), Baik and Lee (2001), and Baye and Hoppe (2003).
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cost-increasing measure will always increase equilibrium pro�ts if total revenue is
decreasing and convex in aggregate e¤ort. The intuition is that the cost increase
serves as a collusive mechanism while also mitigating a negative congestion ex-
ternality. Section 4 generalizes the model to account for an endogenous price and
shows how the results relate to the study of cost-increasing measures in a model of
Cournot oligopoly. Section 5 shows the robustness of our results to heterogeneity
of agents and costless entry and exit. Section 6 considers the more general welfare
implications of the analysis. Section 7 concludes with policy implications in the
context of established literatures on institutional arrangements for managing the
commons and on the controversial Porter Hypothesis.

2 The Commons Without Entry

We begin with the case in which there are n identical agents indexed i = 1; :::; n.
Agent i chooses to exert e¤ort level xi at cost cxi. Aggregate e¤ort is X =Pn

i=1 xi = X�i + xi and produces total product F (X). Average product is
de�ned as A (X) = F (X) =X. We assume A(X) is continuous, twice di¤eren-
tiable, A0(X) < 0 and bounded away from negative in�nity, A (0) � c > 0, and
limX!1A (X) = 0. We also assume initially, though relax the assumption later,
that price is exogenous and normalized to unity. With this later assumption,
the functions F (X) and A (X) also represent total revenue and average revenue,
respectively.
We assume that an agent exerting k percent of the total e¤ort receives k

percent of the total product (revenue). Conditional on e¤ort level xi, agent i
earns payo¤

�i = F (X)
xi
X
� cxi.

Each agent i thus chooses xi to solve

max
xi

�i = A (xi +X�i)xi � cxi.

The assumption A (0)� c > 0 implies that, in any equilibrium, every agent must
be active (xi > 0).3 Accordingly, the following �rst-order condition must hold for
each of the n agents:

A (X) + xiA
0 (X)� c = 0. (1)

This condition implies that, in any equilibrium, all n agents exert the same level
of e¤ort, denoted x = X=n = (A(X)� c) =� A0(X) > 0.

3For if xi = 0 is optimal for some i, then it must hold that A(X) � c � 0: But under
this circumstance, it would be optimal for every other identical agent to be inactive as well,
requiring that A(0)� c � 0, which contradicts one of our initial assumptions.
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We now prove that a pure strategy Nash equilibrium exists and make a further
assumption to establish its uniqueness. Building on (1), it is useful to de�ne the
function

J(X) = A(X) +
X

n
A0(X)� c. (2)

It follows from the assumptions on A (X) that J(X) is continuous, di¤erentiable,
J(0) > 0, and J(X) is strictly negative for su¢ ciently large X. Hence the
intermediate value theorem ensures existence of at least one root X� that satis�es
J (X�) = 0. The only candidates for a Nash equilibrium are these roots, as only
they satisfy the �rst-order condition for each agent. We further assume that A(�)
satis�es the following condition:

2A0 (Z) + zA00 (Z) < 0 (3)

for any Z � 0 and any z 2 [0; Z]. The important implication of (3) is that at
Z = X� and z = x, agent i�s second-order condition holds globally for any x. It
follows that every root satisfying J(X�) = 0 is a Nash equilibrium.
Condition (3) also implies that X�� and therefore the Nash equilibrium�

must be unique. If (3) holds for any root solving J(X�) = 0, then

J 0 (X�) = [(n+ 1)A0 (X�) +X�A00 (X�)]
1

n
< 0, (4)

and this implies the existence of only one X�. For, if there were more than one
X� satisfying (4), there would have to be another root in between violating (4),
and our assumptions imply that no root violates (4). We conclude, therefore,
that the Nash equilibrium exists and is unique.4

3 Pro�ts and Marginal Costs

We now consider how a change in the common marginal cost a¤ects equilibrium
pro�ts. The analysis is consistent with changes in the marginal cost that may
arise from either a tax on e¤ort or a regulation that requires the use of a less
e¢ cient technology. To capture both possibilities, we expand the marginal cost
of the previous section into two terms: c = �c + � , where �c is the marginal cost
associated with the most e¢ cient technology, and � represents either a per unit
tax on e¤ort or an additional marginal cost from a technology restriction. In this

4A weaker condition than (3) that also guarantees uniqueness is to assume that the payo¤
function A(xi+X�i)xi� cxi is pseudoconcave in xi. This implies that whenever the �rst-order
condition is satis�ed, the payo¤ function must be locally concave at each root, or equivalently
that 2A0(X�) + x�A00(X�) < 0. This inequality also implies condition (4), which we have
already shown guarantees the uniqueness of X�.
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section we focus on the e¤ect of changes in � on equilibrium pro�ts, and later in
the paper we consider the implications of heterogeneity in c.
The �rst step is to determine how a change in � a¤ects equilibrium e¤ort for

each agent.5 Totally di¤erentiating (1) at the equilibrium yields

dx�

d�
=

1

(n+ 1)A0 (X�) +X�A00 (X�)
=

1

nJ 0(X�)
< 0. (5)

This implies, for example, that an increase in the marginal cost of e¤ort decreases
equilibrium e¤ort.
To determine how a change � a¤ects pro�ts, we use the fact that each agent�s

equilibrium pro�t can be written as

�� = A
�
x� +X�

�i
�
x� � (�c+ �)x�:

After totally di¤erentiating and substituting in the �rst-order condition, we solve
for

d��

d�
= (n� 1)x�A0(X�)

dx�

d�
� x�. (6)

The �rst term re�ects the strategic e¤ect and the second term re�ects the di-
rect e¤ect. The direct e¤ect is negative because a cost increase reduces a given
agent�s pro�ts in the absence of any response by other agents. The strategic e¤ect
is strictly positive, assuming n > 1, because a cost increase causes other agents
to decrease their aggregate e¤ort, and this e¤ect alone, due to the negative ex-
ternality of e¤ort, would increase the given agent�s pro�ts. An interesting� and
somewhat counterintuitive� possibility arises if the strategic e¤ect outweighs the
direct e¤ect, in which case all agents would bene�t from the cost increase. This
can never happen if n = 1, however, as the strategic e¤ect would be nonexistent
under sole-ownership.
More generally, nothing rules out the possibility for the sign of (6) to be pos-

itive, and we now consider in more detail the conditions necessary and su¢ cient
for this to occur. Substituting (5) into (6) and rearranging yields

d��

d�
= x�(E� � 2) A

0 (X�)

nJ 0 (X�)
, (7)

where

E� = �X
�A00 (X�)

A0 (X�)
.

5Our analytical approach is consistent with comparative�static analysis of the equilibrium
of a one-shot game or of the steady state of a dynamic game. Although the approach is well-
established in the literature (see, for example, Dasgupta and Heal 1979), it neglects transitions,
which are not instantaneous, from one static equilibrium to another or from one steady state
to another.
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If E� < 2, we have what is perhaps the more intuitive case in which the sign of
(7) is negative, meaning that pro�ts are decreasing in the marginal cost of e¤ort.
Here again we can see that under sole ownership of the commons (i.e., n = 1), the
sign of (7) must be negative, as it is straightforward to verify that the inequality
in (4) requires E� < 2.
The more interesting possibility� when pro�ts are increasing in the marginal

cost of e¤ort, even with price held constant� requires E� > 2. Though we can
see that strict convexity of the average product at X� is necessary for the result,
it is not su¢ cient. A condition that is both necessary and su¢ cient, however,
is strict convexity of the total product (total revenue) at X�. To see this, recall
that F (X�) = X�A (X�) and therefore

F 00 (X�) = 2A0 (X�) +X�A00 (X�)

= A0 (X�) [2� E�] ,

which implies F 00 (X�) > 0 if and only if E� > 2.6 But is the possibility that
d��=d� > 0 implausible, or does it arise in models widely accepted as realistic?
To begin answering this question, we turn to the canonical model of a renewable
natural resource.

4 Application to Renewable Resources

Consider a renewable resource (�sh, wildlife, etc.) harvested by n independent
agents. The standard approach is to specify a biological growth function G (S),
where S is the biological stock, and a harvest function H (X;S), where X is
e¤ort. In the steady state, the rate of biological growth is exactly o¤set by the
rate of harvest, implying that

_S = G (S)�H (X;S) = 0:

This condition implicitly de�nes the steady-state stock as a function of e¤ort,
S (X). Substituting this back into the harvest function gives sustained yield as
a function of e¤ort, or what is simply the aggregate production function:

F (X) = H (X;S (X)) .

With common linear costs of e¤ort for all n agents, this renewable resource model
is entirely consistent with the analysis of the previous sections.
To demonstrate the possibility for d��=d� > 0, we consider the most com-

monly used functional forms in the renewable resource model (see Conrad and

6The inequality in (4) also requires that E� < n+1, which once again con�rms that pro�ts
cannot be increasing in marginal costs if n = 1, as this would contradict E� > 2.
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Clark 1987). The biological growth function is logistic, G (S) = rS
�
1� S

k

�
,

and the harvest function is Cobb-Douglas, H (X;S) = X�S�. We make the
simplifying assumption that  = � = 1. Steady state requires

rS

�
1� S

k

�
= X�S:

Solving for S yields

S (X) = k

�
1� X

�

r

�
.

Substituting this back into the harvest function gives sustained yield as a function
of e¤ort (i.e., the aggregate production function):

F (X) = k

�
X� � X

2�

r

�
.

We have shown that the primary result of interest depends critically on the
properties of F (X). In particular, at the equilibrium level of aggregate e¤ort,
local convexity of the production function is su¢ cient for cost-increasing measures
to increase pro�ts. The simplest way to demonstrate the possibility for F 00 (X�) >
0 is to provide an example.7 Suppose k = 10, � = :2, and r = 2. Note that our
assumption of � < 1 implies diminishing returns to e¤ort. With these numerical
values, F (X) = 10 (X :2 � :5X :4). It follows that F 0 (X) R 0 if X Q 1, and

F 00 (X) Q 0 if X Q
�
:4
:3

�5 � �. That is, the steady-state yield rises to a maximum
at X = 1 and then declines. The function is strictly concave until X = � �
4:214; in�ects there, and is strictly convex for X > �: Average product is also
monotonically decreasing, that is, A0 (X) < 0.
We illustrate in Figure 1 the average and the marginal product curves for

the numerical example. In addition, we assume that c = :5: As Figure 1 re-
�ects, it is socially e¢ cient to set aggregate e¤ort at approximately .48, the level
at which marginal product equals marginal cost. Under open access, however,
aggregate e¤ort expands to approximately 7:5, the level at which all rents are dis-
sipated. Under restricted access, it is well-known that aggregate e¤ort monoton-
ically increases as the number of agents is exogenously increased, reaching the
rent-dissipating level as n ! 1.8 Hence, for any number of agents su¢ ciently
large that aggregate e¤ort exceeds �, it holds that F 00 (X�) > 0. In such cases,

7Though we consider a numerical example, it is straightforward to verify that the �rst and
second derivatives have signs according to signfF 0 (X)g = signfr � 2Xag and signfF 00 (X)g =
signfr (�� 1)� 2X� (2�� 1)g.

8This can also be shown formally. Using (2) combined with the fact that X� satis�es
J (X�) = 0, we can solve for dX�=dn = x�A0 (X�) =nJ 0 (X�) > 0, which shows that equilibrium,
aggregate e¤ort is monotonically increasing in the number of agents.
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Marginal Product

Average Product

Marginal Cost (c = .5)

Aggregate Effort (X)

Marginal Product

Average Product

Marginal Cost (c = .5)

Aggregate Effort (X)

Figure 1: Example in which a cost-increasing measure increases equilibrium
pro�ts for all agents

cost-increasing measures, as shown above, will always increase each agent�s equi-
librium pro�ts. The possibility for d��=d� > 0, therefore, is not a degenerate
case and is worthy of further inquiry.

5 A More General Model

This section generalizes the model to allow for an endogenous price of output
from the commons. We modify the results of the previous sections to re�ect the
generalization and show how they continue to hold. We also demonstrate how
the model and results relate to the study of cost-increasing measures in a model
of Cournot oligopoly.

5.1 Generalization

The additional feature of the model is a monotonically decreasing inverse demand
function of aggregate output Q, written as P (Q) where Q = F (X). The payo¤
to each agent is now

�i = P (F (X))F (X)
xi
X
� cxi, (8)

7



and each agent solves

max
xi

�i = P (F (xi +X�i))A (xi +X�i)xi � cxi. (9)

A straightforward way to see the parallel with our previous analysis is to de�ne
~A (X) = P (F (X))A (X). It follows that all of the previous results hold as long
as we replace A (X) everywhere with ~A (X). To avoid confusion, we denote aggre-
gate e¤ort in the Nash equilibrium with price endogenous as ~X; the counterpart
to X� in the exogenous price case discussed previously. In the generalized model,
aggregate e¤ort ( ~X) solves

~A( ~X) +
~X

n
~A0( ~X)� c = 0.

As for the main result� that a cost-increasing measure can increase pro�ts� the
su¢ cient conditions can be written in parallel with the previous analysis. An
increase in � , as de�ned previously, will increase each agent�s pro�ts if and only
if ~A0 (X) < 0 and ~E > 2, where ~E = � ~X ~A00( ~X)= ~A0( ~X).
We can once again interpret the condition ~E > 2 with an equivalent expression

for strict convexity of total revenue. By de�nition, we have

P (F (X))F (X) = P (F (X))XA (X) = X ~A (X) ,

so the derivatives of the expression on the left equal the derivatives of the expres-
sion on the right, evaluated at ~X. The second derivative of the expression on the
right is 2 ~A0( ~X) + ~X ~A00( ~X), which is positive if and only if ~E > 2. It follows that

~E > 2, d2[P (F ( ~X))F ( ~X)]

dX2
> 0. (10)

Our earlier result can be seen as the special case where P (�) = 1, implying that
~A (X) = A (X), ~E = E, ~X = X�, and the necessary and su¢ cient condition for
a cost-increasing measure to increase pro�ts is d2F (X�) =dX2 > 0.

5.2 Renewable Resources Again

We now verify, with a continuation of the renewable resource example, that a
cost-increasing measure can increase pro�ts, even if price is endogenous. To
see why this is important, recall that in the previous example an increase in
the common marginal cost caused agents to reduce their e¤ort, which, in turn,
increased output. It followed that, with price held constant, pro�ts could increase
if the increase in output (equivalent to total revenue in that case) was su¢ ciently
large. This condition is more di¢ cult to satisfy, however, if price is decreasing in
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output. Nevertheless, the following argument demonstrates how the result can
still hold.
Suppose that price in the renewable resource example is a decreasing linear

function of aggregate output with intercept 1 and jslopej = �, so that P (Q) =
1� �Q, where Q = F (X). We can write the equilibrium level of aggregate e¤ort
as a continuous function of the slope parameter. We denote this function X (�).9

When � = 0; we have the earlier case in which P = 1 and X(0) = X�: The gener-
alized condition in (10) requires that total revenue be strictly convex at the equi-
librium level of e¤ort. Total revenue is TR (X (�)) = [1� �F (X (�))]F (X (�))
and, solving for the second derivative with respect to e¤ort, we have

TR00 (X (�)) = F 00 (X (�))� 2�
�
F (X (�))F 00 (X (�)) + F 20 (X (�))

�
. (11)

To see that this expression can be strictly positive with � > 0, assume that F 00(�) is
continuous, and notice that at � = 0 the condition collapses to F 00 (X�) > 0, where
the inequality was shown previously in our numerical example for su¢ ciently
large n. It then follows by continuity that (11) must be strictly positive over
some nonempty interval of � > 0.
We have thus veri�ed that, even if price is sensitive to output, pro�ts may

increase in response to a cost-increasing measure. Moreover, in this case, the
response is an increase in steady-state output that causes a decrease in price. As
a result, consumer surplus increases as well. Later in the paper we further discuss
the welfare implications of this result and others.

5.3 Relation to Cournot Oligopoly

In a well-known working paper, Jésus Seade (1985) delineated the circumstances
under which a tax on the output of Cournot oligopolists with identical linear
costs will increase each �rm�s pro�ts. At a super�cial level, Seade�s results seem
unrelated to ours. In his model, output is taxed; in our model, e¤ort is (implicitly
or explicitly) taxed. In his model, output declines in response to the tax; in our
model, output increases in response to the tax. In his model, price increases,
and consumers are made worse o¤; in our model, price either does not change or
decreases, and consumers are either una¤ected or made better o¤.
Despite these apparent di¤erences, we can show that Seade�s results are a

special case of ours. To see this, let F (X) = X, meaning that X units of e¤ort
produce X units of output. In this case, and in parallel with (8) and (9), each
agent�s payo¤ reduces to

�i = P (X)xi � cxi,
9We omit the �tilde�when writing aggregate e¤ort as a function of �.
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and each agent solves

max
xi

�i = P (xi +X�i)xi � cxi.

This, however, is the standard setup of the Cournot model of oligopoly with
identical, linear costs. In this special case, it follows that A (X) = 1 and
~A (X) = P (X), so here again, all of the previous results continue to hold, but
the conditions apply directly to the inverse demand function, as shown in Seade
(1985). In particular, ~E = � ~XP 00( ~X)=P 0( ~X) and a cost-increasing measure will
increase the oligopolists�pro�ts if and only if demand is downward sloping and
~E > 2, which is equivalent to having total revenue, P ( ~X) ~X, locally convex.10

Intuition for the oligopoly result is straightforward. The cost increase in-
duces every �rm to reduce output, and this increases the market price. If price
increases enough, �rms will earn greater pro�ts despite the lower output and in-
creased marginal cost.11 Though the conditions are analytically equivalent, the
mechanism at work in the commons interpretation di¤ers. The cost increase still
induces all agents to reduce e¤ort, but this, in contrast, increases output because
the biological resource is able to reach a higher steady-state level of growth. As a
result, if the increased growth is su¢ ciently large, then pro�ts will increase even
if price falls or remains constant.

6 Extensions

We have thus far assumed that all agents have identical linear cost functions
and that agents cannot freely enter the market. We now consider extensions to
the model that introduce heterogeneity and allow for an endogenous number of
agents. We focus on whether our main result� the possibility that cost-increasing
measures will increase pro�ts� continues to hold.

6.1 Introducing Heterogeneity

Let us return to the base-case model of the commons in which price is exogenous
and normalized to unity.12 Building on the previous expansion of marginal costs,
10Seade (1985) shows a simple example in which the result will always hold: isoelastic demand

P (X) = �X� 1
" with " 2 (1=n; 1).

11Although Seade�s result is intriguing, one might question the rationale for imposing a tax
(or other cost-increasing measure) in an oligopolistic industry. Without any other source of
market failure, the market power results in too little production, and imposing a tax will only
exacerbate the ine¢ ciency. But the tax could improve both e¢ ciency and pro�ts if the industry
is associated with a negative externality. Hence, as we discuss more later, Seade�s result may
have a particularly useful implication in the context of environmental policy.
12We do this for simplicity, as our results with endogenous price can also be extended.
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c = �c + � , we assume there are two agents: one with low costs cl = �c + � � �
for � > 0, and one with high costs ch = �c + � + �. Notice that this formulation
includes homogeneity as a special case with � = 0. Denote the equilibrium level of
e¤ort for the two agents as x�l and x

�
h. Because the sum of the marginal costs is 2c

in both the homogeneous and heterogeneous cases, aggregate e¤ort remains the
same X� either way and is therefore independent of �.13 For the same reason, any
change d� will induce a di¤erent level of aggregate e¤ort that is also independent
of �.
Following the steps in Section 3, we use the �rst-order conditions to solve for

the change in the e¤ort of agent i = l; h given a change in � :

dx�i
d�

=
A0 +

�
x��i � x�i

�
A00

[2A0 + x�iA
00]
�
2A0 + x��iA

00
�
�
�
A0 + x��iA

00
�
[A0 + x�iA

00]
. (12)

Though it involves a bit a tedium, one can verify that with homogeneity, which
requires � = 0 and implies x�i = x

�
�i, this expression reduces for both agents to

dx�i
d�

=
1

3A0 (X�) +X�A00 (X�)
< 0,

which is simply equation (5) for the case of n = 2, and we have already shown
that it must be strictly negative. Then, since dx�i =d� is a continuous function of
�, it must also be true that (12) is strictly negative for both i = l; h over some
nonempty interval of � > 0. It follows in this case that, even with heterogeneity
of agents, a cost-increasing measure decreases the equilibrium level of e¤ort for
both agents.
A similar line of reasoning can demonstrate the possibility that pro�ts will

increase as well. The change in pro�t for agent i = l; h given a change in � , the
counterpart to equation (6), is

d��i
d�

= x�iA
0 (X�)

dx��i
d�

� x�i , (13)

which consists, once again, of the strategic e¤ect and the direct e¤ect, respec-
tively. We know, in the case of homogeneous agents, that (13) simpli�es to (6)
for the case of n = 2, and we have already shown that (6) can be strictly posi-
tive. By continuity of d��i =d� in �, therefore, there exists a nonempty interval of
� > 0 over which (13) is strictly positive as well. We thus conclude that� even
with heterogeneity of agents� a cost-increasing measure can increase equilibrium
pro�ts for all agents.

13This result is a special case of the theorem proved in Bergstrom and Varian (1985).
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6.2 Costless Entry and Exit

We have assumed throughout that the number of agents in the commons, n, is
exogenously �xed. We now consider whether our main result depends on this
assumption, or whether, when costless entry and exit are permitted, a cost-
increasing measure can still increase pro�ts.
Consider a general setup in which each of a �xed number of players N > n

simultaneously decides whether to be an extractor or to engage in an alterna-
tive activity. Assume that each agent who chooses extraction, after the number
making this choice is publicly disclosed, receives the equilibrium payo¤ we have
speci�ed for this activity. Assume that each agent who chooses the alternative
activity receives a payo¤ that is weakly decreasing in the number of agents mak-
ing this choice. In a Nash equilibrium, the N players would allocate themselves
between the two activities so that no player could unilaterally switch activities
and earn a strictly greater payo¤. In the absence of an integer problem, therefore,
pro�ts per player would equalize across the two activities.
Now consider the case in which a cost-increasing measure increases pro�ts for

all of the initial players in the commons. With the measure in place, the pro�t
per player in the commons would be higher than the pro�t per player in the
alternative activity unless more of the N players migrate from the alternative
activity to the commons. This follows because, as we have shown, pro�ts per
player in the commons are monotonically decreasing in the the number of players.
It must be the case, therefore, that the cost-increasing measure induces a new
Nash equilibrium with more players in the commons and fewer players pursuing
the alternative activity.
The e¤ect on pro�ts then depends on the underlying structure of the alterna-

tive activity. If the migration of players out of the alternative activity raises the
payo¤ per person of those who remain, then payo¤s for both activities will equal-
ize at a higher level, making all N players better o¤. If instead the alternative
activity has a constant payo¤ per person independent of the number pursuing
the activity, then the entry of players into the commons would drive pro�ts back
to the initial level, with no change in the payo¤ to any of the N players. In this
case, the paradoxical result about pro�ts does not hold, but a new paradoxical
result about entry emerges: a cost-increasing measure in the commons promotes
entry.

7 Welfare Implications

We have focused throughout the paper on how cost-increasing measures can a¤ect
equilibrium pro�ts. We now discuss some of the more general welfare implications
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of our �nding that higher marginal costs can increase pro�ts. To begin, recall
that two di¤erent interpretations are consistent with our treatment of increased
marginal costs. The �rst is a tax on each unit of e¤ort, and the second is a
regulatory constraint that reduces the e¢ ciency of e¤ort. In terms of welfare
implications, one obvious di¤erence between the two interpretations is that a tax
generates tax revenue, whereas a regulatory constraint does not.
Our result for the common-pool resource model identi�es a new opportunity

to produce a Pareto improvement, even without redistribution. In the case where
price is exogenously �xed, a regulatory constraint can increase pro�ts at no cost
to consumers. This is equivalent to a scenario in which a tax is imposed and
the revenue completely discarded. But with a tax, of course, the revenue can be
used in socially bene�cial ways and is therefore typically treated as neutral from
a social welfare perspective. Perhaps the most intriguing possibility occurs when
price is endogenous. In this case, we have shown that price will fall, meaning that
consumer surplus will increase as well. It follows that cost-increasing measures in
the commons have the potential to make both producers and consumers better
o¤, in addition to raising distortion-free tax revenue.
It is important to emphasize that our analysis thus far has focused on local

results in the neighborhood of a Nash equilibrium. We now consider the question
of whether the same result� an increase in pro�ts� can hold if a cost-increasing
measure were imposed to implement the �rst-best level of e¤ort. This would
be consistent with an optimal Pigouvian tax where none of the tax revenue was
returned to the agents in the commons.14 We begin with consideration of a tax
and then contrast the �ndings to that of a regulatory constraint. We also focus,
for simplicity, on the base-case model in which price is exogenous and normalized
to unity.
The �rst observation is that our main result cannot hold locally in the neigh-

borhood of the socially optimal (i.e., sole-owner) level of e¤ort. To see this for-
mally, de�ne X̂ = argmax fF (X)� cXg. Satisfying the second-order condition
thus requires F 00(X̂) � 0, which violates the necessary and su¢ cient condition for
pro�ts to increase locally with a cost-increasing measure. Intuitively, this follows
because, for the sole owner, convexity of total revenue at X̂ would require mar-

14Dasgupta and Heal (1979) consider the same question in the context of a static model. In
particular they write, �The question arises whether �rms are better or worse o¤ at the free
access equilibrium than they are at the tax equilibrium if the entire tax revenue is expropriated
from them by the government. Rather surprisingly, perhaps, it is easy to show that they are
unambiguously better o¤ at the free access equilibrium�(p. 70). By �free access�they mean
the Nash equilibrium with any �nite number of agents. Their conclusion, however, depends
on the assumption that aggregate production is globally concave, meaning (in our notation)
that F 00 (�) < 0. Conditional on that assumption, we would reach the same conclusion. But
the payo¤ of each extractor may be strictly concave even when aggregate production is locally
convex. In that case, as we show, the opposite conclusion follows.
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Figure 2: The e¤ect of an optimal tax on pro�ts

ginal revenue to be increasing, which is not compatible with X̂ being the optimal
level of e¤ort.
But the question still remains about whether, with n � 2, pro�ts can ever

be higher with a tax at the socially optimal level� but with no tax revenue
returned� than without a tax. Figure 2 is useful to demonstrate the mechanism
at work. The sole owner�s level of e¤ort occurs at the intersection of marginal
product (F 0 (X)) and marginal cost, yielding pro�ts X̂(A(X̂) � c). The open-
access level of e¤ort, denoted �X, occurs at the intersection of average product
(A (X)) and marginal cost, yielding zero pro�ts. The new feature on the graph
is the curve

W (X) =
F 0 (X)

n
+
n� 1
n

A (X) (14)

which is simply a rearranged expression for J (X) + c. Essentially, W (X) is a
weighted average between the marginal product and the average product, and its
intersection with marginal cost determines the Nash equilibrium level of aggregate
e¤ort for any n, with corresponding aggregate pro�ts equal to X�(A(X�)� c).
The other useful implication of (14) is that W (X̂) � c = � � is the tax that

implements the �rst-best level of e¤ort. If imposed, we can see from Figure 2
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that pro�ts remain even after the tax revenue is paid, as indicated by the area
X̂(A(X̂)�c�� �). The question of interest, therefore, is whether these pro�ts can
be greater than the initial pro�ts at the Nash equilibrium. The general answer
is that this is certainly possible. A simple example can be constructed with a
slight modi�cation of the one considered in Section 4.15 More generally, Figure 2
indicates that the result is more likely to arise if average product is both steeper
and more convex, which is also re�ected in our necessary and su¢ cient condition
for the local result that E = �XA00 (X) =A0 (X) > 2.
Clearly the e¤ects on pro�ts are unchanged regardless of whether the cost-

increasing measure arises from a tax or a regulatory constraint. But the two policy
instruments do di¤er from a social welfare perspective. The fact that a tax raises
tax revenue implies that a social planner would always seek to impose a tax that
implements the �rst-best level of e¤ort, provided the planner could capture and
utilize the tax revenue. With a regulatory constraint, however, the social planner
would never target the �rst-best level of e¤ort. This follows because the social
planner would only seek to impose further cost-increasing measures as long as
pro�ts increase on the margin, and that will never occur all the way down to the
�rst-best level of e¤ort. Accordingly, with a regulatory constraint, if the social
planner would ever impose a cost-increasing measure, the level of aggregate e¤ort
would still be less than �rst-best. Speci�cally, the socially optimal level of e¤ort
would be at the in�ection point, the smallest aggregate e¤ort level for which the
total revenue function is strictly convex. The di¤erence between the two policy
instruments of a tax and a regulatory constraint is that agents�costs due to the
tax are not social costs, but with the regulatory constraint they are.

8 Conclusion

This paper focuses on the potential for a veritable �free lunch� in the com-
mons. We identify necessary and su¢ cient conditions under which cost-increasing
measures� consistent with either taxes or regulatory constraints� can increase
the pro�ts of all agents operating in the commons. This somewhat counter-
intuitive result is possible regardless of whether price is exogenously �xed or
endogenously determined. Moreover, consumers are made no worse o¤ and, in
the case of an endogenous price, can be made strictly better o¤. In general,

15If we assume that marginal cost is zero (rather than 0.5), then it is straightforward to
verify that after-tax pro�ts can be greater than pro�ts at the initial Nash equilibrium. Pro�t
per agent with the optimal tax (the revenue from which is not returned) is simply 5=n2. It
follows that, in three cases with n equal to 2, 5, and 10, pro�t with the tax is 1.25, 0.2, and
0.05, respectively. In contrast, using numerical simulation, pro�t without the tax in each of the
three cases is approximately 1.22, 0.17, and 0.04, respectively.
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the results simply require that total revenue be decreasing and convex, which is
not an unreasonable condition, as we demonstrate in the context of a renewable
natural resource. Finally, the results are robust to heterogeneity of agents and
certain conditions of costless entry and exit. The basic intuition for our main
result is that cost-increasing measures, although costly, can have more than o¤-
setting bene�ts as a collusive mechanism that also mitigates a negative congestion
externality.
One way to see the importance of this result is to consider the standard policy

instrument of imposing a tax to manage the commons. The results of this paper
show how both producers and consumers can be made better o¤, compared to a
situation with no tax, even if the tax revenue is fully expropriated. In such cases,
our analysis suggests that agents operating in the commons should not oppose
implementation of the tax if the alternative is no tax. Similarly, they should wel-
come other forms of regulation that increase the costs of all agents, as each stands
to earn greater pro�ts when compared to situations without any regulation. The
same reasoning applies in the context of more decentralized forms of governance
in the commons. An extensive literature investigates the emergence various self-
governing institutional arrangements for managing the commons. The literature
is most commonly associated with the extensive works of Elinor Ostrom, and two
standard references are Ostrom (1990) and Ostrom, Roy, and Walker (1994). In
the context of this literature, it is straightforward to see how self-governing insti-
tutions designed to limit e¤ort are advantageous. This paper provides a rigorous
foundation for the ways in which self-governance based on increasing costs can
be advantageous as well.
The results of this paper also relate to another literature on the e¤ects of

environmental policy on competitiveness and pro�tability. The so-called �Porter
Hypothesis�claims that tighter environmental regulations can enhance competi-
tiveness and pro�tability over the long run. The argument is that tighter regula-
tions induce innovation that ultimately lowers costs and increases pro�ts (Porter
and van der Linde 1995), but the claim is not widely accepted and rather contro-
versial (see, for example, Palmer, Oats, and Portney 1995). Our results contribute
to this literature because we �nd instances where tighter regulations do in fact
increase pro�tability; but rather surprisingly, it is because of cost increases rather
than induced innovation. While we have focused primarily on common-pool re-
sources, our more general version of the model demonstrates how closely related
results apply in oligopolistic markets of imperfect competition. When more strin-
gent environmental policy is being considered in these markets, perhaps due to
negative externalities, the analysis of this paper provides a starting-point for
understanding when pro�tability need not su¤er.
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