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Abstract 

In this paper, we introduce a new top-down approach to modeling the effects of publicly financed 
energy-efficiency programs on electricity consumption and carbon dioxide emissions. The approach 
draws on a partial-adjustment econometric model of electricity demand and represents the results of a 
reverse auction for electricity savings from different levels of public investment. The model is calibrated 
to recent estimates of the cost-effectiveness of rate payer–funded efficiency programs at reducing 
electricity consumption. The results suggest that supply curves for conserved electricity are upward 
sloping, convex, and dependent on policy design and electricity prices. Under the scenarios modeled, 
electricity savings of between 1 and 3 percent are achievable at a marginal cost of $50 per megawatt hour 
(MWh) and a corresponding average cost of $25–$35/MWh. 
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Supply Curves for Conserved Electricity 

Anthony Paul, Karen Palmer, and Matt Woerman* 

Introduction  

Growing concerns about the effects of global warming among scientists, citizens, and 

policymakers have prompted federal proposals as well as some state and regional policies to 

restrict emissions of greenhouse gases from sources within the United States. Economists have 

pushed for a carbon-pricing policy as the most efficient approach to controlling greenhouse gas 

emissions, and indeed it has been incorporated in many proposals. Most have combined carbon 

pricing with other measures designed to accelerate adoption of renewable energy sources or 

reduce overall energy use by improving end-use energy efficiency. The failure of the U.S. 

Congress to adopt a policy to explicitly limit greenhouse gas emissions—and subsequent 

statements by President Obama that energy policy is now likely to be implemented in smaller 

chunks—suggest that policies to promote renewables and energy efficiency are likely to become 

the core of a more piecemeal federal climate and energy policy. This paper explores the potential 

of energy-efficiency policies to reduce demand for electricity and the associated costs of 

achieving such reductions. 

Most of the existing studies that assess potential electricity savings from energy-

efficiency investments use a bottom-up approach based on the capital costs and energy-

efficiency levels of alternative technologies.1 Typically, this approach generates efficiency 

supply curves that suggest substantial electricity savings from efficiency gains for negative cost. 

The market and behavioral failures that may explain these negative-cost savings include 

asymmetric information, principal-agent problems, lack of access to capital, or consumers’ 

failure to make optimal choices (Gillingham et al. 2009). Alternatively, the models may fail to 

capture either the differences in the quality of electricity services delivered by alternative 

technologies and corresponding consumer preferences or the time and other costs of changing to 

more energy-efficient equipment. These bottom-up models require data—including costs, 

                                                 
* Anthony Paul is a center fellow in the Center for Climate and Electricity Policy, Karen Palmer is a senior fellow, 
and Matt Woerman is a research assistant at Resources for the Future. The authors wish to thank David McLaughlin 
for research assistance and Dan Steinberg, Laura Vimmerstadt, Dallas Burtraw, Jeremy Richardson, and Phil Farese 
for helpful comments. All remaining errors are our own.  
1 These studies are mostly in the gray literature and are surveyed in the next section. 
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efficiency measures, and electricity services delivered—that are also problematic because the set 

of products that use electricity is vast and the future of such products is hard to predict. Overall 

this literature may offer useful insights into which end uses and specific technologies are likely 

to be a source of untapped energy savings, but its poor treatment of market and behavioral 

factors leaves something to be desired. 

In this paper, we introduce a new top-down approach to modeling the effects of publicly 

financed energy-efficiency and conservation programs. This approach draws on a partial-

adjustment econometric model of electricity demand by customer class, region, and season that 

captures the long- and short-run effects of changes in retail electricity prices and other exogenous 

variables on electricity demand. Paul et al. (2009b) developed this model, which is based on one 

originally set forth by Houthakker and Taylor (1970). We integrate these estimated demand 

functions into Resources for the Future’s Haiku electricity market model along with an algorithm 

for estimating the reductions in electricity demand that can be induced using financial incentives 

backed by public funds. We use the model to examine how different levels of investment in 

energy-efficiency programs affect electricity sales, electricity price, and other features of 

electricity markets. 

A key result is the identification of supply curves for conserved electricity. The model 

generates a suite of supply curves under different assumptions about efficiency policy 

performance and design as well as other policies that affect electricity prices. The supply curves 

are upward sloping, convex, and higher in the presence of higher electricity prices, such as from 

a price on carbon emissions. Over the range of sensitivity cases analyzed, electricity savings of 

between 1 and 3 percent are achievable at a marginal cost of $50 per megawatt hour (MWh), 

which corresponds to an average cost of $25–$35/MWh depending on the sensitivity case. 

Literature Review 

Understanding and modeling the role that energy-efficiency investments and policies 

could play in electricity markets requires a representation of the relationship between potential 

energy savings from efficiency investments and their cost. The literature on estimating demand-

side efficiency potential is burgeoning and currently populated primarily with bottom-up 

approaches that characterize electricity end-use technologies by their operational and cost 

parameters. They tend to assume that consumers will derive equivalent electricity services from 

any one of a set of technologies that satisfy each type of end use, then choose the technology for 

each end-use that minimizes a discounted stream of capital and operating costs. Comparing this 

set of technologies in terms of levelized costs, accounting for capital and energy costs, with the 
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corresponding levelized costs for a baseline set of technologies yields an energy-efficiency 

supply curve.  

This bottom-up approach typically does not fully account for important factors that could 

affect technology adoption, such as consumer attitudes about risk associated with adopting a 

different type of equipment, as well as differences in equipment performance or quality of 

energy service delivered between more- and less-efficient equipment types. These studies also 

tend to make assumptions about equipment and appliance use that may not be based on 

observational studies of real consumer behavior with respect to energy efficiency. Sathaye and 

Murtishaw (2004) and Gillingham et al. (2009) illustrate some of the market failures and 

consumer behaviors that are often ignored when analyzing efficiency potential from a bottom-up 

perspective. A bottom-up, structural model of equipment choice and electricity demand that 

includes economic, engineering, and behavioral interactions is the ideal for evaluating efficiency 

potential; however, the data required for these types of models are vast and the characterization 

of consumer behavior that underpins these models is not well developed.  

Several recent studies have included bottom-up assessments of electric energy-efficiency 

potential at the regional or sectoral level (Itron, Inc. 2006; ACEEE 2008a, 2008b; Brown et al. 

2010) or nationally (EPRI 2009; McKinsey & Company 2009; National Academies 2009). These 

studies estimate potential electricity savings that range from 8 percent to 40 percent;2 many 

estimate savings potential of roughly 30 percent. Most include a significant quantity of energy-

efficiency measures identified as having a negative cost of implementation. Studies of this sort 

use data and projections of energy consumption by end use and equipment type to determine 

how much energy would be saved by replacing existing equipment and displacing new 

investments with more energy-efficient models. 

These assessments typically identify three categories of energy-savings potential: 

technical, economic, and achievable. Technical potential is the amount of energy savings that 

could be achieved if the most energy-efficient technologies available were utilized. Economic 

potential incorporates only those options where the presumed energy savings over the lifetime of 

the equipment pay for the additional capital cost of adopting more efficient equipment. 

Achievable potential further limits the savings to those resulting from measures that households 

                                                 
2 The scenarios that yield this range of savings vary widely across the studies. In some cases, the savings correspond 
to technical potential (discussed in the next paragraph) and in others they correspond to a particular set of 
technology-efficiency upgrades that are presumed to be economical and easy to implement. 
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and businesses could conceivably adopt in a given time frame. None of these measures, however, 

fully consider the market barriers and consumer behavior discussed above. 

Nadel et al. (2004) examine a number of bottom-up studies that estimate these three 

measures of efficiency potential. They calculate median technical, economic, and achievable 

potentials for electricity savings of 33 percent, 21.5 percent, and 24 percent, respectively.3 

Similarly, Chandler and Brown (2009) review a number of previous studies on energy efficiency 

in the southern United States, and they find electricity-savings potential in that region of roughly 

20 percent, 10 percent, and 12 percent, respectively, for the same three categories of savings 

potential. 

These bottom-up assessments of efficiency potential have been used to inform state 

energy-efficiency goals and identify which types of efficiency projects are likely to be most cost-

effective. They also have been used as inputs to the construction of energy-efficiency supply 

curves to show the cost of electricity savings. Gellings et al. (2006), for example, estimate the 

electric energy-savings potential of more than 20 end uses in 2010, as well as the levelized cost 

of each efficiency investment. They then use these data to trace a supply curve, beginning with 

the least-cost measures, such as residential appliance removal, and extending to the highest-cost 

measures. This energy-efficiency supply curve shows that nearly 50 terawatt hours (TWh) of 

electricity can be avoided in 2010 at a cost of $50/MWh, with the curve extending approximately 

linearly to a point where about 200 TWh can be avoided at $200/MWh. 

Bottom-up assessments of energy-efficiency potential also have been used to construct 

abatement cost curves for reductions of greenhouse gas emissions. These studies not only 

estimate the potential of a set of end-use technologies, but they also estimate the avoided 

emissions associated with avoided energy use. For example, McKinsey & Company (2007) 

develops an economy-wide abatement cost curve for the United States in 2030, including many 

segments of end-use electricity efficiency. This curve, however, presents many abatement 

opportunities at a negative marginal cost. Thus, market barriers, consumer behaviors, and/or 

rebound effects4 must exist that this abatement cost curve is not capturing. Similarly, Sweeney 

and Weyant (2008) develop a greenhouse gas abatement cost curve for California, and this curve 

                                                 
3 Note that these median numbers are across different studies and the gaps between technical, economic, and 
achievable potential differ across studies, so these estimates rank differently from the way they would if they were 
from a single study. 
4 McKinsey & Company (2007, 2009) assumes constant demand for energy services. 
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also includes negative-cost abatement opportunities that are not representative of behaviors 

observed in the market. 

Model Description 

The Haiku electricity market model simulates the electricity sector in the contiguous U.S. 

states through the year 2035. It is deterministic and highly parameterized, and it calculates 

information similar to that of the Electricity Market Module of the National Energy Modeling 

System, which the Energy Information Administration uses, as well as the Integrated Planning 

Model developed by ICF Consulting and used by the U.S. Environmental Protection Agency. 

Because this paper focuses on electricity demand, the model description herein focuses on the 

demand side of the model.5 

Before we turn to the Haiku electricity demand system and the demand conservation 

incentive (DCI), a few features of the model require explanation. Haiku subdivides the 

contiguous states into 21 separate modeling regions and the hours of each year into 3 seasons 

with 4 time blocks each. Electricity demand is modeled separately for 3 customer classes— 

residential, commercial, and industrial—and the model finds electricity-market equilibrium 

between total consumption and production in each of the 21 regions and 12 time blocks per year. 

Note that the full-blown model, including the supply side, is used in the analysis, but this paper 

focuses on the demand side. 

Electricity Demand by Partial Adjustment 

The Haiku demand system is based on a functional form known as partial adjustment, 

originally set forth by Houthakker and Taylor (1970). Under partial adjustment, consumption in 

any period depends on prices and other demand covariates in that period as well as consumption 

in prior periods. This characterization of demand captures the effects of capital immobility on 

consumers’ responsiveness to market signals. The ideal model of electricity demand is derived 

from a system in which a consumer's utility function depends on electricity services, which are 

produced by two inputs: electricity and capital. Capital is characterized by its cost and energy 

efficiency, and a budget-constrained consumer trades off capital efficiency for electricity, 

depending on the relative prices of the two goods6. Unfortunately, this ideal model cannot be 

                                                 
5 For a complete description of the model see Paul et al. (2009a). 
6 This is the model put forth by Dubin and McFadden (1984), who estimate the model for water and space heating. 
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implemented economy wide because a dearth of energy-efficiency data for the full range of the 

energy-using capital stock makes it impossible to estimate econometrically. 

The partial-adjustment demand model implemented in Haiku is illustrated in Equations 1 

through 47. In these equations, the subscript t denotes time in one-month increments; QL is the 

quantity of electricity consumption (MWh) that would occur if capital were perfectly mobile (L 

stands for long-run); P is the price of electricity ($/MWh); εL is the long-run price elasticity of 

demand; X is a matrix of the covariates of electricity demand (income, temperature, daylight 

hours, and natural gas price); β is a vector of the coefficients on the demand covariates; Q is the 

realized quantity of electricity consumption (MWh); θ1 and θ12 are the adjustment coefficients 

over 1 and 12 months, respectively; and ε is the short-run price elasticity of demand. 

  (1) 

  (2) 

  (3) 

  (4) 

Equation 1 defines the level of electricity consumption, QL, that would occur if capital 

goods were perfectly mobile. Such mobility would allow consumers to simultaneously optimize 

over both electricity consumption and capital efficiency in every period. Capital goods are not 

perfectly mobile, however, so a stock of capital goods that are not necessarily of optimal energy 

efficiency will be employed in every time period and depend on the stocks employed in prior 

time periods. A consumer who optimizes electricity consumption conditional on partially 

immobile capital will consume Q units of electricity, and the relationship between Q and QL is 

defined by prior levels of Q and the estimated parameters θ1 and θ12, as shown in Equation 2. 

The two equations can be combined by substituting for QL to derive Equation 3, where ε is as 

defined in Equation 4. Equation 3 is estimated and implemented in Haiku. 

                                                 
7 See Paul et al. (2009b) for a detailed description of the estimation procedure and results. 
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A simple example of price and quantity trajectories may be useful to build intuition about 

how this partial-adjustment system is a proxy for consumption outcomes that account for the 

energy efficiency of the capital stock. Consider two alternative electricity price trajectories over 

two periods in which prices are equivalent in period two but greater in period one in one 

trajectory than in the other. High prices in period one will yield a relatively low level of 

consumption in that period and also induce a relatively efficient capital stock as consumers trade-

off relatively expensive electricity for more energy-efficient capital. Because the stock will 

partially carry over to the following period, high prices (and corresponding energy efficiency) in 

the first period will lead to less consumption in the second period than would result from low 

prices in the first period, even for identical period-two prices. This is exactly the outcome that 

results from Equation 3 because the estimated values of θ1 and θ12 are between zero and one, and 

the short-run price elasticity, ε, is negative. 

Table 1. Short- and Long-Run Price Elasticity of Electricity Demand 

 

The demand function’s parameter values used in this paper are those derived by Paul et 

al. (2009b), and the estimated elasticity values shown in Table 1 are critical to the demand 

conservation incentive that will be described next. Haiku disaggregates electricity demand into 3 

customer classes—residential, commercial, and industrial—and 21 geographic Haiku market 

regions (HMRs). These regions do not strictly follow state borders, but the demand model is 

estimated for the nine census divisions, which do follow state borders. We assign state-level 

elasticity values according to their census division, and we solve the Haiku demand system for 

Short-run Long-run Short-run Long-run Short-run Long-run Short-run Long-run
Regional results in annual average

New England -0.17 -0.51 -0.13 -0.37 -0.08 -0.20 -0.13 -0.37
Middle Atlantic -0.05 -0.14 -0.01 -0.02 -0.20 -0.48 -0.07 -0.19
East North Central -0.12 -0.36 -0.17 -0.70 -0.09 -0.22 -0.12 -0.35
West North Central -0.21 -0.61 -0.14 -0.34 -0.11 -0.25 -0.16 -0.39
South Atlantic -0.08 -0.27 -0.04 -0.09 -0.16 -0.44 -0.08 -0.24
East South Central -0.32 -1.16 -0.22 -0.54 -0.19 -0.61 -0.24 -0.75
West South Central -0.11 -0.33 -0.08 -0.22 -0.11 -0.28 -0.10 -0.28
Mountain -0.19 -0.49 -0.14 -0.34 -0.18 -0.42 -0.17 -0.42
Pacific -0.13 -0.37 -0.17 -0.45 -0.31 -0.82 -0.20 -0.53

National average -0.13 -0.40 -0.11 -0.29 -0.16 -0.40 -0.13 -0.36
Seasonal results in national average

Summer -0.15 -0.52 -0.12 -0.34 -0.14 -0.36 -0.14 -0.40
Winter -0.11 -0.32 -0.08 -0.22 -0.19 -0.48 -0.13 -0.34
Spring/Fall -0.12 -0.35 -0.10 -0.27 -0.15 -0.39 -0.12 -0.33

Annual average -0.13 -0.40 -0.11 -0.29 -0.16 -0.40 -0.13 -0.36

IndustrialResidential Commercial Average
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each overlapping pair of states/HMRs. The state/HMR-level electricity prices are downscaled 

from the HMR prices, and the calculated state/HMR-level consumption levels are aggregated 

back to the HMR level and passed to the rest of the model. The demand system operates on a 

monthly basis, but the parameter estimates vary seasonally, not monthly. Haiku disaggregates 

seasonal demand into four time blocks within each season that correspond to four vertical slices 

of the load duration curves. The allocation of seasonal demand to time blocks is based on a 

constant elasticity of substitution model of utility-optimizing consumers that is benchmarked to 

time block prices that are constant within a season. Since this analysis assumes no time-of-day 

pricing, the time-block allocation of seasonal demand never varies from the benchmark 

allocation. 

Demand Conservation Incentive 

The DCI mechanism in Haiku represents a behavioral, top-down approach to simulate 

electricity consumption reductions from public investments in end-use energy-efficiency 

improvements. The model finds an equilibrium price for a subsidy to avoided MWh of electricity 

consumption that exhausts an exogenously specified level of total funding and clears the market. 

Improvements in the technical efficiency of capital goods are not distinguishable from behavioral 

adjustments that reduce electricity consumption, but the model captures both. The behavior of 

consumers in response to the publicly funded program is captured by calibrating the model to 

observed cost and performance metrics of recent rate payer–funded electricity-efficiency 

programs. These metrics are derived from the work of Arimura et al. (2009). The calibration 

parameter enters the model as the fraction of economical consumption reductions that are 

inaccessible due to the inability of the program administrator either to reach or compel 

consumers to take up the subsidy and reduce their consumption. The model also accounts for the 

costs of program administration, which is assumed to be 40 percent of total program costs in the 

standard DCI case.8 

This behavioral, top-down representation of efficiency improvement lacks the 

technological richness that is inherent in bottom-up, structural models of energy efficiency but 

also circumvents some problems that plague such models. A structural model that characterizes 

electricity end-use technologies by their operational and cost parameters is ideal when data on 

                                                 
8 The authors construct this assumption and consider an alternative assumption of 20 percent in the Adm20 scenario 
described below. 
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the technologies are abundant and the interactions between the technologies and those who adopt 

them can be parameterized well. Unfortunately, the variety of end-use technologies for electricity 

consumption is vast, the technologies that will emerge in the coming decades are hard to 

anticipate, and a realistic characterization of consumer behavior with respect to electricity end-

use technology is elusive because consumers often fail to make technology choices that accord 

with the economic theory that underpins such models.  

One manifestation of these difficulties is the array of energy-efficiency supply curves 

generated by bottom-up models that suggest vast electricity-savings potential at negative cost. 

Such supply curves are presumably accurate in a limited engineering sense but fail to capture 

other factors that influence consumer adoption of energy-efficient technology. Many sound 

reasons explain the discrepancy between these supply curves and observed behavior that go 

beyond the data limitations and behavior characterization issues previously mentioned. They 

include principal-agent problems, access to capital, program free-ridership, and rebound effects. 

The top-down model presented in this paper circumvents these issues and should yield 

reasonable conclusions, accounting for real-world consumer behavior, about the potential for 

end-use efficiency gains from publicly funded programs in the electricity sector. This is valuable 

for a variety of reasons but is attained at the expense of technological and end-use detail. 

Therefore, it is not prescriptive for program administration. 

The equilibrium condition that defines the DCI subsidy price for a given amount of 

program funding is presented in Equation 5. 

  (5) 

Each element in the summation on the right-hand side of the equation defines the quantity of 

reduced electricity consumption that will occur in region r by customer class c in time block i of 

year t from the offer of a subsidy to avoided consumption of Dt in $/MWh, payable on units of 

consumption avoided in year t. This equation is derived from the demand function (Equation 3) 

by Q(Pt,rci) - Q(Pt,rci+ Dt) and the assumption that the DCI program administrator cannot price 

discriminate across consumers or end uses. Electricity prices, Pt,rci in $/MWh, vary by customer 

class and region and could, in general, vary by time block and season. In this analysis, however, 

we assume they never vary by time block within a season and vary across seasons only in the 

regions that price electricity in a market. Qt,rci is the level of electricity consumption in MWh that 

would have occurred in the absence of a subsidy, Q(Pt,rci). ε is the short-run price elasticity of 

 
,

,

1  11t t
t rci

rcit t rci

F DA K Q t
D P

       
   
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demand, and K is the efficiency calibrator, which is unitless and will be described below. The 

right-hand side of the equation, including the summation and calibrator, is the total quantity of 

consumption reductions delivered by consumers. The left-hand side of the equation is the total 

quantity of reductions purchased by the program administrator, where Ft is the level of program 

funding, in $, and A is the fraction of program costs that go to administration, which is assumed 

to be 40 percent in the standard DCI scenario. Equation 5 in its entirety is the equilibrium 

condition for the DCI program, and a unique value of Dt solves the equation because the left-

hand side is strictly decreasing in Dt and the right-hand side is strictly increasing in Dt. Haiku 

finds this value. 

Arimura et al. (2009) find that during the period 1995–2006, the average utility would 

have realized 1.1 percent electricity savings at an average cost of $30/MWh (2007 dollar year) 

for a efficiency program funding level of $8 per customer (2007 dollar year). To determine the 

efficiency calibrator, K, Haiku is solved for a DCI program funded at this level from 2010 

through 2020, or about $1.25 billion in 2010, rising to about $1.4 billion in 2020 (2008 dollar 

year, the dollar year in the Haiku model). Arimura et al. (2009) also find that the demand effects 

of an efficiency program persist for six years, so the period 2016–2020 is the only time in the 

model in which a full set of lagged electricity savings are realized. Haiku finds average cost of 

electricity savings over this period by the quotient of total costs, including program 

administration, and total electricity savings, including lagged savings. Since Haiku is solving for 

a different time period than that evaluated by Arimura et al. (2009), it is impossible to 

simultaneously calibrate the model to both average cost and percent electricity savings if the 

electricity consumption intensity per customer is not identical in the two periods. We therefore 

calibrate the model to the quotient of average cost and percent electricity savings, or $0.15/GWh2 

(2008 dollar year), on average over the 2016–2020 time period. This yields a calibration value, 

K, of 0.035 at an average cost of electricity savings of $30.3/MWh (2007 dollar year), within 1 

percent of the cost found by Arimura et al. (2009). This value for K suggests that the ability of a 

program administrator to identify and capture the most economical consumption reductions is 

very limited. 

One aspect of the gains from program funding is the persistence and decay of electricity 

savings. This dynamic exists because an efficiency program would bring online long-lived 

capital goods and cause behavioral changes that may persist and abate in later years. Haiku 

captures these dynamics in the partial-adjustment demand system because, referring back to 

Equation 3, the estimated values for θ1 and θ12 are between zero and one. As a result, any 

program-induced electricity savings realized in any period t have a demand-reducing effect in all 
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subsequent periods that asymptotically decays over time. Another aspect is that the marginal 

amount of savings obtained by increasing the total amount of funding for efficiency investment 

will decline as funding increases. This follows from the convexity of the electricity demand 

curves in prices, which also implies that the DCI price for a particular level of efficiency 

spending will increase as electricity price increases. Another driver of declining marginal 

reductions is the assumption that the program administrator cannot price discriminate, which 

yields increasing payments to inframarginal consumption reductions under increased funding.9 

Scenarios Description 

This paper examines the cost of conserved electricity and associated climate benefits of a 

DCI program that would bring about energy-efficiency improvements in end-use electricity 

consumption. We model five levels of DCI funding to trace out supply curves for conserved 

electricity under four different assumptions about DCI program implementation and for a 

scenario in which carbon dioxide (CO2) emissions are regulated under a cap-and-trade policy. 

This section describes the scenarios, all of which are evaluated relative to a baseline scenario. All 

scenarios simulate the time frame 2010–2035. We henceforth use the parenthetical acronyms in 

the headings to save space. 

Baseline Scenario (BL) 

We calibrate the BL scenario to yield electricity price and demand levels by region and 

customer class that match the levels reported in the Annual Energy Outlook 2010 (U.S. EIA 

2010). The BL incorporates several existing environmental policies, including the sulfur dioxide 

cap-and-trade program under Title IV of the Clean Air Act Amendments of 1990, the Clean Air 

Interstate Rule restrictions on emissions of sulfur dioxide in the eastern part of the country as 

well as the annual and ozone season restrictions on nitrogen oxide emissions, the cap on CO2 

emissions in the northeastern Regional Greenhouse Gas Initiative states, and the state-level 

mercury maximum achievable control technology programs. The BL scenario also includes a 

representation of the federal tax credits for renewables included in the American Recovery and 

Reinvestment Act, all of the state-level tax credits for renewables, and the existing state-level 

renewable portfolio standards (RPSs). 

                                                 
9 A relaxation of this assumption will be considered in the PD scenarios described below. 
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Efficiency Scenarios 

Each DCI policy scenario is modeled at five annual funding levels—$250 million, $1 

billion, $2 billion, $5 billion, and $10 billion—for the years 2012–2025, with funding then 

linearly decreasing to zero in 2030. This timing corresponds to that of the allowance allocation 

schedule in H.R. 2454 (U.S. Congress 2009) and allows for an observation of the electricity 

savings that occur after DCI program termination but before the end of the modeling horizon in 

2035. In addition to the BL, we examine the following scenarios: 

Standard DCI (DCI): The standard DCI program is exactly as described in the previous 

section. 

Twenty Percent Administrative Costs (Adm20): Adm20 is identical to the standard DCI 

scenario, except that administrative costs are reduced from 40 percent to 20 percent of total 

program funding. This scenario provides a sensitivity on this exogenously specified parameter. 

Double Reductions (2Red): 2Red is identical to the standard DCI scenario except that it is 

calibrated based on the assumption that twice as much electricity savings are available at the 

average cost and funding level of the standard DCI calibration. Double reductions amount to 2.2 

percent of total consumption. This outcome could be due to many factors; for example, consumer 

receptiveness to energy-efficiency inducements could improved, or Arimura et al. (2009) may 

have underestimated the ability of efficiency programs to reduce electricity use. Administrative 

costs under 2Red remain at the 40 percent level. 

Price Discrimination (PD): Although we did not endogenously solve any scenarios in 

Haiku with DCI price discrimination, we used a post-processing procedure to calculate the 

outcomes if the program administrator could perfectly price discriminate across consumers and 

end uses when subsidizing avoided electricity consumption. Assuming price discrimination, the 

model can calculate the marginal cost of contemporaneous efficiency reductions relative to 

another solved scenario as the value of the efficiency subsidy in the other scenario adjusted to 

include administrative costs, or Dt/(1-A) in the notation of Equation 5. This value is then 

multiplied by the ratio of contemporaneous reductions to lifetime reductions from the other 

scenario in order to approximate the marginal cost of lifetime efficiency reductions. We applied 

this procedure to the DCI and 2Red scenarios to create two new scenarios denoted DCI_PD and 

2Red_PD. 

DCI and Cap-and-Trade Program (CTP): The CTP policy includes not only the standard 

DCI, but also an economy-wide cap-and-trade program on CO2 emissions. This policy is based 

on H.R. 2454, which was passed by the House of Representatives on June 26, 2009. The 
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emissions targets would reduce U.S. emissions of CO2 from major sources by 17 percent in 2020 

and 80 percent in 2050 compared to 2005 levels. We modeled the CTP policy to include 

unlimited allowance banking and the same restrictions on offsets use that the bill specifies: up to 

2 billion tons of offsets annually, with no more than 1.5 billion from foreign sources. The 

scenario modeled here differs from H.R. 2454 in the treatment of allowance allocation by 

modeling an allowance auction with no revenue recycling to the electricity sector. 

Results 

Electricity Consumption, Prices, and CO2 Emissions 

Our modeling effort evaluates the extent to which a DCI policy achieves its fundamental 

purpose to reduce electricity consumption by providing a subsidy to avoided electricity use. The 

left-hand panel of Figure 1 shows national electricity consumption over time for the BL scenario 

and all five funding levels under the standard DCI scenario. In all scenarios, electricity 

consumption begins at the same level in 2010 but then diverges as DCI funding starts in 2012. 

From 2012 to 2030, electricity consumption is, as expected, highest in the BL scenario, followed 

by the DCI funding scenario at $250 million annually, and continuing to decreasing levels of 

consumption as DCI funding increases. The lowest level of electricity consumption occurs with 

DCI funding of $10 billion annually. By 2035, five years after DCI funding concludes, the 

consumption effects dissipate and consumption levels in all scenarios are approximately equal. 

Note that exogenous growth in electricity use due to population growth and an increasing 

demand for electricity services more than offsets electricity reductions from the DCI program.10 

As a result, consumption grows in all scenarios, even at the highest level of efficiency funding. 

The right-hand panel of Figure 1 presents a detailed look at consumption levels in 2025, a 

year when the DCI program is still fully funded and the lagged effects of previous efficiency 

gains are fully manifest. The figure shows the convexity of electricity savings in DCI funding—

i.e., each additional dollar of DCI funding generates fewer reductions in electricity use than the 

previous dollar. For example, the first $250 million of funding generates electricity reductions of 

0.6 percent, but the last $5 billion reduces electricity use by only an additional 0.3 percent. The 

                                                 
10 This result is not fundamental to the Haiku model because electricity demand growth is benchmarked in the 
model to the consumption levels reported for the reference case scenario in the Annual Energy Outlook 2010 (U.S. 
EIA 2010). 
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highest funding level reduces electricity consumption by 1.8 percent, which is considerably less 

than the roughly 30 percent found in other studies.11 

Figure 1. National Electricity Consumption (TWh) under the Standard Demand 
Conservation Incentive 

  
Figure 2. Electricity Prices ($/MWh) and CO2 Emissions Reductions (M tons) under the 

Standard Demand Conservation Incentive 

  

The direct effect of efficiency funding is a reduction in electricity consumption, but 

several other outcomes follow from this effect. One is reduced electricity prices. The left-hand 

                                                 
11 This comparison is imprecise because the electricity savings being compared do not necessarily come for 
equivalent costs. For example, McKinsey & Company (2009) finds that at least 26 percent electricity savings could 
be achieved at negative cost, and National Academies (2009) finds that 30 percent energy savings could be achieved 
at negative cost. 
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panel of Figure 2 shows the national average retail electricity price over time for the BL scenario 

and all five funding levels under the standard DCI. Beginning in 2012, when the DCI programs 

start, electricity prices are lower for the DCI scenarios than for the BL, with the lowest prices 

occurring under the highest level of DCI funding because electricity demand falls in DCI 

funding. This result is not surprising, but the small magnitude of the effects is notable. The 

greatest price effect occurs in 2025 under the $10 billion scenario and amounts to only a 0.7 

percent reduction from BL. By 2030, when the DCI programs end, electricity prices return to 

approximately equal across the scenarios. In 2035, prices are highest in the $10 billion scenario, 

though by only a tiny margin. This ordering occurs because fewer investments are made in 

generation capacity in early years as electricity demand falls under higher levels of efficiency 

funding. By 2035 the demand effects of that funding have largely dissipated, so generation 

capacity must expand more under higher DCI funding levels. This capacity expansion 

necessitates higher prices in 2035 under higher funding levels. 

Another result of reduced electricity consumption is a reduction in CO2 emissions. The 

right-hand panel of Figure 2 shows the cumulative CO2 emissions reductions at the different 

levels of DCI funding, relative to BL; these cumulative reductions are for the entire modeled 

time horizon of 2010 to 2035. The figure is concave—i.e., the first expenditures on DCI reduce 

CO2 emissions by more than any additional expenditures. This follows directly from the shape of 

the right-hand panel of Figure 1 on electricity consumption. Comparing these two panels shows 

that consumption is reduced by a slightly larger fraction than emissions are reduced. For 

example, $10 billion of DCI funding yields electricity savings of 1.8 percent and an emissions 

reduction of 1.6 percent. This is an indication that the marginal electricity generation displaced 

by avoided consumption is slightly less carbon intensive than the fleet average. 

Supply Curves for Conserved Electricity 

The results of the DCI simulations for the five different funding levels can be used to 

trace out supply curves for conserved electricity. The left-hand panel of Figure 3 shows the 

average and marginal costs associated with the lifetime electricity savings from investments 

made under the standard DCI scenarios. Lifetime reductions refer to the cumulative stream of 

reductions harvested over time, including those in the initial year in which the subsidy is paid as 

well as the reductions that persist into the future and decay over time. Each point on each curve 

corresponds to one of the five program funding levels, where the upper-right point on each curve 

represents the $10 billion scenario. The average cost curves show the ratio of total DCI cost to 

total lifetime savings. We calculate the marginal cost curve by incrementing the DCI subsidy 
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price by $1 and then finding the incremental cost divided by the incremental lifetime savings. 

The figure shows that average and marginal costs are increasing and convex in the level of 

lifetime savings, so marginal costs are necessarily greater than average costs. Both types of costs 

decline over time as a result of two countervailing factors. First, as population and demand for 

electricity services grow, so, too, will opportunities for efficiency improvements to conserve 

electricity at any cost level, making demand reductions cheaper over time. On the other hand, 

efficiency investments are made beginning with the cheapest opportunities, leaving fewer low-

cost reductions in later years and thus increasing the cost of demand reductions over time. 

Although it is unknown a priori what will be the net effect of these factors, the observed outcome 

is that the growth of electricity demand outstrips the uptake of the cheapest reductions. An 

alternative example is shown in the right-hand panel of Figure 3, which contains similar cost 

curves but for the CTP scenarios. In these scenarios, the CO2 allowance price causes a significant 

increase in electricity prices, which dampens the growth in electricity demand observed in the 

standard DCI scenarios.12 In this case, the two countervailing effects roughly cancel, and the cost 

curves remain approximately constant over time. 

Figure 3. Costs ($/MWh) for Conserved Electricity 

  

The cost curves displayed in the left-hand panel of Figure 3 are for the standard 

formulation of the DCI, which includes 40 percent administrative costs, calibration of electricity 

                                                 
12 National average electricity prices are approximately $8–$13/MWh (or 9–14 percent) higher in the CTP scenarios 
than in the BL scenarios for the years 2012–2025, which causes national electricity consumption to be roughly 2–7 
percent lower. 
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savings and costs to those of Arimura et al. (2009), no carbon policy, and no price discrimination 

in the DCI market. The left-hand panel of Figure 4 presents the marginal cost curves when each 

of these assumptions is varied, shown for the year 2025. The highest marginal cost curve is for 

the CTP scenario, which includes a cap-and-trade policy for CO2 emissions that substantially 

drives up electricity prices,13 in part due to the assumption that allowance revenues are not 

recycled. The marginal costs of conserved electricity in this scenario are higher than in scenarios 

without climate policy because the electricity price efects of the policy will lead consumers to 

reduce their electricity consumption and improve the energy efficiency of their capital stock, 

even in the absence of an efficiency program. These endogenous demand-side changes take up 

the lowest cost efficiency–improvement opportunities and lead to higher costs for further 

improvements. 

Figure 4. Marginal Costs ($/MWh) for Conserved Electricity in 2025 

  

The other sensitivity cases all reduce the marginal costs of conserved electricity. 

Reducing the administrative cost burden from 40 percent to 20 percent (Adm20 scenario) leads 

to the smallest reduction in costs. The marginal cost of reductions for the Adm20 scenario 

amounts to 75 percent of the costs in the DCI scenario because the marginal cost ratio is 

equivalent to the ratio of the proportions of total funding received by consumers. In this case, 60 

percent divided by 80 percent equals 75 percent. Changing the calibration of the DCI model to 

                                                 
13 National average electricity prices in 2025 are $13/MWh (or 14 percent) higher in the CTP scenario with no DCI 
funding than in the BL scenario. All other funding levels under CTP have smaller price increases, and prices in all 
scenarios other than CTP vary from BL by less than 2 percent. 
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yield twice the percentage of savings at the original level of expenditures (2Red scenario) has a 

larger effect on marginal costs. Because of the convexity of the demand curve, the 2Red 

assumption implies marginal costs that are less than half the cost under the DCI scenario, and the 

difference grows with higher DCI funding levels. The PD scenarios allow the program 

administrator to price discriminate in the DCI market such that each consumption reduction is 

paid exactly its cost, not the cost of the marginal consumption reduction. This substantially 

lowers marginal costs for both the standard DCI and the 2Red scenarios because buying an 

additional consumption reduction does not raise the payments to inframarginal reductions and 

thus the amount that can be acquired for an additional amount of spending is larger. Because of 

demand convexity, greater marginal cost impacts of price discrimination are observed at higher 

funding levels. 

The applicability of these supply curves to policy analysis can extend beyond the specific 

policies we modeled. One approach that several states are using to encourage energy efficiency 

is to establish an energy-efficiency resource standard requiring that a minimum share of the 

electricity sold to customers be supplied by energy efficiency. In some state policies and federal 

policy proposals that include an RPS, a certain amount of electricity savings from energy-

efficiency programs can be used to satisfy the RPS requirement. The effectiveness of an RPS 

policy in encouraging renewables partly depends on how much of the requirement is likely to be 

satisfied with energy efficiency. In turn, this will depend on any explicit limits set on 

contributions from energy efficiency, the level of the alternative compliance payment, and the 

costs of saving electricity. The right-hand panel of Figure 4 shows the marginal cost curves for 

2025 but with the horizontal axis relabeled in terms of lifetime energy savings divided by 

current-year consumption. These percentage units make the curves analogous to an RPS policy 

that requires a percentage demand be satisfied by renewable generation or efficiency gains. 

Although they look very similar to those in the left-hand panel of the figure, the curves are 

shifted slightly relative to one another because consumption levels vary across the scenarios. 

This figure indicates that if renewable generation under an RPS is valued at $50/MWh, the 

percentage of electricity savings that would be deliverable through conserved electricity would 

range from 1 percent to 3 percent across these scenarios. This percentage is less than the 

maximum amount of efficiency savings allowed under most federal RPS proposals that include a 

role for energy efficiency. This observation also should be interpreted cautiously because the 

supply curves are not the result of a combined policy and thus may be excluding important 

equilibrium effects. 
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Conclusion  

As the U.S. federal government shifts its focus on CO2 cap-and-trade policies to a more 

piecemeal approach to climate change legislation, the role of energy-efficiency policies will 

become more prominent. As a result, policymakers will need better estimates of the amount of 

emissions reductions these policies are likely to produce. The range of policies being debated 

include energy-efficiency standards for appliances, building codes, financing mechanisms for 

building retrofits, tax subsidies, information programs, and energy-efficiency resources 

standards, among others. This paper focuses on a policy that offers a payment to electricity 

consumers for avoided consumption. Under the policy, consumers basically make offers to 

reduce consumption (relative to a known baseline) for a payment per MWh reduced. This 

reverse-auction mechanism is used to determine the amount and costs of energy savings at levels 

of aggregate expenditures ranging from $250 million to $10 billion per year. 

This top-down approach to evaluating energy savings and associated costs stands in 

contrast to the typical bottom-up method used to assess energy-efficiency potential and 

associated CO2 emissions reductions. Bottom-up approaches tend to be rich in technological 

detail but generally fail to capture aspects of consumer behavior that have important implications 

for how much energy can be saved at what cost. The DCI model presented in this paper uses 

econometrically estimated electricity demand functions that capture these behavioral responses 

to changes in electricity price, including rewards or payments for non-consumption. 

The efficiency scenarios that we model have very small effects on electricity 

consumption, electricity price, and CO2 emissions. Under our standard DCI scenario, electricity 

demand is 0.8 percent lower and cumulative CO2 emissions from the electricity sector are 0.7 

percent lower when $1 billion is spent on energy efficiency each year, compared to a baseline 

scenario. When efficiency expenditures are $10 billion annually, electricity demand falls by 1.8 

percent and cumulative CO2 emissions are 1.6 percent lower than in the baseline. The declining 

marginal benefits of efficiency funding correspond to the convexity of the supply curves for 

conserved electricity. The difference between electricity savings and emissions reductions 

indicates that the average kWh saved by efficiency investments is slightly less carbon intensive 

than the average kWh produced by the electricity sector. 

The costs of energy-efficiency policies in reducing electricity demand are higher in the 

presence of higher electricity prices, such as they would be under a CO2 cap-and-trade program 

that fails to recycle allowance revenue. Higher electricity prices lead consumers to reduce their 

electricity consumption, in part through the purchase of more energy-efficient capital. This 
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leaves any publicly funded efficiency program to harvest only more costly efficiency gains. The 

position and shape of the supply curves for conserved electricity depend on demand elasticity 

estimates, calibration to real-world efficiency program costs, and assumptions about program 

structure. Allowing for price discrimination across customers or end uses will lower the marginal 

cost of conserved electricity. 

Many recent energy policy proposals allow savings from energy-efficiency programs to 

satisfy a certain portion of an RPS. While a full analysis of this type of integrated policy is 

beyond the scope of this paper, the supply curves produced in this analysis suggest that if 

renewable energy certificates were priced at $50/MWh, roughly 1 to 3 percent of the total RPS 

percentage could be obtained from energy-efficiency gains. 

Many unresolved questions remain for future work. The effectiveness of the DCI 

mechanism modeled here in reducing electricity demand depends heavily on the price elasticity 

of demand values assumed. More exploration into how the effectiveness of this policy varies 

with elasticity values would be elucidating. In addition, we modeled the price discrimination 

feature in a post-processing sense and not as a part of the integrated model solution. Integrated 

analysis of this policy would be important to confirm that these results hold in equilibrium and 

would allow the harvesting of additional savings because the current post-processing approach 

results in only part of the efficiency funding being used. To make this feature most relevant for 

policy analysis, full integration of the RPS with a quantity-based version of the DCI (instead of 

one driven by aggregate funding levels) would reveal how such an integrated policy might work 

as well as how different design elements of the combined policy would affect the mix of 

renewables and conserved electricity that such a policy is likely to yield. 
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