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Salvatore Di Falco 

Abstract 

There is a paucity of information on the conditions under which multiple climate-smart 

practices are adopted and on the synergies among such practices in increasing household resilience by 

improving agricultural income. This study analyzes how heat, rainfall, and rainfall variability affect 

farmers’ choices of a portfolio of potential climate-smart practices – agricultural water management, 

improved crop seeds and fertilizer – and the impact of these practices on farm income in the Nile Basin 

of Ethiopia. We apply a multinomial endogenous switching regression approach by modeling 

combinations of practices and net farm income for each combination as depending on household and 

farm characteristics and on a set of climatic variables based on geo-referenced historical precipitation 

and temperature data. A primary result of this study is that farmers are less likely to adopt fertilizer 

(either alone or in combination with improved varieties) in areas of higher rainfall variability. However, 

even when there is high rainfall variability, farmers are more likely to adopt these two yield-increasing 

inputs when they choose to (and are able to) include the third part of the portfolio: agricultural water 

management. Net farm income responds positively to agricultural water management, improved crop 

variety and fertilizer when they are adopted in isolation as well as in combination. But this effect is 

greater when these practices are combined. Simulation results suggest that a warming temperature and 

decreased precipitation in future decades will make it less likely that farmers will adopt practices in 

isolation but more likely that they will adopt a combination of practices. Hence, a package approach 

rather than a piecemeal approach is needed to maximize the synergies implicit in various climate-smart 

practices. 
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Does Adoption of Multiple Climate-Smart Practices Improve 

Farmers’ Climate Resilience? Empirical Evidence from the 

Nile Basin of Ethiopia 

Hailemariam Teklewold, Alemu Mekonnen, Gunnar Köhlin, and  

Salvatore Di Falco 

1. Introduction 

Smallholder farmers in Sub-Saharan African countries (SSA) are confronted with 

changing patterns of temperature and precipitation and increased occurrences of extreme 

events like droughts and floods. Meteorological data show a persistent upward trend in 

both mean temperatures and variation in seasonal and annual rainfall patterns. Changes in 

temperature and precipitation patterns will expose the region’s agricultural production 

systems to tremendous risks, causing more short-term crop failures and long-term 

production declines (Ngigi 2009; Lasco et al. 2014). It is particularly important to 

understand the vulnerability of farmers in Ethiopia, because around 85% of the 

population are farmers and climate change impacts are expected to be significant. 

Climate change in Ethiopia will not only increase rainfall variability and lead to more 

frequent droughts and higher risk of floods; it will also continue to intensify the 

degradation of soil fertility, which causes agricultural productivity to decline. 

Empirical studies measuring the economic impacts of climate change on 

agriculture (Kurukulasuriya and Mendelsohn 2006; Seo and Mendelsohn 2006a; Mano 

and Nhemachena 2006; Benhin 2006) show that such impacts can be significantly 

reduced through adaptation. A substantial literature provides empirical evidence on 

climate-induced choices among crop types, livestock selection, resilience of mixed farms 

and the decision to irrigate under variable climate conditions in different parts of the 
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world (Seo and Mendelsohn 2008; Seo 2010; Kurukulasuriya et al. 2011). Adaptation 

measures that build upon risk-reducing options through improved water management 

enhance soil fertility, while development and dissemination of improved germplasm are 

fundamental in boosting overall resilience to climate change (Hellin et al. 2012). In the 

context of agriculture and climate change, there are substantial potential benefits from 

applying available climate-smart agricultural practices that have been developed for use 

in existing agro-climatic systems.  

Climate-smart agriculture reflects smart agricultural practice informed by climate 

impacts on agriculture. This refers to practices that seek, first of all, to increase 

agricultural productivity in order increase income and food security (Brown and Funk 

2008; Bryan et al. 2011); secondly, to strengthen farmers’ resilience to climate change; 

and, thirdly, to decrease greenhouse gas emissions and increase carbon sinks (FAO 2011; 

Campbell et al. 2014; Arslan et al. 2014). The relative priority of each objective varies 

across locations, with, for example, greater emphasis on productivity and adaptive 

capacity in smallholder farming systems in developing countries (Campbell et al. 2014). 

Efforts to improve adaptation to climate change are numerous; highlights include on-farm 

practices to improve the soil’s water holding capacity, as well as switching to water 

efficient or drought and heat tolerant crop varieties better suited to a warmer and drier 

climate (Hellin et al. 2012; Lobell et al. 2008; Arslan et al. 2014). In fact, the growth and 

transformation plan in Ethiopia intends to continue efforts on adoption and diffusion of 

agricultural soil and water management technologies, which are considered central to 

building a climate resilient green economy. 

We consider the application of various combinations of climate-smart agricultural 

practices. One salient area for research on technology adoption that has not been very 

thoroughly studied is that of multiple technology adoption (Teklewold et al. 2013; Wu 

and Babcock 1998). Farmers may face technology alternatives that can be adopted either 

as substitutes or in combination (as complements or supplements) to deal with their 

overlapping constraints such as pest infestations, low soil fertility and moisture stress 

(Dorfman 1996; Khanna 2001; Moyo and Veeman 2004). However, while previous 

studies of choice and impact of adaptation have focused on either a single practice or a 

set of practices considered as a single unit (Deressa et al. 2009; Deressa et al. 2010; Di 

Falco et al. 2011; Di Falco et al. 2012), there is limited information on how adoption of 

multiple strategies by smallholder farmers responds to climate change or on the synergies 

between various adaptation strategies in improving agricultural productivity and farm 

income. While individual climate-smart practices provide multiple benefits, there are 



Environment for Development Teklewold et al. 

3 

complementarities and synergies when more than one practice is adopted together. For 

instance, in smallholder subsistence farming in much of SSA, one of the major sources of 

risk is moisture stress, where fertilizer will not be applied if application to a crop is 

perceived as too risky (Rockström et al. 2002). This happens because smallholder farmers 

are averse to risk, given their precarious financial situation and their poor access to credit 

and insurance. The risk of moisture stress is increasing as a result of increased variability 

of seasonal distribution of rainfall throughout most of Africa, coupled with a reduction in 

rainfall in much of the SSA (Lobell et al. 2008). Under these circumstances, agricultural 

water management can reduce the risk created by moisture stress and thus make farmers 

more confident about applying fertilizer.  

If researchers ignore the inter-relatedness of various agricultural practices, this 

suggests that farmers make each adoption decision exogenously, an approach that may 

underestimate or overestimate the influences of various factors on the choice and effect 

of the decision. Treating farmers’ adoption choices as bundle of practices, rather than as 

isolated decisions, is important in order to better understand the synergistic effect of 

inter-related practices. Furthermore, a joint analysis may still be needed for determining 

the total effect of the simultaneous application of the practices (Wu and Babcock 1998; 

Teklewold et al. 2013). This will enable policy makers and development practitioners to 

promote combinations of technologies/practices that perform well together. 

In this study, we consider three climate-smart agricultural practices. The first is 

the adoption of agricultural water management practices. This is one of the “best bet” 

strategies for adapting agricultural production to climate change and variability, because 

agricultural water management practices improve water balance and availability, 

infiltration and retention by the soil, reduce water loss due to runoff and evaporation, and 

improve the quality and availability of ground and surface water (Ngigi et al. 2005; 

Arslan et al. 2013). Water management (irrigation, drainage and water conservation and 

control) stabilizes crop production by maintaining soil conditions close to the optimum 

for crop growth. Water management practices (such as terracing) that change slope 

profile can reduce runoff speed – especially on erosion-prone highlands – thus reducing 

soil erosion. It also allows some water to seep into the soil (infiltration), improving the 

soil to allow more vegetation cover. This practice also increases groundwater recharge 

and protects the topsoil (FAO 2014). Agricultural water management works best when it 

is accompanied by other crop management practices such as modern crop varieties and 

fertilizer that can use moisture more efficiently. Thus, we next consider two other 

technologies: improved crop varieties and inorganic fertilizer.  



Environment for Development Teklewold et al. 

4 

Food security in an era of climate change may be possible if farmers transform 

agricultural systems via the use of improved crop seed and fertilizer (Brown and Funk 

2008; Bryan et al. 2011). Appropriate use of fertilizer is required both to enhance crop 

productivity and to produce sufficient crop residues to ensure soil cover under 

smallholder conditions (Vanlauwe et al. 2013). 

This study, therefore, has two objectives: to examine the effect of both climate-

related and socio-economic factors on the probability that farmers will adopt climate-

smart practices, individually and in combination, in the Nile Basin of Ethiopia; and to 

quantify the impact of adopting various combinations of these practices on crop net 

income (net of fertilizer, seed, labor and pesticide costs) as an outcome indicator. 

We do this by controlling for selection bias using a multinomial endogenous 

switching treatment effects approach. In the first part, we estimate a selection model to 

investigate the extent to which various combinations of climate-smart practices are 

related to climate and socio-economic conditions. In the second part, a set of linear 

models conditional on each combination of the practices is used to examine farm 

profitability. Empirical assessment uses a recent novel data set that combines household 

characteristics with geo-referenced data on historical temperature and rainfall as well as 

plot-level farm characteristics in the Nile basin of Ethiopia. 

This paper complements previous work by Di Falco and Veronesi (2013) that 

aimed to answer how adaptation has occurred in terms of various types of adaptation 

practices, using structural Ricardian models at a fairly aggregate level of household data. 

From a data utilization point of view, ours is the more detailed dataset, where we know 

each practice actually implemented at plot level. 

Our study further adds to the literature on the economics of climate change 

adaptation in the following ways. First, we contribute to the limited literature on adoption 

of a portfolio of climate-smart practices in the face of changing climate conditions. To 

our knowledge, no similar empirical articulation of the relationship between climate 

variables and alternative combinations of climate-smart practices in the smallholder 

farming system has been done. Second, we investigate – for the first time, to our 

knowledge – whether adoption of a combination of climate-smart practices will provide 

more economic benefits than individual adoption. For Ethiopia, a country that has a 

vision of building a climate-resilient economy, identifying a combination of climate-

smart practices that deliver the highest payoff is a valuable contribution to help 

government and development agencies design effective extension policies. 
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The rest of the paper is organized as follows. The next section provides a 

description of the study areas. Section 3 provides a brief discussion of the data and 

empirical specification of our estimation model. Section 4 presents a conceptual and 

econometric framework for a multinomial endogenous switching regression model. 

Section 5 presents our estimation of average treatment effects. This is followed by 

presentation of our estimation results in Section 6. The final section concludes and draws 

key findings and policy implications. 

2. Study Areas and Sampling 

Our basic data come from the farm household survey conducted in five regional 

states of the Ethiopian part of the Blue Nile Basin: Amhara, Oromia, Tigray, Benshangul-

Gumuz and SNNP. The data were collected from March through May, 2015. The basin 

covers about two-thirds of the country’s land mass and contributes nearly 40% of its 

agricultural products and 45% of its surface water (Erkossa et al. 2014). The areas 

selected represent different agro-ecological settings and are characterized by highly 

rugged topography with altitudes ranging from 800 to over 3000 meters above sea level. 

The farming system of the basin can be broadly categorized as a mixed crop-livestock 

farming system, where over 90% of the cultivated area is covered by a cereal-based 

farming system (Erkossa et al. 2014). 

The sampling frame considered the traditional typology of agro-ecological zones 

in the country (i.e., Dega (cool, humid, highlands), Weina-Dega (temperate, cool sub-

humid, highlands), Kolla (warm, semi-arid lowlands), and Bereha (hot and hyper-arid)). 

The sampling frame selected the woredas1 in such a way that each class in the sample 

matched the proportions for each class in the entire Nile basin. Accordingly, a multistage 

sampling procedure was employed to select villages from each woreda and households 

from each village. First, 20 woredas from the five regional states were selected (three 

each from Tigray and Benshangul-Gumuz, six from Amhara, seven from Oromia, and 

one from SNNP). This resulted in a random selection of 50 farmers from each woreda, 

and, after cleaning inconsistent responses, a total of 929 farm households and 4702 

farming plots. 

The areas selected for this study have two periods of rainfall: the main rainy 

season (Meher) runs from June to October, and the short rainy season (Belg) is from 

                                                 
1 An administrative division equivalent to a district. 
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January to April. Although both annual and perennial crops are grown in the area, the 

annual crops cover more than 98% of the plots. We thus limit our analysis to the annual 

crop plots, where most of the land and water management practices are applied. The main 

crops grown in the study areas are maize, wheat, teff, barley and legumes.  

3. Data Description and Empirical Specification 

The climate-smart practices considered in this study include agricultural water 

management, improved crop seeds and inorganic fertilizer, providing eight mutually 

exclusive combinations of practices (23). Table 1 presents the proportions of area 

cultivated under the different combination of practices. Of all the 4702 farming plots, 

about 28% did not receive any of the adaptation practices (Va0Fe0Aw0), while all three 

practices were simultaneously adopted on only 9% of the plots (Va1Fe1Aw1). 

Table 2 shows the interdependence of adaptation practices. Agricultural water 

management is used on 41% of the plots, improved crop seeds on 24% and inorganic 

fertilizer on 53% of the plots.  The sample unconditional and conditional probabilities 

presented in Table 2 also highlight the existence of interdependence across the three 

adaptation practices. For instance, the probability of adopting agricultural water 

management increased by 3% conditional on adoption of improved crop variety. 

Similarly, the probability of water management increased by 6% conditional on adoption 

of fertilizer. The conditional probability of a household adopting fertilizer is significantly 

increased, from 52% to 60%, when farmers practiced agricultural water management. In 

addition, the conditional probability of adoption of improved crop varieties increased 

from 23% to 25% when farmers practiced agricultural water management. Similarly, 

adoption of inorganic fertilizer increased in the presence of modern seeds and vice versa. 

The results indicate complementarity between the adoption of water management, 

modern crop seeds and fertilizers. 

Table 3 presents the description and summary statistics of the control variables 

used in the empirical analysis for the full sample and the eight sub-groups. The 

specification of our empirical model is based on a review of theoretical work and 

previous similar empirical adoption and impact studies on integrated natural resource 

management and sustainable land management (D’Souza et al. 1993; Neill and Lee 2001; 

Arellanes and Lee 2003; Gebremedhin and Scott 2003; Lee 2005; Bandiera and Rasul 

2006; Marenya and Barrett 2007; Knowler and Bradshaw 2007; Deressa et al. 2009; 

Ricker-Gilbert and Jayne 2009; Deressa et al. 2010; Kassie et al. 2010; Wollni et al. 

2010; Di Falco et al. 2011; Di Falco et al. 2012; Holden and Lunduka 2012). According 
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to this literature, factors affecting adaptation and net crop income include natural capital 

(soil depth, slope and fertility), social capital and networks (membership in community-

based institutions and spillover effects), shocks (self-reported rainfall shocks and plot-

level crop production disturbances), physical capital (farm size and livestock holdings), 

access to services and constraints (distance to main market, access to credit, extension 

service and climate information), human capital (family size, household head education, 

gender  and age), plot distance to dwelling, geographic location and climate variables 

(temperature, intensity and variability of rainfall). Below, we focus on describing these 

variables in relation to climate change adaptation literature. 

Farmers’ education level as a factor influencing technology adoption is commonly 

discussed in the adoption literature. Education may increase an individual’s ability to 

acquire, understand and implement knowledge-intensive adaptation practices, and may 

increase returns from using these practices relative to the old practices. The more farmers 

are educated, the more they perceive climate change, and the more likely they are to 

respond to climate change by implementing adaptation strategies (Maddison 2006). The 

average educational attainment of household heads is about two years of education across 

the study areas. About 88% of the sample households are male-headed. The justification 

for including age of the household head is straightforward. An older household head 

means that the farmer has more experience in climate change, environmental conditions, 

and adaptation strategies, as well as a greater accumulation of physical and social capital, 

all of which facilitate adaptive capacity. However, age can also be associated with a 

shorter-term planning horizon, poorer health, and loss of energy, as well as being more 

risk averse. Thus, the a priori effect of age on adaptation is indeterminate. The average 

age of the household head is 52 years. 

Based on related literature, the resource constraint variables (farm size, livestock, 

credit and household expenditure) are expected to have a positive association with 

adoption because these variables often represent wealth or financial capital, which tend to 

relax liquidity constraints in implementing adaptation practices. The vast majority of the 

households in the sample can be characterized as small-scale farmers, with average farm 

size of 1.8 ha. 

We followed the approach of Feder et al. (1990) to construct a credit-access 

variable. This measure of credit tries to distinguish between farmers who choose not to 

use available credit and farmers who do not have access to credit. In our study, credit-

constrained farmers are defined as those who need credit but are unable to get it. 
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In addition to the classical household characteristic and endowment variables, we 

also study the ways in which individuals relate to wider social networks and the effects of 

these networks on adaptation decisions. In Ethiopia, where information is scarce and 

markets are ill-functioning, social networks are considered a means to facilitate the 

exchange of information, enable farmers to access inputs on schedule, and overcome 

credit constraints and shocks (Fafchamps and Minten 2002; Isham 2002; Barrett 2005; 

Bandiera and Rasul 2006; Marenya and Barrett 2007; Wossen et al. 2015). Particularly 

for smallholder farmers, local institutions play a pivotal role in building resilience and 

reducing vulnerability to climate change (Agrawal et al. 2009). In this study, we 

distinguish three social networks as social capital variables: whether a household is a 

member of a rural institution in the village; the number of agricultural groups in which 

the household is a member; and the number of social groups in which the household is a 

member. Such classification is important because different forms of social capital and 

networks may affect the implementation of adaptation strategies in various ways, such as 

information sharing, stable market outlets, labor sharing, relaxing of liquidity constraints, 

and mitigation of risks.  

There is increasing evidence on the role of neighborhood effects in the adoption 

of agricultural technologies (Bandiera and Rasul 2006; Knowler and Bradshaw 2007; 

Wollni and Andersson 2014). The role of perceived spillover effects in the uptake of 

adaptation practices is captured by recording farmers’ expectations that adoption of a 

given practice might have positive effects on their neighbors’ plots. For some agricultural 

practices, not all the benefits accrue to the individual who adopts them, but the practice 

may also directly benefit the neighboring farmer by reducing soil erosion and increasing 

soil fertility, as well as through pest control. In addition, farmers who adopt a new 

technology may generate positive externalities for neighboring farmers in the form of 

information about how to use the technology (Besley and Case 1994). 

Agricultural extension service is the major source through which many climate-

related adaptation practices and information are channeled. We control for access to 

extension service by including a dummy variable for whether the farmer has had contact 

with the extension agent during the last cropping season. However, access to extension 

service per se may not impact technology adoption, because the quality of information 

provided to farmers depends on the skill of extension workers. Unlike the previous 

adoption studies, we control for not only the extension contact but also farmers’ 

perceptions regarding the skill of extension workers in providing the required services, by 
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including a dummy variable taking the value of one if the farmer indicates confidence in 

the qualification of extension agents and zero if the farmer lacks confidence. 

There has been relatively little research on the effects of climate-related shocks 

(such as droughts, water-logging, untimely or uneven distribution of rainfall, and 

incidence of pests and diseases) on the implementation of adaptation practices. This study 

includes self-reported rainfall shocks and plot-level crop production shocks. We followed 

Quisumbing (2003) to construct the rainfall disturbance variable based on respondents’ 

subjective rainfall satisfaction in terms of timeliness, amount, and distribution. The 

individual rainfall index was constructed to measure the farm-specific experience related 

to rainfall in the preceding seasons, based on such questions as whether rainfall came on 

time at the start of the growing season, whether there was enough rain at the beginning of 

and during the growing season, whether the rain stopped on time and whether there was 

rain at harvest time. Responses to each of these questions (either yes or no) were coded as 

favorable or unfavorable rainfall outcomes. By averaging over the number of questions 

asked (five questions), we created an index that provides a value close to one for the best 

outcome and zero for the worst outcome. Plot-level disturbance is captured by the five 

most common shocks affecting crop production: pest and disease pressure, drought, 

flood, hailstorm, and erratic rainfall. The effect of these shocks on the use of adaptation 

practices depends on the type of practices (Teklewold et al. 2013). 

We also control for the possible role of farmers’ perceptions of government 

assistance, by including a dummy variable taking the value of one if the farmer can rely 

on government support when events beyond his control cause output or income to drop. 

In the developing world, where production risks are high, farmers are less likely to adopt 

technologies in the absence of farm insurance, which can protect farmers in case of lost 

income or crop failure. Whether in the form of social safety nets or formal insurance, 

farm insurance can build confidence among farmers so that they invest despite 

uncertainty, and can help farm households smooth consumption and maintain productive 

capacity by reducing the need to liquidate assets that might arise in case of shocks 

(Barrett 2005). A better understanding of this issue can be obtained by examining the 

effect of farmers’ judgments and perceptions of the policy environment of government 

assistance on different types of climate-smart practices. In our study, only about 40% of 

farm households believe they can rely on government assistance. 

We also merge the household survey data with a novel set of climate variables 

based on geo-referenced historical temperature and precipitation data at household level 

for the period 2000-2013. Monthly rainfall and temperature data were collected from all 
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the meteorological stations near the study areas. Then, the Thin Plate Spline method of 

spatial interpolation was used to impute household-specific rainfall and temperature 

values, using geo-referenced information such as elevation, longitude and latitude. The 

Thin Plate Spline is a two-dimensional interpolation scheme for arbitrarily spaced 

tabulated data.  The spline surface represents a thin metal sheet that is constrained not to 

move at the grid points, which ensures that the generated rainfall and temperature data at 

the weather stations are exactly the same as data at the weather station sites that were 

used for the interpolation (see Wahba 1990). 

This method is one of those most commonly used to create spatial climate data 

sets (e.g., Di Falco et al. 2011; Deressa and Hassan 2010). Its strengths are that it is 

readily available and relatively easy to apply, and it accounts for spatially varying 

elevation relationships.2 Given that our area of the study is characterized by significant 

terrain features, the choice of the Thin Spline method is reasonable. These climatic 

variables are included in our empirical model to capture whether differences in seasonal 

temperature and precipitation influence our two outcome variables: farmers’ choice of 

combination of climate-smart practices and farm income.  

We summarize rainfall and temperature data of the main growing season by 

districts and regions included in the study.3 The distribution of the growing season 

rainfall and temperature in our data conforms to the traditional agro-ecology 

classification of the country. The Tigray region in the semi-arid zones (Kolla) receives 

the least rainfall. The other regions, which are traditionally classified in the highland 

zones (Dega and Woindega), have higher rainfall. Our data also show variability across 

regions in rainfall patterns during the growing season. In order to identify the monthly 

pattern of rainfall heterogeneity in our study areas, we used Oliver’s (1980) Precipitation 

Concentration Index (PCI),4 analyzed at seasonal scale (April-September). The PCI value 

calculated on a seasonal scale varies across the area under study, ranging from values 

                                                 
2 This method only simulates an elevation relationship, and it has difficulty handling very sharp spatial 

gradients. However, very sharp gradients are typical of coastal areas, and our study region has no 

climatically important coastlines. 

3 Results are not shown here for brevity of space. 

4 The PCI is described as:    
2

m
2
m rrX50PCI , where rm is amount of rainfall in the mth month. The 

PCI is a powerful indicator of temporal distribution of precipitation; as the value increases, the precipitation 

is more concentrated.  PCI values of less than 10 indicate uniform monthly distribution of rainfall (low 

precipitation concentration); values between 11 and 15 indicate moderate precipitation concentration; PCI 

between 16 and 20 indicate irregular distribution; and values above 21 indicate very high precipitation 

concentration, i.e., strong irregularity (Oliver 1980). 



Environment for Development Teklewold et al. 

11 

higher than 16 in Tigray to lower than 11 in Benshangul-Gumuz. This indicates a much 

higher concentration of growing season rainfall in Tigray than in Benshangul-Gumuz. 

Similarly, monthly rainfall variability is much higher in all study districts in the Tigray 

region (PCI ranging from 16-20) than in the districts in the other study areas in the 

highland zones.  

The survey asked farmers whether they have noticed changes in climate over their 

lifetime. In response, more than half of the farmers reported an increase in temperature 

and erratic and low rainfall distribution, with delayed onset of rains at planting season. 

These perceptions are in harmony with our climate data from 2000 to 2013. For instance, 

the observed average monthly temperature difference between those who report 

increasing temperature and those who do not is about 0.34 0C, and the difference is 

statistically significant. Similarly, the difference in PCI between those farmers who 

observe increasing variability of rainfall and those who do not is about 1.69. These results 

are consistent with the recent studies in the Nile Basin of Ethiopia by Amdu et al. (2013) 

and in some African countries by Hassan and Nhemachena (2008). 

To account for farm features, we include several plot-specific attributes, including 

soil fertility,5 soil depth,6 plot slope,7 spatial distance of the plot from the farmer’s home 

(in minutes walking) and choice of crops grown. On average, 75% of landowners operate 

on about four parcels, each with about 0.25 ha, and these plots are often not spatially 

adjacent (as far as 15 minutes walking time from the farmer’s residence). The variable 

distance to plot is an important determinant of adaptation practices through its effect on 

increasing transaction costs on the farthest plot, particularly costs for transporting bulky 

materials/inputs. Distant plots usually receive less attention and it is difficult to 

frequently monitor (watch or guard) them.  

4. Conceptual Framework and Econometric Specification 

As discussed above, farmers’ adoption choices among agricultural water 

management practices, modern crop seeds and fertilizers lead to eight (23) possible 

combinations of adaptation practices. Adoption of these combinations may not be 

random; instead, farmers may endogenously self-select into using or not-using decisions, 

so decisions are likely to be influenced by unobservable characteristics (for example, 

                                                 
5 The farmer’s perception of each plot’s soil fertility is ranked as “poor,” “medium” or “good.” 

6 The farmer’s perception of each plot’s soil depth is ranked as “deep,” “medium deep” or “shallow.” 

7 The farmer’s perception of each plot’s slope is ranked as “flat,” “medium slope” or “steep slope.” 
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expectation of yield gain from adoption, managerial skills, motivation) that may be 

correlated with the outcomes of interest, i.e., combination of techniques adopted and farm 

income. We model farmers’ choice of combinations of climate-smart practices and 

impacts of adoption in a setting of a multinomial endogenous switching regression 

framework, a relatively new selection-bias correction methodology based on the 

multinomial logit model (Bourguignon et al. 2007). This approach allows for getting both 

consistent and efficient estimates of the selection process and a fairly good correction for 

the outcome equations, even when the independence of irrelevant alternatives (IIA) 

assumption is not achieved (Bourguignon et al. 2007). 

This framework also has the advantage of evaluating adoption of adaptation 

practices both individually and in combination, capturing the interactions among choices 

of alternative practices (Wu and Babcock 1998). The estimation is done in two steps. In 

the first stage, the farmer’s choice of individual and combined climate-smart practices is 

modeled using a multinomial logit selection model, while recognizing the inter-

relationship among the practices. In the second stage, we follow Mendelsohn et al. (1996) 

and estimate Ricardian models conditional on the impacts of various combinations of 

climate-smart practices on the outcome variables with selectivity correction terms.  

4.1 Multinomial Adoption Selection Model 

The farmer faces a decision in which multiple climate-smart practice 

combinations are simultaneously available and she has to select at least one of the 

combinations. The appropriate econometric approach to modeling such a decision 

process is to use a polychotomus choice framework, such as the multinomial logit model. 

Farmers are assumed to use the combination of climate-smart practices that maximizes 

their expected utility over their planning horizon. Let be the farmer’s expected 

utility from adopting combination of practices ,  , with respect to adopting 

alternative combination of practices : 

ij,i
*
ij XU                                                                                                              (1) 

where iX is observed exogenous variables (household, farm and location characteristics) 

and ij
is unobserved characteristics. The farmer’s utility from choosing a combination of 

climate-smart practices is not observable but the choice is.  

*
ijU thi

j )J,..,1j(j 

m
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Climate-smart practice combination j is chosen if
*
ijU

 is the highest for household 

i.  Therefore, the farmer will choose combination of adaptation practices j in preference 

to adopting any other combination of practices m if: 
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where
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 (Bourguignon et al. 2007). Equation (2) implies that the 
thi

farmer will adopt a combination of practices to maximize his expected profit if it 

provides greater expected profit than any other package  that is, if 

  0UUmax *
ij

*
im

jm
ij 

 . 

Assuming that  are identically and independently Gumbel distributed, the 

probability that farmer  with characteristics  will choose combination of practices  

can be specified by a multinomial logit model (MNL) (McFadden, 1973): 

                                                                   

 (3) 

4.2 Multinomial Endogenous Switching Regression  

The relationship between the outcome variables and a set of exogenous variables 

Z (farm, household and location characteristics) is estimated for the chosen combination 

of practices.  This yields eight conditional specifications, one for each combination of 

practices. The conditional Ricardian specification for each possible regime j  for j=1, . . ., 

8 is given as: 

j

,jm 



i X j

.

)(exp

)(exp
)|0(Pr

1





J

m

mi

ji

iijij

X

X
XP








Environment for Development Teklewold et al. 

14 

1 1 1Regime 1:     if 1 

.                .

.

.                .                                                                                                       (4)

.                .

Regime

i i iQ Z u I  

8 8 8 8:     if 8 i i iQ Z u I












  

 

where 
sQij


 are the outcome variables of the 
thi farmer in regime and the error terms

 are distributed with  and . is observed if and 

only if combination of climate-smart practices is used, which occurs when 

. If the and are not independent, a consistent estimation of  

requires inclusion of the selection correction terms of the alternative choices in (4). 

Bourguignon et al. (2007) show that consistent estimates of in the outcome equations 

(4) can be obtained by estimating the following selection bias-corrected net crop income: 
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where is the covariance between ’s and ’s and is the inverse Mills ratio 

computed from the estimated probabilities in (3) as follows: 

; is the correlation coefficient of ’s and ’s and  

are error terms with an expected value of zero. In the multinomial choice setting, there 

are J-1 selection correction terms, one for each alternative combination of adaptation 

practices. The standard errors in (5) are bootstrapped to account for the heteroskedasticity 

arising from the two-stage estimation procedure. 

Self-selection models that are estimated in a two-stage procedure have been 

criticized for being sensitive to misspecification (Wu and Babcock 1998). The lack of 

identification is particularly a problem when variables affecting the adoption decisions 
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(Z) are the same as those affecting the subsequent outcome equations (X). This is 

because, though the correction term ( ) is non-linear, this may not be sufficient in some 

cases, leading to problems of multicollinearity (Khanna 2001; Wu and Babcock 1998). 

Accordingly, to enable identification, we established a set of selection instruments 

hypothesized to directly affect the choice decisions but not the outcome variable of net 

crop income. A simple falsification test following Di Falco and Veronesi (2011) was used 

to test the assumption that the instrumental variables affect the practice choice decision 

but do not influence the crop income outcome. The results confirm that in nearly all cases 

the sets of instruments are successful at enabling identification.  

In addition, to overcome the possible correlation of plot-invariant unobserved 

heterogeneity with observed covariates, we use Mundlak’s (1978) approach, where the 

unobserved heterogeneities are parameterized by including the mean value of plot-

varying explanatory variables (e.g., average of plot characteristics, plot distance to 

residence) as additional covariates in the regression model. For application of this 

approach using cross-sectional multiple plot observations, see Di Falco et al. (2012). 

5. Estimation of Average Adoption Effects  

In this section, we show how to estimate the average adoption effect of a 

combination of climate-smart practices from the econometric approach outlined above. 

The estimands that are most commonly of interest are the average adoption effect on the 

population (ATE), the average adoption effect on the adopter (ATT) and the average 

treatment effect on the non-adopter (ATU). The ATE is the unconditional average 

adoption effect, which answers the question of how, on average, the net farm income 

would change if everyone in the population of interest had been “treated” with a 

particular combination of adaptation practices relative to none of them adopting any 

practices. The ATT and ATU answer the question of how the average outcome would 

change if everyone who received one particular treatment had instead received another 

particular treatment. 

The ATE of combination of practices (j) versus package (1) is defined from 

equation (5) as: 

 

)(Z)zZQQ(EATE 1jii1iij  for j = 2, . . ., 8                                                        (6) 

In observational studies, where the investigators have no control over the 

assignment of the package of adaptation practices, the adoption status is likely to be 
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dependent on outcomes and thus a biased estimator of the ATE. However, the ATT and 

ATU are used to compare expected net farm income of adopters and non-adopters with 

the counterfactual hypothetical case that adopters did not adopt and vice versa. Following 

Carter and Milon (2005), the expected net farm income under the actual and 

counterfactual hypothetical cases are computed as follows, by applying Equation (5). 

 

Adopters with adoption (actual): ijjjijij Z)jI|Q(E   (7) 

Non-adopters without adoption (actual): 1i11ij1i Z]1I|Q[E   (8) 

Adopters had they decided not to adopt (counterfactual): ij11ij1i Z]jI|Q[E   (9) 

Non-adopters had they decided to adopt (counterfactual): 1ijjijij Z]1I|Q[E  .    (10) 

Equations (7) and (8) represent the expected outcomes of adopters and non-

adopters that were actually observed in the sample, whereas Equations (9) and (10) 

denote the counterfactual expected outcomes of adopters and non-adopters, respectively. 

These expected values are used to compute unbiased estimates of the effects of adoption 

on adopters and on non-adopters. The average climate-smart practices adoption effect on 

the adopters (ATT) is defined as the difference between Equations (7) and (9): 

)()(Z]jI|Q[E]jI|Q[ATT 1jij1ji1iij   (11) 

Similarly, the average effects of adoption of a combination of climate-smart 

practices on non-adopters (ATU), i.e., the counterfactual effects of adoption on those who 

did not adopt if they had adopted, is computed as the difference between Equations (8) 

and (10): 

)()(Z]1I|Q[E]1I|Q[EATU 1j1i1ji1iij   (12) 

The ATT and ATU parameters give the expected outcome effect of adoption, 

controlling for selection bias, on a randomly chosen household in the groups that do and 

do not adopt a combination of adaptation practices, respectively.  

6. Estimation Results 

We begin to discuss our results with the choice analysis. Table 4 reports the 

estimated results of the multinomial logit model for the combination of climate-smart 

practices, including mean of plot-variant explanatory variables. We assessed the effect of 

introducing the Mundlak (1978) approach. Almost all equations reject the null hypothesis 

that all coefficients of the mean of plot-varying covariates are jointly statistically equal to 
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zero. Hence, we confirm the presence of correlation between unobserved household fixed 

effects and observed covariates. Keeping non-adoption of all practices (Va0Fe0Aw0) as 

the base category to which results are compared (i.e., the estimated effects are relative to 

being non-adopters), the table shows seven sets of parameter estimates, one for each 

mutually exclusive combination of practices. The estimation results shed light on the 

difference between adoptions of various combinations of adaptation practices. The Wald 

test that all regression coefficients are jointly equal to zero is rejected [χ2(420) = 38992; p 

= 0.000]. 

There is no significant correlation between adoption of climate-smart practices 

and gender of household head, except that male-headed households are more likely to 

adopt the combination of the two externally purchased inputs – modern crop seeds and 

inorganic fertilizers (Va1Fe1Aw0). As expected, there is significant and positive 

association between education level of the household head and adoption of modern crop 

seeds when combined with inorganic fertilizers (Va1Fe1Aw0) or water management 

practices (Va1Fe0Aw1). Education may increase an individual’s ability to acquire and 

absorb information on climate change and various farm management practices (Chander 

et al. 2003; Maddison 2006). Households with more education may have greater access to 

non-farm income and thus be more able to purchase inputs. Results also reveal that 

modern crops seeds, when combined with water management (Va1Fe0Aw1) and inorganic 

fertilizer (Va1Fe1Aw1), are more likely to be adopted by households with larger family 

size. 

The results reveal a significant wealth or liquidity constraint effect on the 

adoption of combinations of climate-smart practices. For example, the extent of livestock 

holdings influences the adoption of a combination of modern seeds and fertilizer 

(Va1Fe1Aw0). This indicates that modern seeds and inorganic fertilizer, which are 

externally purchased inputs, are not adopted by resource-poor farmers. This is likely 

because wealthier farmers have both the capacity to purchase external inputs and the 

ability to bear risk. Similarly, adoption of Va0Fe1Aw0 (only fertilizer) or Va0Fe0Aw1 

(only agricultural water management practice) is less likely for credit-constrained farm 

households. This suggests that liquidity-constrained households (those who need credit 

but are unable to get it) are less likely to adopt practices that require cash outlay. 

The results also reveal that households with confidence in the skills of extension 

agents are more likely to adopt improved seed varieties or fertilizer. These practices are 

relatively capital- and knowledge-intensive, requiring considerable cash outlays and 

management knowledge about proper application. However, whether the farmer has been 
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in contact with extension services has no impact on adoption of these two inputs. This 

may indicate that it is not the extension contact per se that affects adoption, but rather the 

quality of the extension services. This underscores the importance of upgrading the skills 

of extension workers to speed up adoption of climate-smart practices. 

The role of trusted intermediaries is particularly important in providing climate 

information to the farmers because, as empirical research has shown, farmers resist using 

climate forecasts. Many farmers, especially those in less developed regions, place a low 

priority on climate-related concerns, and farmers often think that climate information 

does not fit their needs because they perceive it to be inaccurate (spatially and 

temporally) and unreliable, because of high levels of uncertainty (Lemos et al. 2014). 

Here, however, we find that access to climate information makes it more likely that 

farmers use water management practices (Va0Fe0Aw1). This result suggests that climate 

change information is an important step to increase awareness and knowledge of farmers 

by providing evidence-based critical climate change information to build resilience and 

reduce uncertainty (Iwuchukwu and Udoye 2014). Thus, it is of particular importance to 

develop appropriate outreach materials about climate-smart practices and provide them to 

farmers, in order to promote farm management alternatives and reduce vulnerability to a 

changing climate. 

The social capital and network variables have positive effects on adoption of a 

combination of climate-smart practices. With imperfect markets for credit and insurance, 

including high transaction costs and scarce or inadequate information sources, these types 

of social capital and networks could facilitate the exchange of information, enable 

farmers to access inputs on schedule and overcome credit constraints. 

The perception that adoption of climate-smart practices has positive productivity 

effects on neighboring plots has mixed effects depending on the type of practice. Farmers 

are more likely to adopt agricultural water management and modern crop seeds on their 

plots if they believe that there have been positive productivity effects on their neighbors’ 

plots. Other-regarding preferences behind altruistic behavior may offer insights into the 

circumstances under which individuals are most likely to adopt modern crop seeds and 

water management that generate positive externalities. Adoption of water management 

techniques reduces soil erosion and increases soil moisture content, which to a certain 

extent benefits neighboring plots. However, farmers are less likely to adopt inorganic 

fertilizer when they perceive that their adoption has beneficial effects that are captured by 

their neighbors and experience disutility from the feeling that others free-ride on their 

application of fertilizers. The latter result is consistent with that of Wollni and Andersson 
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(2014), who suggest that farmers tend to forgo agricultural investments to prevent others 

from free-riding on their efforts because not all the benefits accrue to the individual who 

adopts them. 

With regard to the importance of rainfall and plot-level shocks in determining the 

adoption of a combination of adaptation practices, the results indicate that in areas/years 

where rainfall is worst in terms of timing, amount and distribution, it is more likely that a 

household shifts to a combination of practices that are more climate-smart. This finding 

suggests that smallholder farmers who are aware of rainfall variability are using water 

management practices in combination with modern seeds (Va1Fe0Aw1) and inorganic 

fertilizer (Va1Fe1Aw1) as adaptation strategies to mitigate the risk of climate variability. 

This is important evidence of the synergy among climate-smart practices as a form of 

climate adaptation. Plot-level disturbances such as flooding and incidence of pests and 

diseases negatively affect the adoption of modern seeds and fertilizer (Va1Fe1Aw0). 

However, households that believe that the government will provide support when crops 

fail are more likely to adopt fertilizer (Va0Fe1Aw0) or a combination of seed variety and 

inorganic fertilizer (Va1Fe1Aw0), probably because the benefit of these technologies is 

uncertain and farmers want insurance in order to adopt them. 

Farmers are more likely to adopt agricultural water management on plots that they 

own. This is probably because of tenure security and the hypothesis of Marshallian 

inefficiency, i.e., lower efficiency or input use on rented plots as compared to owned 

plots. Given the fact that the benefits from establishing water management systems on the 

farm accrue over time, this inter-temporal aspect suggests that secure land access or 

tenure will positively impact adaptation decisions. We also found significant effects of 

farm characteristics on the choice of alternative combinations of climate-smart practices. 

Slope of the farm and depth of the soil are particularly associated with the likelihood of 

climate-smart practices. The type of crops grown is also important in the choice of 

adaptation practices. While adoption of modern seeds and/or inorganic fertilizer is more 

likely for cereal than vegetable crops, adoption of water management is more likely for 

vegetable crops than for cereal and legume crops. As expected, fertilizer application is 

less likely on legume crops. Growing legume crops is usually considered a key 

component of integrated soil fertility management. 

We now move to the results of the climate variables. Not all individual climate 

variables are statistically significant. However, the set of climate variables are jointly 

highly significant determinants of the choice of a combination of climate-smart practices. 

We found that the amount of rainfall in the growing season is important for the choice of 
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fertilizer (Va0Fe1Aw0) and for the choice of a combination of water management 

practices with improved seed (Va1Fe0Aw1) or fertilizer (Va0Fe1Aw1). The positive first 

degree and negative second degree terms for growing season precipitation indicate an 

inverted U-shaped response to the likelihood of these combinations of climate-smart 

practices. However, the non-significance of the quadratic term coefficients of 

(Va1Fe0Aw1) and (Va0Fe1Aw1) suggests that adoption of modern seeds and fertilizer 

might be quite resilient to changes in precipitation when they are combined with water 

management practices. This result suggests the need for careful agro-ecological targeting 

when developing, promoting and scaling up adaptation practices.  Water management 

seems to be a key element because it can minimize the risk of a yield shortfall arising 

from application of fertilizer and new seeds in the event of unfavorable rain (Monjardino 

et al. 2013). 

This study also shows that the adoption of agricultural water management in 

combination with modern seeds (Va1Fe0Aw1) or inorganic fertilizer (Va0Fe1Aw1) 

responds to annual temperature in a hill-shaped pattern, where the linear coefficient is 

positive and the quadratic term coefficient is negative; all are statistically significant. 

This result suggests that these combinations of practices are important options for 

adapting agricultural production to warmer climatic conditions. Agricultural water 

management is a risk-reducing option, so increased frequency of unfavorable weather 

conditions favors its adoption. 

Increasing rainfall variability significantly decreases the likelihood of adoption of 

fertilizer, either in isolation or in combination with modern seeds, thus reflecting the 

adverse effects of rainfall variability on adoption of risk-increasing inputs. In high 

rainfall variability conditions, agricultural water management, whether in isolation 

(Va0Fe1Aw1) or in combination with inorganic fertilizer (Va0Fe1Aw1) or modern seeds 

(Va1Fe0Aw1) or both (Va1Fe1Aw1), is more important as an adaptation strategy for 

smallholder farming systems. As a risk-decreasing practice, water management is the 

most common response to rainfall variability; it strengthens farmers’ resilience when 

adopted in combination with modern seeds and/or inorganic fertilizer. 

Finally, we tested an interaction term between amounts of growing season 

precipitation and growing season rainfall variability and found important lessons for 

climate change adaptation. The result shows that, in low rainfall areas, adoption of 

improved crop seeds and/or fertilizer in combination with agricultural water management 

is more likely under high variable rainfall conditions. More variable rainfall and lower 

amounts of rain could bring challenges to agricultural production in general and to 
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adoption of risk-increasing externally purchased inputs in particular. However, 

agricultural water management can be combined with modern seeds and inorganic 

fertilizers to present opportunities for farmers to make the farming system more resilient 

to decreased rain intensity and increased variability. 

A schematization of choice behaviors with point predictions at varying levels of 

rainfall intensity, annual temperature and rainfall variability is shown in Figs. 1, 2 and 3, 

respectively. Fig. 1 shows that, if the climate becomes wetter, the probability of choosing 

agricultural water management practices in isolation or in combination with modern 

seeds and inorganic fertilizer increases. Farmers tend to move away from adoption of 

modern seeds and inorganic fertilizer when annual rainfall is higher or lower than an 

optimal level 800 mm. Agricultural water management is chosen more frequently as the 

climate becomes hotter, as shown in Fig. 2. On the other hand, Fig. 3 depicts that, under 

high rainfall variability, the likelihood of adoption of agricultural water management is 

increasing, whether it is adopted in isolation or in combination with modern seeds and 

inorganic fertilizer.   

6.1 Impacts of Multiple Adaptation Practices 

As we described above, in the second stage, we estimate the least squares 

regression of net crop income for each combination of climate practices, taking care of 

the selection bias correction terms from the first stage. The estimation result is shown in 

Table 1A in the appendix. In brief, many of the selection correction terms are significant 

at least at the 10% level, suggesting that these combinations of climate-smart practices 

will not have the same effects on non-adopters should they choose to adopt. This is 

evidence of self-selection in the adoption of packages of practices. It also suggests that a 

number of variables in the model have significant correlation with the net crop income 

variables and that there are differences between the outcome equations’ coefficients 

among the different combination adopter groups. This illustrates the heterogeneity in the 

sample with respect to crop net income. 

From the regression estimates, we derive the unconditional and conditional 

average effects of adoption of various combinations of agricultural water management 

practices, modern crop seeds and inorganic fertilizers. The unconditional average effect is 

presented in Table 5. The unconditional average effects indicate that adopters of any of 

the climate-smart practices in isolation or in combination earn more net crop income, on 

average, than non-adopters. This naive comparison would drive misleading conclusions 
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because the approach doesn’t consider that the difference in the outcome variable may be 

caused by observable and unobservable characteristics. 

Table 6 presents the true average adoption effects of net crop income under actual 

and counterfactual conditions. In this table, the net farm income variable of farm 

households who adopted the combination of climate-smart practices is compared with the 

outcome variables that would have been found if the households had not adopted.  This is 

done by applying Eq. (11). In order to determine the average adoption effects, we 

compare Columns A and B of Table 6. Column C presents the impacts of adoption of 

climate-smart practices in isolation and in combination on net crop income, computed as 

the difference between the above columns.  

Results show that the adoption of any of the climate-smart practices, whether in 

isolation or combination, provides higher net crop income compared with non-adoption 

(Table 6). In all counterfactual cases, farm households who actually adopted would have 

earned less if they did not adopt. Adoption of inorganic fertilizers in isolation provides 

higher net income than adoption of other practices in isolation. Adoption of inorganic 

fertilizers in combination with agricultural water management practices (Va0Fe1Aw1) or 

in combination with modern crop seeds (Va1Fe1Aw0) also provides higher farm income 

than a combination of water management and modern crop seeds (Va1Fe0Aw1). However, 

the largest farm income (10.5 thousand Birr/ha) is obtained from adoption of agricultural 

water management practices jointly with inorganic fertilizers and modern crop seeds 

(Va1Fe1Aw1). 

The productivity-enhancing effect of modern seeds or/and inorganic fertilizer is 

significantly higher when agricultural water management practices are added into the 

package. The net revenue of adopting a combination of agricultural water management 

with modern seeds or inorganic fertilizer is significantly higher, by 7.6 and 1.5 thousand 

Birr/ha, respectively, than adopting modern seeds or inorganic fertilizer alone. The net 

farm income from adoption of a combination of modern seeds and fertilizer is 14 

thousand Birr/ha. The net farm income from modern seeds and fertilizer is significantly 

increased by about 45% if agricultural water management is combined with modern seeds 

and fertilizers. This is a clear indication of complementarity among the three climate-

smart practices. 
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6.2 Simulation of Future Combination of Practices and Income 

The observed distributions and farm income associated with the different 

combinations of climate-smart practices are the consequences of long-term adjustment by 

farmers to the existing climate. If the current climate were to shift significantly, as many 

climate models predict, this would change the current distribution of practices, as farmers 

will learn that the current practices do not provide as much return as in the past. Based on 

our previous results, we now intend to simulate the effects of possible substantial future 

changes in climate on the choice of climate-smart practices and the net farm income half 

a century in the future. 

We use a climate scenario predicted by the regional climate model BCM.2 to get 

estimates using the A2 emission scenario from the special report on emission scenarios 

(SRES) of the IPCC (2000). At the district level, the SRES A2 emission scenario predicts 

an average annual temperature increase of 1.80C (+8% from the 1980-99 period) and an 

average total annual rainfall decrease of 34 mm (-2%) by 2060. We summarize the 

potential behavior of the combination of climate-smart practices in the adaptation model 

by calculating the scenario-predicted probabilities, which are cross-tabulated against the 

base fitted ones in Table 7. In the net income impacts module, we measure the impacts of 

climate change on net crop income for each alternative combination of climate-smart 

practices half a century in the future by taking the difference between the base-fitted and 

scenario-predicted net farm income (Table 8). An important remark to note in 

interpreting the results in Table 7 and 8 is that these results are partial equilibrium 

changes, which ignore the effects of other possible determinants of adaptation and farm 

profitability. 

Based on our parameter results and the A2 storyline, adoption of a combination of 

climate-smart practices by 2060 would be expected to change in about 40% of the 

farming plots (around 1840 plots – the sum of the off-diagonal components of Table 7). 

While plots with none of the climate-smart practices are predicted to decrease by about 

22% (38% vs. 16%), adoption of climate-smart practices in isolation as well as in 

combination would be expected to increase by up to 18% in half a century. Under the 

SRES A2 scenario, the net crop income for farms without climate-smart practices would 

be expected to decline compared to the baseline levels but the profit of farms with 

agricultural water management practices would increase (Table 8). Similarly, although 

there is a decrease in net crop income from farms with modern seeds alone or in 

combination with inorganic fertilizer, the profit increases when these two externally 

purchased inputs are combined with agricultural water management practices. Although 



Environment for Development Teklewold et al. 

24 

profit from farms with agricultural water management increases, the increase from farms 

with a combination of agricultural water management, modern seeds and inorganic 

fertilizer is very high. The overall conclusion of net income changes, shown in Table 8, 

confirms the hypothesis that farms with a combination of climate-smart practices are 

more resilient under climate change than are farms with climate-smart practices in 

isolation. A farm with a combination of climate-smart practices will have a relative 

advantage in the future in a warmer and moisture-stressed climate. These patterns should 

encourage more farmers to adopt modern inputs (fertilizer and modern seeds) in 

combination with agricultural water management practices.  

7. Conclusions 

Under climate change, increasing and sustaining food production is a scientific 

and policy challenge that must be met to sustain and increase benefits of intensive 

agricultural production. In the developing world, where vulnerability is greatest and 

farmers may face overlapping constraints (such as weeds, pest and disease infestations, 

and low soil fertility and crop productivity), promising climate-related management 

innovations, which may be adopted simultaneously as complements, substitutes or 

supplements, are underutilized because of the lack of empirically tested actionable 

information. In this article, we contribute to the existing empirical literature on whether a 

combination of multiple climate-smart practices is more resilient against climate change. 

We developed a multinomial endogenous switching regression model, where selectivity 

is modeled as a multinomial logit for the climate dependent occurrence of a combination 

of climate-smart practices (agricultural water management, modern crop seeds and 

fertilizers) at farm-plot level. We also develop a least squares model in the second stage 

to include self-selection bias correction terms for net farm income for those combinations 

of practices. In addition, we simulate the possible effects of climate change in the future 

on both the choice of practices and on farm income, using nationally representative 

comprehensive household-plot level data collected in 2015 in the Nile Basin of Ethiopia. 

Our results indicate that the current choices of alternative combinations of 

practices and related farm income in the Nile basin of Ethiopia are heavily influenced by 

climate. When the climate is hot and the rainfall is variable, farmers more often prefer a 

combination of practices over a practice in isolation. Adoption of fertilizer, whether alone 

or in combination with improved seed varieties, is less likely in areas of higher 

precipitation variability. However, under conditions of high rainfall variability, adoption 
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of fertilizer and improved seeds are more likely when they are combined with agricultural 

water management practices.  

The multinomial logit model results also revealed that the likelihood of adoption 

of agricultural water management, modern crop seeds and inorganic fertilizers is 

influenced by plot-level shocks, soil characteristics, social capital and extension services. 

The effect of these variables can be used to target policies aimed at increasing adoption 

rates of different types of practices. For example, the significant role of social capital and 

extension services suggests the need for establishing and strengthening local institutions, 

service providers and extension systems to accelerate and sustain adoption. In a country 

where there is information asymmetry and both input and output markets are missing or 

incomplete, local institutions can play a critical role in providing farmers with timely 

information, inputs (e.g., labor, credit, and insurance), and technical assistance. 

Furthermore, the adoption of climate-smart practices is more likely on owner-cultivated 

plots than on rented-in plots, suggesting a number of supplementary policy measures to 

guarantee long-term tenure security. 

With regard to the results of adoption effects, net farm income displays a positive 

response to agricultural water management, improved crop variety and fertilizer when 

they are adopted in isolation as well as in combination. But this effect is greater when 

these practices are combined than used in isolation. Based on these results, simulating the 

effects of climate scenarios by 2060, we find that the share of plots with none of the 

climate-smart practices is predicted to decrease by about 22%, while the share of plots 

with adoption of climate-smart practices in isolation as well as in combination is 

expected to increase by up to 18%. 

An important message from our findings is that the observed changes in intensity 

and variability of rainfall in the Nile Basin of Ethiopia could have negative impacts on 

agriculture if these changes persist. However, there are opportunities for agricultural 

producers to improve their resilience in a changing world; agricultural water management 

is among the ways that producers in the region are presently adjusting management to 

improve production and to be ready for the possibility of a more challenging rainfall 

regime. Increasing water retention and improving infiltration of soils might become a 

greater priority for producers looking to capture and efficiently use scarce rainfall, in 

order to minimize the risks associated with adopting yield-enhancing inputs under 

conditions of extreme variability of rains and increasing temperature. 
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Tables and Figures 

Table 1. Package of Climate-Smart Practices Used on Farming Plots in the Nile 
Basin of Ethiopia 

Choice 

(j) 

Package of 

climate-smart 

practices
Ψ

 

Improved crop varieties 

(Va) 

Fertilizer 

(Fe) 

Water managment 

(Aw) 

 

 

Frequency (%) 
Va1 Va0 Fe1 Fe0 Aw1 Aw0 

1 Va0Fe0Aw0  √  √  √ 28.25 

2 Va1Fe0Aw0 √   √  √ 2.72 

3 Va0Fe1Aw0  √ √   √ 17.50 

4 Va0Fe0Aw1  √  √ √  14.50 

5 Va1Fe1Aw0 √  √   √ 10.36 

6 Va1Fe0Aw1 √   √ √  1.83 

7 Va0Fe1Aw1  √ √  √  16.16 

8 Va1Fe1Aw1 √  √  √  8.57 

ΨEach element in the adaptation practices combinations consists of a binary variable for a practice 

(Improved crop varieties (Va), Inorganic fertilizer (Fe) and Agricultural water management (Aw)), where 

the subscript refers 1= if adopted and 0 = otherwise. 

 

Table 2. Sample Conditional and Unconditional Adoption Probabilities of Climate-
Smart Practices in Ethiopia 

 
Improved crop 
varieties (Va) 

Fertilizer 
(Fe) 

Water managment 
(Aw) 

P(Yk = 1) 23.5 52.6 41.1 

P(Yk = 1|YVa= 1) 100.0 80.6*** 44.3*** 

P(Yk = 1|YFe= 1) 35.9*** 100.0 47.0*** 

P(Yk = 1|YAw = 1) 25.3*** 60.2*** 100.0 

P(Yk = 1|YVa= 1, YFe = 1) 100.0 100.0 45.3*** 

P(Yk = 1|YVa= 1, YAw = 1) 100.0 82.4*** 100.0 

P(Yk = 1|YFe= 1, YAw= 1) 34.7*** 100.0 100.0 

Yk is a binary variable representing the adoption status with respect to choice k (k = Improved crop 

varieties (Va), Inorganic fertilizer (Fe) and Agricultural water management (Aw)). 

*, ** and *** indicate statistical significance difference at 10%, 5% and 1% respectively. The comparison 

is between unconditional probability and conditional probabilities in each practice. 
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Table 3. Explanatory Variables by Combination of Climate-Smart Practices 

Variable Description 
Va0Fe0Aw0 Va1Fe0Aw0 Va0Fe1Aw0 Va0Fe0Aw1 Va1Fe1Aw0 Va0Fe0Aw0 Va0Fe0Aw0 Va0Fe0Aw0 

All 

Mean Std.dev 

Household features           

Gender Sex of the head (1=if male) 0.872 0.867 0.855 0.890 0.930 0.872 0.876 0.916 0.882 - 

Age Age of the head. Years 51.39 48.62 52.64 51.39 51.81 49.55 53.15 51.23 51.81 12.72 
Education Education level of the head in years 1.80 2.35 1.24 1.95 2.11 2.87 1.76 1.98 1.80 3.03 

Famlysize Family size 8.07 8.45 8.27 8.03 8.55 8.29 8.10 8.55 8.21 2.40 

Resource constraints           
Farmsize Farm size in ha 1.74 2.28 1.90 1.80 1.84 2.04 1.90 1.83 1.84 1.20 

Tlu Livestock size 4.71 4.84 4.84 4.68 5.13 4.79 4.85 5.13 4.83 3.53 

Credit Credit constraint (1=if yes) 0.485 0.492 0.408 0.440 0.419 0.558 0.417 0.404 0.442 - 

Expend Annual household expenditure in ‘000 Birr 14.69 16.23 16.97 13.18 19.10 14.79 16.14 19.36 16.00 15.33 

Extension. information and market           

Distmkt Walking distance to main market in minutes 68.65 65.51 69.05 69.55 57.96 62.97 67.84 59.49 66.64 53.03 
Extcont 1=if contact extension agents 0.959 0.992 0.968 0.972 0.979 1.000 0.971 0.983 0.970 - 

Extconfd 1=if confident with the skill of extension agents 0.952 0.984 0.959 0.955 0.964 0.957 0.961 0.957 0.958 - 

Infoclimat 1=if farmer has access to climate information 0.496 0.539 0.447 0.595 0.575 0.547 0.503 0.620 0.524 - 

Social capital and network           

Member 1=if the household is member of groups  0.923 0.938 0.983 0.969 0.994 0.977 0.978 0.973 0.962 - 

Agrigroup Number of agricultural groups where a farmer is a member 0.789 0.953 0.656 0.802 0.951 1.105 0.807 1.097 0.824 1.098 
Socgroup Number of social groups where a farmer is a member 2.428 2.508 2.495 2.567 2.669 2.384 2.607 3.017 2.566 1.461 

Spillover effects on neighbors’ plots           

Vapos 1=if perceived positive effects of improved variety  0.258 0.336 0.337 0.189 0.359 0.291 0.228 0.395 0.282 - 
Fepos 1=if perceived positive effects of fertilizer 0.336 0.328 0.396 0.306 0.374 0.349 0.379 0.412 0.360 - 

Awpos 1=if perceived positive effects of water management 0.593 0.688 0.652 0.818 0.630 0.733 0.822 0.779 0.698 - 

Shocks           
Rainindex Rainfall disturbance index (1=best) 0.706 0.706 0.683 0.695 0.727 0.630 0.731 0.673 0.702 0.283 

Plotindex Plot level disturbance index (1=worst) 0.185 0.150 0.200 0.184 0.157 0.165 0.199 0.215 0.188 0.178 

Relygovt 1=if rely on government support in case of crop failure 0.364 0.359 0.482 0.334 0.437 0.360 0.434 0.479 0.409 - 

Farm features           

Plotdist Walking distance of the plot from home (minutes) 14.64 14.20 14.50 16.05 13.41 16.88 15.08 14.35 14.77 18.73 

Tenure 1=if own the plot 0.867 0.898 0.814 0.897 0.850 0.919 0.832 0.849 0.855 - 
Highfert 1=if highly fertile soil plot 0.349 0.305 0.367 0.384 0.386 0.488 0.393 0.427 0.376 - 

Midfert 1=if medium fertile soil plot 0.516 0.578 0.490 0.515 0.509 0.453 0.508 0.469 0.506 - 

Flatslop 1=if flat slope plot 0.580 0.492 0.683 0.565 0.602 0.709 0.617 0.613 0.607 - 
Midslop 1=if medium slope plot 0.392 0.445 0.279 0.389 0.366 0.267 0.367 0.347 0.360 - 

Depdepth 1=if deep depth soil plot 0.464 0.484 0.482 0.479 0.478 0.558 0.501 0.467 0.480 - 

Middepth 1=if medium depth soil plot 0.408 0.414 0.405 0.411 0.394 0.337 0.417 0.400 0.406 - 

Manure 1=if manure was applied in the plot 0.260 0.414 0.283 0.330 0.298 0.523 0.292 0.385 0.303 - 

Cereal 1=if cereal crops grown 0.593 0.758 0.871 0.588 0.938 0.593 0.820 0.871 0.742 - 

Legume 1=if legume crops grown 0.283 0.148 0.064 0.220 0.031 0.221 0.064 0.037 0.148 - 

Climate            

Rain Amount of rainfall in the growing season in mm (2000-2013) 698.39 790.70 616.24 775.88 719.19 818.02 695.72 694.97 701.38 233.67 

PCI Precipitation concentration index 20.09 21.02 19.39 20.79 19.62 21.66 19.56 19.86 19.97 2.59 
Temperature Average temperature in 0C (2000-2013) 27.36 26.34 26.04 28.19 24.31 27.20 29.35 29.14 27.38 5.85 

Elevation Location of the household with respect to altitude (m.a.s.l) 2218 1979 2279 2251 2211 2001 2250 2214 2227 416 

Number of observations 1333 128 823 682 487 86 760 403 4702 
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Table 4. Parameter Estimates for the Selection Model of Various Combinations of Climate-Smart Practices in Ethiopia 

Variables 
Va1Fe0Aw0 Va0Fe1Aw0 Va0Fe0Aw1 Va1Fe1Aw0 Va1Fe0Aw1 Va0Fe1Aw1 Va1Fe1Aw1 

Coefficient SE Coefficient SE. Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE 

Household features               

Gender -0.030 0.365 0.057 0.206 -0.024 0.242 0.529** 0.255 -0.029 0.421 0.199 0.241 0.475 0.330 

Age -0.010 0.009 -0.000 0.006 0.009 0.006 -0.002 0.006 0.005 0.016 0.010 0.007 -0.007 0.010 

Education 0.031 0.035 -0.032 0.029 0.006 0.029 0.048* 0.026 0.084* 0.047 0.022 0.027 -0.000 0.033 
Famlysize 0.067 0.049 0.027 0.028 -0.003 0.036 0.029 0.032 0.163** 0.078 -0.022 0.036 0.083* 0.043 

Resource constraints               

Farmsize 0.170** 0.069 0.104 0.072 -0.005 0.072 0.042 0.090 -0.041 0.090 0.033 0.076 -0.004 0.109 

Tlu 0.002 0.040 0.020 0.024 0.004 0.023 0.047* 0.024 0.009 0.042 -0.029 0.024 0.024 0.031 

Credit -0.002 0.237 -0.220* 0.144 -0.279* 0.153 -0.160 0.161 0.172 0.318 -0.220 0.165 -0.231 0.195 

Expend -0.006 0.007 0.001 0.005 -0.012* 0.007 0.005 0.004 -0.018 0.016 0.007 0.006 0.006 0.005 

Extension. information and market            

Distmkt -0.002 0.002 0.001 0.001 0.001 0.001 -0.003** 0.001 -0.001 0.003 0.003** 0.001 -0.003 0.002 

Extcont 1.379 0.936 -0.166 0.423 0.145 0.463 0.196 0.402 14.830*** 0.520 0.083 0.504 0.224 0.818 

Extconfd 2.044*** 0.698 0.592* 0.315 -0.120 0.385 0.585 0.494 -0.312 0.733 0.560 0.405 0.744 0.507 

Infoclimat -0.132 0.250 -0.148 0.141 0.304* 0.157 0.045 0.169 0.010 0.331 0.027 0.160 -0.004 0.211 

Social capital network               

Member 0.580 0.506 0.587 0.457 0.878* 0.529 1.514* 0.810 1.274 0.882 0.504 0.481 -0.318 0.626 

Agrigroup 0.056 0.098 -0.061 0.066 0.124 0.088 -0.052 0.069 0.247** 0.121 0.061 0.079 0.181** 0.086 

Socgroup 0.236** 0.112 -0.047 0.056 0.062 0.062 0.079 0.063 0.034 0.124 0.027 0.061 0.199*** 0.068 

Spillover effects on neighbors’ plots              

Vapos 0.658* 0.387 0.654*** 0.214 -0.293 0.246 1.235*** 0.265 0.113 0.463 -0.231 0.263 0.987*** 0.321 

Fepos -0.746** 0.355 -0.519*** 0.201 -0.297 0.216 -0.888*** 0.229 -0.386 0.425 -0.372* 0.230 -0.901*** 0.292 

Awpos 0.340 0.307 -0.077 0.167 0.981*** 0.198 -0.133 0.198 0.374 0.401 1.027*** 0.199 0.668*** 0.231 

Shocks               

Rainindex -0.037 0.400 -0.304 0.237 -0.184 0.263 -0.293 0.275 -1.128*** 0.437 0.339 0.251 -0.632** 0.288 

Plotindex -0.001 0.654 -0.601 0.437 -0.435 0.403 -1.253** 0.512 -0.927 0.900 0.192 0.425 0.139 0.546 

Relygovt -0.034 0.264 0.465*** 0.139 -0.223 0.165 0.288* 0.155 -0.257 0.329 0.007 0.169 0.242 0.200 

Farm features               

Plotdist 0.002 0.010 0.011** 0.005 0.005 0.005 0.003 0.005 -0.009 0.008 0.010** 0.004 0.001 0.005 

Tenure -0.333 0.442 0.076 0.207 0.669*** 0.233 0.041 0.233 0.871* 0.473 0.370* 0.202 0.253 0.256 

Highfert -0.177 0.536 -0.111 0.281 -0.389 0.314 0.107 0.338 -0.587 0.744 -0.160 0.299 -0.209 0.334 

Midfert -0.101 0.479 0.058 0.229 -0.383 0.270 0.254 0.292 -0.503 0.766 -0.001 0.272 -0.153 0.300 

Flatslop -1.404** 0.627 -0.748* 0.388 -0.974*** 0.369 -0.047 0.446 0.096 1.195 -1.083** 0.520 -1.649*** 0.451 

Midslop -1.047* 0.586 -0.505 0.373 -0.564 0.346 0.230 0.428 -0.336 1.247 -0.328 0.512 -1.090** 0.450 

Depdepth 1.343** 0.619 0.478* 0.299 0.579 0.381 0.265 0.339 0.350 0.663 0.727** 0.289 0.424 0.389 

Middepth 0.761 0.727 0.671** 0.265 0.569* 0.336 0.335 0.295 0.050 0.609 0.662** 0.278 0.482 0.354 

Manure 0.838*** 0.225 0.083 0.150 0.082 0.153 0.407** 0.176 0.803*** 0.300 -0.028 0.161 0.457** 0.182 

Cereal 0.873** 0.355 1.097*** 0.192 -0.320** 0.162 1.815*** 0.320 -0.059 0.337 0.225 0.177 0.606** 0.252 
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Legume -0.272 0.453 -0.860*** 0.238 -0.514*** 0.174 -1.029** 0.410 -0.512 0.383 -1.581*** 0.257 -1.920*** 0.344 

Climate               

Rainfall -0.011 0.036 0.055*** 0.019 0.013 0.014 -0.001 0.020 0.048** 0.023 0.036** 0.015 0.016 0.017 

Rainfall-squared 0.001 0.002 -0.003*** 0.001 -0.000 0.001 0.000 0.001 -0.001 0.001 -0.001 0.001 0.000 0.001 

Temperature 18.361** 8.841 1.508 4.278 2.215 1.941 1.663 3.495 17.231*** 4.403 4.632* 2.690 3.294 4.267 

Temperature-squared -0.425** 0.194 -0.029 0.122 -0.063 0.051 -0.037 0.096 -0.446*** 0.114 -0.128* 0.074 -0.094 0.119 

PCI 0.055 0.046 -0.175*** 0.017 0.090*** 0.014 -0.232*** 0.023 0.062*** 0.023 0.080*** 0.018 0.065*** 0.022 

Rainfall X PCI 0.030 0.072 -0.060* 0.037 -0.025 0.030 -0.011 0.038 -0.217*** 0.046 -0.086*** 0.030 -0.061* 0.029 

Elevation -0.000 0.001 0.001 0.001 -0.001 0.001 -0.001 0.001 -0.002 0.002 -0.003*** 0.001 -0.002 0.001 

Constant -206.782** 102.1 -34.391 37.409 -26.473 20.334 -16.390 35.789 -178.65*** 47.146 -52.420** 26.384 -34.321 39.05 

Joint significance of selection 

instruments χ2 (7) 21.08*** 17.07*** 28.33*** 25.55*** 1083.32*** 33.73*** 41.28*** 

Joint significance of plot 

varying covariates χ2 (6) 4.19 11.25 21.25*** 12.28 20.98*** 17.23** 24.19*** 

Joint significance of location 

variables χ2 (6) 23.60** 1298.76*** 35.30*** 136.08* 485.35*** 867.06* 89.08*** 

Number of observations = 4702; Wald χ2(420) =38992 ; p >χ2 = 0.000 

Note: SE is robust standard errors; *, ** and *** indicate statistical significance at 10%, 5% and 1% level; Va0Fe0Aw0 is the reference category; Location fixed effects are 

statistically significant, but not shown here for the sake of space. 
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Table 5.The Unconditional Average Effect of Adoption of a Combination of 
Climate-Smart Practices on Crop Net Income (‘000 Birr/ha) 

Practices Net crop income, Birr/ha Adaptation effects 

Va0Fe0Aw0 7.99(0.22) - 

Va1Fe0Aw0 10.09(0.21) 2.09(0.30)*** 

Va0Fe1Aw0 16.25(0.26) 8.25(0.34)*** 

Va0Fe0Aw1 10.96 (0.07) 2.96 (0.23)*** 

Va1Fe1Aw0 14.34 (0.07) 6.34 (0.23)*** 

Va1Fe0Aw1 27.45 (0.94) 19.45 (0.97)*** 

Va0Fe1Aw1 14.31 (0.091) 6.31 (0.24)*** 

Va1Fe1Aw1 21.05 (0.08) 13.05 (0.23)*** 

Note: figures in parentheses are standard errors; *, ** and *** indicate statistical significance at 10%, 5% 

and 1% level, respectively. 

Table 6. Average Expected Net Crop Income (‘000 Birr/ha) with Adoption of 
Combination of Climate-Smart Practices Effects 

Outcome Descriptions 

Adopter sample farm households  

(C) 

Adoption Effects 

(Birr/ha) 

(A) 

Actual Net crop 

income if farm 

households did 

adopt (Birr/ha) 

(B) 

Counterfactual Net 

crop income if farm 

households didn’t 

adopt (Birr/ha) 

Va1Fe0Aw0 Varieties 12.19 (0.56) 7.32 (3.15) 4.88(3.19)*** 

Va0Fe1Aw0 Fertilizer 12.87 (0.13) 5.99 (0.39) 6.89 (0.41)*** 

Va0Fe0Aw1 Water management 12.83 (0.20) 9.58 (0.11) 3.24 (0.23)*** 

Va1Fe1Aw0 Varieties & Fertilizers 13.42 (0.16) 5.84 (0.47) 7.58 (0.49)*** 

Va1Fe0Aw1 Varieties & Water managment 17.34 (1.08) 10.39 (0.48) 6.94 (1.19)*** 

Va0Fe1Aw1 Fertilzer & Water managment 15.06 (0.12) 5.99 (0.71) 9.06 (0.72)*** 

Va1Fe1Aw1 Varieties, Fertilzer & Water managment 20.55 (0.20) 10.04 (1.45) 10.51 (1.46)*** 

Note: figures in parenthesis are standard errors; *. ** and *** indicate statistical significance at 10%. 5% 

and 1% level. 
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Table 7. Changes in the Choice Probabilities (%) of Combinations of Climate-
Smart Practices for Future Decades 

Baseline (model-

fitted) combinations 

of climate-smart 

practices 

Scenario simulated combinations of climate-smart practices 

Va0Fe0Aw0 Va1Fe0Aw0 Va0Fe1Aw0 Va0Fe0Aw1 Va1Fe1Aw0 Va1Fe0Aw1 Va0Fe1Aw1 Va1Fe1Aw1 Sum 

Va0Fe0Aw0 40.09 1.01 18.47 21.51 6.19 0.73 9.74 2.25 37.77 

Va1Fe0Aw0 0.00 94.74 0.00 0.00 5.26 0.00 0.00 0.00 0.40 

Va0Fe1Aw0 1.33 0.00 76.48 2.42 6.06 0.00 11.52 2.18 17.55 

Va0Fe0Aw1 3.16 0.53 2.63 85.44 0.35 0.18 4.91 2.81 12.12 

Va1Fe1Aw0 0.25 0.49 11.03 0.98 74.51 0.00 8.82 3.92 8.68 

Va1Fe0Aw1 0.00 0.00 0.00 6.25 6.25 81.25 6.25 0.00 0.34 

Va0Fe1Aw1 0.00 0.00 22.25 7.42 3.01 0.00 64.19 3.13 18.35 

Va1Fe1Aw1 0.00 0.00 21.78 1.33 5.33 0.89 7.11 63.56 4.79 

 Sum 15.78 0.87 26.80 20.44 10.76 0.62 19.20 5.53 100.00 

 

Table 8. Changes in Conditional Net Farm Income (‘000 Birr/ha)  
for Future Decades 

 Mean net income Va0Fe0Aw0 Va1Fe0Aw0 Va0Fe1Aw0 Va0Fe0Aw1 Va1Fe1Aw0 Va1Fe0Aw1 Va0Fe1Aw1 Va1Fe1Aw1 

Simulated 
8.87 9.94 13.04 14.03 12.90 18.79 16.10 23.09 

(1.46) (5.33) (2.38) (2.73) (3.03) (10.89) (2.09) (4.78) 

  

Baseline 

9.44 12.07 12.87 12.85 13.43 16.99 15.09 20.57 

(2.03) (6.05 (3.09) (4.58) (3.21) (6.92) (3.16) (4.04) 

 Absolute change -0.56*** -2.12** 0.17 1.18*** -0.54*** 1.79 1.01 2.52*** 

 Percentagechange -5.40 -17.94 1.33 9.18 -3.99 10.55 6.69 12.20*** 

Note: Numbers in parentheses are standard deviations; *, ** and *** indicate statistical significance at 

10%, 5% and 1% level. 
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Figure 1. Choice Probabilities Response of Combination of Climate-Smart 
Practices to Amount of Rainfall 

 

Figure 2. Choice Probabilities Response of Combination of Climate-Smart 
Practices over Temperature 
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Figure 3. Choice Probabilities Response of Combination of Climate-Smart 
Practices to Rainfall Variability 
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