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Cost Heterogeneity and the Potential Savings
from Market-Based Policies

Richard G. Newell and Robert N. Stavins

Abstract

Policy makers and policy analysts are frequently faced with situations where it is unclear
whether market-based instruments hold real promise of reducing costs, relative to conventional
command-and-control approaches. We develop rules-of-thumb that can be employed with
minimal amounts of information to estimate the potential cost savings associated with market-
based policies, with an application to the environmental policy realm. Our hope is that these
simple formulae can aid policy analysts and policy makers in the early stages of exploring
alternative policy instruments by helping them identify approaches that merit greater attention
and more detailed analysis. We illustrate the use of the rules-of-thumb with an application to
nitrogen oxides control in the eastern United States.

Key words: environment, policy instruments, cost-effective, market-based, tradable permits,
uniform standards
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Cost Heterogeneity and the Potential Savings
from Market-Based Policies

Richard G. Newell and Robert N. Stavins*

1. Introduction

Over the past decade, policy makers in many parts of the world have given increasing

attention to the use of markets to address a variety of social problems.  This has been particularly

true in the case of environmental protection efforts, where various types of tradeable permit and

charge systems have begun to be employed (Stavins 1999). Indeed, market-based environmental

policy instruments, which were controversial just ten years ago, have now evolved in political

circles to the point of becoming conventional wisdom, at least in the United States (Keohane,

Revesz, and Stavins 1998). This change may please many economists, but it also highlights the

importance of identifying the appropriate policy instrument for each environmental problem that

is faced in its particular socio-economic context. In some cases, market-based instruments may

be highly desirable, but in other cases their advantages may be small or non-existent. Our

purpose is to provide some relatively simple rules-of-thumb for policy analysts and policy

makers engaged in the early stages of exploring alternative policy instruments, with the hope that

such rules-of-thumb can help identify instruments that merit more detailed investigation.

While we focus here on policymaking for environmental problems, the basic issue we explore is

quite general. Namely, what is the relationship between potential gains from trade and

heterogeneity in technology and/or preferences? There are many areas where this generic issue

arises, including: international trade and cross-country heterogeneity in technology, tastes, and

endowments; gains from localized regulatory control and heterogeneity across regional

jurisdictions; welfare effects of tax and public spending harmonization across a set of countries,

                                                
*Richard G. Newell is a Fellow at Resources for the Future; and Robert N. Stavins is the Albert Pratt Professor of
Business and Government at the John F. Kennedy School of Government, Harvard University, and a University
Fellow at Resources for the Future. We thank Michael Batz and Nathaniel Keohane for excellent research
assistance; Alan Krupnick for information on nitrogen oxides control; and Timothy Besley, two anonymous
referees, James Hammitt, Cathy Kling, Ian Parry, William Pizer, Jim Sanchirico, David Simpson, Martin Weitzman,
and seminar participants at the Allied Social Science Associations meetings, Harvard University, and Resources for
the Future for very helpful comments on previous versions of the manuscript.  We also acknowledge financial
support from U.S. Environmental Protection Agency grant CR825095, but none of these institutions or individuals
are thereby implicated for any errors that remain.
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such as the European Union; the question of whether potential renewable energy performance

standards for electric utilities should be tradable; and, our chosen example, potential cost savings

due to market-based policy instruments and heterogeneity of pollution abatement costs.

As with any policy goal, a variety of criteria can and have been brought to bear upon the

choice of policy instruments to achieve environmental protection. As the stringency of

environmental targets has increased, cost-effectiveness has become a more important criterion

for instrument choice.1 A key factor affecting relative aggregate costs under alternative policy

instruments is the heterogeneity of pollution control costs across sources. There are many

reasons why the costs of complying with environmental regulations tend to be heterogeneous,

including differences in plant location, size, age, and production technology. Location, for

example, can affect costs due to differences in the quality and price of inputs (for example,

proximity to clean inputs), physical characteristics (for example, urban or rural), and political

jurisdiction (for example, pre-existing regulations). While it is widely recognized that abatement-

cost heterogeneity is a fundamental determinant of the potential cost-savings associated with

market-based policy instruments, there is surprisingly little analysis of the relationship between

the nature and magnitude of such heterogeneity and the prospective cost savings.

Despite the notable absence of such studies, there is a relevant, albeit small, theoretical literature

on the relationship between potential gains from trade and the underlying heterogeneity of

consumer preferences and production technology. Most prominent in this literature are studies

by: Weitzman (1977) and Suen (1990) on the effects of diversity in consumer preferences on the

relative efficiency of the price system; Krueger and Sonnenschein (1967) on the relationship

between price divergence across countries and the gains from international trade; and

Mendlesohn (1986) on pollution regulation in the presence of heterogeneous benefits and costs.

None provide a simple framework for directly estimating the cost-savings associated with using

market-based policy instruments relative to more commonly used uniform standards.

There is also an empirical literature that explores the costs of using alternative policy

instruments to address particular environmental problems.2 These studies are concerned with

                                                
1For a list of additional candidate criteria for policy instrument choice, see Bohm and Russell (1985). The aggregate
level and distribution of the benefits of pollution control may also be affected by the choice of instrument,
depending on the degree to which the pollutant is uniformly mixed within the relevant region.
2See, for example: Atkinson (1983); Atkinson and Lewis (1974); Atkinson and Tietenberg (1982, 1991); Carlson, et
al. (2000); Coggins and Swinton (1996); Gollop and Roberts (1983, 1985); Hahn and Noll (1982); Kolstad (1986);
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specific environmental pollutants in specific contexts, ranging from dissolved oxygen in the Fox

River of Wisconsin to particulates in Santiago, Chile. Each study uses different types of data at

different levels of aggregation, each makes different simplifying assumptions, and each employs

different methods of analysis. Although this differentiation in data and methods may be

appropriate, little intuition thereby emerges regarding the general relationship between the nature

and magnitude of cost heterogeneity and the potential cost savings associated with market-based

instruments.3

The data requirements and analytical methods of many of the approaches utilized to

compare the expected costs of alternative policy instruments render them inappropriate for the

early stages of policy development. Instead, relatively simple rules-of-thumb that can be

employed with smaller amounts of data may be preferable for conducting initial screenings of

environmental problems, so that analysts and decision makers can focus their attention on cases

where potential cost savings are greatest.

Such preliminary screening is important because market-based instruments are by no

means a panacea; in some cases, they hold tremendous promise of providing environmental

protection cost effectively, but in other cases they are not well suited, for a variety of reasons.  It

might seem that if costs are homogeneous, a market-based instrument will perform identically to a

conventional uniform standard, and that therefore policy makers ought always to choose market-

based instruments (because they can presumably perform no worse in terms of aggregate costs and

may perform better than command-and control approaches).  But market-based instruments may not

perform as well as conventional standards along a number of dimensions we do not consider here,

including: relative administrative costs of the various instruments; possibilities of strategic behavior

(Hahn 1984, Misolek and Elder 1989, Malueg 1990) and transaction costs (Stavins 1995) with

specific market-based instruments; political costs attendant to moving toward innovative

instruments with different distributional consequences (Keohane, Revesz, and Stavins 1998);

systematic “over-control” that results from particular applications of command-and-control

measures (Oates, Portney, and McGartland 1989); and smaller aggregate benefits of market-based

instruments where “hot spots” of emissions or concentrations combine with non-linear damage

                                                                                                                                                            

Krupnick (1986); Maloney and Yandle (1984); McConnell and Schwartz (1992); O’Neil, et al. (1983); O’Ryan
(1996); Perl and Dunbar (1982); and Seskin, Anderson, and Reid (1983).
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functions.  Therefore, it is valuable for policy analysts and policy makers to predict the potential

cost savings that may be associated with using a market-based instrument for a particular

environmental problem.4

 Our approach is to develop three highly stylized models of alternative means of

achieving an aggregate environmental target.  Two are performance-based, command-and-

control instruments: a uniform emission rate standard and a uniform percentage reduction

standard.  We model the uniform performance standards as being in terms of an allowable

emission rate per unit of product output or percentage emissions reduction, because these are

typical of actual command-and-control regulation (Russell, Harrington, and Vaughan 1986;

Helfand 1991).5  The third instrument is market-based, such as an emissions fee or tradable

permit system.

A fundamental feature of the models is that a subset of their parameters represents the

nature and degree of cost heterogeneity. We solve each model for the aggregate cost it would

imply, and then by comparing results, we derive expressions for the absolute and percentage

cost-savings attributable to adopting a market-based instrument  our “rules-of-thumb.”

Subsequently, we demonstrate the potential use of these rules-of-thumb with a specific

application using readily available information on nitrogen oxides control in the eastern United

States.

Economists frequently develop analytical models of the costs of environmental and other

regulation.  These range from small-scale, sector-specific, econometric cost-side models to large-

scale, integrated assessment models of global climate change. Despite the frequently

acknowledged importance of cost heterogeneity, it is a characteristic of the real world that is

                                                                                                                                                            
3 Note that the question we are addressing—the relative cost-effectiveness of market-based versus conventional
policy instruments—is distinct from the question of the overall efficiency of price versus quantity instruments (under
conditions of uncertainty), a question addressed in a literature which originated with Weitzman (1974).
4 Even among those environmental problems for which market-based instruments would appear preferable strictly
on compliance-cost grounds, there is tremendous variation in the cost-savings that could be anticipated (essentially
because of variation in the degree of cost heterogeneity).  Tietenberg (1985) assimilated the results from ten
analyses of the costs of air pollution control, and in a frequently-cited table, indicated the ratio of actual command-
and-control programs to least-cost benchmarks.  The resulting ratios ranged from 22.0 to 1.1.
5Note in addition that our analysis of a uniform emission rate standard will also hold when the standard is in terms of
emissions per unit of some input—assuming that the production function uses the input in fixed proportions to
output. Another possibility is a uniform emission or abatement quantity standard, which has been employed in
theoretical models, but we know of no examples of its use in actual policy.  A uniform quantity standard may be
useful as a point of comparison in a model with homogeneous firms, but—as evidenced by its absence from real
policy—it becomes unreasonable when firms are heterogeneous, especially in terms of size.
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sometimes (understandably) ignored in such modeling, because of the complexity and the data

requirements that it inevitably would introduce.6 In this context, our work can also be viewed as

an attempt to provide modelers with a parsimonious structure for incorporating key elements of

heterogeneity into their analytical models of costs for a variety of environmental and other

problems.

The cost-savings potentials that are identified with the approach we offer may not

precisely reflect the magnitude of realized savings, because we abstract from several other

dimensions along which the costs of market-based instruments may differ from those of

command-and-control approaches.  Many of these additional effects would tend to further

decrease the relative cost of market-based policies due to the flexibility and incentives they

provide.7 On the other hand, real-world command-and-control approaches may contain

exemptions or other types of “fine-tuning” that increase their cost-effectiveness relative to our

stylized representation. 8  The basic message is the same: increased regulatory flexibility can

yield increased cost-savings, and the degree of such savings depends on the degree of

heterogeneity.

In Section 2, we develop our stylized models of three basic types of policy instruments,

carry out some comparative static analysis, and identify key general findings. In Section 3, we

                                                
6 In the simplest market model, for example, one would anticipate that firms with relatively high abatement costs
would be driven out of the market by firms with lower abatement costs. In reality, of course, this may not happen
because those same firms may enjoy cost advantages along other dimensions, and because there are a variety of
frictions in the relevant markets, including those due to the regulatory environment.
7 First, firms can potentially reduce emissions through three types of activities: product output reduction; input
substitution; and end-of-pipe abatement (Spulber 1985; Goulder, et al. 1999). We abstract from the first type of
activity by treating output as exogenous, which seems reasonable, because pollution-control costs are typically a
very small fraction of total production costs (Jaffe, et al. 1995).  Further, we do not differentiate between input
substitution and end-of-pipe treatments, considering both as emission abatement. Hence, our stylized command-and-
control policy instruments are (uniform) performance standards, not technology mandates. This is important to
recognize, because even if firms were perfectly homogeneous, a true technology mandate would not be cost-
effective, because it provides no latitude for firms to substitute “cleaner” inputs. Second, our focus is exclusively on
static cost-effectiveness, but it is well known that the incentive-structure of market-based instruments can lead to
dynamic efficiency gains, both in terms of decreased abatement costs through technological change (Milliman and
Prince 1989; Jaffe and Stavins 1995; Jung, Krutilla, and Boyd 1996; Newell, Jaffe, and Stavins 1999) and firm entry
and exit (Spulber 1985, Helfand 1991).  Third and finally, our analysis is partial-equilibrium in nature. In a general-
equilibrium context, particular types of market-based instruments, such as those that combine revenue generation
with cuts in pre-existing distortionary taxes, can enjoy additional cost advantages over commensurate command-
and-control regulations (Goulder, et al. 1999).
8 For such regulatory tailoring to increase cost-effectiveness, the characteristics along which regulations are
differentiated must coincide with the characteristics along which costs are differentiated, and the relationship must
be in the correct direction—that is, the regulation faced by sources with low-cost characteristics must be relatively
stringent.  Although regulatory differentiation can be motivated by a variety of political and bureaucratic
motivations other than costs, one could argue that political-economy incentives may lead high-cost sources to fight
regulation more forcefully, leading to relatively “efficient” regulatory differentiation.
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apply the approach to the policy problem of reducing nitrogen oxide emissions in the eastern

United States, and in Section 4, we conclude.

2. A Model of Cost Heterogeneity and Policy Choice

2.1 A Model of Heterogeneous Costs

We posit the common situation in which the government seeks to limit the aggregate

emissions, Q, of a set of sources. The output, xi, of each source is given, as is aggregate output,

X, for all n sources. Emission quantities for each source are given by qi and are chosen by sources

to minimize costs subject to policy constraints. Each source has baseline emissions of q0i in the

absence of emission regulation and faces increasing costs of reducing emissions from this

baseline. Because we are striving for transparent results, we use a second-order approximation of

these costs around baseline emissions:

( ) ( ) ( )22
0 1 0 02

i
i i i i i i i

c
C q c c q q q q= + − + − ,

where c0i, c1i, and c2i are source-specific parameters of the emission cost function ( )iC q . The

marginal cost of emission reductions is therefore given by

 ( ) ( )1 2 0i i i i iC q c c q q′− = + − .

Note that 0 0ic =  because emission costs are zero in the baseline. Furthermore, because the cost-

minimizing firm will equate the marginal cost of emission reduction with the price of emissions

p, we have 1 0ic =  because 0p =  in the baseline. Finally, we multiply the cost function by

2 2
i ix x  in order to express the variables in per unit of output terms. This translation is useful

because: (i) environmental policy discussions are often couched in terms of pollution intensity

rather than absolute emissions levels; and (ii) it reduces the degree of correlation that would

otherwise exist between the variables due to scale effects.

We are therefore left with the following simplified total and marginal cost functions:

( )
2

2
i i

i i
i i

x q
C q a

b x
 

= − 
 

, (1)

 ( ) 1 i
i i

i i

q
C q a

b x

 
′− = − 

 
. (2)
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where 0i i ia q x=  is baseline emissions intensity per unit of output, and we have made the

substitution 21 i i ib c x=  in order to simplify the taking of expectations in subsequent parts of the

analysis.9  Solving for qi ,

 ( )i i i iq a b p x= − ,

we find that each source has a factor demand for emissions that is linear in the price, p, of

emissions (relative to other factors). Therefore, bi is both the slope of the emissions demand

function and the reciprocal of the slope of the marginal cost function, expressed per unit of

output. The parameter bi represents the rate at which the source alters its pollution intensity per

unit change in the price of pollution; different values of b alter the slope of the marginal cost

function. Thus, ai and bi are source-specific demand parameters that allow for heterogeneity

across sources in the intercept and slope of emission demand and marginal cost.10  For the sake

of clarity, we assume the heterogeneous variables are independently distributed, with mean

values a , b , and x .  Allowing for correlation among the demand parameters does not change

the aggregate compliance cost ordering of market-based compared with command-and-control

instruments, but it could alter the magnitude of the cost difference between these types of

policies depending on the magnitude and sign of the correlations between a, b, and x.  We

comment further on this below.

2.2 Alternative Policies for Emission Allocation

We consider three stylized policies for allocating aggregate emissions of Q among the

sources. Two are performance-based instruments: a uniform emission rate standard and a

uniform percentage reduction standard.  The third is a market-based instrument, such as an

emissions fee or tradable permit system.

2.2.1 Cost of a Uniform Emission Rate Standard

A uniform emission rate standard results in emissions from each source of ~q i  equal to

aggregate emissions per unit of output, weighted by source output:

                                                
9 See Table 1 for examples of units of the variables and parameters.
10 While we have incorporated heterogeneity directly into the parameters of the cost function, an alternative would
be to characterize heterogeneity in underlying variables described earlier, such as location, age, size, and production
technology.  Because that approach would still involve a further mapping between these underlying variables and
costs, it would considerably increase the complexity of attaining our goal, which is to provide a parsimonious,
transparent representation of the relationship between cost heterogeneity and cost savings.
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i i

Q
q x

X
 =   

% .  (3)

where X is aggregate output. This assumes perfect compliance, an assumption we also make for

the other stylized instruments we consider. We also assume that the standard is binding for the

relevant set of sources; that is, each source undertakes non-negative reductions.  In addition, note

that the same analysis and results will hold when the standard is in terms of emissions per unit of

some input—assuming that the production function uses the input in fixed proportions to output.

Substituting (3) into (1) we find the cost to each source of the uniform emission rate

standard:

( )
2

2
i

i i
i

x Q
C q a

b X
 = −  

% . (4)

To estimate the aggregate cost of the uniform emission rate standard, we first find the expected

value of Equation (4) using a second-order approximation around mean characteristics a , b ,

and x :

( ) [ ] [ ]
2 2

3

1
E V + V

22i

x Q x x Q
C q a a a b

X Xb b b

      = − + −           
% , (5)

where [ ]V ⋅  represents the variance of the bracketed parameter.11

Multiplying Equation (5) by n, we find the aggregate expected cost of the uniform

emission rate standard, denoted as ( )C Q% , which we further simplify by multiplying by 2 2a a ,

yielding

( )
2

2 2

2
X a

C Q R R
b

β α  = + + 
% , (6)

where ( )R a Q X a= −  is the fractional aggregate reduction in emissions from the baseline to

the aggregate emission constraint Q ( 0 1R≤ ≤ ), and [ ] 2V a aα =  and [ ] 2V b bβ =  are

dimensionless measures of heterogeneity or spread in a and b relative to their means; the square

roots of α and b are known as coefficients of variation.

                                                
11Higher-order approximations would involve terms for skewness, kurtosis, and higher-order moments of the
distribution of b. We note that the skewness term for b would have a negative sign, indicating that positive skewness
(i.e., skewed to the right, or a long upper tail) would tend to yield lower costs of a uniform performance standard.
This makes intuitive sense because high values for b represent firms with low costs of emission control.
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2.2.2 Cost of a Uniform Percentage Reduction Standard

A uniform percentage reduction standard results in emissions from each source of ˆiq ,

where

( )ˆ 1 i
i i i i

a Q
q R a x x

a X
 = − =   

.  (7)

Substituting (7) into (1) we find the cost to each source of the uniform percentage reduction

standard,

( )
2

2
i i

i i
i

x a Q
C q a

b a X
 = −  

% ,

which differs from the uniform emission rate standard (Q/X) by adjusting the standard for each

source’s baseline emissions relative to the mean ( ia a ).  Proceeding as above, we find the

aggregate expected cost of the uniform percentage reduction standard, denoted as ( )ˆC Q :

( )
2

2ˆ 1
2

X a
C Q R

b
β α  = + +  . (8)

2.2.3 Cost of a Market-Based Policy Instrument

Under a market-based instrument, each source has an incentive to choose an emissions

level qi
*  that minimizes its own costs, so that

( )* *
i i i iq a b p x= − ,  (9)

where an emissions market of size Q clears at price p* . In principle, the cost-effective allocation

could be implemented either by establishing a tradable permit market of size Q or by setting an

emissions fee of p* , where p*  will equal each source’s marginal cost of emissions control

(Equation (2)) in equilibrium.

Taking expectations of (9), we find that average emissions will be demanded from a source that

has average levels of each characteristic:

( )* * *E ( )q p q a bp x  = = −  ,  (10)

where q  represents average emissions. Solving for p*, and substituting Q X q x= , we find the

emissions tax that will deliver aggregate emissions of Q, which also equals the market-clearing

permit price for a permit market of size Q:
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* 1 Q
p a

b X
 = −  

.  (11)

Substituting Equation (11) back into Equation (9), we find that each source’s cost-effective

emissions level is given by:

* i
i i i

b Q
q a a x

b X
  = − −    

.

Following the same approach as before, we find the aggregate expected cost of the market-based

instrument, denoted as ( )*C Q :

( )
2

* 2

2
X a

C Q R
b

= . (12)

2.3 The Potential Cost Savings of Market-Based Policy Instruments

Employing our model of the cost of alternative policy instruments, the aggregate cost

savings, ∆% , from using a cost-effective policy relative to a uniform emission rate standard is

found simply by subtracting Equation (12) from (6):12

( ) ( ) ( )
2

* 2

2
X a

C Q C Q R
b

β α∆ = − = +%% . (13)

We can also express the cost savings in percentage terms by dividing Equation (13) by (6):

( )
( )

* 2

2 2
% 1 1

C Q R
R RC Q β α

∆ = − = −
+ +

%
% . (14)

Likewise, the aggregate cost savings, ∆̂ , from using a cost-effective policy relative to a uniform

percentage reduction standard is found by subtracting Equation (12) from (8):

( ) ( ) ( )
2

* 2ˆˆ
2

X a
C Q C Q R

b
β α∆ = − = + , (15)

or in percentage terms:

                                                
12Note that the cost savings approximation is likely to be acceptable for the policy-relevant range of emission
reductions, but may not perform as well when aggregate reduction requirements are stringent enough to lead many
sources to eliminate all of their emissions under a market-based policy. This can occur in our current model because
we do not impose a non-negativity constraint on emissions under a market-based allocation. It is easily seen by
evaluating the cost savings at the extreme of 100 percent reductions (i.e., R=1). At 100 percent reductions the
expressions suggest positive cost savings, although exact cost savings should be zero because every source would be
required to emit zero emissions, facing the same costs under any policy. One could restrict the cost structure in order
to avoid this limitation, for example by constraining the model parameters so that ai/bi is a constant equal to the
marginal abatement cost at zero emissions.
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( )
( )

*
1ˆ% 1 1

ˆ 1

C Q

C Q β α
∆ = − = −

+ +
. (16)

Equations (13)–(16) provide the basis for evaluating the potential cost savings from

adopting a market-based policy instrument.  Minimal information is required about the relevant

set of sources facing environmental regulation: aggregate production of the regulated industry, X;

the emissions constraint, Q, which determines R; the mean and variance of the slope of the

emissions demand function, b  and V[b], which determine β; and the mean and variance of

baseline emissions intensity, a  and V[a], which determine α.

2.4 What Do the Expressions for Cost Savings Tell Us?

The first message from Equations (13)–(16) is that the cost savings of market-based

policies relative to uniform performance standards increase in a straightforward proportional

manner as a function of greater abatement-cost heterogeneity. This cost heterogeneity comes

from two sources. The first is heterogeneity in baseline emissions intensities, α, which indicates

how much abatement each source will have to do, depending on the policy in place. The second

is heterogeneity in the slope of the cost function, β , which describes how fast each source’s costs

rise as additional reductions are sought.

Each source of cost heterogeneity can have an effect independent of the other’s presence.

This makes it possible to identify a lower-bound of anticipated cost savings if information is

available on only one source of heterogeneity, but not the other (assuming distributional

independence). In fact, information on baseline emission rates is likely to be more readily

available than information on marginal costs. For example, from the U.S. Environmental

Protection Agency’s National Allowance Data Base, we can easily calculate that the baseline

(1985) emission rate of sulfur dioxide for electric utility boilers that must reduce emissions under

the sulfur dioxide allowance trading program was about 3.1 lbs/mmBtu on average ( 3.1a = ),

with a standard deviation of about 1.5 (V[a] = 2.25), resulting in α = 0.23.  Equation (14)

therefore indicates an estimate of 38% cost savings from using a market-based policy relative to

a uniform emission rate standard of 1.2 lbs/mmBtu (R = 0.61), which is the rate that was used to

determine initial allocations of sulfur dioxide emission allowances. Heterogeneity in marginal

cost functions (β  > 0) would increase these savings. Using an econometric approach, with vastly

greater data requirements, Carlson et al. (2000) estimated the potential cost savings for this

program at about 43%.
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It is interesting to note that heterogeneity in source size (x) does not enter the expressions

because the market-based policy does not offer any more flexibility along the size dimension

than performance standards, which themselves include an adjustment for size differences (on

either a per unit of output or percentage basis). Of course, these results depend, to some degree,

on the assumption that source size and other heterogeneous variables (a and b) are independent.

We would expect any correlation with x to be small, because a and b are already expressed in

rate terms.13  The effect of correlation between a and b is straightforward: positive (negative)

correlation in a and b will lower (raise) the cost savings of market-based instruments relative to

either of the uniform standards.  This makes intuitive sense, because if sources with relatively

high baseline emissions tend to also have steeply sloped marginal costs, uniform standards will

be even less cost-effective (and vice versa) than if these variables were independent.  There is no

a priori reason to expect the correlation to be positive or negative.

Next, we turn specifically to Equations (13) and (15), which express the cost savings in

dollar terms, and focus on the initial term multiplying the entirety of each of the expressions,

2 (2 )X a b . This term equals the aggregate cost of 100-percent emission reduction for a

homogeneous set of sources. It serves to scale the expression to a degree appropriate for any

particular environmental problem, depending on the size of the industry, baseline emission rates,

and the slope of marginal control costs. The remaining variables in the expressions, α, β , and R,

are dimensionless. When the cost savings are expressed in percentage terms, as in (14) and (16),

only the dimensionless variables remain. Although expressing the cost savings in percentage

terms has obvious appeal, one can lose an overall sense of the importance of the choice at hand.

Hence, both forms are useful. Finally, we note that the effect of more stringent reduction rates, R,

on absolute cost savings is amplified by higher degrees of cost heterogeneity.

These relationships between the cost savings of market-based policies and the various

types and degrees of cost heterogeneity are illustrated in Figures 1 and 2. Because general results

can be illustrated for cost savings measured in percentage terms, we focus on such measures.

Figure 1 portrays the anticipated cost savings (in percentage terms, on the vertical axis) of

                                                

13 Allowing for correlation among a, b, and x, the expressions for cost savings become:

( ) ( )2
2

2 2

2
2 2

1
X a

b

R
R R R R

γ
β δ α γ λ

δ
∆ =

 +
 − + + − + −
 + 

% , and ( ) ( )2
2

2 2ˆ
2

2 2
1

X a

b

R
R R

γ
α β δ γ λ

δ
∆ =

 +
 + − + − + −
 + 

where COV[ , ] ( )b x bxδ = , COV[ , ] ( )a x a xγ = , and COV[ , ] ( )a b abλ = .
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employing a fully cost-effective market-based policy instrument instead of a uniform emission

rate standard in the case of an aggregate emission reduction target of 50%. Increasing

heterogeneity in the slope of marginal costs is measured on the horizontal axis (in terms of our

measure of spread of the slope of emissions demand, β). The general relationship between

heterogeneity in the slope of the marginal cost function and cost savings is provided in the figure

for four different degrees of heterogeneity in baseline emission rate (in terms of the respective

measure of spread, α). Figure 2 provides the analogous cost savings results relative to a uniform

percentage reduction standard.

As can be seen in Figure 1, even in the absence of “slope heterogeneity,” increasing

heterogeneity in the baseline emission rate brings with it greater cost savings due to employing a

market-based instrument (see the four vertical intercepts in the figure). Likewise, even when

sources are identical in terms of their baseline emission rates (α = 0), percentage cost savings

increase with greater degrees of heterogeneity in marginal cost function slopes, β . In both cases,

there are “decreasing returns” of cost-effectiveness from greater degrees of cost heterogeneity.

That is, relatively small degrees of both types of abatement-cost heterogeneity result in market-

based instruments enjoying significant advantages over their command-and-control counterparts.

But there are limits to these savings.14

The clarity of our results comes at the expense of some simplifying assumptions.

Depending on the degree to which these assumptions are violated, our results will tend to over-

or underestimate the extent of cost savings. In particular, the approximations may be less

accurate where:  there is a high degree of correlation among the heterogeneous variables; the

distributions of these variables are highly skewed; the marginal cost function is highly nonlinear;

or the policy goal is very stringent.

3. An Application to Nitrogen Oxides Control

As an example of how these relationships can be employed, we apply the framework to

the case of nitrogen oxides (NOx) reduction by electric utilities in a group of eastern states. When

emitted, NOx emissions and volatile organic compounds react in the presence of sunlight to form

                                                
14 The cost-savings expressions and the related figures provide for convenient sensitivity analysis.  In Figure 1, it is
apparent that when heterogeneity in baseline emission rates (as measured by α) is significant (for example, on the
order of 0.4 or greater), potential cost savings are quite insensitive to changes in heterogeneity in the slope of
marginal abatement costs (as measured by β).
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compounds that contribute to the formation of ground-level ozone. Ozone in the lower

atmosphere can cause a variety of health problems by damaging lung tissue, reducing lung

function, and adversely sensitizing the lungs to other irritants. Ozone tends to be a problem over

broad regional areas, particularly in the eastern United States, where it can be transported by

wind over hundreds of miles and across state boundaries. Through a multi-year effort known as

the Ozone Transport Assessment Group (OTAG), the U.S. Environmental Protection Agency

(EPA) worked with eastern states and the District of Columbia, private industry, and

environmental advocacy groups to address ozone transport.15

We model several different emission control policies for large electric utility boilers in

the relevant region, with each policy set to achieve a 53% reduction in aggregate emissions.  The

policies are (1) a 0.15 lb/mmBtu uniform emission rate standard; (2) a uniform 53% emission

reduction standard; and (3) a cost-effective allocation among utilities. The virtue of the approach

we have developed is its analytic simplicity and its relatively low information requirements;

indeed all of the necessary data on control costs, emissions, and output are available as

projections for 2007 (Pechan Associates 1997).16 The necessary summary statistics for these data

are given in Table 1.

The results are provided in Table 1 and illustrated by the points labeled “NOx: Utilities”

in Figures 1 and 2. Thus, Figure 1 indicates that given the estimated degrees of heterogeneity of

the two relevant cost function parameters for electric utility NOx emissions, our model predicts

51% cost savings from employing a market-based policy instrument relative to a uniform

emission rate standard. Our results are in the same range as those of Krupnick and McConnell

(1999), who employ a source-by-source programming approach to evaluate cost-effective NOx

control, and find cost savings for utilities of about 46%. For comparison, we also show that the

estimated cost savings relative to uniform percent reductions for utilities is 44% (Figure 2). This

                                                
15 In 1998, EPA issued regulations requiring 22 eastern states and the District of Columbia to submit State
Implementation Plans (SIP’s) that address the regional transport of ground-level ozone through NOx reductions
(U.S. Environmental Protection Agency 1998). Building on OTAG recommendations, EPA established NOx budgets
for each state, but gave states the flexibility to decide which electric utility boilers, large industrial boilers, and other
sources should be required to reduce NOx emissions, by how much, and the specific policies they must follow to
meet the projected budgets (for example, uniform emission rates, percentage reduction standards, or emissions
trading). To determine the budgets, EPA chose a control level for large electric utility boilers based on a uniform
emission rate standard of 0.15 lb/mmBtu (pounds of NOx per million Btu of boiler heat input).
16 We used Equation (1) to compute the slope of each source’s emission demand function (b), taking an average in
cases where there was more than one emission control scenario available. Costs for utilities are relative to an
emission baseline consistent with meeting restrictions imposed by the 1990 Clean Air Act Amendments. We
exclude from the analysis sources that already met the relevant performance standard in the baseline.
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result illustrates a point made earlier: that percent reduction standards tend to be less costly than

uniform emission rate standards, unless, of course, there is no heterogeneity in baseline emission

rates, in which case the two policies are identical.  Finally, in this case, we found the degree of

correlation between the variables to be small.  Accounting for correlation in the estimates of cost

savings lowered each of the estimates by about 5%.17

4. Summary and Conclusions

Policy makers and analysts in the environmental and other policy realms are frequently

faced with situations in which it is unclear whether market-based instruments hold significant

promise of reducing costs, relative to conventional command-and-control approaches. We have

developed some simple rules-of-thumb that can be employed with modest amounts of

information to estimate the potential cost savings associated with designing and implementing

market-based policy instruments. Because our analytical models are simple, yet capture key

properties of pollution cost functions, they can be used to predict potential cost savings through

simple formulae.

We identified several key relationships between the forms and magnitude of cost

heterogeneity and the anticipated performance of alternative policy instruments.  Two primary

sources of heterogeneity were found to have independent proportional effects on anticipated cost

savings. In addition, through an application to NOx control in the eastern United States, we

demonstrated the use of the rules-of-thumb, estimating the anticipated cost savings from use of a

market-based policy instrument, relative to both a uniform emission rate standard and a uniform

percent reduction standard.

Our approach may provide modelers with a parsimonious structure for incorporating key

elements of heterogeneity into their analytical models of costs for a variety of environmental

problems.  In addition, the framework we have developed may be usefully applied to address a

number of other public policy questions. For example, what are the costs of maintaining one-

size-fits-all environmental (and other) regulations across heterogeneous regions, such as the

countries of Europe, the provinces of Canada, or the states of the United States? And what are

the costs of uniform acreage control programs, such as in the European Union, where farms and

farmers are heterogeneous across relevant dimensions?

                                                
17 For this case, δ = 0.21, γ = 0.036, and λ = 0.07, yielding % 45%∆ =%  and ˆ% 39%∆ = .
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The parsimonious set of intuitive rules-of-thumb we have developed can improve

understanding of the importance of cost heterogeneity and its policy implications in real-world

environmental, resource, and other policy contexts. We hope these simple formulae can aid

policy analysts and policy makers in the early stages of exploring alternative policy instruments

by helping them identify approaches that merit greater attention and more detailed analysis.
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Table 1. Application to Nitrogen Oxides Control by Electric Utilities

in the Eastern United States

Variable Value
a (lb/mmBtu) 0.32
[ ]V a  (lb/mmBtu)2 0.010

α 0.098
b  (lb/mmBtu)/($/lb) 0.15

[ ]V b  (lb/mmBtu)2/($/lb)2 0.015
β 0.68

X (mmBtu) 9.85 x109

Q/X (lb/mmBtu) 0.15
R 53%

( )C Q%  ($M) 1,990

( )ˆC Q  ($M) 1,750

( )*C Q  ($M) 980

p* ($/lb) 1.16
∆%  ($M) 1,010

%∆% 51%
∆̂  ($M) 770

ˆ%∆ 44%
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Figure 1. Cost Savings of Market-Based Policy

Relative to Uniform Emission Rate Standard

(53% Reduction in Aggregate Emissions)
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Figure 2. Cost Savings of Market-Based Policy

Relative to Uniform Percent Reduction Standard
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Note: The figure applies to any rate of emission reduction because R does not enter into the
equation describing percent cost savings relative to a uniform percent reduction standard.
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