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Abstract 

This paper uses a spatially disaggregated computable general equilibrium model of a large US 

metropolitan area to compare two kinds of policies, “Live Near Your Work” and taxation of vehicular 

travel, that have been proposed to help further the aims of “smart growth.” Ordinarily, policy comparisons 

of this sort focus on the net benefits of the two policies; that is, the total monetized net welfare gains or 

losses to all citizens. While the aggregate net benefits are certainly important, in this analysis we also 

disaggregate these benefits along two important dimensions: income and location within the metropolitan 

area. The resulting identification of gainers and losers with these policies, though undoubtedly important 

to matters such as fairness and political feasibility, are rarely made. We find that these distributional 

effects are quite sensitive to the details of policy design. 
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Distributional Consequences of Public Policies: An Example from 

the Management of Urban Vehicular Travel  

Winston Harrington, Elena Safirova, Conrad Coleman,  

Sébastien Houde, and Adam M. Finkel 

Introduction 

This paper describes a set of experiments using a detailed, regional computable general 

equilibrium (CGE) model to examine and compare the costs and benefits of a set of local policies 

to implement “smart growth,” principally by attempting to discourage the low-density 

development patterns characteristic of urban sprawl. A particular focus of the research is to 

examine the distribution of those costs and benefits over space and income groups and the 

manner in which the distribution of outcomes is affected by details of the various policies. This 

research seeks to contrast “naïve” presentations about costs and benefits (i.e., that costs and 

benefits are uniformly distributed, an assumption made either because analysts believe this will 

be the case or because a lack of information precludes any other assumption) with more detailed 

analyses of how different subpopulations will actually fare. 

Although it is recognized that public policies can have very disparate impacts on the 

individuals that are subject to them, the issue of how benefits and costs are distributed has often 

been given short shrift in policy evaluation, especially in the evaluation of health, safety, and 

environmental regulation. And though many regulatory impact analyses (RIAs) consider the 

interindividual distribution of risks reduced (benefits), far fewer of them consider the distribution 

of costs; those that do almost always stop short of analyzing effects on consumers, considering 

only the variation in costs at the producer level, by industry sector and/or firm size (Finkel 2013). 

The principal criteria now used in public policy evaluations are (a) the “net benefit” criterion, 

which is derived by estimating the sum of benefits to all parties less the costs (regardless of the 

concentration of benefits or costs and regardless of who enjoys the benefits or pays the costs) and 

(b) its close relative, the benefit–cost ratio.  

                                                 
 Winston Harrington, Resources for the Future (harrington@rff.org); Elena Safirova, US Geological Survey; 

Conrad Coleman, University of York, Canada; Sebastien Houde, University of Maryland; Adam M. Finkel, 

University of Pennsylvania. 
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The original rationale for the net benefits criterion—also called the Kaldor–Hicks 

criterion in welfare economics—is the more restrictive Pareto criterion, which defines welfare 

improvement as that achieved by an action that makes at least one member of the polity better 

off without making anyone worse off. Private transactions between individuals, at least those that 

do not involve externalities, are welfare-improving in the Pareto sense, because they are 

consensual. However, it is the rare public policy that does not have adverse implications for at 

least one person. What Kaldor and Hicks observed was that if the aggregated gains to the 

winners were enough to compensate the losers, then any policy in which the total benefits exceed 

the total costs would improve welfare after such compensatory payments were made. But 

because transaction costs would make actual transfer payments impractical, actual compensation 

was replaced with hypothetical compensation, yielding the net benefits criterion. Although that 

change made it possible to rank every policy option, the welfare implications of such a ranking 

were no longer apparent. A policy could have positive net benefits and still have many more 

losers than winners, and although the sum of winners’ gains would exceed the losses, no one 

could say that as a whole, society was better off. 

Indeed, if such a policy were subject to a popular-vote referendum, with citizens given 

accurate information about who would gain and who would lose, it would, by definition, have 

more opponents than supporters, and would fail such a “one person, one vote” test. The welfare 

implications of positive net benefits would be especially murky if the losers tended to be poorer 

than the winners. Conventional utility theory, which lies at the basis of welfare economics, 

usually posits that the marginal utility of income decreases as income increases. In other words, 

use of the net benefits criterion fails to account for the possibility that income losses to the poor 

would reduce their satisfaction more than income gains to the rich would improve theirs. In such 

a scenario, positive net benefits on a monetary scale would mask negative net benefits when 

dollars are expressed in units of utility—even on an aggregate basis that ignores distributional 

and equity issues. 

Given these problems, why have the net benefits and benefit–cost ratio criteria become 

the principal standards for rating proposed public policies? Several possibilities come to mind. 

First, these criteria are not zero–one outcomes. The margin by which benefits exceed costs—and, 

even more, the size of the benefit–cost ratio—is an important part of the indicator. It is natural to 

think that the greater the ratio of expected benefits to costs, the more likely the policy will be to 

have positive net benefits for the majority, or the vast majority, or even for nearly all affected 

individuals. Second, policymaking is not a one-off event; governments make policy decisions 

repeatedly on a variety of issues. Some may think of these decisions as independent events, such 
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that winners and losers of successive interventions would not be the same. If so, then ensuring 

that the net benefits criterion is met for each policy would increase the likelihood that most 

individuals would benefit from the entire portfolio of policies. Third, many policies, especially 

those involving economic incentive approaches, are not easy to improve in distributional terms 

without interfering with their efficiency properties. In such cases, some may wish to leave the 

new policy alone and seek some kind of compensation to losers through the tax system. 

Still, for several reasons it is important to understand the distributional consequences of 

public policies. For one thing, such knowledge is a prerequisite if policymakers are to make 

adjustments to compensate losers. In addition, knowledge of distributional outcomes can be an 

aid to policy design, for often it is possible to make alterations to policies that have little effect 

on total benefits or costs yet can materially affect the distribution of outcomes. Indeed, 

information on distributional outcomes of major policies would seem to be an essential element 

of an open society. People deserve to have an idea of how impending policy changes will affect 

them. Yet distributional analyses of public policies are often noticeable mainly by their absence. 

For example, a study of recent RIAs of proposed social regulations found that, for the vast 

majority, a distributional analysis was either rudimentary or missing (Cranor and Finkel 2013), 

particularly on the “cost side.”   

Even when a distributional analysis is carried out, it is usually done only for income. 

When distributional considerations are raised, they are usually done so under the banner of 

fairness. Unfortunately, what is “fair” usually has no obvious definition; or rather, it has many 

definitions depending on who is defining it. In practice, fairness often is considered synonymous 

with progressivity; in other words, a fair policy should not exacerbate the maldistribution of 

wealth. Thus, when policy analysts consider the distribution of net benefits of proposed policies, 

the focus is often on the distribution of benefits and costs by income group. But many other 

potentially identifiable characteristics of individuals or households—such as residential location, 

age, occupation, and marital status—could affect their gains or losses and could, therefore, make 

a material difference in outcomes for a particular policy.  

Our objective in this paper is to illustrate how a disaggregated general equilibrium model 

could shed light on distributional outcomes of public policies.  To do so requires a modeling 

apparatus that is able to disaggregate the agents affected by the policy, particularly regulated 

firms and affected households, into groups of policy interest. Firms, for example, could be 

disaggregated by size or location, among other things, and households could be disaggregated by 

income, location, or other covariates. For a health, safety, or environmental regulation that 

imposes compliance costs on firms, the model could first disaggregate the costs firms bear, and 
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then model how different subsectors of industry pass on those costs to the different kinds of 

households that are their customers. 

Very briefly, the policies examined here include three variants of so-called “live near 

your work” (LNYW) programs, which provide modest subsidies to encourage homeowners to 

relocate—or to change employment location—to reduce their commuting costs.
1
  As explained 

further below, these three policies differ by who is eligible for the subsidy. A fourth policy 

considered here is a tax imposed on total miles traveled by motorists in a metropolitan area. The 

idea behind this vehicle miles traveled (VMT) tax is that the higher cost of travel will induce 

motorists to change travel habits in a variety of ways, not only by moving homes or changing 

jobs, but through the frequency of and distance traveled for shopping and other kinds of trips as 

well as by switching to other travel modes, such as bus or rail transit. All of these policies rely on 

economic incentives rather than direct regulation to achieve their objectives.  

Both LNYW and VMT policies offer a mix of benefits and costs, so the overall picture of 

net benefits for each policy is not obvious. The principal cost of LNYW is the cost of providing 

the subsidy, which is shared by everyone in the community. These revenues directly benefit 

those who are in a position to accept the subsidy, who also benefit from shorter daily commutes. 

In turn, less traffic may offer congestion relief, fewer accidents and better air quality to the 

general population. The main cost of the VMT tax is the tax itself, which imposes costs on 

motorists in direct proportion to their driving. The benefits derive from the overall reduction in 

motor vehicle use that is supposed to ensue, such as reduced congestion and accidents, improved 

air quality, and of course the tax revenue itself, which can be used to produce other public goods 

or to replace other taxes with high excess burdens. 

Despite their overall similarities, these policies differ considerably in their overall net 

welfare outcomes as well as their distribution of those outcomes across various groups of agents. 

Of these four, we find that benefits exceed costs only for the VMT tax, and only at some tax 

rates. If the tax rate is too high, too much travel is discouraged and the net losses of the policy 

exceed the gains. Our results suggest that, at all subsidy rates, the LNYW policies are inefficient 

and net gains are exceeded by the costs. Policymakers often choose inefficient policies if they 

result in payoffs in other dimensions, particularly if they address distributional concerns. 

                                                 
1 Households with two full-time employed individuals are eligible for such programs if either individual meets the 

employment location test. In our model, agents are individual workers, not households, so the issue does not arise.  
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However, in this case, we find that the distributional effects of the LNYW policies are, at best, 

only mildly progressive and therefore do not provide any fairness justification for policies that 

also fail a Kaldor–Hicks test. On the other hand, some permutations of the VMT tax are actually 

rather progressive, and therefore provide further justification (beyond the positive net benefits) 

for pursuing them. 

The plan of the paper is as follows. Section I provides background and a selective review 

of the literature on the costs and other consequences of urban sprawl and the measures that have 

been undertaken to prevent it. In Section II, we describe LUSTRE (Land Use, Surface 

Transportation, and Regional Economics), a highly disaggregated spatial CGE model of the 

Washington, DC, metropolitan area developed by Resources for the Future to simulate urban 

transportation and land use policies in a complex and realistic setting. LUSTRE is the platform 

we use to compare policy outcomes. Section III describes the four policies we examine and 

explains how these policies are represented in LUSTRE. We present, discuss, and compare our 

results in Section IV, first by showing the aggregate (mean) outcomes and then by showing the 

disaggregated (distributional) outcomes for both policies. We draw conclusions in Section V. 

I. Curbing Urban Sprawl 

Smart growth proponents all over the country have compiled a long list of policies and 

strategies that should, in principle, help curb urban sprawl. Although such policies vary widely, 

they generally adhere to major themes of mixed land uses, the provision of alternative 

transportation choices, and the promotion of compact building design. The opponents of smart 

growth, on the other hand, assert that such intervention does not reflect consumer preferences 

and infringes on personal freedom. Both sides, ironically, have claimed at various times that the 

opposing policy can increase traffic congestion and air pollution, reduce housing affordability, 

result in socially undesirable levels of density, increase public service costs, and require wasteful 

transit subsidies. The debate remains highly contentious, in part because few analytical tools are 

suitable for settling the issues raised. In this respect, the smart growth debate mirrors the typical 

controversies about health, safety, and environmental regulations more generally—with arguably 

optimistic estimates of lives saved and jobs created vying with dire predictions of burdensome 

costs and unemployment (Coglianese et al. 2013). 

For many years, urban economics research has attempted to come up with formal models 

that can shed some light on the issues. First of all, urban economists have tried to build models 

that show what sorts of market failures lead to the exacerbation of sprawl (Brueckner 2000, 

2001). They have looked at possible welfare implications of particular policies, mostly growth 
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controls. The standard conclusion from that literature is that an extreme form of growth control, 

such as urban growth boundaries (UGB), in the setting of a standard monocentric city model 

with no explicit modeling of production, can serve as a second-best policy for internalizing 

congestion externalities. In other words, such a policy is less economically efficient than a set of 

optimal congestion tolls but more feasible politically. 

However, when the monocentricity assumption is relaxed, both congestion tolls and UGB 

might have unexpected effects. In a real city, a UGB might exacerbate sprawl as settlement is 

encouraged beyond the outer extent of the growth boundary. And rather than encourage more 

residential development in the city center, congestion fees may instead encourage low-density 

employment on the periphery.  

Congestion tolls, in particular, have been as unpopular among local politicians and 

commuters as they have been lauded by urban and transportation economists for their efficiency 

properties. But in more realistic settings, even optimal kinds of tolls can easily become 

suboptimal or even inefficient when other types of externalities and/or frictions are present in the 

system. Some examples of such externalities and frictions include agglomeration economies 

(Arnott 2007; Safirova 2002), increased congestion on untolled facilities, and labor taxes (Parry 

and Bento 2001). When studying second-best and third-best urban policies, one should take the 

presence and interaction of the significant external effects into account if one aspires to produce 

policy-relevant results. In addition, the presence of real-world complicating factors—such as 

transportation networks, realistic geographic structure or urban areas, and the presence of 

heterogeneous agents—could produce outcomes that are significantly different from those 

obtained using (relatively) simple geometries and theoretical models. Of course, our “real-world” 

model will be painfully simplistic compared to the actual set of interactions that take place, but it 

should suggest (a) the importance of elements that the simple theoretical urban models leave out 

and (b) the possibility that proposing effective and efficient second-best policies can be more 

challenging than simple models can predict. 

II. Model Description  

 LUSTRE consists of two independent, spatially disaggregated models that have been 

yoked together by Resources for the Future to create a detailed CGE model of the economy of 

the Washington, DC, metropolitan region. LUSTRE’s two components—a simplified 

transportation sketch planning model (START) and a CGE Regional Economy and Land Use 

(RELU) model—communicate with each other to simulate land use and transportation policies in 

a realistic and detailed model of land use, transportation, and regional economic development. In 
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this section, we provide a short description of the integrated model and characterize the baseline 

equilibrium used in this paper. 

START 

The START (Strategic And Regional Transport) Modeling Suite, developed by MVA 

Consultancy, has been applied to a range of urban centers in the United Kingdom, including 

Birmingham, Edinburgh, and South England (Croombe et al. 1997; May et al. 1992). More 

recently, this model was calibrated for Washington, DC, and was used to conduct policy 

simulations of gasoline taxes (Nelson et al. 2003), High-Occupancy Toll (HOT) lanes (Safirova 

et al. 2003), and congestion pricing (Safirova et al. 2004; Safirova et al. 2005); to compute 

network-based marginal congestion costs of urban transportation (Safirova et al. 2007); and to 

evaluate the benefits of public transit (Nelson et al. 2007).  

START is designed to predict the transportation-related outcomes of different 

transportation policies. In this model, “policies” refer to combinations of different transportation 

elements, which in broad terms encompass changes in road or public transit capacity (e.g., new 

infrastructure); operating conditions; and tolls, fares, and other fees. Most local transportation 

models have very detailed supply sides—for example, the model used in the Washington, DC, 

metro area has about 2,000 zones plus a detailed road network—and rather rudimentary demand 

modules. In contrast, START has a limited zonal structure and an aggregated representation of 

the supply side combined with a very detailed demand side. With this structure, the model runs 

to completion after a run time that is short (about 30 minutes) relative to more conventional 

models; this provides an opportunity to conduct and compare a large number of policy 

simulations to better understand their potential consequences. 

The Washington START model has 40 travel zones with three stylized transportation 

links in each zone (inbound, outbound, and circumferential) and a number of other “special” 

links that represent highway segments and bridges. Six main corridors (I-270, I-95, and US-50 in 

Maryland and I-66, I-95, and the Dulles Toll Road [VA-267] in Northern Virginia) connect the 

outer suburbs to the central region within the circular I-495/I-95 ring known as the Beltway 

(Figure 1a). The rail network combines the Washington Metrorail system and suburban heavy 

rail systems (Maryland Rail Commuter and Virginia Railway Express). Rail travel occurs on 

routes, which are modeled as series of rail links that represent segments of the rail network. Bus 

travel is represented by a highly stylized route network, with bus accessibility in any zone 

determined by the density of stops, frequency of service, and reported bus travel times. Transit 

crowding costs and parking search costs are explicitly included in the model. The model also 
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accounts for existing high-occupancy vehicle (HOV) lanes on I-95, I-395, I-66, and VA-267 in 

Northern Virginia, as well as I-70 and US-50 in Maryland. Moreover, we recently have made 

several improvements to transit modeling, such as incorporating park-and-ride facilities for rail 

trips, placing buses on the links used by other on-road vehicles (so that buses are affected by and 

contribute to road congestion), and a creating a more detailed treatment of the rail network.  

This rather aggregated supply-side representation is combined with a detailed demand-

side structure. START features multiple agent types (up to eight in the current implementation) 

that can differ by income or any other demographic characteristic. The model includes six trip 

purposes: home-based work (HBW), home-based shopping (HBS), home-based other, nonhome-

based work, nonhome-based other, and freight. Home-based trips either originate or terminate at 

home. The model distinguishes four travel modes: single-occupancy vehicle (SOV), HOV, 

transit (which has two submodes, bus and rail), and nonmotorized (walking and bicycling). It 

also represents three time periods: morning peak, afternoon peak, and off peak.  

START takes HBW and freight trip demands by demographic segment and residential 

location as exogenous; it takes trips for other home-based purposes as endogenous but highly 

inelastic. A travel decision is modeled as a set of sequential decisions—for example, whether to 

travel, then the purpose of the trip, then the destination, then the time of day, then the mode—

specified as a nested multinomial logit model. The utility functions at each nest are linear in 

generalized costs (the combined monetary and time costs of travel). The value of time is a 

function of the travelers’ wage rate and varies by trip purpose. Crowding on public transit routes 

also induces an artificial time penalty, which is tantamount to an increased travel time. For 

home-based trip purposes, agents choose in successive nests whether to generate a trip (for 

purposes with endogenous demand), then destination, mode, time of day, and route. The utility 

for each nest i is given by i i iU A p  , where Ai is a calibrated value representing idiosyncratic 

preferences,  is an exogenous response parameter (indexed by trip purpose and nest level), and 

pi is a generalized cost of travel that combines time and money costs explicitly modeled in the 

supply module. Nonhome-based trip demands are an explicit function of home-based trip 

numbers at the model level. Agents choose the time of day and route in successive nests. 

The overall structure of START is an iterative one. The trips computed in the demand 

module are loaded onto the supply network. The supply network uses the loads to compute costs 

of travel, which are passed back to the demand module. This process iterates until the costs of 

travel converge to equilibrium values. 
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To integrate START with the RELU model, we made several modifications to the 

standalone START. First, for the trip purposes that are explicitly modeled in RELU (HBW and 

HBS trips), the trip-generation and destination nests are removed. Instead, in LUSTRE, RELU 

generates trip demands and passes these numbers to START (we discuss this in more detail in 

the integration part of this section). Second, the definitions of shopping trips in RELU and 

START are mismatched; RELU shopping trips include trips to service locations (e.g., doctor’s 

office or lawyer), while START trips do not. We let each model work with its own definition and 

make necessary conversions in the integration procedure. 

RELU  

RELU was developed by Alex Anas and Elena Safirova with the purpose of creating a 

theoretically sound modeling tool for policy analysis. RELU is a spatially disaggregated CGE 

model of a regional economy that is grounded in microeconomic theory and can be used for 

comprehensive welfare analysis.  

In its modeling philosophy, RELU follows the structure of Anas and Xu (1999), although 

several new features (the presence of several agent types, the explicit possibility of 

unemployment, the modeling of housing and building stocks, and income and real estate taxes) 

position the model to tackle complex, realistic problems. In its present calibration, the model 

features four groups of consumers/workers, four primary industries, and construction/demolition 

industries, as well as decision-making by landlords and developers. A mathematical description 

of RELU is provided in the mathematical appendix.  

Welfare Measurement 

Each model described above provides a natural way to measure welfare changes resulting 

from policies. In START, consumer surplus can be computed in a manner consistent with the 

nested logit tree underlying the decision-making process. At each nest, consumer surplus is 

computed as a logsum of utilities achieved at each branch of the tree that descends from that 

nest.  

Then the overall welfare is the logsum computed at the top nest:  
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Several caveats apply to the use of this approach in the context of the integrated model. 

First, because separate welfare measures are computed for each trip purpose as opposed to each 

agent class (i.e., consumer surplus is computed per trip, not per person), a judgment may have to 

be made about the relative value of various travel purposes. Second, the model does not provide 

an easy way to compute the marginal utility of money for the travelers making trip choices. 

However, we can use a Taylor series approximation to the objective function and use it to find 

marginal effects. Third, to compute the social surplus of a particular policy, one has to make 

assumptions about the marginal costs of public funds and about government efficiency when 

spending public money. Nevertheless, if particular (even ad hoc) assumptions are made, the 

model provides a relatively straightforward way to evaluate the welfare associated with 

simulated policies. Some examples are discussed below. 

On the other hand, RELU provides a way to compute the economic welfare of 

consumers/residents without requiring the modeler to make the same ad hoc decisions. In RELU, 

utility is agent-based; therefore, valuation of travel purposes is internalized. RELU’s utility 

function is log-linear in agent’s income, so one can evaluate the marginal utility of income for 

each choice (equations A5 and A7). Finally, RELU explicitly treats income taxes and can, 

therefore, compute marginal costs of public funds.  

Because the discrete consumer choices in RELU are a nested multinomial logit, the 

welfare measure in the model can be written as: 

   
|

1
ln

H
f w fV

f H
wf

W e



   (1) 

In LUSTRE, we adopt the RELU definition of welfare measurement. In fact, the structure 

of the integrated model stipulates that RELU, and therefore its welfare measure, serves as a tool 

for the comprehensive evaluation of the changes in the economy, including the transportation 

sector, and for the most part this evaluation is indeed comprehensive.  

Furthermore, because the indirect utility function in RELU (U
~

, equation A5) is a 

function of endogenous economic and transportation variables, we can decompose the welfare 

change to evaluate how each of those variables affects welfare.  

The decomposition of the welfare gains is approximated using the linear Taylor 

polynomial for the welfare measure (i.e., the sum of the partial derivatives of the welfare 

function, times the variation from the baseline to the simulation, of the endogenous economic 
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and transportation variables). Following this approach, we get a formula for the decomposition 

of the total welfare gain ( W ): 
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 (3) 

In equation (3), the first term represents welfare gains from the changes in toll revenues 

redistributed (the surplus of transit fares is included), the second term accounts for changes in 

dividends due to the change in the real estate values, the third term represents changes in wages, 

the fourth term accounts for changes in retail prices, the fifth term comes from changes in rents, 

the sixth term represents changes in commuting costs, the seventh term stands for changes in the 

costs of shopping trips, and the last term is a correction term due to the first-order approximation. 

The formula allows one to determine how changes in physical outcomes (such as wages or 

transportation costs) contribute to overall welfare change. The mathematical appendix provides 

details on the formulation of each term.  

Model Integration 

In LUSTRE, RELU and START are integrated at the level of the individual agent; this 

feature makes the integrated program well-suited for testing the behavioral response to either 

policies or economic scenarios. Moreover, this integration and the fact that RELU and START 

operate at the same level of geographic disaggregation make the integrated model very precise in 

passing information between the two modules. The integration is implemented using an auxiliary 

program called “Bridge” that assists in data exchange between the two models by aggregating 

and disaggregating them as needed. To help the reader better understand the mechanism of 

interactions between the two models, we describe one loop of the iterative procedure. 

First, RELU takes time costs and monetary costs of travel—disaggregated by skill class, 

trip purpose, and origin–destination pair—as given. The RELU simulation yields, in addition to 

other land use and economic effects, trip demands at the same level of disaggregation given 

above. The Bridge disaggregates those trip demands further by mode, time period, and route, 

based on their calibrated distribution, to provide START with an initial guess of this further 
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disaggregation of trip demands. The Bridge also translates RELU-determined wage rates into a 

value of time for START. By minimizing travel costs at the level of the individual trip, START 

iteratively redistributes trips among routes, time periods, and modes; at each iteration, it 

computes generalized costs of travel. START terminates when the costs of travel converge to 

equilibrium values. At this point, the Bridge aggregates the equilibrium generalized travel costs 

over routes, time periods, and modes, splits the costs into time and money elements, and passes 

this new set of transportation costs to RELU. With these new transportation costs, RELU finds 

new equilibrium land use and economic values, including new travel demands and wages. The 

Bridge processes these new travel demands and wages as described above, START runs again, 

and so on. The process continues until both trip demands and costs converge to values that do not 

change (more than a specified tolerance) between iterations. 

Model Calibration 

The integrated model is calibrated to the year 2000 for the Washington, DC, metropolitan 

area. The population of potential workers (the active population) is divided into four groups, with 

each group representing a different skill class. All workers with the same skill class and living in 

the same zone have the same wage. Across zones, the wages for workers of the same skill class 

may differ, but not by enough to cause categories to overlap. Nonworkers do not receive wages, 

but they do receive nonwage income. 

To calibrate the model, a variety of data sources have been used. Data on residential and 

workplace patterns, wages, and incomes were extracted from the Census Transportation Planning 

Package (CTPP) and supplemented by the Consumer Expenditure Survey; prices and production 

volumes are based on data obtained from the Bureau of Labor Statistics; housing consumption 

data and residential rents came from the American Housing Survey; and land use data were 

collected from the local and county governments in the metropolitan area. On the transportation 

side, we merged the data from the CTPP with data from the 1994 Travel Survey, scaled up to the 

2000 levels of travel demand. The Metropolitan Washington Council of Governments version 1 

transportation planning model and the data from aerial photography (Metropolitan Washington 

Council of Governments 1999) were used to calibrate road link speeds.  

In the calibrated baseline equilibrium, our area of study has an active population of about 

4,139,000 heads of household, who comprise one of the main groups of agents in the model and 

of whom 76.7 percent are employed (Table 1a). This population is divided into four skill classes, 

with every agent in each class having the same income. The proportion of agents in each skill 

class is somewhat unevenly distributed, with more than a third in the lowest class (skill class 1) 
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and slightly more than 10 percent in the highest class. These apportionments were based on the 

CTPP and represent an aggregation of its income bins. Table 1b shows the population in each of 

the 36 interior zones in the model (the 4 exterior zones are omitted) as well as the distribution of 

residents in each zone by skill class. A map of these zones is shown in Figure 1. As shown, the 

zones become larger in area as one approaches the periphery of the region; in terms of population 

size, they range from 10,000 to 334,000 residents. Each zone contains a mix of residents in the 

four skill classes; for example, skill class 1 residents make up at least 28 percent of each zone. 

As Table 2 shows, in the baseline equilibrium, average incomes range from nearly 

$16,000 (skill class 1) to a bit more than $90,000 (skill class 4). These average incomes include 

both employed and unemployed workers in each class as well as unearned income, which is  

primarily interest and capital gains  in level 4 and welfare payments in level 1. On average, 

consumers spend about 20 percent of their net incomes on housing and the rest on consumer 

goods and services. Marginal state and federal income tax rates range from 14.3 percent for the 

lowest skill class to 31.5 percent for the highest. Wages vary somewhat from one zone to another 

across the area of study, but average hourly wages for the four sSkill classes range between 

$6.80 and $47.00.  

The downtown core, the workplace of 13 percent of the region’s workers in the baseline, 

serves as the destination of more than 15 percent of morning commute trips and 11 percent of 

off-peak commute trips. On the other hand, the lion’s share of rail trips (69 percent) have, as 

their destination, the downtown core. The role of the city core as a shopping destination is much 

less prominent, with only about 1 percent of shopping trips destined for downtown locations. 

Nearly all of these shopping trips to the core are made by core residents, except perhaps for a 

relatively small number of nonhome-based trips by downtown workers. 

LUSTRE is a good platform for examining the distributional outcomes of public policy 

because of the model’s high degree of heterogeneity of baseline attributes of agents. Most 

important for our purposes are the skill classes of agents, which determine their income, and the 

agents’ locations, which determine their commuting behavior and opportunities. In addition, a 

random, unobserved element, determined by one of the parameters of the logit utility function, 

enters the utility function of each agent, and this too can affect how individual agents respond to 

and are affected by policies. In contrast, most other studies of the effects of the distributional 

effects of public policies do not go much further than an examination of how outcomes are 

affected by income. For example, RIAs, which are supposed to report on benefits and costs of 

proposed regulations, rarely consider the effects of any variables on individual costs. 
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III. Policy Modeling 

Live Near Your Work 

LNYW programs offer financial assistance to homebuyers who choose a home proximate 

to their place of employment. A variety of such programs are offered by governments at all 

levels, often in conjunction with lenders such as Fannie Mae and large employers, notably 

universities. The main purpose of these programs is to promote smart growth development by 

encouraging residents to give primacy to their commute in choosing their housing location. Some 

programs have an additional goal of attracting and maintaining a local work force, and thus are 

targeted at city or public school employees or the employees of a sponsoring private, 

nongovernmental institution. Others have a distributional objective: to assist low- and moderate-

income residents who might otherwise be priced out of desirable in-city neighborhoods. LNYW 

programs can be found nationwide, and several jurisdictions in the Washington metropolitan area 

have them. Table 3 gives the characteristics of a sample of these area programs, with emphasis 

on the ones in or near the Washington metropolitan area. 

Because the journey to work is such an important component of urban travel demand, 

LNYW has the potential to reduce congestion and VMT in the region, especially during rush 

hour. If implemented in an urban core area that still has a strong concentration of employment, 

such as Washington, DC, LNYW can also promote infill development, increasing the demand for 

nearby housing and, in turn, supporting existing local retail establishments. Over a longer time 

horizon, it could provide incentives for job growth in the core area and encourage further retail 

development. These prospective developments, at any rate, form the rationale for policies like 

LNYW. 

Modeling LNYW 

For our simulations, we model an LNYW program that provides a closing cost assistance 

grant. For the “central” simulation of the LNYW policy, we consider a grant that provides a 

closing cost assistance grant of $4,000 to $12,000 (throughout the paper, all dollars are 2000 

dollars). Our central policy, $8,000, is toward the upper limit of the existing programs. To 

provide an illustrative example and to accommodate the modeling features of LUSTRE, we relax 

some of the eligibility criteria. For example, because homeownership is not modeled explicitly in 

LUSTRE, we cannot simulate an LNYW program that restricts the grant to first-time 

homebuyers. Thus, all individuals meeting the location criteria, described below, receive a grant. 

In the real world, however, those already meeting the criteria also receive a benefit in that their 

residential locations become more valuable, so perhaps this is not a significant distortion. Also, 
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the exact geographic locations of the buildings within LUSTRE zones are not defined, so it is not 

possible to consider an eligibility criterion based on a specific home–work distance. 

For a first series of simulations, we consider an LNYW program that provides a grant 

only to the residents living and working in the same zone inside the Beltway (I-495, Figure 1). 

We refer to this policy as the “Beltway” policy in what follows. This policy is more consistent 

with the objectives of infill development in that it creates an incentive for residents and, to some 

extent, firms, to move closer to the center of the Washington Metropolitan area. For a second 

series of simulations, we make the same assumptions as above, except that only low- to 

moderate-income individuals (sSkill classes 1 and 2) are eligible for the subsidy; this is the 

“Beltway12” policy. Finally, in the last LNYW simulation, we assume that all zones of our study 

area (see Figure 1) participate in the LNYW program and that, to be eligible for the grant, 

individuals must live and work in the same zone (the “LNYW all-zones” policy).
2
  

LNYW is a subsidy; thus the question immediately arises, in LUSTRE as in the real 

world, where the money is coming from. Various tax schemes can be entertained to make the 

overall policy package revenue-neutral. However, our previous experience with the model has 

demonstrated that the results, with respect to both the efficiency of the policy and its 

distributional effects, are very sensitive to the details of both the subsidy and the revenue-raising 

scheme. Also, their individual effects are impossible to disentangle. To avoid contaminating the 

effects of the subsidy by a particular revenue scheme, we simply dispense with the revenue 

requirement, allowing us to observe the net changes in welfare from the scheme for each agent in 

the model. If the average welfare change is smaller than the subsidy used to produce it, the 

subsidy policy is inefficient. In effect, we are assuming that the funds for the subsidy were 

collected at the costs of public funds equal to zero. Undoubtedly, this assumption is unrealistic. 

The customary local taxes that would be used to finance LNYW, such as taxes on land, labor, or 

sales, all have excess burdens and thus will lead to an overstatement of the efficiency of the 

policy. Under any realistic financing mechanism, the net welfare changes from the policy will be 

less favorable than those we compute here.  

                                                 
2 Obviously, these policies are hypothetical, as each affects parts of two states plus the District of Columbia. No 

political unit would have the authority to impose such a policy throughout the region. The same is true of the VMT 

tax discussed subsequently. 
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VMT Tax  

As an alternative to LNYW, we investigate a VMT tax, which would levy a per-mile tax 

on motorists based on the total amount of driving done in the metropolitan area. The existence of 

substantial levels of traffic congestion in Washington, as in other metro areas, strongly suggests 

that vehicle use is underpriced. To be sure, a constant VMT tax on all local mileage may not be 

the ideal instrument for correcting the congestion externality because congestion costs vary 

enormously with time of day and location, but it is simpler to implement than congestion pricing 

and may be a useful second-best policy in many situations.  

Whereas LNYW attacks commuting inefficiency indirectly, by encouraging the reduction 

in motorists’ principal daily destination, the VMT tax directly penalizes all driving, not just the 

journey to work. It is not immediately evident which policy should be the most effective and 

efficient as each policy clearly has both disadvantages and advantages over the other. Among the 

advantages of LNYW is its ease of implementation. Those who are eligible for and desire the 

subsidy identify themselves. In contrast, collection of the VMT tax in an efficient and 

nonintrusive manner is problematic, although recent advances in wireless data collection may 

alleviate these difficulties. On the other hand, the VMT tax directly incentivizes the reduced use 

of motor vehicles.  

Just as in the case with LNYW policies, to avoid the possible complications of policy 

evaluation related to the redistribution of the revenue from tax collection, we do not recycle the 

proceeds back into the economy. Analogous to the LNYW case, the key indicator is the 

difference between the change in total welfare across all individuals and the total tax revenue. 

Only if the reduction in total welfare is exceeded by the VMT tax revenues does the policy 

generate a net efficiency gain. The only difference is that, whereas the subsidy causes the LNYW 

policy to look better than it actually is, the unrecycled tax revenues cause the VMT tax to look 

worse than it is.  

IV. Results 

Mean Outcomes 

LNYW Results 

Table 4 and Figure 2 show the results of the three LNYW policies. The first three rows of 

the table give results for the Beltway policy at three different subsidy levels: $260, $520, and 

$780 per year, which are the approximate annualized equivalents (at 5 percent for 30 years) of 
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the three subsidy levels of $4000, $8000, and $12,000. The key numbers in the table are in the 

columns for per capita subsidy and per capita welfare gain. Keep in mind, however, that the 

subsidy goes only to those agents who are eligible for and accept the offer and who change their 

place of residence or employment. Such agents are definitely net beneficiaries of the policy; 

otherwise, they would not accept the offer. On the other hand, their gain is in kind and not in 

cash, and may not be equal to the cash value. As for the remaining agents, they gain to the extent 

that the LNYW policies achieve smart growth objectives, such as reducing congestion and 

improving air quality. They may also gain—or lose—if their homes gain or lose value as a result 

of the relocations induced by the policy. They lose their share of the subsidy payment, which will 

be, on average, the amount shown in the table. Thus, the distributional outcomes are, in fact, 

quite skewed, with all benefits going to the lucky few, who may be relatively poor or rich, 

depending on the policy design. If others are to benefit, the public good aspects of the relocations 

must outweigh the costs of the subsidy. 

As shown, all of the LNYW policies are inefficient. The LNYW all-zones policy is a 

much larger social program than the two Beltway policies, as indicated by the increase of at least 

five-fold in total subsidy at comparable subsidy levels. For the Beltway policy, we have three 

different subsidy levels, and the ratio of welfare gains to costs remains essentially constant 

regardless of the level. On the other hand, the ratio of the net welfare to the subsidy is about –15 

percent for the Beltway policy, –19 percent for the Beltway12 policy, but only –9 percent for the 

LNYW all-zones policy. Thus, holding subsidy level constant, the ratio declines as the eligibility 

requirements are expanded. 

Though in a general equilibrium setting it is difficult to disentangle the individual effects 

of economic and transportation factors, the welfare decomposition shown in equation (3) above 

allows us to estimate the effects of each of the key economic variables: wage income, nonwage 

income, retail prices, housing rents, commuting costs, and cost of other travel. For each variable, 

the decomposition shows the approximate contribution, positive or negative, to the observed 

change in welfare. That is, if we think of approximated welfare as a function of the variables 

across the top of the table (e.g., wage income and nonwage income), the entry in Tables 5a–c is 

the product of the change in the variable multiplied by the derivative of welfare with respect to 

that variable. The correction term is the difference between the sum of these terms in the Taylor 

series expansion and the value of the welfare function itself.  

The welfare decomposition at the $520 annual subsidy level is shown in Table 5. The 

main contributors to welfare for the two Beltway LNYW policies are the changes in wage and 

nonwage income (Table 5a and 5b), followed by changes in consumer prices and rent that 
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slightly reduce welfare. Transportation costs hardly contribute anything to the welfare change. 

This same pattern holds also for the LNYW all-zones policy (Table 5c), with the exception of a 

10-fold increase in the magnitude of the effects. The all-zones policy affects a much larger 

population, so the subsidies are much larger. Recall that the entries in Table 5 do not reflect the 

subsidies themselves; once the subsidies are taken into account, the total welfare is negative. 

Why are the LNYW policies inefficient? One plausible reason is that the relocation of 

agents into zones of higher density causes more traffic congestion than it relieves by reducing 

total VMT. As shown in Table 6, however, congestion costs barely change upon implementation 

of the Beltway policy (the other LNYW policies yield comparable results). In fact, traffic 

variables hardly change at all. Instead, the most likely explanation for LNYW inefficiency is that 

individual agents who are induced to relocate by the policy do not value the change as much as it 

costs. In the baseline, equilibrium prevails and no agent can be made better off by moving from 

one zone to another. Note that this applies at any subsidy level because the process starts from 

equilibrium, where all advantageous changes have already been made. Perhaps some agents are 

close to moving without the subsidy. Suppose an agent would experience a welfare loss of only 

$100 per year to move into a zone favored by LNYW. Now the policy is imposed and that agent 

is offered $520 per year to cover closing costs if he moves. This agent would enjoy a net welfare 

gain of $420 per year, so naturally he accepts the subsidy and moves. However, the subsidy takes 

$520 per year away from other agents in the region, so the net welfare loss is $100. This is a 

common problem for subsidized consumption: the valuation of goods provided to beneficiaries 

inevitably lags behind the total costs required to produce or acquire those goods. In a benefit–

cost framework, the justification of such policies is that the additional consumption of the 

favored good has public good benefits to other parties that, together with the private benefits, 

exceed the cost. While that is a theoretically plausible outcome in this case, the results of the 

model suggest otherwise; that is, that the public good benefits fall short. 

We observe above that the percentage net losses vary with the scope of the policy—

highest for the Beltway12 policy and lowest for the all-zones policy. However, it turns out that 

this relationship is not causal; it is simply a correlation. So what does cause the pattern of 

observed losses to behave in this way? The ultimate reason is that, for any individual who takes 

advantage of the subsidy, the difference between the cost of provision of the good and the 

willingness to pay depends on skill class (i.e., income): the lower the income, the lower the 

willingness to pay. Thus, it is no surprise to find that the Beltway12 policy, which has the highest 

proportion of low-income workers (skill classes 1 and 2) among the total eligible (100 percent), 
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also has the worst percentage net losses (19 percent), followed by the Beltway policy (63 percent 

eligible and 15 percent losses). The all-zones policy has 58 percent eligible and 9 percent losses. 

Of course, sometimes policies are implemented precisely because they affect the 

distribution of welfare in a desirable way. Thus, a more complete evaluation of the Beltway 

policies must wait until their distributional effects are considered more explicitly. 

VMT Results 

Figure 3 and Table 7 show the results of simulating the VMT tax at different levels. As 

shown, net welfare is maximized at a tax rate of slightly more than 2¢ per mile, which is the rate 

used in our policy comparison. This tax rate also yields the highest percentage net welfare gain, 

about 13 percent of the tax collected. The reason the VMT tax initially generates welfare benefits 

is that, by reducing driving, it reduces traffic congestion. But very high levels of the tax 

discourage driving too much, and the net welfare turns negative. For example, we can observe 

such an outcome at the tax level of 5¢ per mile.  

Unlike the LNYW subsidy policies discussed above, the VMT tax increases the costs of 

all car trips, including commuting and shopping (Table 8), leading to substantial mode shifts that 

take cars off the road. The large increase in HOV use speaks to the relative paucity of transit 

alternatives outside of the downtown area and certain corridors into downtown, as well as the 

inadequacy of park-and-ride facilities in low-density areas inside the Beltway.  

In terms of transportation impact, the VMT tax is a much more effective policy than is 

the LNYW. The average marginal costs of road congestion are reduced by 5.2 percent, and the 

total VMT is reduced by 7.7 percent (Table 8). The mode split of the trips is changing 

significantly, with the number of SOV trips decreasing by 10.2 percent and number of trips made 

by alternative modes increasing, most notably for HOV (15.4 percent) and nonmotorized trips 

(8.8 percent). Moreover, the VMT tax actually reduces the average commuting distance of the 

metro area residents by a little more than 1 percent; it reduces the average shopping trip by a 

little more than 0.25 percent. The VMT tax seems to reduce travel, including commuting trips, 

far better than the various policies ostensibly promoting proximity between work and home 

locations. 

The welfare decomposition for the VMT tax policy (Table 9) shows outcomes that are 

roughly the opposite of the LNYW all-zones policy. These policies are at approximately the 

same scale, but whereas LNYW increases incomes (raising welfare) and raises prices and rents 

(reducing welfare), the VMT tax lowers income, prices, and rents. The exception is 
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transportation costs, which are a major factor (adversely) affecting net welfare. On the other 

hand, a steep rise in driving costs leads to a substantial shift to public transit, generating 

substantial transit revenue. The redistribution of the transit revenue in this scenario is a 

substantial component of the nonwage income shown in Table 9.  

The VMT tax on all trips reduces bids for housing in all zones of the metro area except 

for the very center. In the zones far away from the downtown area the rents are reduced 

relatively more. This effect attenuates, to some degree, the more commonly understood effect of 

transportation taxes; namely, the movement of both population and firms to more central 

locations. Although this policy does not explicitly promote living near one’s work, in all zones 

the number of residents who both work and live in the same zone increases. Following rents, 

wages also decline over the entire urban area. It may seem strange that rents should decline, if 

the VMT tax is inducing agents to relocate to the center. The most likely explanation is that 

Table 9 reports average rents over the entire metro area. The fall in rents on the periphery, where 

households are leaving, more than offsets the increase in rents at the center. In any case, the fall 

in rents (and prices) is relatively small. 

Distributional Outcomes 

The results above on mean outcomes are interesting but perhaps not particularly 

surprising. The VMT tax is known to be more efficient in the present context than consumption 

subsidies such as LNYW programs; for example, see Safirova et al. (2007). If there is novelty in 

this paper, it lies in the distributional results, which follow. In this paper, we present three ways 

of looking at the distribution of changes in net welfare in the four scenarios: 

 average deviations from the overall mean by skill class, 

 distribution functions of outcomes by skill class, and 

 regional maps indicating zones of particularly favorable or unfavorable outcomes by skill 

class. 

Average Deviations 

Average gains or losses by income group is probably the most common way of 

displaying distributional results. For each of the four policy scenarios, column 1 of Table 10 

gives the mean net welfare change. In this instance, we see similar patterns for the three LNYW 

policies. For each, skill classes 1 and 4 enjoy above average net gains, and skill classes 2 and 3 

reap below average gains. For the Beltway and all-zones policies, we also see that skill class 4 
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enjoys benefits far above the others, while the benefits for skill class 2 are far below. (Generally 

speaking, skill class 2 individuals fare worst under the LNYW policies because their incomes are 

too high to be eligible to share in the revenues distributed back to the lowest income group, but 

not high enough to take advantage of the subsidy). Skill classes 1 and 4 gain benefits via two 

different mechanisms. With the highest incomes, level 4 households are in the best position to 

invest in housing, so they receive an inordinate share of the subsidy gains. For the all-zones 

policy, skill class 1 benefits because that LNYW policy promotes real estate activity and 

generates government revenue from real estate taxes, which are automatically redistributed 

within the model. These payments favor the lowest skill class. For the Beltway policy, the lowest 

income group is also favored because the increased real estate activity occurs within the 

Beltway, where a higher proportion of the lowest skill class lives. The Beltway12 policy, which 

is designed in part to improve distributional outcomes by limiting eligibility to skill classes 1 and 

2, also favors skill classes 1 and 4 over skill classes 2 and 3, except in this case the overall 

winner is skill class 1 and the overall loser, skill class 3. Thus, the Beltway12 policy has slightly 

more progressive distributional characteristics than the other LNYW policies, but the scale of the 

policy is so small that the deviations are never far from the average. Indeed, the “all-zones” 

policy is the only LNYW policy for which the mean differs substantially among skill classes: 

$155 per year from skill class 4 to skill class 2.  

The distribution by skill class for the 2¢ VMT tax is completely different. Welfare gains 

by skill class follow numerical order from skill class 1 to skill class 4. Gains for sSkill classes 1 

and 2 are almost identical, and skill class 4 has by far the lowest net welfare gain. The spread in 

net welfare changes is considerably smaller than for the LNYW all-zones policy (the only 

LNYW policy of comparable scale), but the net welfare gains are much more favorable to lower-

income groups. The principal reason for the progressive distributional outcome is that the 

individuals in the highest skill class tend to live further from the center of the metro area, rely on 

motor vehicles much more, and have generally longer journey-to-work trips. 

Distribution Functions 

The distributional information in Tables 5 and 8, specifically the average welfare change 

for each of the four skill classes or income classes, is the most common kind of distributional 

information typically found in policy analyses. However, the fine detail that LUSTRE offers 

allows us to look not only at average outcomes by skill class, but how outcomes vary among 

agents for the same skill class. Figures 4a–d show the distribution of average welfare gain in 

each of the interior zones of the model, for each skill class and for each policy scenario.  
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Beltway Policies (Figure 4a and 4b)   

Approximately 29 percent of the population of the region lives inside the Beltway. Thus, 

in considering the Beltway (Figure 4a) or the Beltway12 (Figure 4b) policies, one thing we look 

for is a break in the cumulative distribution function (cdf) at approximately the 30 percent or 70 

percent probability level. In the Beltway policy, we don’t really see such a break for skill classes 

1 and 2; their cdfs are nearly straight lines, indicating a nearly uniform distribution. In the upper 

skill classes, we see what appears to be a modest break between 60 percent and 70 percent for 

skill class 3 and a much more prominent break for skill class 4. Indeed, approximately a third of 

agents in skill class 4 enjoy strongly higher net welfare gains than the rest of skill class 4 or any 

of the lower skill classes. This looks a bit as though the Beltway policy somehow favors skill 

class 4 residents inside the Beltway. As it turns out, however, the skill class 4 residents favored 

by this policy live outside the Beltway, in parts of suburban Maryland, and the result is perhaps 

an incidental outcome of the baseline distribution of households. This can be seen in the lower 

right panel of Figure 5a.  

In the Beltway12 policy, by contrast, the outcomes line up better with expectations. We 

see breaks at 30 percent probability for skill classes 3 and 4, with the upper 70 percent enjoying a 

roughly constant gain and the rest suffering losses even before considering the required 

adjustments to ensure revenue neutrality. For skill classes 1 and 2, we see a break at about 70 

percent, with that 70 percent experiencing a low and almost constant net welfare change. The 

remaining 30 percent enjoy much higher benefits that continue to increase in value. It seems 

clear that living within the Beltway favors the lower skill classes and punishes the upper skill 

classes.  

The all-zones policy (Figure 4c) is fairly straightforward, favoring skill classes 1 and 4 

and punishing 2 and 3, especially 2. In this case, the distribution of the outcome depends much 

more on skill class than on the residential zone.  

The VMT tax policy(Figure 4d) is more or less the reverse. It favors the two lower skill 

classes, whose cdfs are almost superimposed. Skill class 3 trails by some $40 per agent, and skill 

class 4 trails 3 by a similar amount. Again, skill class matters more than location. This is a 

somewhat surprising result: one would think that location would matter more, inasmuch as 

agents in peripheral zones generally have to travel more to reach work and shopping. That turns 

out to be true, but the average welfare difference, due to the VMT tax, between those living 

inside and outside the Beltway is only $10 to $17 per year. This is a very important result in that 

it shows not only that a point estimate of individual cost is potentially highly misleading for 
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many actual individuals, but that a distributional characterization of cost that does not stratify by 

the most important covariate can be only slightly less misleading. Here, an analysis that averages 

together the four parts of Figure 5d (in other words, a geographical analysis of variation in cost) 

would give citizens in sSkill classes 1 and 2 a jaundiced view of a policy that provides them with 

relatively higher net benefits, regardless of their location, than would be apparent. 

Regional Maps 

As shown in Table 4, the three LNYW policies are inefficient, yet for each, the per capita 

subsidy and per capita welfare gain are close to each other, so the average net welfare losses are 

only about 10 percent of either, around $2 or $3 for the two Beltway policies and around $10 for 

the all-zone policy. Similarly, the VMT tax net welfare gain is only a small fraction of the net 

welfare change or the net per capita tax (Table 7), and is again around $10. Yet across skill 

groups and residential zones, the benefit outcomes are much larger than this, and for purposes of 

looking at winners and losers, the average net change in welfare can be ignored as it is 

overwhelmed by the variation in outcomes. Figures 5a–d show the net welfare gains by zone for 

the four policies under discussion. The way to read these maps is as follows. First, the benefit 

range at the top of the figure is the difference between the maximum and minimum net welfare 

gain among the four skill classes and 36 zones. The zones are shaded according to their net 

welfare gains as a percentage of the benefit range. Thus, we see that for the Beltway policy 

(Figure 5a), the benefits to virtually all skill class 1 and skill class 2 agents lie in the 0–15 

percent range, or a net welfare gain of about $0–$11.50. Skill class 3 hardly does any better. 

Most of the benefits go to skill class 4, whose gains throughout the region lie mostly in the 30–

70 percent range, although some level 4 residents in Montgomery and Prince George’s Counties 

are in the top bin.  

For the Beltway12 policy (Figure 5b) the story is decisively different, though the range 

remains about the same. Now the biggest gains go to skill classes 1 and 2, which enjoy benefits 

above 70 percent of the range. The gains are particularly strong within the Beltway. In skill 

classes 3 and 4, most zones still enjoy benefits of 30 percent or better. Only a small number of 

zones have benefits in the lowest bin, and they are concentrated in Southeast and Northeast DC 

and western Prince George’s County, as shown in the fourth panel of Figure 5b. 

The benefits map for the all-zones policy (Figure 5c) reinforces the interpretation of the 

distribution function discussion above: variation in outcome depends more on skill class than it 

does on location.  
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The same is true for the VMT tax (Figure 5d), except the order is roughly reversed from 

that of the all-zones LNYW. Of the four policies, only the VMT tax can boast positive net 

benefits. It is also the only policy that has progressive distributional properties. Nonetheless, one 

should keep in mind that VMT taxes are not optimal, and that even greater gains could be 

realized by policies that replace a flat per-mile fee by a fee that is sensitive to location and time 

of day or week. 

V. Conclusions 

In this paper, we use a detailed regional CGE model to compare the outcomes of four 

local antisprawl policies, including three variants of LNYW policies, and one VMT tax. Such 

LNYW programs currently exist in a number of states and operate at different geographic scales 

(from municipal to state levels). We find that all versions of the LNYW programs are inefficient 

and are likely to become even less efficient when our uniform simplifying assumptions about 

program financing are relaxed. What is even more discouraging is that the transportation impact 

of the programs is also very moderate. Contrary to the vision of smart growth supporters, our 

results suggest that an LNYW program that operates only in a central “priority area” does not 

make many residents change their mode of transportation or reduce the length of auto trips. 

Furthermore, when the program is adopted all over the metro area, the program becomes slightly 

more efficient economically but is even less effective as a centralizing force in the metro area. 

On the other hand, an alternative policy, a VMT tax (evaluated at its optimal level), is 

efficient and has a much bigger transportation impact. Moreover, if the no-recycling assumption 

is relaxed, it would become even more efficient. However, there is nothing new in finding an 

efficiency advantage of policies that actively penalize driving (such as the VMT tax) compared 

to policies that encourage relocation to reduce the journey to work. Of more interest is the 

difference in distributional outcomes and, in particular, the overall finding that the VMT tax has 

a more progressive distributional profile than the LNYW policies. After all, one of the 

justifications of the latter is fairness, yet the features of those policies that promote fairness (such 

as restriction of eligibility to lower-income groups) reduce efficiency with only a modest 

improvement in distributional features. Such restrictions also reduce effectiveness because so 

few of those eligible to participate are actually in a position to do so. We have seen that the 

differences in outcomes vary substantially by policy details and, for each policy, by income level 

and location. Note that the observed variation is probably an underestimate of the degree of 

variation that would be observed in actual policy implementation. The reason is that the 

outcomes and data do not differentiate among agents except by residence zone and income. But 
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within a zone and a skill class, the impact of the policies will be very different because of varied 

work destinations, shopping destinations, and mode choices, among other things. A useful 

extension of this research would be to disaggregate model outcomes more extensively than we 

have been able to do in this project.  

We conclude with a few reflections about the issues involved in predicting distributional 

outcomes of other types of regulation and, in particular, of federal health and safety regulation. 

The distribution of costs and benefits is supposed to be an important consideration of such 

regulations, as attested by the repeated issuance of executive orders requiring distributional 

analysis of regulatory benefits and costs. Actual compliance with this requirement has been 

fitful, with occasional benefit assessments made with respect to certain vulnerable populations. 

Distributional analyses of costs have tended to be restricted to the effects on firms, regions, 

towns, or other collectives that are subject to these regulations. To produce analyses that trace 

outcomes down to the level of individuals, behavioral models will be needed that can link 

impacts on these collectives to their members, employees, customers, and the like. At present, 

these distributional considerations have been restricted to a limited subset of regulations, such as 

Safe Drinking Water Act rules that may impose particularly burdensome rules on water supply 

with only a small number of subscribers, or industrial air or water pollution rules that use simple 

aggregate models to estimate impacts on plant closures, unemployment, or prices. Such models 

can be useful, but still, even these outcomes can have very disparate welfare impacts on the 

individuals that suffer them. In short, the development of disaggregated behavioral models, such 

as those employed in this project, is likely to be complicated. But once these models are 

available, they will be quite useful to understanding the consequences of such regulations.  
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Mathematical Appendices 

A.  LUSTRE (CGE Model) 

RELU 

In what follows, we briefly describe the mathematical structure of RELU. Table A1 lists 

all variables and parameters of RELU. 

Consumers/Workers 

Consumers in RELU are exogenously distributed into F skill groups. While they cannot 

change their skill group, each consumer within a skill group can make a series of choices. After 

deciding whether to work or to remain unemployed, consumers choose a triple (i, j, k) 

corresponding to the choices of where to reside, where to work, and what type of housing to 

choose.
3
 Discrete choice decision-making is characterized with a nested multinomial logit. 

Conditional on discrete choices, consumers decide how much housing to rent, the quantity of 

retail goods to purchase at each available retail location, and how much labor to supply.
4
  

We assume that the utility function of consumers is Cobb–Douglas between housing and 

aggregate consumption, while the subutility of all retail goods is CES. Then, the Marshallian 

consumer demands for retail goods and housing (for employed and unemployed consumers, 

respectively) take the form: 
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3 Unemployed consumers choose a pair (i,k).  

4 Although in the model we do not have leisure, aggregate labor supply is elastic because of unemployment and 

variation in time spent traveling to shop. 



Resources for the Future Harrington et al. 

29 

   
|

ijf

ijk f f

ik

b
R




   (A2a) 

   
|

fu

ik f f

ik

M
b

R
 , (A2b) 

where  is full consumer income (net of taxes and commuting costs), M is the unearned income 

component,   is the full price of a consumer good, and each  is a coefficient reflecting the 

intrinsic attractiveness of a shopping location. The net full incomes and full prices of retail goods 

faced by the employed and unemployed are given in equations (A3) and (A4) below. 
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In equations (A3–A4), g and G stand for one-way time and monetary transportation costs, 

respectively;  is the income tax rate; and c is a coefficient reflecting the number of shopping 

trips required to purchase one unit of a good.  

The portions of indirect utility functions common to all consumers but dichotomized by 

work status (w=E for employed or w=U for unemployed) are: 
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where coefficients 
|

L

ijk fwE  measure the intrinsic attractiveness of (i, j, k) bundles. Assuming that 

idiosyncratic utilities in this model are ~ i.i.d. Gumbel with dispersion parameter L

fw , we arrive 

at multinomial logit probabilities of consumer choices for the lower nest of the nested logit: 
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At the higher nest, the choice of work status is based on the composite utility from the 

choice bundle at the lower nest. The composite utility is given by: 
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Similarly, coefficients |

H

w fE  measure the intrinsic attractiveness of each work status 

choice and, assuming that idiosyncratic utilities in this model are ~ i.i.d. Gumbel with dispersion 

parameter H

f , we arrive at multinomial logit probabilities for the higher nest: 
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The probability choices model for the whole nested multinomial logit is then given by 

| | |

H L

ijkw f w f ijk fwP P P  

Equation (A7) shows the components of unearned income—income from capital, income 

from real estate, and income inflow from outside of the region.  
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Producers 

The producers in the model are perfectly competitive profit maximizers, with a Cobb–

Douglas production function between four large groups of inputs—labor, capital, buildings, and 

intermediate inputs. At the same time, within input groups (by analogy with consumers), inputs 
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feature constant elasticity of substitution. The input demands for labor, buildings, capital, and 

intermediate inputs are shown in equations (A10)–(A13), where 

, , and  are coefficients reflecting the intrinsic attractiveness of particular labor, building, and 

intermediate inputs.  
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In equation (A13), p̂ denotes the full price of the intermediate input inclusive of freight costs.  

Landlords 

The model of landlord behavior helps to explain the short-run supply of floor space in 

buildings. Assuming that idiosyncratic portions of building maintenance costs are i.i.d. Gumbel 

with a dispersion parameter , and that costs common to all landlords are denoted by D, equation 

(A14) shows the probability that a landlord would decide to rent out one unit of floor space.  
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Developers 

By analogy with the landlord model, the model of developers describes optimal rules of 

constructing and demolishing buildings. Assuming that idiosyncratic costs related to construction 

and demolition are i.i.d. Gumbel with dispersion coefficient , equation (A16) shows the 

probability that a profit-maximizing developer will decide to construct a new property on a unit 

of land, while equation (A15) computes the probability that a unit of building will be 

demolished.
5
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General Equilibrium 

General equilibrium is formed by seven sets of conditions. 

1.  Zero profit condition  

                                                 
5 Here we present a static, stationary version of the model. 
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2.  Labor market clearing  
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3.  Residential floor space clearing  
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4.  Business floor space and agricultural land clearing  
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5.  Goods market clearing  
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6.  Asset valuation  

For k = 0  
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For k> 0 
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7.  Stock adjustment 
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(B2) 

where  

TRD : Toll revenue and additional transit fares collected and redistributed as a lump sum 

Dividend 

 
|

|

(1 )L

ijk fw fH

f w f f

w ijkf ijf

PW
DIV P DIV

DIV


  

 
 

 

(B3) 

where  

DIV : Change in dividends 
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Price 
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where  

zp : Change in retail prices 

Rent 

 
|

|

L

ijk fwH

ik w f ik

ik w ijkik ik

PW
R P R

R R



   


  

  

(B5) 

where  

 R : Change in rents 

Monetary costs of traveling to work 
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where 

workingG : Change in cost of commuting trips, with time elements converted in monetary 

units, weighted by the numbers of trips made in the reference versus the simulation  

Monetary costs of traveling to shop 
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| | | | |
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     (B7) 

where 

shoppingG : Change in cost of shopping trips, with time elements converted in monetary units, 

weighted by the numbers of trips made in the reference versus the simulation. 
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Table A1. Variables and Parameters of RELU 

Indices Description Dimension 

i  Residence place 40 

j  Work place (Production place) 40 

z  Retail location 40 

k  Housing type 2, single unit and 

multiunit familial 

housing  

b  Building type 2, commercial and 

industrial 

f  Consumer type (skill) 4 

w  Work Status 2, employed and 

unemployed 

r  Number of basic industries 4, agriculture, service 

manufacturing, and retail 

c  Number of construction and demolition industries 8, one for each building 

type 

Endogenous variables: consumer’s problem 

 Description Dimension 

U
~

 
Indirect utility, lower nest of the nested logit , , ,i j k f  

V  Composite utility, higher nest of the nested logit ,w f  

  Net full income , ,i j f  

M  Unearned Income f  

Z  Quantities of retail goods z  

b  Floor space , ,i j k  
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zp  Price of retail good z  

  Full delivered price of retail z  

R  Rents ,i k b  

w  Hourly gross wage ,j f  

workingshoppingg ,
 Expected travel time for one round trip ,i z ; ,i j  

workingshoppingG ,
 Monetary travel costs for one round trip ,i z ; ,i j  

LP  Nested multinomial logit choice probabilities, 

lower nest 
, , , ,i j k f w  

HP  Nested multinomial logit choice probabilities, 

higher nest 
,f w  

P  Nested multinomial logit choice probabilities , , , ,i j k f w  

Endogenous variables: producer’s problem 

 Description Dimension 

X  Total output r + c  

L  Labor demand , ,j f r c  

B  Commercial and industrial floor space , ,b f r c  

K  Capital ,j r c  

Y  Intermediate Inputs , , ,r j r c j  

p  Output prices ,j r c  

p̂  Prices of intermediate inputs net of freight cots , ,r j j  
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Endogenous variables: landlord’s problem 

  Description Dimension 

q  Choice probabilities landlord: decision whether to 

rent a unit floor space 
,i k b  

  Expected rental profit ,i k b  

Endogenous variables: developer’s problem 

 Description Dimension 

Q  Choice probabilities developer: decision to 

construct or demolish a unit of building stock 
,i k b  

S  Building stocks ,i k b  

V  Real estate value ,i k b  

Exogenous variables and parameters: consumer’s problem 

 Description Dimension 

N  Total number of individuals for each skill class 

group 
f  

H  Annual time endowment ,j f  

d  Number of commute days (workdays)  

c  Number of retail trips needed to buy one unit of 

good  
, ,i j f  

  Intrinsic attractiveness of retail locations , , ,i j z f  

  Share parameter Cobb–Douglas (goods); utility 

function 
f  

  Share parameter Cobb–Douglas (floor space); 

utility function 
f  

  Coefficient of elasticity between retail location f  
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  Tax rate for employed f  

u

  
Tax rate for unemployed f  

LE  Intrinsic attractiveness of choice bundle: 

residency, place of work, and building type 
, , , ,i j k f w  

HE  Intrinsic attractiveness of choice bundle: work 

status 
,f w  

L  Dispersion parameter for the lower nest of the 

nested multinomial logit probability 
,f w  

H  Dispersion parameter for the higher nest of the 

nested multinomial logit probability 
f  

  Annual income inflow from outside the model f  

  Share of the total asset income owns by each skill 

class 
f  

Exogenous variables and parameters: producer’s problem 

 Description Dimension 

  Price of capital  

  Cost share of capital in the Cobb–Douglas 

production function 
r + c  

  Cost share of labor in the Cobb–Douglas 

production function 
r + c  

  

 

Cost share of floor space in the Cobb–Douglas 

production function 
r + c  

  Cost share of intermediate inputs in the Cobb–

Douglas production function 
r , r + c  

  Intrinsic attractiveness of a particular type of 

labor 
, ,j f r c  

  Intrinsic attractiveness of a particular type of 

floor space 
, ,b f r c  
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  Intrinsic attractiveness of a particular type of 

intermediate input 

, , ,r j r c j  

  Coefficient of elasticity between particular type 

of labor 
r + c  

  Coefficient of elasticity between particular type 

of floor space 
r + c  

  Coefficient of elasticity between particular type 

of intermediate input 
r , r + c  

Exogenous variables and parameters: landlord’s problem 

 Description Dimension 

D  Costs of building maintenance common to all 

landlords 
,i k b  

  Dispersion parameter for the idiosyncratic 

maintenance costs 
,i k b  

Exogenous variables and parameters: developer’s problem 

 Description Dimension 

F  Construction and demolition costs common to all 

developers 
,i k b  

  Dispersion parameter for the idiosyncratic 

construction and demolition costs 
,i k b  

m  Structural density of each building type (square 

feet of floor space per acre) 
k b  
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Tables 

Table 1. Population Distribution for LUSTRE Baseline 
(1a) By Skill Class 

Skill 

class 
Population % of total 

Number 

employed 
 % employed  

1 1,480,873 35.8 830,601 56.10 

2 941,310 22.7 738,659 78.50 

3 1,244,120 30.1 1,144,755 92.00 

4 472,832 11.4 461,014 97.50 

Total 4,139,134  3,175028 76.70 
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Table 1 (cont.) 
(1b) By Zone and Skill Class 

Zone Description Prob(Skill|zone) Zone 
population I  F=1 F=2 F=3 F=4 

1 DC Downtown 40.2% 22.4% 25.7% 11.7% 62,873 

2 DC Northwest 33.5% 18.4% 27.9% 20.2% 101,169 

3 DC Northeast 51.2% 25.7% 19.4% 3.8% 145,394 

4 DC Southeast 48.4% 26.9% 20.3% 4.4% 93,419 

5 Montgomery Co. Southwest 29.4% 14.6% 26.0% 30.1% 57,180 

6 Montgomery Co. Southeast 39.9% 24.0% 26.6% 9.4% 50,848 

7 Montgomery Co. West 29.8% 19.1% 31.2% 19.9% 137,803 

8 Montgomery Co. East 37.8% 22.1% 28.6% 11.5% 240,271 

9 Montgomery Co. Northeast 32.5% 21.6% 32.3% 13.6% 98,539 

10 Prince George’s Co. Northwest 47.9% 27.8% 21.5% 2.8% 175,023 

11 Prince George’s Co. Southwest 37.9% 31.8% 28.3% 2.1% 86,455 

12 Prince George’s Co. Northeast 31.6% 23.8% 35.5% 9.0% 143,984 

13 Prince George’s Co. Southeast 31.7% 24.1% 37.6% 6.6% 136,127 

14 Frederick Co. 36.3% 26.4% 29.5% 7.8% 128,634 

15 Carroll Co. 37.2% 24.6% 31.6% 6.6% 97,723 

16 Howard Co. 30.3% 20.4% 34.0% 15.2% 166,163 

17 Anne Arundel Co. 36.5% 24.7% 30.3% 8.6% 334,138 

18 Calvert Co. 35.7% 23.2% 33.6% 7.5% 47,935 

19 Charles Co. 37.0% 24.9% 32.3% 5.8% 135,048 

20 Arlington East 41.8% 21.9% 26.3% 10.0% 10,373 

21 Arlington South 36.6% 23.4% 30.2% 9.8% 63,109 

22 Arlington West 29.1% 18.9% 32.1% 20.0% 72,630 

23 Alexandria 33.5% 22.1% 31.1% 13.4% 99,163 

24 Fairfax Co. East 39.8% 22.0% 27.1% 11.2% 114,014 

25 Fairfax Co. Northeast 29.3% 16.6% 29.2% 24.9% 32,983 

26 Fairfax Co. South 32.5% 19.8% 32.1% 15.5% 287,343 

27 Fairfax Co. Northwest 30.6% 17.5% 31.0% 20.9% 263,001 

28 Loudoun Co. East 28.3% 19.7% 35.4% 16.6% 95,607 

29 Loudoun Co. West 36.0% 19.1% 28.1% 16.8% 16,948 

30 Prince William Co. South 34.1% 24.1% 32.8% 8.9% 144,024 

31 Prince William Co. North 34.6% 26.0% 32.0% 7.4% 67,302 

32 
Stafford/Fredericksburg Co. 

North 35.8% 24.0% 31.8% 8.4% 58,809 

33 Fauquier Co. 38.3% 23.0% 28.5% 10.2% 36,623 

34 Clarke Co. 46.0% 25.8% 23.4% 4.8% 37,400 

35 
Stafford/Fredericksburg Co. 

South 41.3% 25.6% 27.6% 5.5% 60,220 

36 King George Co. 41.9% 26.6% 25.6% 5.9% 10,914 

 
 

     

Max  51.2% 31.8% 37.6% 30.1% 334,138 

Min  28.3% 14.6% 19.4% 2.1% 10914 
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Table 2. Wage and Income Information for LUSTRE Baseline 

 

  

Average income
a
 

(2000$/year) 

Average hourly 

wage rate 

(2000$/year) 

Income tax rates 

………………….. 

Skill class 1 15,778.7 6.8 14.3% 

Skill class 2 25,814.8 14.1 16.6% 

Skill class 3 43,942.8 22.5 22.3% 

Skill class 4 91,804.7 47.0 31.5% 

a 
Net of income tax and commuting costs.  
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Table 3. A Sampling of LNYW Programs 

Programs Description 

Baltimore Live Near Your Work 

Program 

$2,000 grant for closing costs to employees of participating 

employers who buy homes in targeted neighborhoods. City of 

Baltimore matches 50% of employer grant up to $1,000. 

Home purchase benefits of up to $18,500 to employees of Johns 

Hopkins University who locate in selected neighborhoods. 

Minneapolis/University of Minnesota 

Live Near Your Work 

Grants and deferred or revolving loans of up to $35,000 for 

purchase, maintenance, or repair of homes in the University 

District. 

DC Live Near Your Work, in 

partnership with Gallaudet and 

American Universities 

$6,000 grant from employer matched by $6,000 grant from the 

city available to employees who purchase homes less than 2.5 

miles from their jobsite. 

Pilot program (2012) offered to 10 employees on each campus. 

DC Employer Assisted Housing 

Program (EAHP)  

 

Grants and deferred loans of up to $11,500 to employees of the 

District of Columbia government who are first-time homebuyers 

in Washington, DC. 

City of Alexandria Moderate Income 

Ownership 

No-interest, deferred-payment financing of up to $30,000 for 

first-time homeowners who live or work in Alexandria. 

Additional assistance to police officers and sheriff’s deputies 

who live in designated neighborhoods. 1% interest loans up to 

$5,000 for public school employees who purchase homes in the 

City of Alexandria. 

Arlington County, VA 

Live Near Your Work Program 

 

Moderate Income Purchase 

Assistance Program 

 

Loans of up to $5,400 available to county and school board 

employees, forgivable after 3 years. 

Up to $25,000 mortgage assistance to moderate-income 

households with at least one household member employed by 

the county or school system. 
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Table 4. Welfare Gains and Revenue Collected under LNYW Policies 

  

Annual 

subsidy 

(2000$) 

Total 

subsidy 

(thousands 

of $/year) 

Per 

capita 

subsidy 

($/year) 

Per 

capita 

welfare 

gains 

($/year) 

Net 

welfare 

gains per 

capita  

Ratio of 

net 

welfare to 

subsidy 

Beltway 260 47,558 11.49 9.75 –1.74 –15.13% 

Beltway 520 96,887 23.41 19.80 –3.60 –15.39% 

Beltway 780 148,008 35.76 30.13 –5.63 –15.75% 

Beltway12 520 56,496 13.65 11.01 –2.64 –19.33% 

All zones 520 553,671 133.76 121.33 –12.44 –9.30% 

 

Table 5. Welfare Decompositions for LNYW Policies 
(5a) Beltway Policy Evaluated at a $520 Annual Subsidy 

 

  

Welfare 

gains 

per 

capita 

($/year) 

 

Welfare decomposition (2000$/year) 

Wage 

income 
Nonwage 

income 
Price Rent Commute 

costs 
Other 

driving 

costs 

Correction 

term 

……... 

Skill class 1 21.6 6.5 23.91 –8.2 –5.5 0.06 –0.002 5 

Skill class 2 10.6 20.5 6.83 –10.7 –8.2 0.05 –0.04 1.3 

Skill class 3 17.9 37.3 7.64 –17 –11.8 0.14 –0.05 1.9 

Skill class 4 37.0 79.5 15.47 –32.2 –27.6 0.16 –0.16 2.2 
Pop-

weighted 

mean 19.7 27.3 12.87 –14.2 –10.5 0.09 –0.04   
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Table 5 (cont.) 
(5b) Beltway12 Policy Evaluated at $520 Annual Subsidy 

  

Welfare 

gains 

per 

capita 

($/year) 

 

Welfare decomposition (2000$/year) 

Wage 

income 
Nonwage 

income 
Price Rent Commute 

costs 
Other 

driving 

costs 

Correction 

term 

……... 

Skill class 1 17.1 3.5 14.16 –5 –3.3 0.03 0.003 7.8 

Skill class 2 8.8 12 4.02 –6.5 –5 0.02 –0.02 4.3 

Skill class 3 4.9 23.2 4.52 –10.4 –6.9 0.11 –0.02 –5.6 

Skill class 4 11.59 48.8 9.14 –20 –15.3 0.11 –0.07 –11.1 
Pop-

weighted 

mean 10.9 16.5 7.64 –8.7 –6.1 0.06 –0.02   

 

Table 5 (cont.) 
(5c) LNYW All-Zones Policy Evaluated at $520 Annual Subsidy 

 

  

Welfare 

gains 

per 

capita 

($/year) 

 

Welfare decomposition (2000$/year) 

Wage 

income 
Nonwage 

income 
Price Rent Commute 

costs 
Other 

driving 

costs 

Correction 

term 

……... 

Skill class 1 130.6 34.8 143.23 –42.9 –27.2 –0.06 0.3 22.4 

Skill class 2 66.6 108.8 40.62 –54.4 –44.3 –0.05 0.51 15.4 

Skill class 3 113 204.1 45.84 –84.8 –74.5 –0.14 0.94 21.6 

Skill class 4 222.5 444.1 92.58 –166 –155 –0.16 1.81 5.9 
Pop-

weighted 

mean 
121.3 149.2 76.96 –72.2 –59.9 –0.09 0.71  
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Table 6. Changes in Transportation Variables under Beltway LNYW Policy 

 

 Baseline Simulation % change 

VMT and congestion 

Total daily VMT 

(millions) 

170.96 170.89 –0.041 

Average congestion 

costs (ȼ/mile) 

7.445 7.439 –0.081 

Mode split (millions of trips) 

SOV 5.235 5.23 –0.024 

HOV 2.793 2.793 0.051 

Bus 0.242 0.237 0.273 

Rail 0.505 0.504 0.061 

Nonmotorized 0.622 0.626 0.669 

Average trip distance 

Work trips 14.671 14.657 –0.096 

Shopping trips 7.781 7.778 –0.039 
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Table 7. Welfare Gains and Revenue Collected under VMT Tax Policies 

 

 
Tax rate 

(2000¢/mile) 

Total tax 

collection 

(millions of 

2000$/year) 

Per capita tax 

collection($/year) 

Net 

welfare 

change 

per 

capita 

($/year) 

Net 

welfare 

gains 

per 

capita 

($/year) 

Ratio of 

net 

welfare 

to tax 

collection 

VMT tax 2 348 83.99 –72.64 11.35 0.135 

VMT tax 3 477 115.15 –105.47 9.68 0.084 

VMT tax 5 671 162.11 –165.36 –3.25 –0.020 

 

Table 8. Changes in Transportation Variables under VMT Tax Policy 

Title Baseline Simulation % change 

VMT and congestion 

Total VMT (million 

miles per day) 

170.96 157.78 –7.71 

Average congestion 

costs (ȼ/mile) 

7.445 7.055 –5.24 

Mode split (millions of trips) 

SOV 5.23 4.709 –10.250 

HOV 2.79 3.22 15.404 

Bus 0.24 0.25 5.013 

Rail 0.50 0.53 5.956 

Nonmotorized 0.62 0.68 8.791 

Average Trip Distance (miles) 

Work trips 14.671 14.524 –1.002 

Shopping trips 7.781 7.759 –0.272 
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Table 9. Welfare Decompositions for VMT Tax Policy 

  

Welfare 

gains 

per 

capita 

($/year) 

 

Welfare decomposition (2000$/year) 

Wage 

income 
Nonwage 

income 
Price Rent Commute 

costs 
Other 

driving 

costs 

Correction 

term 

……... 

Skill class 1 –52.8 –28.5 –51.2 31.9 10.3 –33.7 –17.4 35.8 

Skill class 2 –53.81 –84.8 –14.8 41.1 17.3 –63.8 –24.5 75.7 

Skill class 3 –89.91 –144.1 –16.3 64.1 29.6 –78.2 –23.7 78.7 

Skill class 4 –127.54 –281.9 –123.1 119.8 55.8 –60.1 –11.5 73.5 
Pop-

weighted 

mean –72.7 –105 –29.2 53.7 22.9 –56.9 –20.2   

 

Table 10. Deviations in Net Welfare per Capita by Skill Level 

 Skill 1 Skill 2 Skill 3 Skill 4 Mean 

Beltway 

Net welfare change ($/yr) 21.6 10.6 17.9 37 19.7 

Deviation from mean  1.9 –9.1 –1.8 17.3  

Beltway12 

Net welfare change 17.1 8.8 4.9 11.59 10.9 

Deviation from mean 6.2 –2.1 –6.0 0.7  

LNYW all zones 

Net welfare change 130.6 66.6 113 222.5 121.3 

Deviation from mean 9.3 –54.7 –8.3 101.2  

VMT tax 

Net welfare change –52.8 –53.81 –89.91 –127.54 –72.7 

Deviation from mean 19.9 18.9 –17.2 –54.8  
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Table 11. Welfare Distribution 
(a) LNYW at a $520 (2000$) Subsidy for All Zones (All Skill Levels) 

 Skill class 

 1 2 3 4 

Mean per 

capita 129.41 66.564 112.88 222.98 

Maximum 169.31 86.69 172.26 304.78 

75th 

percentile 145.52 76.988 116.78 236.98 

25th 

percentile 113.06 58.785 102.1 210.24 

Minimum 80.25 28.86 64.39 145.72 

 
(b) VMT Tax at $0.02 per Mile 

 Skill class 

 1 2 3 4 

Mean per 

capita –52.273 –54.12 –89.977 –127.12 

Maximum –34.5 –17.55 –22.07 –56.01 

75th percentile –47.7 –44.214 –80.573 –115.49 

25th percentile –56.04 –59.513 –96.459 –136.67 

Minimum –114.32 –140.12 –229.98 –346.38 
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Figures 

Figure 1. LUSTRE Modeling Region 
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Figure 2. Beltway LNYW 
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Figure 4a. LNYW, within Beltway Only 
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Figure 4b. LNYW, within Beltway, Skill Classes 1 and 2 Only 
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Figure 4c. LNYW, All Zones 
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Figure 4d. VMT Tax $0.02 per Mile 
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Figure 5a. Beltway LNYW, Benefit Range: $77.49 
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Figure 5b. Beltway LNYW, Skill Levels 1–2 Only, Benefit Range: $80.05 



Resources for the Future Harrington et al. 

59 

 

Figure 5c. LNYW Policy, All Zones, Benefit Range: $248.54 

Figure xx 

LNYW policy, all zones 

Benefit range: $248.60 

Benefit range: $248.6 
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Figure 5d. VMT Tax $0.02/Mile, Benefit Range: $151.51 

 

 


