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Abstract

The causal economic impacts of water infrastructure disruptions in OECD countries
are largely unknown. Using details of water main break events in Washington, DC,
and hourly traffic speeds for 2,182 road segments in a quasi-experimental difference-
in-difference design, we estimate the causal effect of main failure on congestion. We
use k-means clustering to match treated road segments to control segments. Although
precisely estimated, the magnitude of our treatment effects is economically small even
when accounting for temporal traffic heterogeneity. Our results suggest that traffic
concerns alone are not a justification for policy makers to alter repair strategy for dis-
tributed water infrastructure.
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1 Introduction

Infrastructure is widely acknowledged to be utilized beyond its useful life in the United

States and many other Organisation for Economic Co-operation and Development (OECD)

countries.1 Water infrastructure in particular gets a lot of media attention. The 2014 Flint,

Michigan, water crisis is resulting in criminal charges, a main break on the UCLA campus

in 2014 received national media attention, and water main breaks routinely are reported by

news outlets.2

Despite the widespread media attention, there is virtually no work in the economics

literature that addresses the economic impacts of well-functioning water infrastructure in

OECD countries. Most of the work addressing the causal impacts of water infrastructure

is from field experiments in less developed countries (e.g., Galiani et al. (2005), Gamper-

Rabindran et al. (2010), and Devoto et al. (2012)). Recent papers address the value of well-

functioning infrastructure for electricity in India (Allcott et al., 2016), public transportation

in the United States (Anderson, 2014), and interactions between infrastructure improvement

subsidies and electric service reliability in Colombia (McRae, 2014), but there is little work on

causal impacts of well-functioning and reliable water service. Some closer research focuses

on estimating a dose-response function of water pollution on infant health (Currie et al.,

2013) and bottled water purchases in response to water quality violations (Graff Zivin et al.,

2011). The majority of the work on water infrastructure in OECD countries, however, uses

computable general equilibrium (CGE) models with parameters taken from the literature

(Rose and Liao, 2005). While a very valuable modeling technique, because the parameter

values used are often not causal it is unclear how much policy makers should prioritize water

infrastructure improvements based upon CGE output.

1“Harvard Business Review” and “The Economist” routinely run stories on crumbling infras-
tructure. See https://hbr.org/2015/05/what-it-will-take-to-fix-americas-crumbling-infrastructure and
http://www.economist.com/news/united-states/21605932-country-where-everyone-drives-america-has-
shoddy-roads-bridging-gap.

2See https://www.washingtonpost.com/news/dr-gridlock/wp/2016/06/23/water-main-break-in-
alexandria-likely-to-cause-traffic-delays/.
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There are at least two main problems in developing policy to address optimal investment

in improving water infrastructure. First, as discussed above, there are no causal estimates for

how water supply disruptions impact any measure of economic welfare for OECD countries

to our knowledge. Second, there are both centralized (e.g., water treatment facilities) and

distributed (e.g., water mains under city surface streets) investments, which are to some

extent mutually exclusive. Put another way, even if utilities were allocated a set amount

of funds to invest in water infrastructure, it is unclear how to allocate those funds between

distributed and centralized components of the water infrastructure system. Although the

American Water Works Association notes, “The need to rebuild these pipe networks must

come on top of other water investment needs, such as the need to replace water treatment

plants and storage tanks, and investments needed to comply with standards for drinking

water quality” (AWWA, 2012, 4), there is no clear causal evidence on the indirect economic

outcomes of such an investment.

We address pieces of both of these problems by estimating the causal effect of water

main breaks on traffic speeds. We choose water main breaks because they occur relatively

frequently in an unpredictable fashion and they are an ideal example of distributed water

infrastructure. When a water main breaks, it is typically repaired immediately by the local

utility or another vendor. The repair job often shuts down streets and impacts traffic because

construction crews have to cut through cement and asphalt to repair the broken water main.

While there is a healthy literature examining the impacts of various market events and

regulations on traffic and driving behavior, there has been no work on the traffic impacts

of water main breaks (Burger and Kaffine, 2009; Anderson, 2014; Bento et al., 2014; Wolff,

2014a,b).

We study the universe of all water main breaks over a 12-month period in Washington,

DC, during 2014 and 2015. Our data on water main breaks include location of the break,

the severity of the break, and the times a break is reported and repairs are completed. We

merge in high-frequency and spatially detailed traffic speed data for over 2,000 urban road
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segments in DC. We use a difference-in-difference research design by comparing observed

traffic speeds on “treated” road segments near a break to “control” road segments farther

away from the break. As a result, we are able to identify causal effects of water infrastructure

disruptions on indirect economic outcomes.

The first contribution of this paper is our methodology for selecting control road segments

for treated road segments. We pre-process the data using a simple unsupervised machine

learning algorithm called k-means clustering to classify similar road types based upon ob-

served traffic speed levels, variance, changes, and directions of traffic on each segment for

different hours of the day. Roads within the same cluster are most similar to one another and

therefore serve as better controls. Our identifying assumption is that conditional on a break

occurring, it occurs exogenously within a cluster. While k-means clustering has been used in

the economics literature previously for classification (Crone, 2005), we are not aware that it

has ever been used to create matched clusters for a treatment versus control causal analysis.

This approach builds upon recent work using propensity-score matching to pre-process com-

parison group data for causal inference (Rosenbaum and Rubin, 1985; Ferraro and Miranda,

2014; Hamilton and Wichman, 2015). It is broadly applicable to other economic problems

such as grouping subjects to stratify treatment across different populations in RCTs where

treatment effects could be heterogeneous.

The second contribution of this paper is our main empirical finding: water main breaks

cause a statistically significant decrease in traffic speeds—averaging between 1.1% and 1.9%—

in most road segment clusters where they occurred. We also find that breaks are more likely

to occur during lower traffic speed days (e.g., when it is colder and mains are more likely

to break). As a result, finding the appropriate control group takes on added importance

in our study. Clustering is also important: the difference between treatment and control

groups is even more stark when controls are cluster-specific. The results are strongest for

road segments where we observe the most breaks, which implies that failure to reject a null

effect is possibly the result of low statistical power. These results are robust to a variety
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of alternative specifications including changing the number of clusters, temporal and spatial

controls, serial correlation of the standard errors, and falsification tests.

There is a very clear spatial and temporal pattern in the traffic impacts of water main

breaks, which is consistent with recent findings in Anderson (2014). During the morning

rush hour we find speed impacts over twice as large as in off-peak hours: -4.0% versus -1.8%.

We also find that impacts decrease as distance from the break increases. These spillovers

radiate to one-half mile from the location of a water main break. We take this as evidence,

consistent with Anderson (2014), that accounting for temporal heterogeneity should be part

of traffic studies.

While statistically significant and consistent across specifications, the magnitude of these

effects is economically small. For the average water main break in our sample, a central

estimate of the induced private congestion costs is approximately $1,350 per break. Total

costs to DC drivers over the 12 months of our study were on the order of $695,275, or

approximately $1 per resident of Washington, DC. To our knowledge, this is the first causal

estimate of water infrastructure supply disruptions on any economic outcome in an OECD

country.

Despite widespread media attention to water main breaks, our results imply that eco-

nomic losses from traffic congestion due to water main breaks are not a reasonable justifica-

tion for delaying large scale repair during, for example, low traffic periods at night. Rather,

fixing breaks as they occur appears to be sensible policy when considering only traffic im-

pacts. Put another way, this particular distributed water infrastructure supply disruption

does not significantly impact welfare due to traffic congestion. Of course, this is only one

of many potential impacts. There are other important attributes to consider in a full cost-

benefit analysis, including indirect economic costs due to public, commercial, and residential

buildings being without water; lost revenue from leaked water; health risks due to water

quality degradation; and direct repair costs. To that end, our paper is a starting point

rather than a decision point for policy makers considering water infrastructure investments.
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The next section provides background on water infrastructure and water mains. We then

detail the methodology, introducing the k-means clustering algorithm in our novel context.

After presenting estimation results and robustness checks, we discuss policy implications.

2 Background

A water main is a pipe that supplies water to residential, commercial, and industrial buildings

in a water supply system. When cities are constructed, water mains are often placed under

city streets with smaller pipes leading into individual buildings. The water in a water main

is pressurized to ensure access for utility customers.

Water main breaks occur due to the combination of pressurized water and pipe failure.

Failure is related to pipe age, but also to sharp changes in temperature that cause the

material making up the pipe to expand and contract. When a break occurs, “downstream”

users may lose water and there is sometimes an “urban geyser” where the pressurized water

breaks through the ground much like an opened fire hydrant. Much talk about crumbling

infrastructure occurs due to increased likelihood of failure. Additional recent concerns also

deal with securing infrastructure from human threats. In both cases, the infrastructure’s age

plays a critical role (AWWA, 2012).

In our study area, the distributed water infrastructure is indeed somewhat old. Table 1

shows the composition of mains by material and a coarse measure of main age for all water

mains that had a break in the data we were provided by DC Water, the water utility for

Washington, DC, through a Freedom of Information Act (FOIA) request. Almost all DC

water mains are cast iron although 3% of breaks occurred in pipes of “unknown” material.3

More surprising is the age of mains that broke in our sample. We observe 515 breaks

between July 1, 2014, and June 30, 2015; however, we focus on 278 breaks that occurred

near a road in our data set. Of these, roughly 46% of breaks occurred in water mains that

3Staff at DC Water noted that there is some incompleteness in the materials records. Rather than the
material actually being unknown, these are likely instances of incomplete recording.

6



were over 100 years old, and the oldest break was from a main installed before the Civil

War, in 1859. Unfortunately, we were not able to obtain the age distribution of the entire

water main system with our FOIA request due to security concerns, so we cannot compare

the age of broken mains relative to the entire water supply system. DC Water reports on

its website, however, that the median age of all water pipes is 79 years, which is similar to

the median age in our sample (90 years).4 In the full set of 515 breaks, the median age is 81

years—only two years older than the population median.

Table 1: Age and material of DC water mains

Count Percentage
Total no. of water main breaks 278
(July 1, 2014–June 30, 2015)

Total no. main breaks with installation year recorded 268 100
Mean year 1921

Median year 1926
Before 1916 122 45.86
Before 1900 76 28.57
Before 1865 5 1.88

Total no. of water main breaks with material info 266 100
Cast iron 260 97.01

Ductile iron 5 1.87
PCCP-LCP 1 0.37

Steel 2 0.75

Notes: We analyze 278 water main breaks that are near roads for which we have
traffic information, which is a subset of the total number of water main breaks
that occurred in this time period. DC Water reported 515 total water main
breaks for this time period.

While local utilities are responsible for upkeep of their distributed water infrastructure,

such as water mains and sewage lines, they are also responsible for maintenance and ex-

pansion of centralized water infrastructure. Centralized water infrastructure takes the form

of water intake pipes from water sources, water treatment facilities, and pump houses. In

allocating public money for an optimal portfolio of infrastructure improvements, it is un-

clear how to allocate funds across centralized and decentralized projects. There is a separate

question of the impact of disruptions on centralized water infrastructure. In this paper,

4https://www.dcwater.com/about/rates/default.cfm.
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we do not address centralized water infrastructure or any other type of infrastructure (e.g.,

transportation, electricity) that local and regional governments must address.

In the interests of tractability and precision, we focus on a single outcome that is affected

by distributed water infrastructure—the effect of water main breaks on traffic. For a water

main break there are other important outcomes that should be addressed in any complete

cost-benefit analysis. For example, in many cities commercial buildings must be closed if

they do not have access to drinking water. However, knowing precisely which buildings were

impacted by a water main shutdown requires more detailed information than we have. Our

research design and results, though, could be extended to this important economic impact

in future work. As a result, we focus on estimating an accurate effect of water main breaks

on traffic speeds as a first step in informing the larger policy question of optimal water

infrastructure investment.

3 Methodology

To estimate the causal impacts of water main breaks on traffic congestion we combine unique

data sets covering the Washington, DC, area. We then use a machine learning algorithm to

cluster road segments into groups that are observationally similar. Finally, we use a flexible

difference-in-difference design to test whether traffic is affected by main breaks and whether

this effect diffuses over space. This section summarizes each of the steps in detail.

3.1 Data

We purchased traffic data from INRIX, a company that aggregates high frequency and fine

granularity traffic speed data, for Washington, DC, covering July 1, 2014–June 30, 2015.5 We

have speed data in miles per hour (MPH) at one-minute intervals on each day in our study

period, for 2,182 individual road segments in Washington, DC. Similar data are commonly

5See http://inrix.com/.
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used in the economics literature for a wide variety of traffic topics (Burger and Kaffine, 2009;

Anderson, 2014; Bento et al., 2014; Wolff, 2014a,b; Hamilton and Wichman, 2015). Included

in the set of road segment characteristics are the latitude and longitude points to identify

road segment location, the direction of traffic flow, and the reference speed for the road. A

road segment is typically around 0.25 miles in length and ranges from a small city street to

an interstate highway; these segments, geographically indexed by their midpoint, serve as the

unit of observation in our application. For tractability in our analysis, we use hourly averages

of speed for each road segment and we drop observations on weekends and those outside of

the 5AM–11PM time frame. As such, we have 8,956,589 individual hour-by-road-segment

observations. Unlike Bento et al. (2013) and Anderson (2014), for example, who use traffic

flow and delay data from the California Freeway Performance Measurement System (PeMS),

we require data that is more finely disaggregated on a spatial scale to identify the impact

of water main breaks within urban areas. The primary limitation of these data, however, is

that the sole time-varying metric we have on traffic patterns is speed, which does not capture

important characteristics such as the number of vehicles on the road.

DC Water provided us with a list of water main breaks in response to a FOIA request,

providing us with the intersections or addresses of the breaks that occurred during the time

period of our traffic data. These data include the date of reporting the water main break and

the time of completion of work. We geo-referenced the locations (i.e., the street intersection

or street address) of main breaks using Google Maps APIs.

We merge the two data sets—INRIX and DC Water—using latitude and longitude coor-

dinates. The merged data are shown in Figure 1 with points representing water main breaks

and lines representing streets with observed speed data. Because the geographic locations of

water main breaks do not overlap perfectly with road segment midpoints, we assign a water

main break to each road segment within a fixed distance from the break. We then let this

distance vary by econometric specification as discussed below.

The main limitation of our water main break data is that there is no information on
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Figure 1: Merged INRIX road segment and DC Water main break data from July 1, 2014,
through June 30, 2015
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when work actually began for each water main break. We observe when DC Water reports

a repair completed and we observe when a problem is reported. If, however, there is a lapse

in work during which there is no construction, that lapse will count as a “treated” period

even though traffic could be flowing normally, leading to a lower bound for our estimated

average treatment effects. We solve this errors-in-variables problem in several ways. First,

we interpolate repair times for breaks that are implausibly long by replacing their repair

times with the median repair times of breaks denoted as “most severe.” This approach is

motivated by severe breaks being prioritized so that their repairs garner the most immediate

use of resources. Additionally, we include specifications that define a repair time as the lesser

of (a) the difference between the time of a reported break and its completion and (b) one

week from reported completion to provide a lower bound for traffic speed impacts.

3.2 k-means clustering

Our INRIX traffic data contain speeds for both surface streets and highways in DC. In our

sample, there are several types of surface streets, including arteries and smaller residential

streets that have commuter traffic and those without, and so forth. With 2,182 individual

road segments, we adopt a method for classifying observationally similar streets together to

provide the best possible counterfactual outcome for a road segment that is affected by a

water main break.

In order to construct a measure of observationally similar streets from a time series of

speed data for each road segment, there are two tasks. The first is to use the time series

data to summarize the important characteristics of traffic patterns. The second is to use a

method of classification based upon these summary statistics.

We create a set of 52 summary statistics to characterize streets using the year’s worth

of data. These include mean speed by hour, standard deviation of speed by hour, difference

between maximum observed hourly mean and mean speeds during commuting hours (to
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measure congestion), and categorical variables for traffic direction.6

Classifying road segments is a unique challenge for this paper. Our approach is similar, in

spirit, to using propensity-score matching to construct a control group from observable char-

acteristics (Rosenbaum and Rubin, 1985). Economists traditionally approach classification

in this context by matching treatment and control units on the probability of being treated

(Rosenbaum and Rubin, 1983). Our situation is fundamentally different because we do not

have a constant treatment and control group throughout the study. That is, we need to

construct a cluster of road segments that will “turn on” as controls when a road segment in

that cluster is affected by a main break, and turn off when traffic is flowing normally within

the cluster. Otherwise we could be comparing interstate speeds to surface street speeds,

since both are present in our data. As a result, we require a tool to classify roads with no a

priori information about the correct groups. Similar challenges exist for stores in classifying

customer types to construct optimal price discrimination menus, for example.

Fortunately there is a set of tools used in machine learning for exactly this problem:

unsupervised learning algorithms. Unsupervised learning is a term used in data science to

put structure on data when there is no left-hand-side variable of interest. This is precisely

our situation, since our goal is to identify similar roads to use as control roads for treated

streets. We use a simple unsupervised learning algorithm—k-means clustering—which is

a statistical method used to group a set of objects based on characteristic variables. This

approach classifies N objects in an I-dimensional space into K clusters, choosing to minimize

the Euclidean distance between an object’s vector and a cluster center (the mean of all vectors

in the group) (MacQueen, 1967). K, the number of clusters, and I, the set of clustering

6Specifically, from our hour-by-segment level traffic speed data, we drop all observations that occurred
before 5AM, after 10PM, or on Saturday or Sunday. We then aggregate the data to a segment level and
generate variables giving the mean and standard deviation of speed over the entire year of data, with one
variable for each hour of the day (i.e., annual mean and standard deviation of speed for the hour beginning
at 5AM, 6AM, ..., 10PM). We also construct the difference in means for several peak hours relative to a
baseline hour with minimal traffic (5AM–6AM). Lastly, using the road segment characteristics provided
to us by INRIX, we create dummy variables for cardinal directions (NB, SB, EB, WB, clockwise, and
counterclockwise) and highways (one variable indicating whether a road is an interstate, another for US
routes). There are 52 total variables in the clustering matrix.
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variables, are chosen by the researcher.

k-means clustering minimizes the within-cluster sum of squares, using the Euclidean

distance within a cluster weighting each of the I dimensions equally,

∑
k∈K

∑
i∈I

||xi − x̄ki ||2, (1)

where xi is a vector of the ith variable and x̄ki is the mean of the ith variable in cluster k. As

with all machine learning classification algorithms, the precise form of the algorithm defines

what k-means clustering is. The algorithm begins by assigning K group centers to random

points.7,8 Then, it iterates as follows:

1. Assignment step: Each data point is assigned to the nearest group center.

2. Update step: Group centers are adjusted to match the sample means (i.e., centroid)

of the data points.

3. Repeat (1) and (2) until the assignments do not change.

Because simple Euclidean distance will overweight variables with larger nominal values,

we standardize our clustering variables to weight each variable equally. We adopt the method

recommended by Milligan and Cooper (1988), which is to create x̂j = xj/(max(xj)−min(xj))

where xj is the jth variable. The k-means algorithm will continue to run until each observa-

7k-means clustering has several limitations. One is that the random assignment of starting points can lead
to very different clusters based on where the initial placement is (i.e., multiple local maxima). One solution
is to repeat the process many times and pick the result with the smallest squared error or, in the case of
several with the same squared error, use some sort of average. Bernhardt and Robinson (2007) use multiple
iterations and note the importance of doing this for clustering a large number of objects together. Another
limitation is that k-means clustering does not consider the shape and distribution of the data. As a result,
it is up to the researcher to provide the appropriate summary statistics to use for classification. A third
limitation is the “hard” design of k-means clustering. Points are assigned to exactly one cluster, including
border points that influence (and are influenced by) points in nearby clusters. This limitation spawned a
second type of k-means algorithm known as “soft” or “fuzzy” clustering. This returns a membership degree
for each cluster-object pair (Rezankova, 2014). While these aspects of clustering are largely beyond the scope
of our application, our results are remarkably robust to various sensitivity tests in clustering.

8As a sensitivity test, we also apply k-median clustering to our data. k-median clustering is similar to
k-means, but uses the 1-norm distance instead of Euclidean distance to assign objects to clusters (Anderson
et al., 2006). Primary results for this approach are included in the Appendix Table A3
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tion is located in a cluster with other observations that have similar elements to the clustering

variables I.

Figure 2 shows the results of the k-means clustering procedure with K = 10. We choose

10 road clusters to allow for two (incoming and outflowing traffic) interstate roads, main

surface streets, small surface streets, peripheral streets, and “other.” In Figure 2, each road

segment included in a panel is part of the cluster in that panel. The algorithm does well at

matching similar road segments from visual inspection. K = 10 is our preferred number of

clusters, but results are robust to other number of clusters. Primary results for K = 8, 15

are presented in Appendix Tables Appendix Table A4 and A5.

Table 2 shows summary statistics of clusters selected by the k-means algorithm. There are

four clusters (5, 7, 8, and 10) containing many road segments and six smaller clusters. The

larger clusters have lower average traffic speeds, suggesting that we have more observations

on roads with more traffic. Additionally, the k-means clustering effectively groups streets

by direction of traffic and along surface-highway delineations. Similarities in the variables

within a row and differences across rows imply that the algorithm did an adequate job of

clustering.

Table 2: Summary statistics for each cluster

Cluster ID No. segments Speed Speed Max. diff. NB SB EB WB IS US
(Mean) (SD) (MPH) (Pr.) (Pr.) (Pr.) (Pr.) (Pr.) (Pr.)

1 121 22.823 6.392 4.913 0.975 0 0 0 0.008 0.008
2 41 41.358 8.534 7.311 0 0 1 0 0.073 0
3 121 42.501 9.639 10.127 0 0.678 0 0.298 0.025 0.033
4 38 29.237 13.261 13.916 0.079 0.737 0.079 0.105 0.053 0.026
5 442 17.77 5.57 4.382 0 1 0 0 0 0
6 90 41.816 10.205 11.313 1 0 0 0 0.044 0.011
7 484 18.252 6.301 3.796 0 0 0 1 0 0.004
8 355 15.829 4.117 3.049 1 0 0.003 0 0 0.006
9 130 23.54 6.297 5.49 0 0 1 0 0 0
10 358 16.049 4.442 3.769 0 0 1 0 0 0

Notes: NB = northbound, SB = southbound, EB = eastbound, WB = westbound, IS = interstate, and US
= US highway. Max. diff. is the maximum difference in mean speeds during each hour of the day relative to
speeds at 5AM within each cluster
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Figure 2: Map of individual road segment clusters and water main breaks
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3.3 Treatment effects over space and time

Now that we have grouped road segments into similar clusters, we can use this classification

to inform our identification strategy. Let Yijt be the outcome variable of interest—traffic

speed on road segment i in cluster j at time t. The unit of observation for speed is the road

segment level, as defined by our INRIX data. Road segments are assigned to a cluster j

based on our k-means algorithm.

We are interested in identifying the effect of a series of exogenous water main breaks on

nearby traffic patterns. Since water main breaks vary over space and time throughout our

sample, we assign treatment status, Tijt ∈ {0, 1}, to any road segment within ω1 = 0.15 mile

of a water main break during the time period when our data indicate the presence of a water

main break. Although this distance choice is admittedly arbitrary, we choose 0.15 mile as

a distance that will capture the immediate effect of a water main break and also provide

sufficient power to identify effects on congestion. We discuss robustness checks of varying

this threshold below.9 We also define a cluster indicator, Cijt ∈ {0, 1}, for road segments

that are beyond ω1 + ω2 = 0.5 mile from the water main break, but are within the same

cluster j as any treated road segment i. After grouping segments by k-means clustering,

we contend that the control road segments are observationally similar to the treated road

segments, conditional on segment (αi) and time (τt) fixed effects. We can write this formally

as the following conditional independence assumption,

E[Y 0
ijt|αi, τt, Cijt = 1, Tijt = 1] = E[Y 0

ijt|αi, τt, Cijt = 1, Tijt = 0], (2)

where Y 0
ijt is the potential outcome in the absence of treatment. The previous equation

asserts that the potential outcomes for observations in the same cluster as a treated segment

(Cijt = 1) provide a proper counterfactual for the unobserved term, E[Y 0
ijt|αi, τt, Cijt =

1, Tijt = 1].

9Results are robust to varying this threshold, though estimated effects decrease in absolute value mono-
tonically as this bandwidth increases, consistent with attenuation bias.
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Using the clustered control group in a generalized difference-in-difference framework, we

can then estimate the average treatment effect on the treated (ATT), defined as

ATT = E[Y 1
ijt − Y 0

ijt|αi, τt, Cijt = 1, Tijt = 1]. (3)

Since water main breaks are conditionally exogenous to our outcome variable, and thus our

cluster indicator, we contend that the marginal effect of a water main break on affected road

segments, relative to prevailing traffic patterns in the same cluster, is causal.

We also note that the stable unit treatment value assumption (SUTVA) plays an impor-

tant role in our analysis. Given the natural spatial correlation of traffic patterns in a dense,

urban road network, it is likely that the effect of a water main break at a given point may

spill over into nearby road segments.

In Figure 3, we present a simplified diagram of our treatment assignment to highlight the

spatial dimension of our analysis. If a water main break occurs at the point in the center of

the diagram, we treat all road segments in the circle A (within ω1 miles from the water main

break) as treated. As shown, the markers # and + in A represent treated road segments

(i.e., C = 1, T = 1). All other # and + segments in B and C represent potential control

road segments that are in the same cluster as the treated segment (i.e., C = 1, T = 0). In

the example shown, the marker ? is not treated in A and hence none of its cluster-segments

are considered treated (i.e., C = 0, T = 0).

Using Figure 3 as a reference point, we conduct three complementary econometric anal-

yses to explore the potential bias arising from treatment spillovers. Specifically, SUTVA is

violated if treatment in A affects the outcome in B. If the correlation between treatment in A

and outcomes in B is positive, as is likely when considering traffic patterns, then the causal

effect of the water main break is likely biased downward. To combat this, we explore this

potential bias directly. First, we estimate a naive model using segments lying in A as treated

(C = 1, T = 1), while clustered segments in B and C serve as “controls” (C = 1, T = 0).
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Figure 3: Simplified spatial treatment diagram

Second, we estimate a model using road segments in A as treated, and road segments in C

(i.e., greater than ω1 +ω2 miles from the water main break) as controls. The treated clusters

that lie in B are excluded from the set of controls (C = 0, T = 0). Last, we estimate the

spillover effect directly by defining an indicator that corresponds to treated segments that

lie in A and another that corresponds to spillover segments that lie in B, and all segments

in C corresponding to a treated cluster are controls.

4 Empirical results and discussion

This section reports our main results. The simplest naive model has log of traffic speeds

for a given road segment as the dependent variable and includes an indicator variable that
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equals one if there is a water main break anywhere in Washington, DC,

ln(speedijt) = αi + 1{Any breakt}β + εijt. (4)

In this specification we define Any breakt = 1 for each time period within the 12 hours before

any break in the DC Water database is repaired, and zero otherwise. We choose 12 hours

because it is the median repair time for the most severe type of the five types of breaks in

the data. There were five types of breaks in the data, denoted as 1–5, with 1 being the least

severe and 5 the most severe, as well as an “unreported” category. Summary statistics are

presented in Table 3. As shown, the median repair time decreases with the severity of the

break.10 There are 515 total breaks in the data.

Table 3: Difference between reported and comple-
tion time (in hours) by severity level

Severity Level Count 1Q Median 3Q Mean
1 2 201.6 269.5 337.5 269.5
2 7 329.9 382.5 542.4 423.5
3 41 99.3 189.4 363.1 338.3
4 79 22.6 46.3 96.5 110.0
5 144 9.5 12.8 19.7 22.5

Unreported 5 7.6 18.9 50.4 45.6

Table 4 shows that when breaks occur traffic speeds are on average 0.15% faster. This

is a function of the timing of reported audits: off-peak traffic hours are disproportionately

represented in the data with noon to 3PM being the most common hours with reported

breaks. To that end, when we include hour of day, day of week, and month fixed effects,

speeds are on average 0.79% slower. This is likely due to the timing of breaks, which are

most common in winter months when temperatures are colder and traffic speeds are, on

average, slower because of snow and ice conditions in Washington, DC.

In our next specification, we restrict the definition of treatment and control segments

10DC Water notes, “A simple water main repair can be completed in six to eight hours, but large or
complicated repairs may take several days to a week” (source: https://www.dcwater.com/wastewater/

watermain_break.cfm).
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Table 4: The effect of a water main break on
aggregate traffic speeds in Washington, DC

(1) (2)
ln(speedijt) ln(speedijt)

Any breakt 0.00154** -0.00794***
(0.000710) (0.000185)

Observations 8,956,589 8,956,589
R-squared 0.000 0.147
Number of segments 2,182 2,182
Fixed effects:
Hour FE NO YES
Weekday FE NO YES
Month FE NO YES

Notes: Robust standard errors in parentheses clus-
tered at the road segment level. *** p<0.01, **
p<0.05, * p<0.1

in line with the previous section. We define a treated segment, Breakijt, as any segment

within 0.15 mile of the address of a reported break. We define control segments, Clusterijt,

as any segment that is in the same cluster as a treated segment and more than 0.5 mile

from a break. In this sense, a segment can be treated and only segments in its same cluster

can be controls. We also allow for segments in the same cluster between 0.15 and 0.5 mile

from a break to be spillover segments, Spilloverijt. We estimate a treatment effect of these

segments to determine any possible diffusion of congestion radiating from a break. The

precise specification we estimate is

ln(speedijt) = αi + 1{Breakijt}β + 1{Clusterjt}γC + 1{Spilloverijt}γS + λt + εijt (5)

In this specification, the coefficient of interest is β, which is the causal impact of a break

on traffic speeds. In line with the definitions above, it is the marginal impact of a break on

traffic speeds on a treated road segment. The coefficient γC describes the average difference

in traffic speeds when a break occurs relative to baseline (i.e., it is similar to the 0.79%

point estimate above). By assumption, this specification imposes that the average impact

of a control period is assumed to be uniform across clusters. We relax this assumption in
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some specifications below. The coefficient γS is the spillover effect of traffic from a road

segment where a break occurs. Our identifying assumption for causality is that a break

occurs exogenously within a cluster, since γC controls for average speed differences during

break hours. All regressions are estimated using Cochrane-Orcutt standard errors (Cochrane

and Orcutt, 1949). To ensure this solves the serial correlation problem, we test for serial

correlation in the error term using the Bhargava et al. (1982) modified Durbin-Watson error

term and the Baltagi-Wu LBI statistic (Baltagi and Wu, 1999) in all models.

Table 5: Average treatment and cluster break effects

(1) (2) (3) (4)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt -0.0187*** -0.0174*** -0.0141*** -0.0142***
(0.00350) (0.00326) (0.00327) (0.00327)

Clusterijt -0.00491*** -0.00489***
(0.000311) (0.000316)

Spilloverijt -0.00055
(0.00138)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES
Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1

The results from estimating equation (5) are shown in Table 5. Each column of the table

adds more controls until column (4), which has the full model with controls in equation

(5). There are three consistent results. First, the point estimate for the causal impact of

water main breaks on traffic speeds is between 1.4% and 1.9%. Second, breaks occur when

average traffic speeds are roughly 0.5% lower. This difference highlights the importance of

having a valid control group. Third, there is no evidence of statistically significant spillover

effects. Each of these point estimates is robust to varying the number of clusters, as shown

in Appendix Tables A4 and A5.
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We also can estimate the same specification but with cluster-specific treatment effects.

Table 6 shows those results.11 For clusters 1, 7, and 10 there are statistically significant

treatment effects ranging from 1.3% to 3.6% in the final specification. Estimating different

point estimates across segments highlights the value of using clustering to identify heteroge-

neous impacts. Recalling that clusters 5, 7, 8, and 10 are the largest clusters in the sample,

the lack of significance in clusters other than 1 is plausibly attributable to power issues

rather than a true zero effect. Clusters 5 and 8 have the expected sign and magnitudes, but

are significant only in columns (1) and (2). In this specification we do not find evidence of

nonzero spillover effects.

Clustering becomes more important in our study when we estimate the same regression

with cluster-specific control indicators (due to their we report these results in Appendix

Table A1). Compared to results in Table 6, the two statistically significant and largest

in magnitude point estimates decrease with cluster specific controls. Further, in the full

specification (column 4) the number of statistically significant road segments (at the 10%

level) increases from two to six. This finding appears to be driven by statistically significant

heterogeneity in cluster control variable. We take this as evidence of increased precision in

treatment relative to control that is not present without the clustering algorithm.

4.1 Robustness checks

While our results are fairly consistent across specifications, in order to ensure that our

estimates can be attributed to water main breaks we perform several robustness checks.

The first robustness check is a placebo test of randomly generated water main breaks.

We generate 515 random water main breaks in our sample. We then construct treated and

control segments using the exact same procedure as with reported breaks. Table 7 reports

the results from estimating our main specification on the placebo data. We repeat the

procedure several times, but report the results from only a single run. In no case do we find

11Note: Table 6 includes only 2,180 road segments because 2 road segments in our sample have no identi-
fying characteristics to be used in our clustering algorithm.
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Table 6: Cluster-specific treatment effects

(1) (2) (3) (4)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt × Cluster1 -0.0504*** -0.0393*** -0.0359** -0.0360**
(0.0154) (0.0143) (0.0143) (0.0143)

Breakijt × Cluster2 0.00721 0.0134 0.0176 0.0176
(0.0402) (0.0375) (0.0375) (0.0375)

Breakijt × Cluster3 0.00617 0.00818 0.0118 0.0118
(0.0269) (0.0251) (0.0251) (0.0251)

Breakijt × Cluster4 -0.0539** -0.0370 -0.0340 -0.0340
(0.0253) (0.0236) (0.0236) (0.0236)

Breakijt × Cluster5 -0.0138* -0.0125* -0.00956 -0.00958
(0.00730) (0.00681) (0.00681) (0.00681)

Breakijt × Cluster6 0.0287 0.0353 0.0387 0.0387
(0.0287) (0.0269) (0.0269) (0.0269)

Breakijt × Cluster7 -0.0230*** -0.0250*** -0.0219*** -0.0219***
(0.00729) (0.00678) (0.00678) (0.00678)

Breakijt × Cluster8 -0.0181** -0.0138* -0.0106 -0.0106
(0.00811) (0.00756) (0.00757) (0.00757)

Breakijt × Cluster9 -0.0311* -0.0220 -0.0184 -0.0184
(0.0172) (0.0161) (0.0161) (0.0161)

Breakijt × Cluster10 -0.0122 -0.0161** -0.0125* -0.0126*
(0.00784) (0.00728) (0.00729) (0.00729)

Clusterijt -0.00491*** -0.00489***
(0.000311) (0.000316)

Spilloverijt -0.00055
(0.00138)

Observations 8,952,305 8,952,305 8,952,305 8,952,305
Number of segments 2,180 2,180 2,180 2,180
Fixed effects:
Hour FE NO YES YES YES
Wkday FE NO YES YES YES
Month FE NO YES YES YES
Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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a statistically significant impact of breaks on traffic speeds.

Table 7: Placebo clusters and breaks

(1) (2) (3) (4)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt 0.00177 2.05e-06 -7.51e-05 -7.30e-05
(0.00654) (0.00617) (0.00619) (0.00619)

Clusterijt 9.97e-05 9.70e-05
(0.000550) (0.000555)

Spilloverijt 0.000133
(0.00369)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES
Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7824 0.7824
Baltagi-Wu LBI 0.6997 0.7846 0.7847 0.7847

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1

One challenge of this study is possible measurement error in the treatment effect. For

severe breaks, which receive the highest priority, the median time between when a break is

reported and when it is repaired is 12 hours (rounded down; see Table 3). However, the

least severe breaks have median repair times of over 200 hours. This is likely due to lower-

resourced and less timely repair schedules for less “important” breaks. This concern initially

led us to define treatment as the 12 hours before a repair is completed in order to mitigate

the errors-in-variables problem.

As a robustness check, we also estimate our main specification using the lesser of (a)

the difference between the time of a reported break and its completion and (b) one week

from reported completion as the treatment window. Results are in Table 8. The alternate

treatment window finds estimated results of -1.9%, relative to that of our primary treatment

definition of -1.4% in the analogous specification above. These estimates, however, are not

statistically different. Given the robustness of our primary result to this alternative treatment

definition, we view this as evidence that our preferred specification is likely to provide an
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accurate point estimate.

We estimated the same regression as in equation 5 with severity-level treatment effects,

rather than pooled, to account for the prioritization of DC Water directly. We present

this table in the Appendix (Table A2) and we find significant point estimates between -

1.0% and -4.8% for severity level 1, 2, 3, and 5 breaks. Notably, the treatment effect for

severity 5 breaks is statistically similar to our preferred treatment estimate and does not

suffer from small sample problems. Further, it is these breaks that are prioritized to be fixed

immediately, so this result suggests that our preferred estimates are robust to congestion

mitigation efforts by the constructions crews (such as waiting until nighttime, when there is

less traffic, to repair the main).

Table 8: Average treatment and cluster break effects: reported time = start time
(maximum 1 week)

(1) (2) (3) (4)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt -0.0119*** -0.0170*** -0.0195*** -0.0199***
(0.00226) (0.00202) (0.00202) (0.00202)

Clusterijt 0.00781*** 0.00807***
(0.000311) (0.000315)

Spilloverijt -0.00462***
(0.00081)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES
Modified Bhargava et al. Durbin-Watson 0.6976 0.7824 0.7826 0.7826
Baltagi-Wu LBI 0.6997 0.7847 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1

4.2 Heterogeneous impacts by time of day

Anderson (2014) shows that the impacts of transit infrastructure disruptions vary by time

of day. Intuitively, a disruption is more problematic during high traffic volume periods when
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Table 9: Average treatment and cluster break effects: by time of day

(1) (2) (3) (4) (5)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt -0.0397*** -0.0182*** -0.0180** 0.0130 -0.0126*
(0.00863) (0.00703) (0.00727) (0.00799) (0.00695)

Clusterijt -0.00828*** -0.0141*** -0.0321*** -0.0310*** -0.0340***
(0.000783) (0.000668) (0.000706) (0.000781) (0.000692)

Spilloverijt -0.0190*** -0.00482 -0.00829*** 0.00458 -0.0194***
(0.00385) (0.00301) (0.00304) (0.00329) (0.00287)

Observations 1,680,016 1,680,019 1,673,519 1,677,910 1,673,462
Number of segments 2,182 2,182 2,182 2,182 2,182
Hours 7AM-10AM 10AM-1PM 1PM-4PM 4PM-7PM 7PM-10PM
Fixed effects:
Hour FE YES YES YES YES YES
Weekday FE YES YES YES YES YES
Month FE YES YES YES YES YES
Modified Bhargava et al.
Durbin-Watson 0.9390 0.9013 0.8963 0.8548 0.9037
Baltagi-Wu LBI 1.2807 1.2330 1.2734 1.2021 1.2063

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1

the marginal impact of another commuter is more problematic. As a result, we estimate both

aggregated and cluster-specific versions of the econometric model restricting the sample to

time-of-day bins. Specifically, we break the day into five parts: 7AM–10AM, 10AM–1PM,

1PM–4PM, 4PM–7PM, and 7PM–10PM.

Table 9 shows results for our time-of-day regressions. We find several important patterns

in the data that are robust to alternative specifications. First, the causal impact of breaks

varies throughout the day. Largest impacts are during the morning commute (-3.97%) and

the magnitude of these impacts weaken throughout the day. This is consistent with repairs

having a higher probability of being fixed by later in the day. To that end we find a positive

and insignificant impact of treatment on speeds during the afternoon rush hour.

Second, spillovers are much more pronounced when breaking out results by time of day.

In all but one case, the spillover effect is smaller in magnitude than the direct treatment

impact. During the time period when the spillover effect is larger than the treatment effect

(7PM–10PM) the two estimated coefficients are not significantly different. This finding is
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consistent with a spatial diffusion of delays with strongest impacts at the point of the water

main break.

Third, having the appropriate control group takes on extra importance in the time-of-

day results. Table A6 in the Appendix shows results including cluster-specific controls. As

before the coefficients on Break and Spillover are defined as marginal impacts on top of

speeds in the control streets in the same cluster. The table shows statistically significant

heterogeneity in the control cluster speeds by time of day. These results reveal increases in

precision and magnitude of treatment effects by hour of day. We note that spillover impacts

remain unchanged relative to the specification where the average impact of a control period

is assumed to be uniform across clusters.

5 Policy implications and conclusions

We find small but statistically significant impacts of water main breaks on traffic speeds.

The average impacts are on the order of a 1.4% decrease in traffic speeds in road segments

proximate to the break. This average impact masks heterogeneity apparent due to the k-

means clustering technique. In general, we find that breaks are most likely to occur during

hours when speeds are slightly lower than average, consistent with beliefs that breaks occur

during winter months when temperatures are colder. These results are robust to a variety

of specifications and classification criteria. Our falsification tests show the estimated effects

are driven by main breaks.

The direction of our results is not surprising but the magnitudes are somewhat surprising

for two reasons. First, water main breaks are frequently reported by local and national

media outlets. Second, there is a growing acknowledgment that water and other public

infrastructure is deteriorating. Our evidence is consistent with these stylized facts. In our

study, however, we find that the costs of a single type of public infrastructure break is not

large for the single outcome we examine. Changing water infrastructure investment strategies
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Figure 4: Schematic of assumed street layout

because of concerns about the effects of water main breaks on indirect economic outcomes

(e.g., traffic delays) seems not to be justified.

To put our estimated treatment effects in context, we size welfare impacts of traffic

disruptions attributable to water main breaks using both average impacts over the entire

sample and the heterogeneous time-of-day impacts in the spirit of Anderson (2014). To

do so we download daily traffic count data from Washington, DC. The average city street

has roughly 12,500 unique cars travel on it per day.12 Consistent with the Department

of Transportation guidelines, we use half the hourly wage rate in the Washington, DC,

metropolitan statistical area (MSA) as reported by the Bureau of Economic Analysis website

to value time: $18.80/hour. Table A7 in the Appendix shows mean speed by hour of day

over all city streets.13 By using average speed by hour of day, we construct the number of

minutes to travel one mile. We can compare average speeds and expected speeds during

12See http://rtdc.mwcog.opendata.arcgis.com/datasets/fd3a40a7e317420faff13864c7b82bc7_0?

uiTab=table.
13This table also includes mean and standard deviation of the INRIX “score” for the speed data. Score

measures the data quality averaged over an hour. 30 is an actual reading and perfect data, 10 is an inter-
polated speed reading. The overall average data quality according to this metric is 26 and data quality is
roughly consistent across our sample.

28

http://rtdc.mwcog.opendata.arcgis.com/datasets/fd3a40a7e317420faff13864c7b82bc7_0?uiTab=table
http://rtdc.mwcog.opendata.arcgis.com/datasets/fd3a40a7e317420faff13864c7b82bc7_0?uiTab=table


treated hours to infer the time cost attributable to water main breaks.

We make two simplifying assumptions to make the welfare calculation tractable. First,

we have to determine the total number of miles of street that are subject to the treatment

effect and the spillover effect. To do so, we assume there is a unique street every 0.1 mile

since city blocks are commonly 0.1 mile. We also ignore diagonal arterial streets in DC. This

is shown in Figure 4. Shaded area is considered the treated area and the unshaded counted

as spillover. Each gray line is a single street. In the welfare calculations, we assume the

total length of all streets in the shaded circle of radius 0.15 mile is the length of all treated

streets during a “treated” period. The total street length in the doughnut surrounding

the shaded region is the length of spillover streets. We calculated street lengths using the

Pythagorean Theorem since streets are assumed to be spaced at exactly 0.1 miles and circles

are symmetric.

Second, we have to determine how many cars travel on each road segment over a day

and, in the time-of-day calculation, each time period of the day. To do so, we assume each

street has a total of 12,500 cars traveling on it each day. We both assume cars are uniformly

distributed throughout the day and that volumes more than double during rush hours in

different specifications. Because we have no data on volumes by road segment type, we focus

exclusively on temporal heterogeneity since temporal traffic patterns are more well known

than spatial patterns. We take parameter estimates from Tables 5, 8, and 9 to perform

the time costs. The magnitude of the time costs is similar to that using other parameter

estimates. An Excel spreadsheet with precise calculations is available from the authors upon

request.

Table 10 shows the results of the time costs attributable to water main breaks that

occurred over the 12 months we study. Accounting for temporal heterogeneity rather than

simple average impacts, we find time costs increase by roughly 400%. This result is consistent

with Anderson (2014) who finds the impacts of transit infrastructure disruptions vary by time

of day in a similar way.
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Table 10: Annual traffic time costs of Washington, DC, water main breaks

Method Coefficients table Rush hour Normal Total cost
car volume car volume

Average (without spillover) 5 n/a n/a $125,988
Average (with spillover) 5 n/a n/a $159,222
Average (with spillover) 8 n/a n/a $444,490
Time of day 9 2,500 2,500 $648,279
Time of day 9 4,000 1,500 $695,275

Notes: Assume 12,500 total volume per road/day and value of time of $18.80/hour. A total
of water main breaks occurred between July 1, 2014, and June 30, 2015. For the time-of-day,
non-uniform calculation, we find the time cost per break is roughly $1,350.

Our preferred cost calculation is the bottom one in which we use our estimated time-

of-day effects and assume more traffic occurs during rush hours. In doing so we estimate a

time cost per water main break of roughly $1,350. This works out to roughly $700,000 over

the entire year. While half or twice this number is possible, we are reasonably confident

this is the correct order of magnitude. Given that the total population of Washington, DC,

is roughly 700,000, this works out to roughly $1 per person. In this case $1 per person is

almost surely an overestimate: the time-weighted population of Washington, DC, is much

larger than 700,000, as many people commute into the city from more suburban areas. We

do not view this as a large cost.

The use of these estimates for other urban areas is somewhat plausible, but they probably

do not transfer to less urban areas. Washington is a dense urban area with various alternative

transport options. The metropolitan DC area consistently ranks as one of the most congested

cities, ranking first in annual hours of delay per commuter (Schrank et al., 2015). As a result,

the effect of a water main break on traffic patterns in DC may be small relative to a city

with fewer alternative commuting options, whether those are alternative routes or different

modes of transport. This logic would imply that our results are externally valid for dense

road networks in urban cities and likely a lower bound when fewer substitutes are present.

Despite this, urban areas on average tend to contain older infrastructure that is of critical

policy importance.
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Our results, however, do not suggest that infrastructure investment is not important. In

fact, the number of water main breaks, and the corresponding age of the mains, for a single

urban area within our year-long study period is alarming. Rather, we provide evidence that

a single indirect economic cost (increased congestion) from distributed water infrastructure

failure is small. Other direct and indirect effects could be large. That said, if other indirect

costs of failure were small, then centralized water infrastructure improvements could provide

more value than improvements to distributed infrastructure. Further, it could be that ob-

served failures are not the right measure in this space; water infrastructure investment might

be best framed in terms of forgoing the worst possible outcome, much as electric utilities

plan to mitigate the probability of blackouts. In that case, though, we are not aware of a

good economic framework for estimating the impacts of those large, and in some cases never

observed, events.14

More generally, our paper is a starting point rather than a decision point for policy

makers in this space. There is a gap in the literature in identifying causal impacts of water

infrastructure failure on economic outcomes. While there is a larger literature on dose-

response functions that could be used to perform back-of-the-envelope calculations on the

costs of deterioration, there is a need to inform policy makers so that they can plan their

infrastructure investments efficiently.

14One example is trying to identifying the causal impact of a never before observed human threat to water
supplies.
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Appendix A – Additional results

Table A1: Cluster-specific treatment effects with
cluster-specific controls

(1) (2)
ln(speedijt) ln(speedijt)

Breakijt × Cluster1 -0.0302** -0.0302**
(0.0144) (0.0144)

Breakijt × Cluster2 -0.00160 -0.00165
(0.0380) (0.0380)

Breakijt × Cluster3 0.00881 0.00878
(0.0252) (0.0252)

Breakijt × Cluster4 -0.0434* -0.0434*
(0.0241) (0.0241)

Breakijt × Cluster5 -0.00673 -0.00677
(0.00682) (0.00682)

Breakijt × Cluster6 0.0298 0.0297
(0.0270) (0.0270)

Breakijt × Cluster7 -0.0206*** -0.0207***
(0.00679) (0.00679)

Breakijt × Cluster8 -0.0153** -0.0154**
(0.00758) (0.00758)

Breakijt × Cluster9 -0.0268* -0.0269*
(0.0162) (0.0162)

Breakijt × Cluster10 -0.0136* -0.0136*
(0.00730) (0.00730)

Breakijt × Cluster Control1 -0.0128*** -0.0127***
(0.00184) (0.00184)

Breakijt × Cluster Control2 0.0164** 0.0164**
(0.00676) (0.00676)

Breakijt × Cluster Control3 -0.00108 -0.00104
(0.00296) (0.00296)

Breakijt × Cluster Control4 0.00869 0.00880
(0.00698) (0.00698)

Breakijt × Cluster Control5 -0.00933*** -0.00930***
(0.000611) (0.000613)

Breakijt × Cluster Control6 0.00732* 0.00738*
(0.00379) (0.00379)

Breakijt × Cluster Control7 -0.00686*** -0.00683***
(0.000559) (0.000561)

Breakijt × Cluster Control8 0.00197*** 0.00202***
(0.000750) (0.000753)

Breakijt × Cluster Control9 0.00607*** 0.00610***
(0.00184) (0.00184)

Breakijt × Cluster Control10 -0.00352*** -0.00348***
(0.000680) (0.000682)

Spilloverijt -0.00100
(0.00138)

Observations 8,952,305 8,952,305
Number of segments 2,180 2,180
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES
Modified Bhargava et al. Durbin-Watson 0.7827 0.7827
Baltagi-Wu LBI 0.7850 0.7850

Notes: All models adjusted for autocorrelation. Robust stan-
dard errors in parentheses clustered at the road segment level.
*** p<0.01, ** p<0.05, * p<0.1
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Table A2: Average treatment and cluster break effects by break severity

(1) (2) (3) (4)
ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt × Severity1 -0.159*** -0.103*** -0.101*** -0.101***
(0.0289) (0.0267) (0.0267) (0.0267)

Breakijt × Severity2 -0.0686*** -0.0683*** -0.0644*** -0.0644***
(0.0262) (0.0244) (0.0244) (0.0244)

Breakijt × Severity3 -0.0541*** -0.0519*** -0.0488*** -0.0488***
(0.00830) (0.00773) (0.00774) (0.00774)

Breakijt × Severity4 0.00485 0.00210 0.00531 0.00528
(0.00621) (0.00575) (0.00575) (0.00575)

Breakijt × Severity5 -0.0162*** -0.0147*** -0.0114** -0.0114**
(0.00514) (0.00481) (0.00482) (0.00482)

Breakijt × Severity Unreported 0.0607 0.0815** 0.0855** 0.0855**
(0.0381) (0.0355) (0.0355) (0.0355)

Clusterijt (0.000311) (0.000316)
(0.000314) (0.000319)

Spilloverijt -0.000561
(0.00138)

Observations 8,954,407 8,954,407 8,954,407 8,954,407
Number of segments 2,182 2,182 2,182 2,182
Fixed effects:
Hour FE NO YES YES YES
Weekday FE NO YES YES YES
Month FE NO YES YES YES
Modified Bhargava et al. Durbin-Watson 0.6976 0.7823 0.7826 0.7826
Baltagi-Wu LBI 0.6998 0.7847 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table A3: k-medians clustering

(1) (2)
ln(speedijt) ln(speedijt)

Breakijt -0.0130*** -0.0130***
(0.00327) (0.00327)

Clusterijt -0.00644*** -0.00644***
(0.000339) (0.000345)

Spilloverijt -0.000136
(0.00146)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES
Modified Bhargava et al. Durbin-Watson 0.7826 0.7826
Baltagi-Wu LBI 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in
parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1

Table A4: Average treatment and cluster break effects, k=8

(1) (2)
ln(speedijt) ln(speedijt)

Breakijt -0.0141*** -0.0141***
(0.00327) (0.00327)

Clusterijt -0.00515*** -0.00515***
(0.000301) (0.000305)

Spilloverijt -1.40e-05
(0.00135)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES
Modified Bhargava et al. Durbin-Watson 0.7826 0.7826
Baltagi-Wu LBI 0.7849 0.7849

Notes: All models adjusted for autocorrelation. Robust standard errors in
parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1
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Table A5: Average treatment and cluster break effects, k=15

(1) (2)
ln(speedijt) ln(speedijt)

Breakijt -0.0143*** -0.0144***
(0.00327) (0.00327)

Clusterijt -0.00443*** -0.00442***
(0.000339) (0.000344)

Spilloverijt -0.0024
(0.00144)

Observations 8,954,407 8,954,407
Number of segments 2,182 2,182
Fixed effects:
Hour FE YES YES
Weekday FE YES YES
Month FE YES YES
Modified Bhargava et al. Durbin-Watson 0.7825 0.7825
Baltagi-Wu LBI 0.7848 0.7848

Notes: All models adjusted for autocorrelation. Robust standard errors in
parentheses clustered at the road segment level. *** p<0.01, ** p<0.05,
* p<0.1
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Table A6: Cluster-specific treatment effects with cluster-specific controls by time
(1) (2) (3) (4) (5)

ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt) ln(speedijt)

Breakijt × Cluster1 -0.0488 -0.00579 -0.0508 0.0249 -0.0684**
(0.0405) (0.0290) (0.0323) (0.0312) (0.0298)

Breakijt × Cluster2 -0.0230 -0.0344 -0.00681 -0.0740 0.0716
(0.121) (0.0710) (0.0864) (0.0896) (0.0802)

Breakijt × Cluster3 0.126* 0.0589 0.0112 -0.0110 -0.0485
(0.0647) (0.0525) (0.0552) (0.0595) (0.0586)

Breakijt × Cluster4 -0.0987 -0.0793 -0.108** 0.0251 -0.122***
(0.0722) (0.0617) (0.0538) (0.0469) (0.0453)

Breakijt × Cluster5 -0.0312* -0.0305** -0.0214 0.0164 -0.0158
(0.0178) (0.0148) (0.0152) (0.0166) (0.0143)

Breakijt × Cluster6 -0.0149 0.0709 0.00300 0.111* 0.0680
(0.0706) (0.0580) (0.0690) (0.0655) (0.0611)

Breakijt × Cluster7 -0.0532*** 0.00501 -0.0376** -0.0181 -0.0273*
(0.0181) (0.0145) (0.0150) (0.0170) (0.0147)

Breakijt × Cluster8 -0.0485** -0.0454*** -0.00767 0.0173 -0.000380
(0.0202) (0.0167) (0.0168) (0.0186) (0.0158)

Breakijt × Cluster9 -0.0452 -0.00224 -0.00626 -0.0590 -0.0646**
(0.0395) (0.0348) (0.0365) (0.0406) (0.0322)

Breakijt × Cluster10 -0.0467** -0.0283* -0.0193 0.0237 0.00594
(0.0189) (0.0155) (0.0160) (0.0185) (0.0161)

Breakijt × Cluster Control1 0.00404 0.000199 0.0191*** 0.00617 -0.00197
(0.00459) (0.00398) (0.00433) (0.00416) (0.00405)

Breakijt × Cluster Control2 0.200*** -0.0204* 0.175*** 0.0844*** 0.0391***
(0.0188) (0.0124) (0.0148) (0.0178) (0.0150)

Breakijt × Cluster Control3 0.0176** 0.0336*** 0.0865*** 0.138*** 0.142***
(0.00848) (0.00567) (0.00577) (0.00698) (0.00741)

Breakijt × Cluster Control4 -0.152*** -0.0538*** 0.100*** 0.00870 0.0927***
(0.0227) (0.0180) (0.0155) (0.0135) (0.0135)

Breakijt × Cluster Control5 -0.00419*** -0.0193*** -0.0366*** -0.0371*** -0.0397***
(0.00148) (0.00131) (0.00134) (0.00141) (0.00127)

Breakijt × Cluster Control6 0.129*** 0.0915*** 0.170*** 0.0458*** 0.0164*
(0.00857) (0.00784) (0.0101) (0.00927) (0.00875)

Breakijt × Cluster Control7 -0.0131*** -0.00991*** -0.0290*** -0.0284*** -0.0335***
(0.00139) (0.00116) (0.00123) (0.00140) (0.00122)

Breakijt × Cluster Control8 -0.00327* -0.0237*** -0.0473*** -0.0366*** -0.0416***
(0.00189) (0.00161) (0.00160) (0.00177) (0.00151)

Breakijt × Cluster Control9 0.0302*** 0.0259*** 0.0392*** 0.0355*** 0.0340***
(0.00464) (0.00365) (0.00436) (0.00460) (0.00414)

Breakijt × Cluster Control10 -0.0247*** -0.0212*** -0.0467*** -0.0497*** -0.0425***
(0.00171) (0.00147) (0.00148) (0.00171) (0.00152)

Spilloverijt -0.0194*** -0.00472 -0.00917*** 0.00415 -0.0188***
(0.00385) (0.00301) (0.00304) (0.00329) (0.00287)

Observations 1,679,622 1,679,625 1,673,125 1,677,518 1,673,074
Number of segments 2,180 2,180 2,180 2,180 2,180
Hours 7AM-10AM 10AM-1PM 1PM-4PM 4PM-7PM 7PM-10PM
Fixed effects:
Hour FE YES YES YES YES YES
Weekday FE YES YES YES YES YES
Month FE YES YES YES YES YES
Modified Bhargava et al. Durbin-Watson 0.9392 0.9014 0.8965 0.8552 0.9040
Baltagi-Wu LBI 1.2808 1.2331 1.2736 1.2024 1.2066

Notes: All models adjusted for autocorrelation. Robust standard errors in parentheses clustered at
the road segment level. *** p<0.01, ** p<0.05, * p<0.1
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Table A7: Mean speed and data quality score by time of day

Time Mean speed SD speed Mean score SD score Observations

7A-10A 20.51 9.93 26.17 4.14 1,682,760
10A-1P 21.2 10.6 26.21 4 1,682,760
1P-4P 20.79 10.3 26.14 4 1,676,262
4P-7P 19.36 9.47 25.73 4.09 1,680,658
7P-10P 21.61 10.22 24.17 4.18 1,676,496

All 20.7 10.14 25.69 4.16 8,398,936
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