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Abstract 

In the electricity sector, innovation in large-scale storage is anticipated to reduce costs and 
improve performance. The effect on greenhouse gas emissions of lower storage costs depends on the 
interactions between storage and the entire grid. The literature has disagreed on the role of storage in 
reducing emissions. Using a stylized model, we show that the effect of storage costs on emissions 
depends on the supply responsiveness of both fossil and renewable generators. Under typical conditions 
in the United States, lower storage costs are more likely to reduce emissions when wind investment 
responds to equilibrium electricity prices and when solar investment does not. Simulations of a 
computational model of grid investment and operation confirm these predictions. Moreover, because of 
its effect on coal and natural gas–fired generation, introducing a carbon dioxide emissions price may 
increase the likelihood that lower storage costs will reduce emissions. 
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Does Electricity Storage Innovation Reduce  
Greenhouse Gas Emissions? 

Joshua Linn and Jhih-Shyang Shih 

1.      Introduction 

In the absence of policy intervention, private decisionmakers do not consider the external 

costs of greenhouse gas emissions, such as using electricity generated by fossil fuel combustion. 

Standard economic theory suggests that setting an emissions price equal to social damages, via 

either an emissions tax or cap-and-trade, is the welfare-maximizing approach to addressing this 

market failure. However, policymakers seeking to reduce greenhouse gas emissions have 

demonstrated a preference for subsidizing low-emitting technologies rather than fully pricing 

emissions. A vast array of explicit and implicit subsidies for low-emitting technologies exists, 

such as renewables tax credits and requirements that renewables provide a specified fraction of 

electricity generation. Although some policymakers have adopted an emissions price, the price 

rarely if ever fully internalizes the costs of greenhouse gas emissions. For example, the current 

US regulation of the electricity sector will approximate an emissions price of $10 per ton of 

carbon dioxide (EIA 2014), which is likely to be substantially lower than the external cost of 

emissions (Greenstone et al. 2013; Nordhaus 2014). 

The literature has demonstrated that these subsidies are not economically efficient. 

Subsidizing research and development (R&D) and adoption of low or zero-emissions 

technologies reduces the private costs of adopting these technologies, in both the short and the 

long run. However, several recent studies (e.g., Holland et al. 2009; Fell and Linn 2013) show 

that these policies can have ambiguous effects on emissions and social welfare. For example, 

subsidizing wind- and solar-powered electricity generators can reduce electricity prices, 

increasing consumption and generation from fossil fuel–fired generators. This effect can offset 

the emissions reductions from such policies, reducing efficiency compared with an emissions 

price. 

                                                 
 Joshua Linn, senior fellow, Resources for the Future (RFF), linn@rff.org. Jhih-Shyang Shih, fellow, RFF, 
shih@rff.org. We thank Xu Liu, Alexander Egorenkov, and Jessic Chu for research assistance, Dallas Burtraw and 
Steve Salant for comments on an earlier draft, and we are indebted to Alexander Meeraus and Steven Dirkse for 
suggestions regarding formulation of the computational model. The RFF Center for Energy and Climate Economics 
supported this research. 
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Under the rationale of subsidizing low-emitting technologies, subsidies for R&D and 

adoption of large-scale electricity storage are also becoming more widespread. For example, 

since 2009 the US Department of Energy has provided roughly $200 million in funding for such 

storage research. Storage subsidies are commonly supported by the view—which many recent 

studies (e.g., de Sisternes et al. 2016) have largely confirmed—that electricity storage reduces 

the costs of achieving very high levels of renewables generation and limiting greenhouse gas 

emissions, as well as providing other benefits to the electricity system. Because electricity 

production from wind- and solar-powered generators is more difficult to control than production 

from conventional technologies, integrating large amounts of wind and solar increases the 

challenge of balancing electricity demand and supply. Storage can address this challenge by 

charging the storage device when electricity supply is abundant relative to demand, and 

discharging when supply is scarce. According to this view, subsidizing storage R&D and 

adoption reduces the costs of integrating renewables and reduces emissions (or, alternatively, 

reduces the cost of meeting an emissions objective). 

However, Carson and Novan (2013) and Graff Zivin et al. (2014) provide an alternative 

view of storage. They show that adding an incremental amount of storage can increase 

greenhouse gas emissions by causing a shift in generation from lower- to higher-emissions 

sources, such as from natural gas– to coal-fired generation. Thus, a central question for storage 

policies is whether anticipated reductions in the cost of storage will reduce emissions—that is, 

whether the widespread view of storage as facilitating emissions reductions is valid. The 

literature has provided conflicting views on this question. 

We reconcile these opposing views of storage by taking an alternative approach, in which 

we consider potentially large amounts of storage and renewables capacity added to the existing 

grid, and analyze the effects of storage costs on emissions. Previous studies differ in the time 

horizon, either considering an incremental amount of storage added to the existing grid (e.g., 

Carson and Novan 2013) or redesigning the entire power system in the long run (e.g., de 

Sisternes et al. 2016). A short-run analysis is confined to the interaction between storage and 

existing generators, and cannot assess whether storage reduces the cost of integrating 

renewables. In contrast, we consider the medium run, a timeframe of 10 to 20 years, and include 

the interaction between storage and investment in new electricity generators. Moreover, the 

medium run, rather than the long run, is the relevant timeframe for studying current policies that 

affect storage costs and near-term investment in generation and storage capacity. 

Whereas most other studies analyze the effects of an exogenous increase in storage 

capacity (e.g., Walawalkar et al. 2007; Sioshansi et al. 2009; Nyamdash et al. 2010), we consider 
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a context in which storage investment depends on storage costs and other market factors. This 

focus is motivated by several considerations. First, in practice, storage investment depends on 

decisions made by individual investors (in some cases with regulatory oversight) in response to 

market conditions, but most previous studies have treated storage as exogenous to the model. 

Second, the focus on storage costs is relevant to storage policies, which primarily reduce storage 

costs in the short run (via investment incentives) and long run (via R&D subsidies). Third, partly 

but not entirely because of storage policy, technological innovation over the coming years is 

likely to reduce storage costs (Kintner-Meyer et al. 2010). In the context of declining costs, the 

most relevant question for the future of storage is how the anticipated reduction in storage costs 

will affect emissions and other outcomes.1 

We analyze the medium-run effects of storage costs on carbon dioxide emissions from 

electricity generation, and characterize conditions in which a decrease in storage costs reduces 

emissions. We focus on storage used for arbitrage purposes, charging when wholesale electricity 

prices are low and discharging when prices are high (wholesale prices are the prices received by 

electricity generators supplying electricity to retailers or utilities). We begin by using a simple, 

stylized model of a wholesale power market that generalizes Carson and Novan (2013) to include 

investments in wind and solar power generation. We show that the effect of storage costs on 

emissions depends on relative supply responsiveness—mathematically, the derivative of 

generation with respect to electricity price—of fossil fuel–fired and renewables generation 

plants.  

To provide intuition for this result, we note that storage charging and discharging raises 

equilibrium prices during what would otherwise be low-price periods and reduces prices during 

what would otherwise be high-price periods; in the extreme case of free storage, equilibrium 

prices are equal across periods. Storage therefore has two effects on operation and investment of 

generators. The first is that storage raises generation from existing fossil-fired generators in low 

price periods and reduces generation from existing fossil-fired generators in high-price periods. 

As we show, coal-fired generation is typically more price responsive than is natural gas–fired 

generation during low-price periods, whereas natural gas–fired generation is typically more price 

                                                 
1 If storage raises emissions, subsidizing storage R&D could improve welfare by correcting market failures 
associated with early-stage technologies, such as learning spillovers and capital market failures (Fischer and Newell 
2008; Acemoglu et al. 2012). However, this economic justification pertains to all early-stage technologies, and not 
specifically to storage, in which case R&D subsidies should be offered to technologies including but not limited to 
storage. 



Resources for the Future Linn and Shih 

4 

responsive than is coal-fired generation during high-price periods. Therefore, reducing storage 

costs raises storage capacity and causes a shift from natural gas– to coal-fired generation. 

Because coal-fired generation is more emissions intensive than natural gas–fired generation, a 

decrease in storage costs is likely to raise emissions; this is the effect that Carson and Novan 

(2013) identify. 

The second effect is novel: it is the response of renewables investment to storage. For 

wind- and solar-powered generators, it is useful to focus on the responsiveness of investment 

with respect to the generation-weighted average electricity price. Renewables generation may be 

positively or negatively correlated with electricity price changes caused by storage, depending on 

the availability of the underlying resource and other factors. For example, in many regions wind 

generation peaks during the nighttime, when electricity demand and prices tend to be low. In that 

case, storage would increase nighttime electricity prices, and wind generation would be 

positively correlated with the electricity price changes. When renewables generation is positively 

correlated with electricity price changes, lower storage costs raise the generation-weighted 

average electricity price and therefore renewables investment, displacing fossil fuel–fired 

generation and emissions. In this case, the more price responsive is renewables investment, the 

more likely that lower storage costs reduce emissions. 

In contrast, when renewables generation is negatively correlated with electricity price 

changes caused by storage, reducing storage costs reduces the generation-weighted average 

electricity price, causing renewables investment to decrease. The renewables generation is 

displaced by fossil fuel–fired generation, and the more price responsive is renewables 

investment, the more a reduction in storage costs reduces renewables investment and raises 

emissions. This case often, but not always, pertains to solar.  

The stylized model suggests that the effect of storage costs on emissions depends on the 

price responsiveness of fossil fuel–fired and renewables generation. We test these predictions 

using a more detailed optimization model that endogenizes storage operation, dispatch of coal 

and natural gas–fired generators, and investment in storage, wind, and solar. The model accounts 

for the nondispatchability of renewables and includes calibrated supply curves for renewables 

and fossil fuel–fired generators. Applying the model to the Texas power system (i.e., the Electric 

Reliability Council of Texas, ERCOT), we first consider the case of zero renewables investment, 

which is comparable to Carson and Novan (2013). We find that lower storage costs increase 

storage investment and raise emissions precisely for the reasons identified in the stylized model: 

coal-fired generation is more price responsive during low-price periods, and natural gas–fired 

generation is more price responsive during high-price periods. As in much of the United States, 
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in ERCOT wind generation is positively correlated with storage-induced electricity price 

changes, and solar generation is negatively correlated. If we allow for wind and solar investment, 

lower storage costs raise emissions, as in the case without investment. However, changes in the 

price responsiveness of wind and solar investment have the predicted effects: a reduction in 

storage costs is more likely to reduce emissions the more price responsive is wind investment, 

and a reduction in storage costs is less likely to reduce emissions the more price responsive is 

solar investment.  

An extension of our stylized model suggests that a carbon price has an ambiguous effect 

on the likelihood that lower storage costs reduce emissions. On the one hand, the carbon price 

causes fossil fuel–fired generation to be less price responsive relative to wind generation, which 

raises the likelihood that lower storage costs reduce emissions. On the other hand, the carbon 

price causes fossil fuel–fired generation to be less price responsive relative to solar generation, 

which reduces the likelihood that a reduction in storage costs reduces emissions. In the baseline 

model calibration, adding a carbon price causes lower storage costs to decrease emissions for 

most levels of storage costs considered. 

Our paper contributes to the literature in several ways. First, we characterize an internally 

consistent set of supply conditions under which lower storage costs reduce carbon emissions. In 

contrast, Carson and Novan (2013) hold fixed renewables investment, and long-run studies do 

not characterize these supply conditions. Second, because wind investment responsiveness is 

central to the relationship between storage costs and emissions, we present the first attempt to 

estimate this responsiveness directly from observed investment decisions. By comparison, other 

studies rely on engineering-based cost estimates. Third, our computational model endogenizes 

investment in storage, wind, and solar capacity; previous studies have treated one or more of 

these as determined outside the model. This allows us to consider the question most relevant to 

storage policies: how a reduction in storage costs affects emissions, given the makeup of the 

existing grid. 

2. Stylized Representation of the Effects of Storage Costs on Emissions  

This section uses a stylized power sector model to illustrate the central channels by which 

storage costs affect emissions. Using a two-period model, we show that storage constrains price 

differences between the two periods and has ambiguous effects on emissions. 
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2.1 Equilibrium without Storage or Renewables 

The model structure is similar to Carson and Novan (2013) and Fell and Linn (2013). 

There are two time periods, which are labeled off-peak and peak. The off-peak period has 
instantaneous exogenous electricity demand of oD  and the peak period has demand of pD , with 

p oD D . We use the terms off-peak and peak heuristically to reflect periods in which storage is 

charged and discharged; the periods could reflect nighttime and daytime, or alternatively midday 

and late afternoon. In both periods there is an exogenous set of coal- and natural gas–fired 

generators, and the total capacity of coal-fired generators is cQ , with c oQ D . Thus, there is 

sufficient coal-fired generation capacity to meet off-peak demand. Generators are competitive 
price takers and the marginal costs are expressed as m

c
 

c
Q

c
, where c  is a positive constant 

and cQ  is coal-fired generation. The marginal costs of natural gas–fired generators are expressed 

as m
g


g
 

g
Q

g
, where g  and 

g
 are positive constants.  

Figure 1 illustrates the market supply curve and the equilibrium off-peak and peak 
electricity prices under assumption (A1) that

g
 

c
Q

c
. Under these assumptions the natural 

gas–fired portion of the market supply curve lies above the equilibrium off-peak price. 

Equilibrium off-peak and peak prices are 

o c oP D           (1) 

P
p


g


g
(D

p
Q

c
)         (2) 

with p oP P  following from assumption (A1). 

Emissions equal the sum of coal- and gas-fired emissions across the off-peak and peak 
time periods. The emissions rate of coal-fired generation is ce , and the emissions rate of gas-fired 

generation is ge , with c ge e . Total emissions are 

( ) ( )o c c p c gE D Q e D Q e    . 

Importantly, in the off-peak period coal-fired generators are operating at the margin, and 

a hypothetical increase in off-peak electricity demand would raise the off-peak electricity price 

and coal-fired generation by moving along the coal-fired generation supply curve in Figure 1. In 

contrast, an increase in peak electricity demand would raise the peak electricity price and natural 

gas–fired generation by moving along the natural gas–fired generation supply curve in Figure 1. 

Although this situation is not universal in the United States and other electricity systems, it is 

fairly common and is relevant to the numerical modeling below (Linn et al. 2014). 
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2.2 Equilibrium with Storage 

We introduce to the model a storage technology that has a capital cost of bK  per unit of 

storage capacity (megawatt hour, MWh). The amount of storage investment is endogenous, and 
investing in bQ  units of storage costs b bK Q , allowing the owner to store bQ  units of electricity 

in the off-peak period and discharge bQ  units in the peak period (we abstract from storage losses 

for simplicity). 

The difference between the peak and off-peak prices creates an arbitrage opportunity. 
The owner of the storage can charge the device in the off-peak period at a cost of oP  per unit of 

electricity (MWh), then discharge in the peak period and receive revenue of pP  per unit of 

electricity. Assuming that owners of the storage technology are competitive price takers, any 
equilibrium with positive storage investment must satisfy the condition b o pK P P  . When this 

condition holds, the cost of storing electricity in the off-peak period (inclusive of capital costs) 

exactly equals the revenue of discharging in the peak period. 

Relative to the no-storage equilibrium, storage raises coal-fired generation by bQ  in the 

off-peak period and reduces gas-fired generation by bQ  in the peak period. These generation 

changes raise the off-peak price and reduce the peak price. Because c ge e , the generation 

changes increase total greenhouse gas emissions.  

We solve for the equilibrium amount of storage capacity in terms of the exogenous 

parameters by combining the storage arbitrage condition with a market clearing condition (total 

generation across the two periods equals total supply), along with price equations analogous to 

(1) and (2). This yields 

1
{[ ( ) ] }b g g p c c o b

c g

Q D Q D K  
 

    
 .

     (3) 

The term in square brackets in equation (3) is the difference between the peak and off-

peak prices in the no-storage equilibrium. Thus, storage capacity increases with the difference 

between peak and off-peak prices in the no-storage equilibrium. Furthermore, the storage 
capacity decreases with storage capital costs, bK . 

Total emissions with storage equal emissions without storage, plus ( )c g be e Q . That is, 

adding storage to the model raises emissions because the storage raises off-peak coal-fired 

generation and reduces peak natural gas–fired generation.  
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Equation (3), combined with the fact that c ge e , implies that a decrease in storage 

capital costs raises emissions. The more price responsive is coal and gas generation (i.e., the 
smaller is the sum c g  ), the more a given reduction in storage costs raises storage capacity. 

In turn, a larger increase in storage capacity translates to a large increase in off-peak coal-fired 

generation and a larger decrease in peak gas-fired generation, causing a larger increase in 

emissions. 

2.3 Equilibrium if Renewable Supplement Fossil Generation, and No Storage 

We return to the initial case with no storage technology, and instead allow for investment 

in wind and solar generation capacity. There is a large set of potential locations for the wind and 

solar generators to be constructed. At each location it is possible to construct a single generator 

that produces one unit of electricity. Generation from wind and solar is nondispatchable, 

meaning that the owner of a generator cannot control when it produces electricity. To 

approximate typical real-world temporal variation in the availability of wind and solar generation 

(e.g., in the ERCOT region), we assume that the wind generation is available only in the off-peak 

period and solar generation is available only in the peak period. As with the off-peak and peak 

labels, the wind and solar technologies are heuristics; the terms wind and solar refer to 

renewables that generate electricity when storage is charged and discharged, respectively. 

For both wind and solar generators, the marginal cost of producing electricity is zero, but 

there is a positive capital cost. Investors choose to construct generators at locations as long as the 

equilibrium electricity price exceeds the capital costs. We assume that the distribution of capital 

costs across locations is such that wind and solar generator investment levels are proportional to 
the corresponding electricity prices: Q

w
 P

o
/ 

w
 and Q

s
 P

p
/ 

s
. 

We focus on an equilibrium in which investors construct wind generators that produce 

electricity in the off-peak period, and they construct solar generators that produce electricity in 

the peak period. Therefore, the wind generators displace coal-fired generation and the solar 

generators displace gas-fired generation, relative to the initial equilibrium. Given the marginal 

cost and investment functions, the equilibrium coal-fired generation in the off-peak period is 

w
c o

c w

Q D


 



. 

Greater off-peak demand or less price responsive wind generation (higher w ) raises 

coal-fired generation (because of intermittency we use the term price responsiveness of wind 

generation interchangeably with the term price responsiveness of wind investment).  
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We assume that the parameter values are such that coal continues to operate at full 

capacity in the peak period, cQ . Therefore, the solar generation is 

 ( )g g
s p c

g s g s

Q D Q
 

   
  

 
. 

Solar generation increases with the relative cost of natural gas to solar, and with peak 

period demand. 

Combining the equilibrium solar generation with the market-clearing condition for peak 

demand yields gas-fired generation in the peak period: 

( ) gs
g p c

g s g s

Q D Q


   
  

 
. 

Gas-fired generation increases with peak demand net of coal-fired generation, and 

increases with the cost of solar relative to natural gas. 

2.4 Equilibrium with Storage and Renewables 

The final case includes endogenous investment in storage and wind. As in the previous 

equilibrium with storage, the storage capital costs determine the difference between the off-peak 
and peak prices: b o pK P P  . A reduction in storage capital costs therefore reduces the price 

difference, but in this case the increase in the off-peak price causes wind investment to increase, 

in addition to raising coal-fired generation. We show next that overall emissions can decrease if 

wind investment increases by a sufficient amount, which in turn depends on the responsiveness 

of wind relative to coal-fired generation. 

We can solve for the equilibrium coal and gas-fired generation using the no-arbitrage 
equation ( b o pK P P  ) and three market-clearing conditions. First, demand across the two 

periods equals total supply c w c g o pQ Q Q Q D D     . Second, the marginal cost of coal-fired 

and wind generation equals the off-peak price, and o c c w wP Q Q   . Third, the marginal cost 

of gas-fired generation equals the peak period price: p g g gP Q   . 

Combining the arbitrage and market clearing equations allows us to solve for the 

equilibrium coal and gas-fired generation levels in terms of the exogenous parameters. Because 
emissions are expressed as c c g gE Q e Q e  , we can solve for the derivative of emissions with 

respect to storage costs: 
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( )c g w c g
b

dE
e e e

dK
    .  (4) 

The less price responsive is coal-fired generation (higher c ), or the more price 

responsive is the wind (lower w ), the more likely that a decrease in storage costs reduces 

emissions (i.e., the derivative is positive).  

A similar result applies to solar, except that a decrease in storage costs is more likely to 

reduce emissions the less price responsive is solar. The intuition is that the reduction in storage 
costs raises storage investment and the quantity of storage, bQ , reducing total generation during 

the peak period. Greater price responsiveness of solar implies a larger decrease in solar 

generation and an increase in fossil fuel’s share of total generation. 

To summarize, the stylized model yields three predictions: 

 In the absence of renewables investment, a decrease in storage costs raises emissions by 

causing a shift from natural gas- to coal-fired generation. 

 When renewables generation is positively correlated with electricity price changes caused 

by storage (i.e., wind in the stylized model), a decrease in storage costs is more likely to 

reduce emissions the more price responsive is renewables investment. 

 When renewables generation is negatively correlated with electricity price changes 

caused by storage (i.e., solar in the stylized model), a decrease in storage costs is more 

likely to reduce emissions the less price responsive is renewables investment. 

These predictions follow directly from the fact that storage affects coal- and gas-fired 

generation in different directions, as well as from the nondispatchability of renewables. In the 

specific cases considered here, a reduction in storage costs affects wind and solar in different 

directions, and the net effect on emissions depends on the price sensitivity of renewables 

generation relative to that of fossil fuel–fired generation. In the following sections, we use a 

more detailed model of investment and generator dispatch to test these predictions. 

3. Computational Model, Data, and Model Validation 

3.1 Overview of the Computational Model 

This section outlines the computational model that we use to test the predictions from the 

previous section (the appendix contains details of the model formulation). The stylized model 

contains only two time periods, reflecting off-peak and peak demand hours. The two time 
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periods roughly capture the correlations among demand, wind generation, and solar generation, 

and the computational model includes a larger set of time periods to more accurately capture 

these correlations. 

The model is calibrated to the ERCOT power system for several reasons. First, ERCOT is 

largely isolated from the remainder of the US power system, and many other studies (e.g., 

Carson and Novan 2013) have taken advantage of this feature, which simplifies the modeling. 

Second, the generation shares for coal and natural gas are roughly equal to the overall US 

average. Third, the correlations among demand, wind, and solar are fairly typical of much of the 

United States. On the other hand, ERCOT’s share of wind in total generation is more than twice 

the US average, and the solar share is less than the US average. Section 6 discusses the 

implications of the simulation results for other regions. 

For modeling convenience, we formulate the model as a cost minimization problem, 

which can be decentralized as a competitive equilibrium. The model consists of an initial 

investment stage followed by a generation stage. The model contains six technologies that can 

supply electricity to meet demand: coal-fired generators, natural gas–fired generators, nuclear 

generators, solar generators, wind generators, and a storage unit.  

The initial conditions of the investment stage include a capacity of each technology, 

which reflects the level of capacity projected for the year 2030 if storage costs remain at their 

current levels. In the investment stage, it is determined whether to add to the capacity for the 

solar and wind generators, as well as for the storage unit; the total capacities of the coal and 

natural gas–fired generators are exogenous.  

The generation stage includes one year, which reflects demand and supply conditions 

forecasted for the year 2030. For computational reasons the model contains a subset of hours 

within the year; we choose the first week of each quarter of the year, for a total of 28 days (i.e., 

672 hours). This set of hours captures the variation in demand and generation from wind and 

solar over the course of the year. 

Hourly demand is exogenous. Hourly capacity factors of the wind, solar, and nuclear 

generators are also exogenous, and hourly generation from these technologies is equal to the 

capacity factor multiplied by the total capacity of the technology.  

Generation from natural gas and coal is determined endogenously. Each generator 

produces an incremental amount of electricity. Any particular generator produces electricity and 

incurs marginal costs that depend on fuel and nonfuel costs. Each generator is a price taker and 

operates if the electricity price exceeds its marginal costs, and does not operate otherwise. 
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Marginal costs vary across generators such that, for each technology, generators can be arranged 

in order of increasing marginal costs, yielding a smooth and differentiable supply function. A 

functional form is chosen and the parameters are estimated as described in Section 3.2. To 

approximate real-world operating constraints, coal-fired generators cannot operate below a 

specified share of rated capacity. 

The hourly electricity price equates supply and demand. The net electricity supply from 

the storage unit is determined endogenously, and the net hourly revenue accruing to the storage 

unit is equal to net supply (discharge less charge), multiplied by the equilibrium electricity price. 

The objective of the model is to minimize the capital and operating costs of meeting 

demand each hour of the year subject to initial conditions and supply constraints, and given 

capital and operating cost functions. Capital costs, operating costs, and revenues are annualized. 

3.2  Data, Parameter Estimation, and Calibration 

3.2.1 Hourly Demand and Capacity Factors 

Hourly demand is constructed from ERCOT data on hourly electricity load for 2004, 

2005, 2006, and 2008. For the first week of each quarter, we compute the average hourly total 

load across the four years. Between 2003 and 2010, hourly load in ERCOT increased by 0.71 

percent per year. We assume that load growth continues at this rate from 2008 to 2030 and scale 

up the 2004–2008 average hourly load accordingly to obtain the estimated hourly load in 2030. 

The load growth assumption is roughly consistent with the assumptions made by ERCOT in its 

analysis of future generation capacity needs and the implications of environmental regulations 

(e.g., ERCOT 2014). 

For wind and solar, we define the investment cost curve as the level of investment costs 

as a function of the investment level. Wind and solar operating costs are much lower than for 

other technologies, and the average cost per unit of generation depends primarily on the up-front 

capital costs and the average capacity factor (average hourly generation normalized by capacity). 

Computational models in the literature (e.g., Burtraw et al. 2015) rely on engineering-based 

estimates of capital costs and capacity factors. Typically, capital costs per unit of capacity do not 

vary across locations. Under these assumptions, total investment for wind or solar increases with 

the generation-weighted average electricity price because as the electricity price increases, wind 

and solar generators are constructed at locations with progressively lower capacity factors. We 

take an alternative approach and derive an empirically based investment cost function for wind, 

such that investment costs vary across locations. This subsection describes how we estimate the 
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hourly capacity factors, and the next subsection describes how we estimate the investment cost 

function.  

To construct hourly wind capacity factors, we use a set of simulated hourly wind 

generation that we obtained from ERCOT, which AWS Truewind assembled from 

meteorological data (Castillo and Linn 2011; Fell and Linn 2013). The data contain simulations 

for 696 sites that were identified in a transmission planning study as among the most promising 

wind locations in the state. The simulations are based on wind and atmospheric data, and there is 

heterogeneity in the production across wind sites. We compute the average capacity factor across 

all sites, and then use the capacity factors from the first week of each quarter.  

Because the wind data cover the years 2004–2006, the demand and wind data are 

averaged over slightly different time periods. This likely does not have a substantial effect on the 

main results, however, because the periods coincide fairly closely. Note that we assume that the 

demand and the wind and solar generation patterns in 2030 are similar to those between 2004 

and 2008.  

The hourly solar capacity factors are computed based on simulation output from the 

National Renewable Energy Laboratory’s System Advisor Model (Fell and Linn 2013). Separate 

simulations are run for 17 cities in Texas, and hourly output is averaged across cities, again using 

the first week in each quarter.  

Figure 2 illustrates the correlations among hourly demand, the wind capacity factor, and 

the solar capacity factor. Panel A shows a negative correlation between the hourly wind capacity 

factor and demand, which reflects variation both within days and across seasons of the year. 

Panel B indicates a positive correlation between the solar capacity factor and demand. The 

positive correlation arises because demand tends to be low at night, when the solar capacity 

factor is zero, and also because daytime demand tends to be positively correlated with the 

amount of sunlight. 

Finally, we assume that nuclear generators have a capacity factor of 0.9 for all hours. 

This assumption is consistent with the estimated capacity factor from Davis and Wolfram (2012). 

3.2.2 Existing Generation Stock 

The initial conditions of the investment stage of the model include a set of existing 

generators. For all technologies except wind, we use ERCOT (2014) to project the generation 

stock by technology: 5 gigawatts (GW) of nuclear, 20 GW of coal, 59 GW of natural gas, and 
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0.25 GW of solar. The level of existing wind capacity is determined as described in Section 

3.2.4. 

3.2.3 Marginal Cost Curves for Coal- and Natural Gas–Fired Generation 

We construct differentiable marginal cost curves for coal- and gas-fired generators based 

on operational data from the 2000s. Implicitly, we assume that the cross-generator distribution of 

marginal costs is the same in 2030 as it was in the 2000s. 

In the model, marginal costs of natural gas– and coal-fired generators are the sum of fuel 

and nonfuel operating costs. We construct the marginal cost curves by estimating fuel and 

nonfuel portions separately, and then summing. 

The cost of the fuel needed to generate one unit of electricity is equal to the price of fuel 

multiplied by the generator’s heat rate, which is the ratio of fuel input to electricity generation 

(i.e., the reciprocal of fuel efficiency). All generators face the same fuel prices, but fuel costs per 

unit of electricity generation vary across generators in the model because of variation in heat 

rates. We characterize the variation in heat rates by estimating the relationship across generators 

between marginal fuel costs and cumulative generation capacity. We begin by computing the 

heat rate from Energy Information Administration (EIA) data for each coal- and natural gas–

fired plant in ERCOT. We order coal-fired generators by increasing heat rate and compute the 

cumulative sum of rated capacity (also obtained from EIA data) for each generator, where the 

sum includes all generators with a heat rate no greater than that of the generator. We regress the 

cumulative sum of generation capacity on the unit’s heat rate. Multiplying the predicted heat rate 

functions by the corresponding projected Texas fuel prices for the year 2030 from EIA (2015) 

yields the fuel cost component of the marginal cost curves. The procedure is similar for natural 

gas–fired plants, except that we fit a cubic function in heat rate rather than a linear function. The 

functional form assumptions are chosen such that additional polynomials terms would not be 

statistically significant. 

The model also includes heterogeneity in the nonfuel portion of marginal costs for natural 

gas–fired plants. If we were to assume that all generators have the same nonfuel portion of 

marginal costs, the resulting simulated electricity prices would exhibit less price variation than 

observed. This discrepancy may reflect underlying variation across generators in the nonfuel 

portion of marginal costs. Therefore, we calibrate nonfuel marginal costs to reproduce observed 

levels of electricity price variation. We assume that the nonfuel portion of marginal costs for 

natural gas–fired generators is a quadratic function of the level of generation, and we estimate 

the parameters such that the model yields a mean price similar to that observed in 2008. For coal-
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fired plants, we assume that nonfuel marginal costs are equal to variable operation and 

maintenance costs from EIA (2015). The marginal cost curves for gas and coal are the sums of 

the estimated fuel and nonfuel portions; see the appendix for further details. 

Dynamic factors, such as constraints on rapidly varying generation levels across hours at 

coal- or natural gas–fired plants, could contribute to the observed price variation (Cullen 2015). 

For computational reasons we do not allow for such dynamics. The implications of omitting the 

dynamic operating constraints likely increase with the share of wind and solar power because 

these generation sources increase the temporal variation in the level of electricity that must be 

supplied by natural gas– or coal-fired generation. However, in the simulations, we consider 

modest increases in wind and solar generation from observed levels, mitigating this concern. 

Figure 3 shows the marginal cost curves for natural gas– and coal-fired generation using 

two price levels—2008 and 2030. The coal-fired curve is flatter than the natural gas–fired curve, 

suggesting that when coal-fired generation is not at full capacity, coal-fired generation is more 

responsive than gas-fired generation to changes in demand induced by storage or other factors. 

The figure also indicates the degree to which the curves shift across the two periods. The year 

2008 represents the maximum natural gas price in recent years, and prices in 2030 are projected 

to be somewhat higher than they have been recently but considerably lower than they were in 

2008. The lower natural gas prices in 2030 cause a downward shift of the marginal cost curve for 

natural gas. Coal prices in 2030 are projected to be similar to 2008 coal prices, and the coal 

marginal cost curves in the two years are similar to each other. 

3.2.4 Investment Cost Functions for Storage, Wind, and Solar 

The total capital cost of the storage facility depends on its energy capacity (in kilowatt 

hours, kWh) and power rating (in kilowatts, kW). We assume that both capacity and power costs 

scale linearly with the capacity and power. Motivated by analysis described in the appendix, we 

assume that power is chosen to be proportional to capacity. Under these assumptions, the total 

capital cost is a linear function of the energy capacity. Based on the cost estimates in Kintner-

Meyer et al. (2010), the total capital costs of typical battery storage facility are currently roughly 

$400 per kWh. All costs reported in the following analysis reflect the costs of both energy 

capacity and power rating.  

For wind and solar, we assume that capital costs per unit of capacity increase linearly 

with total investment. That is, the cost of the first unit of investment reflects the level of 

technology at a particular time; we select cost levels to reflect projected technology in 2030. 

Capital costs increase with the level of investment to reflect variation across locations in costs of 
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construction, connecting to the grid, and so on. That is, similarly to other studies, we assume that 

wind generators are located at the sites with the lowest costs. Note that we assume that capital 

costs vary across locations, whereas many other studies assume that capacity factors differ across 

locations, but that capital costs do not vary. This difference is inconsequential in the current 

context, however, because either case would result in a positive relationship between equilibrium 

investment and the generation-weighted electricity price. We take this approach for modeling 

convenience. 

As noted above, most computational models that include renewables rely on engineering-

based estimates of costs. Instead of taking this approach, we make the first attempt to use 

observed investment decisions to estimate capital costs and variation in capital costs across 

locations. We perform this exercise for wind but not solar because of the limited investment in 

solar generators in ERCOT.  

The intercept of the capital cost curve is the level of capital costs with zero investment 

beyond observed levels, and the slope is the change in capital costs for a one megawatt (MW) 

increase in investment. We calibrate the intercept and slope of the wind capital cost curve in 

three steps. First, we simulate the model using 2010 data for fuel prices and demand. In the 

simulation, storage and solar investment are fixed at zero, but wind investment is endogenous. 

We calibrate the intercept of the wind capital cost function such that simulated wind investment 

equals the observed wind investment in 2010. Underlying this calibration is the argument that the 

intercept is sufficiently high to prevent additional investment beyond the observed level, and that 

capital costs will not change between 2010 and 2030. The assumption is consistent with recent 

trends and with EIA projections. This calibration yields an estimated intercept of about $1,448 

per kW of wind capacity, which is similar to EIA estimates of the average capital costs of new 

wind generators. 

An increase in the profitability of potential wind generators causes an increase in 

investment. The amount of investment depends on the slope of the capital cost curve; the steeper 

the curve, the less investment for a given profitability increase. Therefore, in the second step, we 

estimate the effects of market and policy factors on wind investment. Investment is a dynamic 

decision that depends on the expected profitability of a new wind generator. Because wind 

generators supply electricity to the grid, the value of their electricity depends on wholesale 

electricity prices. Fuel prices should positively affect wind investment because an increase in 

fuel prices raises wholesale electricity prices and the value of wind generation (Linn et al. 2014). 

Electricity demand should also have a positive effect on wind investment because an increase in 

demand raises electricity prices, all else equal. Finally, in many years of the sample, the federal 
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government has offered a production tax credit for new wind generators. The tax credit increases 

the revenue earned by a wind generator, stimulating investment, but the tax credit was 

unavailable in certain years of our sample, which may have affected investment in those and 

adjacent years. Note that Texas has a renewable portfolio standard that mandates a specific level 

of wind capacity, but in practice the standard has not been binding. 

To estimate the effects of these factors on wind investment, we construct a panel data set 

of wind investment by year and ERCOT region for 1996 through 2015 (historically, ERCOT 

consisted of four regions, across which wholesale market prices could differ). We estimate a 

reduced-form model that links investment to proxies for future profitability assuming perfect 

foresight. The dependent variable is megawatts of wind investment, and the independent 

variables include the logs of natural gas and coal prices (from EIA), ERCOT-wide electricity 

generation (a proxy for demand, from ERCOT), and a dummy variable equal to one in which the 

production tax credit was not available.2  

Table 1 reports the results and indicates the expected relationships among the variables. 

In column 1, fuel prices have positive effects on investment, generation has a positive but 

statistically insignificant effect, and the absence of the production tax credit has a negative effect. 

Coal prices have a larger effect on investment than do natural gas prices, which is consistent with 

the negative correlation between wind generation and demand: during low-demand hours, coal-

fired generators are more likely to determine wholesale prices than during high-demand hours 

(Castillo and Linn 2011; Carson and Novan 2013).  

Column 1 uses current fuel prices, under the assumption that current fuel prices are 

proportional to expected future fuel prices. We relax this assumption in column 2 by replacing 

current fuel prices with forecasted prices that we construct based on EIA prices from 1980 

through 1995 (i.e., prior to the estimation sample). The results are qualitatively similar, although 

the forecasted natural gas prices yield larger standard errors than the current prices, reflecting the 

limited variability in forecasted prices.  

                                                 
2 For most years of the sample, owners of wind generators received the production tax credit. Under current law, 
owners of future wind generators are eligible for an investment tax credit equal to 30 percent of the capital costs, 
which for most wind generators is more valuable than the production tax credit. Owners of wind generators cannot 
receive both tax credits, and the simulations for the year 2030 include the investment but not the production tax 
credit.  
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Column 1 includes demand-side influences on wind investment, and column 3 includes a 

supply-side factor: the log of the ratio of natural gas to wind capital costs, as estimated by EIA. 

Low wind costs should have a positive effect on investment, and the coefficient on this variable 

is expected to be positive. In practice, the estimated coefficient is negative but the standard error 

is very large, and we conclude that there is insufficient variation to identify this coefficient. 

Column 4 reports results if we include a linear time trend, and column 5 uses annual 

observations aggregated across ERCOT. Overall, we observe the expected qualitative effects of 

fuel prices, generation, and the production tax credit, but the available variation prevents 

identification of some of the coefficients. 

Notwithstanding these limitations, in the final step we calibrate the slope of the wind 

capital cost curve using the estimation results. We perform this calibration by fixing initial wind 

capacity at 15 GW, which is the level of wind capacity in 2014. We use the model to simulate a 

baseline scenario using observed fuel prices, and a counterfactual scenario in which fuel prices 

are 10 percent higher than observed. We calibrate the slope parameter such that the change in 

investment is as close as possible to that predicted by the coefficients in column 1. 

Because ERCOT has very few installed solar generators, we calibrate the solar capital 

cost curve without using market outcomes. We fix the vertical intercept at $1,800 per kW. This 

value is about 50 percent below the capital costs in EIA (2015), reflecting anticipated 

technological progress. The assumed value is higher than the 2030 cost of $1,500 per kW 

assumed by ERCOT (2014). We calibrate the slope of the cost function such that a simulation of 

2030 demand and fuel cost conditions yields the 250 MW of solar capacity that ERCOT projects.  

3.3 Model Validation 

Because the model is calibrated using data from the 2000s, we compare observed market 

outcomes with simulated outcomes for the three years with consistent data: 2004, 2008, and 

2010. Table 2 reports the model inputs for each scenario in Panels A and B, and the simulated 

outcomes in the lower panels.  

Comparing observed and simulated generation shares, the simulated nuclear and wind 

shares are typically slightly higher than the observed levels. In the case of wind, this could reflect 

the fact that the available wind capacity increased each year as new generators were constructed. 

The simulations use the amount of available capacity at the end of the year, which may cause the 

simulations to overstate the amount of wind capacity that was available on average during the 

year.  
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The simulated natural gas and coal generation shares are fairly close to the observed 

levels in 2004 and 2010 but differ more in 2008. Natural gas prices were lower in 2004 and 2010 

than they were in 2008, suggesting that the model yields more accurate results for moderate 

natural gas prices. Reassuringly, the fuel prices used for the 2030 simulations in the next section 

are closer to the 2004 and 2010 levels than to the 2008 levels.  

As noted above, the natural gas marginal cost curve was calibrated to roughly reproduce 

the observed mean electricity price in 2008. The simulated electricity prices have lower standard 

deviation than the actual prices in 2008, which appears to reflect the limitations of the model 

when natural gas prices are very high. In 2004, by contrast, the standard deviation of simulated 

prices is actually somewhat higher than the observed standard deviation (observed prices are not 

available in 2010).  

Finally, Panel E reports the carbon dioxide emissions intensity across coal- and natural 

gas–fired generation, which is defined as the ratio of carbon dioxide emissions to generation. 

Consistent with the generation results reported in Panel C, the simulated carbon dioxide 

emissions intensity is similar to the actual intensity in 2004 and 2010 but differs more for 2008. 

Overall, we observe that the model reproduces observed outcomes to a reasonable extent, 

particularly when natural gas prices are at moderate levels, as in 2004 and 2010. These fuel price 

conditions are close to those modeled in the year 2030. 

4. Effect of Storage Costs on Emissions 

In this section we use the computational model to test the predictions in Section 2 that the 

effect of storage costs on emissions depends on the price responsiveness of natural gas, coal, and 

renewables. 

4.1 Coal- and Gas-Fired Generation Only 

We report simulations that characterize the effects of storage costs on emissions, 

assuming that wind and solar investment do not respond to storage costs. To provide some 

intuition for the results, given the emphasis in Section 2 on price responsiveness, we begin by 

using the computational model to characterize the price responsiveness of natural gas– and coal-

fired generation. Figure 4 reports results from two scenarios based on 2030 fuel prices, using the 

baseline parameterization described in the previous section. In the first scenario, hourly 

electricity demand is equal to the projected hourly demand in the year 2030. In the second 

scenario, demand in each hour is increased by 1 percent. In both scenarios, there is no investment 
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in storage, wind, or solar, and natural gas– and coal-fired generation must increase to meet the 

higher level of demand.  

The figure plots the change in hourly generation between the two demand scenarios for 

natural gas and coal on the vertical axis, and the hourly demand from the first scenario along the 

horizontal axis. Hourly demand increases from left to right in the figure, and the left-hand side of 

the figure includes nighttime and winter periods, whereas the right-hand side includes daytime 

and summer periods.  

The figure indicates that when demand is below about 35,000 MWh, coal- and gas-fired 

generation increase by similar amounts in response to the 1 percent demand increase. Between 

about 35,000 and 45,000 MWh, coal responds more to a demand increase than does natural gas. 

Above 45,000 MWh, coal-fired generators are producing at their maximum capacity, and above 

this demand level, natural gas meets the entire demand increase. These patterns are consistent 

with the slopes of the marginal cost curves in Figure 3.  

Thus, overall, coal-fired generation is more responsive at moderate demand levels, 

natural gas–fired generation is more responsive at high demand levels, and the two technologies 

are about equally responsive at low levels. This pattern implies that adding storage, which tends 

to increase generation in low-demand periods and decrease generation in high-demand periods, 

will cause an increase in generation from coal and (to a lesser extent) natural gas during low-

demand periods, and a decrease in natural gas–fired generation during high demand periods. 

Therefore, reducing storage costs is likely to increase carbon dioxide emissions in the case when 

there is no wind and solar investment. 

Building on this intuition, we report a series of simulations that characterize the effects of 

storage costs on emissions. We begin with our baseline model calibration and 2030 hourly 

demand and fuel prices. With these inputs, the model yields zero storage investment for storage 

costs above about $200 per kWh. This cost is about half of recent cost estimates for storage 

(Kintner-Meyer et al. 2010) and is comparable to the results in de Sisternes et al. (2016). Starting 

from this level of storage costs, we simulate the model at sequentially lower storage costs. 

Figure 5 shows the main results, illustrating storage costs on the horizontal axis and the 

percentage change in various outcomes relative to a case with zero storage investment on the 

vertical axis. For reference, Appendix Figure 1 shows the level of storage investment for this 

scenario and the other scenarios reported in later subsections. Table 3 reports the levels of the 

outcomes for the case of zero storage investment.  
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Figure 5 indicates that coal-fired generation increases as storage costs fall. Coal-fired 

generation reaches a plateau once costs fall below about $50 per kWh, which occurs when coal is 

operating at full capacity in most hours. Natural gas–fired generation follows the opposite 

pattern, falling as storage costs fall. We note that at very low storage costs, further reductions in 

storage costs slightly reduce emissions because of the nonlinearity of the estimated emissions 

functions (see the appendix). Overall, carbon dioxide emissions rise as storage costs fall, 

extending the conclusions of Carson and Novan (2013) to nonmarginal levels of storage 

investment.  

Lower storage costs reduce the average and standard deviation of electricity prices. The 

effect on average prices arises from the convexity of the natural gas–fired marginal cost curve 

(see Figure 3). Reducing storage costs reduces the standard deviation of electricity prices 

because storage is being used for arbitrage, and adding storage raises prices during low-demand 

prices but reduces prices during high-demand periods. Therefore, the more storage is added to 

the system, the more prices converge between low- and high-demand periods, reducing price 

variation.  

To illustrate the effects of storage on hourly generation by fuel type, Figure 6 compares 

two scenarios: storage costs of $200 per kWh (Panel A) and $100 per kWh (Panel B). To 

construct the figure, we select the first four simulation days and plot hourly generation by fuel 

type. Panel A shows that with zero storage, wind generation tends to be highest during the low-

demand hours, and that natural gas and to a lesser extent coal vary production so that total 

generation equals total demand. Comparing the two storage cost cases, reducing the cost of 

storage causes more coal- and natural gas–fired generation in low-demand hours, with a larger 

effect on coal-fired generation than on gas-fired generation. Storage reduces both coal- and 

natural gas–fired generation in high-demand hours. These results are consistent with the overall 

findings in Figure 5, that reducing storage costs causes a shift from natural gas– to coal-fired 

generation, raising emissions. 

4.2 Adding Renewables Investment 

To provide intuition for the interaction between storage and renewables, Figure 7 reports 

results from a set of simulations similar to those in Figure 4, except that wind capacity can 

increase in response to the demand increase. An increase in wind capacity causes hourly wind 

generation to increase in accordance with the hourly capacity factor. The figure shows that wind 

generation increases more during low-demand periods than during high-demand periods, which 

reflects the negative correlation between wind’s capacity factor and demand. The increases in the 
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low-demand periods are smaller than for coal and natural gas but are nonetheless substantial. 

Comparing Figures 4 and 7 indicates that coal- and natural gas–fired generation increase by less 

when wind capacity is endogenously determined, demonstrating the importance of accounting 

for renewables investment when assessing the effect of storage costs on emissions. 

Figure 8 illustrates the effects of storage costs on generation, electricity prices, and 

emissions, allowing wind and solar investment to respond to storage costs. Each panel reports a 

single outcome, with the vertical axis plotting the percentage relative to zero storage investment 

(i.e., investment costs of $200 per kWh). The solid lines indicate the scenarios with zero wind 

and solar investment for reference, and the dashed lines indicate the scenarios with endogenously 

determined wind and solar investment.  

Panels A through C show that reducing storage costs lowers the natural gas– and coal-

fired generation shares and increases the wind generation share (note that the wind generation 

share in Panel C is nearly identical for the wind and solar investment scenario as for the low 

solar costs scenario). This additional wind generation displaces mostly coal and to a lesser extent 

natural gas, which is consistent with the results shown in Figure 7. Because the wind investment 

reduces both coal- and natural gas–fired generation, emissions are lower when wind investment 

is endogenous than when wind investment is zero (see Panel G). That is, reducing storage costs 

increases wind investment and displaces some fossil fuel–fired generation. This reduces 

emissions relative to the case of no wind investment, but overall we observe that even accounting 

for wind investment, a reduction in storage costs raises emissions.  

Figure 9 plots the hourly generation by fuel type for the same two storage cost scenarios 

as shown in Figure 6, except allowing for positive wind investment in the low storage cost case. 

The figure shows a small amount of wind generation from new investment, indicating the modest 

effect of wind investment on generation levels of coal and natural gas. Thus, using the baseline 

model calibration, we show that allowing for endogenous wind investment does not overturn the 

finding that lower storage costs raise emissions, but it does mitigate the increase in emissions.  

4.3 High Wind or Solar Price Responsiveness 

In Section 2 we concluded that the price responsiveness of wind investment affects the 

relationship between storage costs and emission. In particular, a reduction in storage costs is 

more likely to reduce emissions the more price responsive is wind investment. We test this 

hypothesis by flattening the wind investment cost curve, which reflects potential innovation in 

wind technology that reduces the variation in capital costs across wind locations. Specifically, 
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for illustrative purposes we assume that the wind investment cost curve is half as steep as in the 

baseline parameterization. 

Figure 8 shows that increasing the price responsiveness of wind investment increases the 

wind generation share (Panel C), reducing both natural gas– and coal-fired generation (Panels A 

and B) relative to the baseline wind investment assumptions from Section 4.2. The reduction in 

fossil fuel–fired generation is sufficiently large to change the relationship between storage costs 

and emissions, as Panel G shows. These simulations indicate that if wind investment is 

sufficiently price responsive, a reduction in storage costs reduces rather than raises emissions. 

Turning to solar price responsiveness, we expect that an increase in solar price 

responsiveness reduces the likelihood that a reduction in storage costs lowers emissions. To test 

this hypothesis, we reduce the slope of the solar investment cost curve, which causes an increase 

in the amount of solar investment that occurs when storage investment costs are $200 per kWh 

(i.e., when storage investment is zero; see Table 3). Starting from that equilibrium, Figure 8 

shows that reducing storage costs from $200 to $150 per kWh reduces the solar generation share 

(Panel D) and increases both natural gas– and coal-fired generation shares (Panels A and B). 

These generation changes translate to an increase in emissions relative to baseline solar costs 

(Panel G). As Panel D shows, reducing storage costs below $150 per kWh does not affect the 

level of solar generation, and the trajectories of all the outcome variables follow those from the 

baseline parameterization with wind and solar investment. Thus, the simulation results confirm 

the prediction from Section 2. 

5.  Interaction between Storage Costs and a Carbon Price 

We extend the model in Section 2 to show that a carbon price has ambiguous effects on 

the relationship between storage costs and carbon dioxide emissions. Without storage, adding a 

carbon price causes a reduction in emissions because of a shift from coal- to gas-fired generation 

and increases in wind and solar investment.  

With storage, adding a carbon price affects emissions in accordance with the price 

responsiveness of electricity generation. We first show that a carbon price reduces the price 

responsiveness of coal- and natural gas–fired generation. To illustrate this effect, we construct a 

figure similar to Figure 4, except introducing a carbon price equal to $30 per ton of carbon 

dioxide (the carbon price is implemented as a fuel tax). Figure 10 plots the effect of a 1 percent 

demand increase on coal and natural gas-fired generation. The figure, which includes the results 
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from Figure 4 for reference, indicates an overall decrease in responsiveness for both coal- and 

gas-fired generation. 

Because of this effect, reducing storage costs has two opposing effects on renewables 

investment and emissions. On the one hand, adding a carbon price causes the coal-fired 

generation to become less price responsive. This causes wind investment to increase more given 

a storage cost reduction than in the absence of the carbon price. Consequently, a reduction in 

storage costs causes more wind investment and lower carbon emissions, compared with a 

scenario without a carbon price. 

On the other hand, adding a carbon price also reduces the price responsiveness of natural 

gas–fired generation. Because the carbon price raises the price responsiveness of solar relative to 

natural gas, solar investment is more sensitive to the reduction in daytime electricity prices 

caused by a reduction in storage costs. As a result, a reduction in storage costs raises carbon 

emissions by more than in the absence of a carbon price. 

Figure 11 illustrates the implications for total carbon dioxide emissions of the lower price 

responsiveness for both coal- and natural gas–fired generation. Introducing a price of $30 per ton 

of carbon dioxide affects the relationships among storage costs, generation, prices, and 

emissions. With a carbon price, reducing storage costs causes a shift in generation from solar and 

coal to natural gas and wind. On balance, reducing storage costs tends to decrease emissions, 

except at very low storage costs. Thus, for the most part, a carbon price increases the likelihood 

that a reduction in storage costs reduces emissions. This result is not fully general, however, and 

in some parameterizations a carbon price could have the opposite effect.  

6. Conclusions 

The literature has disagreed on the environmental benefits of storage investment and 

innovation. In the short run, without power plant investment, lower storage costs may raise 

emissions because of a shift from natural gas– to coal-fired generation. In the long run, lower 

storage costs may reduce the cost of integrating renewables. 

We focus on the medium run, or roughly 10–20 years, which is relevant for evaluating 

existing storage policies. Taking the makeup of the existing grid as exogenous, we assess the 

effects of reducing storage costs on investment in storage and generation capacity, generation, 

and emissions. Using a stylized model we show that the effect depends on the price 

responsiveness of renewables and fossil fuel-fired generation. For renewables whose generation 

is positively correlated with electricity price changes caused by storage, the more price 
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responsive is renewables investment, the more likely that a reduction in storage costs reduces 

emissions. In contrast, for renewables whose generation is negatively correlated with electricity 

price changes caused by storage, the more price responsive is renewables investment, the less 

likely that a reduction in storage costs reduces emissions. The contrasting effects arise because 

storage raises generation-weighted average prices in the first case but reduces generation-

weighted average prices in the second case. 

We use a computational model that relaxes many of the assumptions in the stylized 

model and is calibrated to approximate conditions in ERCOT in 2030. Wind generation is 

positively correlated with electricity price changes caused by storage, and solar generation is 

positively correlated. Therefore, the stylized model predicts that greater price responsiveness of 

wind investment increases the likelihood that lower storage costs reduce emissions, whereas 

greater price responsiveness of solar investment reduces the likelihood that lower storage costs 

reduce emissions. The results of the simulations confirm the predictions of the stylized model. 

Moreover, an extension of the stylized model shows that a carbon price has an ambiguous 

effect on the relationship between storage costs and emissions. Simulations of the computational 

model indicate that with a carbon price, a decrease in storage costs typically reduces emissions.  

These results have several policy implications. First, policies incentivizing storage 

investment and R&D subsidies that reduce storage costs have ambiguous effects on emissions in 

the medium run. Second, introducing a carbon price does not necessarily imply that lower 

storage costs reduce emissions. Third, the effect of storage costs on renewables investment 

depends on the correlation between renewables generation and storage-induced electricity price 

changes. Fourth, in the baseline calibration, storage investment is positive when storage costs 

approximately half of what it did in 2010. This suggests that further storage innovation will be 

needed for storage to be economically viable for arbitrage purposes. The level of storage costs 

needed to yield positive investment is sensitive to assumptions, however. 

We suggest several directions for future research. First, the relationship between storage 

costs and emissions depends on the price responsiveness of generation technologies. Whereas 

available data make it possible to estimate this price responsiveness for coal- and natural gas–

fired generation, there is very little research on the price responsiveness of investment for any 

technology. We report results from a straightforward approach to estimating the price 

responsiveness of wind investment, which is sufficient for the paper’s purpose of demonstrating 

the importance of price responsiveness in determining the relationship between storage costs and 
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emissions. Future work could refine this estimation and consider other technologies besides 

wind. 

Second, we have focused on the relationship between storage costs and carbon dioxide 

emissions. Because carbon dioxide is a globally mixed pollutant, the social damages of 

emissions do not vary over time or by location. Natural gas– and coal-fired generation emit other 

pollutants, such as sulfur dioxide, whose external costs also vary over time and by location. 

Future work could characterize the societal benefits and costs of storage, accounting for 

pollutants other than carbon dioxide. 

Finally, we focus on the ERCOT power system for reasons described above, and we do 

not consider the Clean Power Plan, to focus on the economic mechanisms governing the 

relationship between storage and emissions. Future work should consider other regions, which 

have different levels of renewables and correlations between demand and renewables generation, 

compared to ERCOT. Future work may also analyze the interactions between storage costs and 

electricity sector policies.  
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Appendix. The Electricity Generation and Storage Model 

In this appendix, we discuss the mathematical programming model to investigate the 

interplay of fossil fuel electricity generation, renewable electricity generation, energy storage, 

carbon price, and greenhouse gas emissions. This model allows simultaneous consideration of 

dispatch of electricity and investment of new generation and storage capacities.  

Appendix Figure 2 provides a schematic representation of the modeling domain. It 

includes a power system and pollution externalities. For simplicity, the power system is 

aggregated such that the electricity generators produce one unit of electricity and marginal costs 

are differentiable functions of generation. The generation technologies are natural gas, coal, 

nuclear, wind, solar, and storage (which includes the power conversion system). The energy 

storage facility can be charged using electricity supplied by any generator. For pollution, we 

focus on carbon dioxide pollution produced by natural gas– and coal-fired generation. 

We formulate the model as a cost minimization problem, which solves the competitive 

equilibrium. At the end of the Appendix we discuss the competitive decentralization. The model 

consists of an investment stage followed by a generation stage. The objective is to minimize the 

cost of investment and generation subject to the constraint that hourly generation equals hourly 

demand, and subject to the initial conditions of the investment stage. The initial conditions of the 

investment stage include positive levels of generation capacity for natural gas, coal, nuclear, 

wind, and solar. During the investment stage, wind, solar, and storage capacity can be added 

according to the cost functions described below. 

For computational reasons, the generation portion of the model consists of the first week 

of January, April, July, and October, to represent typical electricity demand and renewables 

generation levels of each season. The model simulates operations for 672 hours, annualizing all 

generation and investment costs. During the generation stage, we consider two types of 

electricity demand, including electricity consumption by consumers and electricity needed to 

recharging energy storage. For simplicity, we ignore losses in the power grid and energy storage 

systems.   

The model considers hourly dispatch. In each hour, total generation equals total demand. 

Hourly generation for nuclear, wind, and solar is determined by the assumed capacity factors. 

Natural gas– and coal-fired generation have the marginal cost curves described below. Hourly 

carbon dioxide emissions are estimated using emissions factors for coal and natural gas.  

The model is formulated as a nonlinear mathematical programming model and is solved 

using CONOPT nonlinear solver in GAMS (GAMS 2013).   
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The Model 

Nomenclature 

i  EGU index, 

{coal, NG, nuclear, wind_exist, solar_exist, 

      wind_inv, solar_inv, storage}

i

 

j  Pollutant index, 2{CO }j  

t  Time index 

Dt  Electricity demand at time t, known 

GCi  Electricity generation of EGU, i, {coal, NG, nuclear, wind_exist, solar_exist}i , 

known 

MGFi  Minimum generation factor for EGU i, {coal}i , known 

CFit  Capacity factor of renewable power generation at time t, 
{wind_exist, solar_exist, wind_inv, solar_inv, nuclear} i , known 

amor  Amortization ratio, known 

1 2,    Natural gas marginal cost curve parameters, calibrated and known 

,i ia b   Capital cost function parameters for EGU i, { , _ , _ }i storage wind inv solar inv , 

calibrated and known 

Pc  Price of coal, known 

Pg  Price of natural gas, known 

EFij  Emission factor for pollutant j from source i, known 

Git  Electricity generation from EGU i, at time t, unknown 

Rt  Storage recharge at the end of the time period t, unknown 

St  Level of electricity storage at the end of the time period t, unknown 

Qi  Design capacity of i, { , _ , _ }i storage wind inv solar inv , unknown 

CAPi  Amortized capital cost for EGU i, { , _ , _ }i storage wind inv solar inv , unknown 

MCcoalt Marginal generation cost for coal, unknown 

MCngt  Marginal generation cost for natural gas, unknown 

TCcoalt  Generation cost for coal at time t, unknown 
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TCngt  Generation cost for natural gas at time t, unknown 

Pt  Hourly electricity price, unknown 

Eijt  Net emission for pollutant j from source i at time t, unknown 

Constraints 

Electricity Generation from Fossil Fuels 

Electricity generation from fossil fuel energy sources, coal and NG, at any time, t, are 

constrained by their generation capacities. That is,  

it iG GC  {coal, NG},i t  

1) 

Electricity Generation from Renewables 

For wind and solar (both existing and new investment), the electricity generation for any 

specific time, t, is set equal to the capacity multiplied by the hourly capacity factor. Capacity 

factors are estimated as described in Section 3:   

, ,i t i i tG GC CF   { _ , _ ,i wind exist solar exist nuclea
 2) 

, ,i t i tiQG CF   { _ , _ },i wind inv solar inv t   

3) 

Electricity Generation from Energy Storage 

Electricity generation from energy storage is constrained by the energy storage capacity: 

,i t iQG   { },i storage t   

4) 

Minimum Generation Requirements 

Coal and nuclear generators have minimum generation requirements. For coal, we 

assume a minimum of 0.2 percent of capacity. Nuclear has a minimum generation requirement of 

0.9, and we assume that the costs of varying nuclear generation across hours is sufficiently high 

that nuclear operates at this required level for each hour. 

it i iG GC MGF   { },  i coal t   
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5) 

Balancing of Electricity Demand and Supply 

For any hour, t, the total electricity generation across all sources (including storage) 

equals the sum of consumers’ demand and charging from storage.  

it t t
i

G D R   {coal, NG, nuclear, wind_exist, solar_e

      wind_inv, solar_inv, storage}, 

i

t




 
6) 

Energy Balance for Bulk Storage  

The level of electricity storage at the end of hour t is equal to the level at the end of 

previous time period, t–1, plus recharge, minus electricity discharge from the storage during hour 

t.  

1 ,t t i ttRS S G    { }i storage
 7) 

Bulk Storage and Bulk Storage Design Capacity 

At any hour, t, the level of storage cannot exceed the storage design capacity. 

     t iQS   { }i storage
 8) 

Cost Functions  

Capital Costs for Energy Storage, Wind Generation, and Solar Generation  

The model includes investment in energy storage (including the power conversion 

system), wind, and solar. We annualize investment costs using a 10 percent interest rate and 20-

year lifetime (amor).   

For the power conversion system, we estimate the relationship between maximum 

electricity discharge and energy storage capacity using a linear function. We use unit capital cost 

for power conversion systems (Kintner-Meyer et al. 2010). New wind and solar generators 

receive a 30 percent investment tax credit, itc.   
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The following equations provide the annualized capital cost for the power conversion 

system, energy storage, and new wind and new solar investments. We estimate the relationship 

between maximum discharge and storage capacity by simulating the model at various levels of 

storage capacity and observing maximum discharge in each simulation. The total storage 

investment cost is the sum of the cost of the power conversion system and the energy storage. 

_     pcs iCAP pcs power storage Q amor     { }i storage  
9) 

  i i iCAP a Q amor    { }i storage  
10) 

(1 ) ( + )    i i i i iCAP itc a b Q Q amor       { _ ,i wind inv solar
 11) 

Generation Costs for Fossil Fuel Generators  

As discussed in Section 3, the functional forms for the marginal cost curves for natural 

gas and coal are based on the observed variation in heat rates across existing generators. Total 

costs for each technology are the integral of marginal costs. 

 ,20 9.731502 0.0001068t c c coal tMCcoal P P G       
 

12) 

2
1 2 , .

2 3
, ,

4.331101 0.0003511

            (1.09372 8) (1.578355 13)

t ng t g g ng t

g ng t g ng t

MCng G P P G

e P G e P G

       

       
  

13) 

, ,20 9.731502 (1/ 2) 0.0001068t coal t c coal t cTCcoal G P G P G        
 

 
14) 

3
1 , 2 , ,

2
,

3
,

4
,

(1/ 3) 4.331101

            (1/ 2) 0.0003511

            (1/ 3) (1.09372 8)

            (1/ 4) (1.578355 13)

t ng t ng t g ng t

g ng t

g ng t

g ng t

TCng G G P G

P G

e P G

e P G

        

   

    

    

 

 
15) 

Electricity Price 

As noted in the main text, we formulate the model as a constrained cost minimization. 

The solution to the problem could be decentralized by assuming that all generators and electricity 
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storers are price takers and operate as long as price exceeds marginal costs. In equilibrium, when 

coal-fired generation lies between its minimum generation level and total capacity, the electricity 

price equals the marginal costs of both natural gas and coal. When either coal generation 

constraint binds, the marginal cost of natural gas differs from that of coal. In all hours, because 

the natural gas level of generation is never constrained, the electricity price equals the marginal 

cost of natural gas.  

 

t tp MCng  
 

16) 

Carbon Dioxide Emissions 

Emissions of coal and natural gas account for variation across generators in heat rates and 

for variation in carbon content across fuels. 

  

2 2

2
, , , , ,(9.731502 (1/ 2) 0.0001068 )coal co t coal co coal t coal tG GE EF       

 

 
17) 

2 2

2
, , , , ,

3
,

4
,

(4.331101 (1/ 2) 0.0003511

           (1/ 3) (1.09372 08)

            + (1/4) (1.578355e-13)

ng co t ng co ng t ng t

ng t

ng t

G GE EF

e G

G

     

   

 

 
 

18) 

Objective Function 

The objective function is the annual cost, which includes annual operating costs for fossil 

fuel generators and annualized capital costs for power control system, energy storage, new wind 

and new solar investments. The number 13 is a scaling factor because we consider four 

representative weeks for fossil fuel generator operations in the model. 

  

_ _

( ) 13

( )

t t
t

pcs storage wind inv solar inv

TCcoal TCng

CAP CAP CAP CAP

 

   


 

19) 
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Expression (19) is minimized subject to conditions (1) through (8), and with total costs 

and capital costs given by (9) through (11), (14), and (15). The decision variables are capacities 

of wind, solar, and storage, and hourly generation of each technology and of storage. 

 

Table A1. Model Inputs 

Parameter  Unit  Value 

_wind inva   $/MW  1,448,000 

_solar inva   $/MW  1,800,000 

_wind invb     87.5 

_solar invb     77.5 

1     ‐22 

2     1.2e‐07 

power_storage  MW/MWh  0.0926 
power_control_sy
stem 

$/MW  75,000 

Pc  $/mmBtu  2.589 
Pg  $/mmBtu  6.007 
amor  %  12 
itc  %  30 
MGFcoal  %  20 
MGFnuclear  %  90 
EFcoal,CO2    0.11 
EFng,CO2    0.056 
GCcoal  MW  19900 
GCng  MW  58900 
GCnuclear  MW  4927 
GCwind_exist  MW  16979 
GCsolar_exist  MW  250 

 

 

Figures and Tables 

 See following pages. 



Figure 1. Effect of storage on market equilibrium
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Figure 2. Correlations among demand, wind capacity factor, and solar capacity 

factor
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Figure 3. Marginal cost curves for coal and natural gas, 2008 and 
2030 

Coal, 2008 Gas, 2008 Coal, 2030 Gas, 2030

38



0

100

200

300

400

500

600

700

25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000

El
e

ct
ri

ci
ty

 s
u

p
p

ly
 (

M
W

h
) 

Electricity demand (MWh) 

Figure 4. Generation change caused by 1 percent demand 
increase: coal and natural gas 
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Figure 5. Effects of storage costs on equilibrium outcomes, without 
wind or solar investment 
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Figure 6. Hourly generation by fuel type, without wind or solar investment
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Figure 7. Generation change caused by 1 percent demand increase: 
coal, natural gas, and wind 

Coal Natural gas Wind

42



Figure 8. Effects of storage costs with wind and solar investment
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Figure 9. Hourly generation by fuel type, with wind and solar investment
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Figure 10. Effect of carbon tax on coal and natural gas responses to 
demand increase 
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Figure 11. Effects of storage costs on equilibrium outcomes, with 
carbon tax 
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(1) (2) (3) (4) (5)

253.56 144.04 250.92 111.91 1521.34

(135.48) (239.69) (140.62) (191.79) (692.09)

564.96 498.66 530.97 28.15 3389.74

(272.85) (207.68) (418.41) (463.88) (1575.41)

6.81 15.47 15.97 -9.06 40.87

(117.38) (103.23) (142.32) (110.73) (650.85)

-123.90 -120.88 -118.66 -129.60 -743.42

(51.63) (50.57) (69.86) (51.98) (287.34)

-40.42

(304.67)

Number of 

observations
120 120 120 120 20

R squared 0.29 0.30 0.29 0.31 0.49

Forecasted prices 

and demand?
No Yes No No No

Time trend? No No No Yes No

Aggregate across 

ERCOT?
No No No No Yes

Table 1. Effects of fuel prices and demand on wind investment

Notes : The table reports coefficient estimates with standard errors in parentheses, which are robust to 

heteroskedasticity. The dependent variable is wind investment in megawatts (MW). Observations are by PCA 

and year in columns 1-4 and by year in column 5. PTC expiration year is a dummy variable equal to one if the 

PTC expired in the corresponding year. Column 2 includes forecasted fuel prices and demand in place of current 

fuel prices and demand. Column 3 includes the log of the ratio of the estimated capital costs for a new 

combined cycle plant to the capital costs for a new wind plant, from EIA. Column 4 includes a linear time trend.

Log natural gas 

price

Log coal price

Log ERCOT 

generation

PTC unavailable

Log (natural gas / 

wind capital costs)

Dependent variable: wind investment (MW)
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(1) (2) (3) (4) (5) (6)

Nuclear

Coal

Natural gas

Wind

Coal

Natural gas

Observed Simulated Observed Simulated Observed Simulated

Nuclear 12.9 13.6 12.2 13.2 12.2 13.0

Coal 37.5 41.9 35.1 43.3 35.6 33.2

Natural gas 48.7 43.4 48.3 37.4 45.0 45.6

Wind 0.9 1.1 4.5 6.1 7.1 8.1

Mean 45 52 72 70 54

Standard 

deviation
24 33 69 41 27

Emissions 

intensity
0.69 0.71 0.68 0.72 0.68 0.67

1.3 2.0

5.1

16.4

60.1

6.8

1.6

8.8

5.1

18.9

57.3

9.2

Table 2. ERCOT summary statistics and simulation outcomes

Notes : Panel A reports capacity levels from EIA and Panel B reports fuel prices from EIA. Panel C reports the 

observed and simulated generation shares, with observed levels from EIA. Panel D compares observed and 

simulated electricity prices, with observed prices from ERCOT. Panel E compares observed and simulated rates 

of carbon dioxide emissions per coal and gas-fired generation, with observed values from EIA and using EIA 

emissions factors.

Panel A. Capacity (GW)

Panel C. Percentage generation

Panel B. Fuel prices ($/mmBtu)

Panel D. Electricity prices ($/MWh)

Panel E. Carbon dioxide emissions intensity of coal and gas generation (tons/MWh)

2004 2008 2010

5.1

16.5

59.0

1.2

4.65.8
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(1) (2) (3) (4) (5)

No wind or 

solar 

investment

Wind and 

solar 

investment

Low wind 

costs

Low solar 

costs
Carbon tax

Natural gas generation 

share
0.42 0.42 0.41 0.42 0.46

Coal generation share 0.33 0.33 0.32 0.33 0.26

Wind generation share 0.13 0.13 0.15 0.13 0.16

Solar generation share 0.001 0.001 0.001 0.006 0.013

Mean electricity price 

($/MWh)
65 65 64 65 85

Standard deviation 

electricity price ($/MWh)
43 43 42 41 38

Carbon dioxide emissions 

rate (tons/MWh)
0.55 0.55 0.53 0.54 0.47

Table 3. Simulation results by scenario, without storage investment

Notes : The table reports outcomes for the scenarios indicated in the column headings with zero storage 

investment.
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Appendix Figure 1. Storage capacity vs. storage costs 
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Low solar costs Carbon tax
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Appendix Figure 2. Conceptual Study Domain
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