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Abstract

We explore a nonlinear, “notched” pricing structure in a novel market—urban bike-
sharing—to identify how inframarginal price changes affect consumer behavior. By ob-
serving cyclists extending their trips to avoid a discontinuous price increase, we are able
to estimate a time-for-money trade-off directly for both commuting and recreational
trips. Although our estimation strategy reveals an estimate of consumers’ opportunity
cost of time under neoclassical assumptions, we find that a 400% price increase does
not affect behavior in a meaningful way. This result suggests consumers respond more
strongly to quantity signals, which has direct implications for nonlinear pricing in other
settings.
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Different constraints are decisive for different situations, but the most
fundamental constraint is limited time.
— Gary S. Becker, Nobel Lecture (Becker, |1993)

1 Introduction

Taxes, prices, and policies that create nonlinearities in consumers’ choice sets have received
increasing attention by economists in recent years. Facing large incentives, such as changes
in income tax rates, consumers tend to bunch on the favorable side of tax schedules (Kleven
and Waseem|, [2013)). In other cases consumers appear to be unaware of small incentives, such
as jumps in the marginal price of electricity within a billing period (Ito, 2014). Understand-
ing how consumers respond to nonlinear incentives, what that behavior reveals about the
trade-offs they make, and how those trade-offs can inform economic thinking remain open
questions.

In this paper, we uncover consumer responses to a price “notch” (i.e., a price that intro-
duces a discontinuity in a consumer’s budget set) in a novel market: cycling via an urban
bikesharing program. By exploiting a discrete jump in the cost of a bicycle trip beyond
30 minutes in Denver’s B-cycle program, we identify novel consumer bunching behavior in
which a cyclist avoids a price discontinuity by going out of her way to check-in and check-
out a bicycle at an intermediate station along her route. Splitting consumption in such a
way reveals a consumer’s willingness to trade off her time to avoid the price increase, thus
illuminating the opportunity cost of her time. Recreational users spend more time avoiding
the price notch than commuters, suggesting important heterogeneity in labor-leisure time
trade-offs.

Methodologically, we use a two-stage matching design paired with parametric estimation
for causal inference (e.g., Heckman et al. (1997)); Smith and Todd| (2005); |[Ferraro and Mi-
randa/| (2017); Wichman and Ferraro| (2017)). In doing so, we identify bunching in response
to nonlinear prices relative to an observable counterfactual distribution, as opposed to esti-
mating a counterfactual density or observing spatial discontinuities across comparison units.
Specifically, we pre-process our data set using covariate matching to construct an observa-
tionally similar counterfactual for each trip that we identify as a “daisychain” trip (i.e., a trip
that has been split to avoid the price discontinuity). We then apply parametric estimators
to our balanced data set to control for unobserved heterogeneity that might further bias
our estimates. Comparing the time difference from a daisychain trip to its corresponding
comparison trip provides an estimate of the time cost consumers are willing to incur to avoid

the price notch, which provides an upper bound on their value of time.



Value of time (VOT) estimates are used broadly to justify public projects and value
nonmarket goods. For example, the VOT has been used to: (i) estimate the value of
a statistical life (Ashenfelter and Greenstone, 2004)), (ii) calculate search costs for home
production (Aguiar and Hurst, [2007)), and (iii) value lost recreational benefits within the
Deepwater Horizon oil spill settlement (Deepwater Horizon Natural Resource Damage As-
sessment Trustees, 2016]). Our estimates of VOT, derived from inframarginal price changes,
are generally smaller than those of existing studies and those recommended for benefit-cost
analyses provided by federal agencies. Notably, our paper is the first to our knowledge to
identify within-sample user type and temporal heterogeneity that reveals larger VOTs for
commuters and lower values for recreational users. By virtue of design, we are able to isolate
consumer behavior from vehicle choice better than previous work (e.g., each trip observation
in our sample is taken on a bicycle with exactly the same specifications).

We also provide evidence that the discontinuity itself drives consumer behavior, rather
than the price increase. We show that consumers do not alter behavior in a meaningful
way in response to a 400% increase in the price of a trip beyond 30 minutes, from $1 to $5.
This result suggests that pricing policies designed to target easy-to-understand quantities
(e.g., miles driven per hour, the length of a shower, megabytes of cellular data used to
upload a video, and so forth) as focal points may induce behavior that accords with existing
economic models, and can improve the effectiveness and predictive qualities of taxes, prices,
and policies that create nonlinear budget sets.

More practically, our results provide novel evidence on price responsiveness, and the cor-
responding mechanism driving such responsiveness, of consumers in the burgeoning “sharing”
economy. As such, our paper complements recent work on demand sensitivity in peer-to-
peer transit markets (Cohen et al., 2016; Cramer and Krueger, 2016|). Our estimates help
to understand implicit trade-offs in revealed preference indicators for valuing public trans-
portation projects that need to incorporate differences in motor-vehicle and bicycle traffic,
as the share of bicycle commuters has increased by 90% between 1990 and 2012 in the 70
largest cities in the U.S[T| Further, our results provide important takeaways for the growing
bikesharing industry. First, we provide strong evidence that bicyclists, like other consumers,
respond to their pricing structure. Utilizing prices to manage scarcity (e.g., dynamic prices)
could improve system efficiency, and including price sensitivity in demand projections can
improve the financial solvency of urban transit programs. Second, public funding for bike-
sharing programs often relies on a coarse measurement of demand: trips. Our present paper

explores nuances in how current reporting practices may overstate the usage of bikesharing

IStatistics obtained from the U.S. Census American Community Survey, summarized by the League of
American Bicyclists, http://www.bikeleague.org/commutingdata. (Last Accessed: October 19, 2016).
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programs by not incorporating strategic consumer behavior.

1.1 Background on bikesharing

Bikesharing is an urban transit system in which members can use bicycles from stations in
public places and return them to other stations when their ride is complete. Modern systems
require members to purchase a membership for a specified time (e.g., one day, three days, one
month, and one year). Members use a key to unlock a bicycle at any station, and they can
return it to an empty dock at a station near their end destination. Generally, the marginal
cost of a trip completed within a given amount of time (typically 30 minutes) is zero, while
trips that last longer than that are priced according to an increasing tiered schedule (see
Figure (1] for an example of a pricing structure, and Table (1] for the price schedule analyzed
in this analysis).

Bikesharing systems are growing rapidly in North America and providing new transporta-
tion opportunities for residents and visitors in major cities (Martin and Shaheen) 2014]).
There are more than 600 bikesharing systems with 600,000 bikes internationally. The first
U.S. programs started in 2010 in Denver, Washington, Minneapolis, and Des Moines. Sev-
eral cities have adopted systems in years since, with ridership increasing each year. Users in
the largest program in the U.S., New York’s CitiBike, logged over 10 million rides in 2015/
Worldwide, the industry is projected to generate revenues of four to six billion U.S. dollars
by 2020

Bikesharing systems are intended to encourage short-to-medium distance rides. Ideally,
these systems would complement existing public transit, providing an alternative to walk-
ing to and from a major transit center, or linking two routes that do not overlap (Pucher
and Buehler, 2005)). [Shaheen (2012) notes several potential local benefits of bikesharing:
increased mobility, consumer transportation cost savings, reduced transportation infrastruc-
ture costs, reduced traffic congestion (Hamilton and Wichman| [2017)), reduced fuel use,
increased use of public transit (Martin and Shaheen, 2014), public health improvements,
and greater environmental awareness.

A review of the literature returns very few papers that study outcomes of bikesharing
programs. Davis et al. (2015) analyze spatial and temporal variation in ride patterns using
data from Bay Area Bikeshare. Martin and Shaheen| (2014)) evaluate how bikeshare programs
integrate into existing transit systems, and they use surveys in Washington, DC, and Mel-

bourne to assess modal shift to bikesharing. Fishman et al. (2015 research the institutional

2CitiBike trip data available from https://www.citibikenyc.com/system-data.
3We thank Roland Berger Strategy Consultants for providing us with their 2015 study titled “Bike Sharing
4.07.
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and demographic factors affecting bikeshare membership. Hamilton and Wichman| (2017)
estimate the causal impact of bikeshare stations on local traffic congestion in Washington,
DC. Shaheen| (2012) and [Shaheen et al.| (2014) provide more comprehensive overviews of the
institutional design and usage trends in North America. We are aware of no studies that

consider price responsiveness of cyclists within these programs.

1.2 Transportation and the opportunity cost of time

The value of time (VOT) has been a topic of interest to economists for several decades, with
applications such as valuing recreational amenities and evaluating public policies related to
the productive benefits of transportation. The conceptual foundation of the VOT was formed
by seminal papers from [Becker| (1965) and DeSerpa/ (1971)), who formalized how consumers
allocate resources when time is scarce. [Beesley (1965) complemented these theories in an
empirical paper within a travel time context.

Many of the early papers used travel cost to value recreational benefits, imputed by
using the time spent to travel to a park, lake, or other recreational site. Stated preference
studies for recreation demand literature include Bockstael et al.| (1987), Feather and Shaw
(1999), and |Lew and Larson| (2005). Transportation research has myriad useful applications
for the VOT. A number of papers use toll road choices to infer travel cost (see, e.g., Bhat
(1995), Brownstone and Small (2005)), [Small et al.| (2005), Steimetz and Brownstone| (2005)),
and [Fosgerau et al.| (2010)). [Fezzi et al.| (2014)) analyze behavior on a series of routes to
recreational sites with different levels of tolls. Deacon and Sonstelie (1985) exploit a natural
experiment induced by wait times and gasoline prices, where drivers revealed their VOT by
trading off time waiting in a queue for cheaper gas. |Wolff| (2014)) uses speed and gasoline data
to estimate whether drivers reduce their driving speed when gas prices are high to conserve
gasoline.

Typical estimates of the VOT have a wide range of values, usually less than the wage
rate. |Cesario (1976) estimates a value as low as 33% of the wage rate. |Wolff| (2014) finds
a rate closer to half the prevailing wage using a strategy that identifies revealed preference
measures on an intensive margin. |Fezzi et al.| (2014) estimate a VOT at 70-80% of the
individual-specific wage rate, rather than inferring the wage from annual median household
income, as suggested by U.S. Department of Transportation guidelines (U.S. Department of]
Transportation, 2014)). And, Deacon and Sonstelie (1985) and [Small et al.| (2005) produce
values of 80-90%. |Ashenfelter and Greenstone, (2004)) use the full wage rate to estimate how
the public trades off wealth for mortality risks associated with higher traffic speed limits.

Taken at face value, our paper makes several contributions to the VOT literature. We



provide revealed preference estimates using a sample of bicyclists by exploiting the fact
that an alternate route can be taken to avoid an increase in price. Second, we have a
classification of users (registered and casual) that allows us to see differences in the VOT
within groups based on differences in trip purpose. Third, we directly assess temporal
heterogeneity to explore the role of time-varying time constraints. Lastly, our design isolates
both the mechanism by which consumers reveal their value of time and the vehicle attributes
that may interact with consumer preferences. More broadly, we contend that within our
setting, and other information-constrained settings, consumers may not be fully attentive to
the price schedule, and rather than placing undue confidence in our VOT estimates, we rest
the importance of this paper on identifying novel strategic consumer behavior that suggests

an alternative mechanism through which consumers react to complicated pricing schemes.

2 Notches, avoidance behavior, and the value of time

Notches were first defined formally in [Blinder and Rosen| (1985) as a discontinuity in the
budget constraint, which results in a finite sum of benefits being lost when the notch threshold
is crossed. There are numerous recent studies that analyze whether consumers bunch at
notches in tax systems; many are summarized by [Slemrod| (2013). |Kleven and Waseem
(2013)) analyze bunching behavior at income tax schedule notches, where there are discrete
changes in tax liability at different levels of income in Pakistan. Bunching at threshold levels
in taxation has also been analyzed in the context of home and property sales (Kopczuk
and Munroe, 2015; Best and Kleven|, 2013), business earnings and size (Hsieh and Olken),
2014; |Onji, 2009)), savers taxes (Ramnath, 2013)), and vehicle fuel standard taxes (Sallee and
Slemrod,, 2012)).

Several papers observe temporal bunching, where consumption occurs in a more favorable
tax year. This temporal shift is documented for changes in the U.S. capital gains tax (Burman
and Randolph, 1994) and estate tax (Kopczuk and Slemrod, 2003). Temporal bunching is
also observed in the absence of a changing tax structure. LaLumia et al. (2015) find an
increase in U.S. births near the end of December, and a corresponding decrease in early
January, attributed to the earned income tax credit, which increases with the number of
children within a family. [Ito and Sallee, (2014) explore attribute-based regulations in the
context of fuel economy, where the policy standard is a nonlinear function of vehicle weight.
Further, state and local taxes have been found to induce spatial bunching near borders.
Individuals near state borders, where there is a significant change in the sales tax rate, will
buy on the favorable side of the border. These cases are considered for general sales taxes
(Agrawal, |2013) and cigarette taxes (Lovenheim| 2008).



The taxation literature also provides insight on kinks (i.e., nonlinearities in budget sets),
which can induce bunching behavior. Responses to kinked budget sets are considered in the
cases of income taxes (Saez, |2010; Bastani and Selin) 2014), wealth taxes (Seim) 2013), and
business taxes (Carrillo et al., [2012; |Chetty et al., 2011)). A corresponding literature focusing
on kinked price schedules analyzes demand for electricity and water (Ito|, |2014; Wichman),
2014; [Szabol [2015). For consumer goods and services in these contexts, where inattention
and imperfect information plays an important role (Sallee, [2014), bunching does not appear
to be prevalent.

Responses to notches outside of the taxation literature, however, are less common. The
only paper that specifically analyzes behavior in a non-tax setting is [Mbiti and Weil (2013)),
who analyze bunching in e-money withdrawal amounts, where a nominal fee is charged based
on the bracket in which the withdrawal amount falls.

One relevant strategic response to notched pricing structures is “splitting” consumption.
Onji| (2009), for example, analyzes the effect of a tax reform in Japan that allowed firms with
annual sales less than 500 million yen to opt out of the VAT system into a simpler, more
favorable tax program. Onji observes an increase in the density of the distribution under
the threshold, which he attributes anecdotally to companies splitting into multiple smaller
companies that each have revenues below the 500 million yen threshold. This example will
return results different from traditional bunching examples because individuals well beyond
the notch can cheat under the notch, and the data generated by this form of cheating will
not necessarily bunch right below the notch (e.g., a 650 million yen company, well above the
notch, might split into two 325 yen companies, now well below the notch). Bunching and
holes may be less prevalent near the threshold, but the density of these distributions should
increase on the more favorable side of the notch and decrease on the less favorable side. We
identify a parallel concept in individual behavior, where consumers split bicycle trips into
multiple shorter trips to avoid a discontinuous jump in price.

There are several primary takeaways from this literature for the present analysis. First,
nonlinear incentives induce relatively predictable behavior in theory. In practice, however,
strategic manipulation of consumption or income in response to nonlinear thresholds is ob-
served when reporting is manipulable and the payoffs are large (e.g., self-reporting income
taxes). When individuals have less precise control over their behavior, such as with elec-
tricity consumption, bunching is less likely to occur. As a result, there is little empirical
evidence of bunching around nonlinear incentives for the consumption of consumer goods

and services.



2.1 A simple model of consumption splitting

To highlight the role of nonlinear incentives for consumption splitting and its usefulness in
measuring consumers’ VOT, we present a stylistic model below. Consider a bikeshare user @
who chooses a route between station 6 and ¢, with an expected trip duration of E[d(6,6")].

The consumer faces the following notched price schedule,

o) — 0 ?f d6,0") <k )
p ifd(0,0) >k

where k is a notch in the elapsed duration of the trip, and p(d) is the full cost of the trip
(i.e., not marginal).

If the consumer anticipates that E[d(6,0")] will exceed k, she has the option to split her
trip at a marginal time cost of A(3) > 0 into two legs by stopping at a central location 6°,
where E[d(0,0%)+d(0°,0")]—E[d(0,0")] = B such that 3 > 0 and E[d(0, 0°)], E[d(0°,0')] < k.
That is, the duration of the combination of both legs is weakly greater than that of the
direct route and the duration of each leg is anticipated to be shorter than the notch, k. The
consumer therefore faces a per-trip expenditure of p(d) if she does not split her trip into
multiple legs and A(f) if she does. In the context of bikesharing, consumption splitting is
colloquially referred to as ‘daisychaining,” and we adopt that terminologyﬂ

Several predictions fall out of the structure of this choice problem directly. First, a
consumer will only choose to split consumption if A(3) < p(d). Although intuitively obvious,
this prediction implies that consumers will equate the marginal value of their time spent
daisychaining with the expected marginal cost of a trip. This prediction, then, allows us
to observe behavior within a trip in response to inframarginal price changes to estimate
consumers’ value of time directly.

Second, the likelihood of consumption splitting jumps at k, increases as p increases,
and decreases as [ increases. Intuitively, this is the result of the piecewise notch in trip
expenditures and the change in relative costs of alternatives. This prediction serves as the
foundation of our instrumental variables strategy discussed below, in which we instrument
for the likelihood of daisychaining with indicators representative of the rate schedule.

Third, more precision in consumer expectations implies a greater degree of sorting around
k. In other words, a consumer with a better sense of her travel time, and the cost of her

alternatives, is more likely to locate in an optimal region of the price schedule. We incorporate

4The act of docking bicycles to keep trip length under the limit where overage prices are
incurred is known as daisychaining or dock-surfing in the bikeshare community. See the use
in blog posts at http://www.virtuousbicycle.com/BlogSpace/getting-ready-for-citibike-bike-share/ and
https://brooklynspoke.com/2013/06,/03/citi-bike-101-dock-surfing/



these predictions empirically by relying on consumer-specific heterogeneity present in our
data. Specifically, we observe whether a trip is taken by a “registered” (i.e., annual) or
“casual” (i.e., 3-day) member. Further, we allow the possibility that A varies over time to
account for urgency (Bento et al 2014) or temporal shifts in time constraints. As such, we
examine how our parameter of interest, the empirical estimate of 3, varies between weekdays
and weekends, as well as different commuting times within the day.

As a graphical example, we present three alternative distributions of consumer behavior in
response to a notch threshold k in Figure [2 The solid blue line represents a counterfactual
in which the consumer has no ability to manipulate her trip time. The dashed red line
represents classical bunching behavior in response to the nonlinear incentives in the spirit of
Kleven and Waseem (2013)). This behavior, indicative of consumer sorting on an intensive
margin, could represent self-reported income above or below an income-tax threshold. In
the bikeshare example, the only margins on which consumers could exert this behavior is
by cycling faster along a given route, or to end a trip early and walk the remainder of
the distance to the end destination. Finally, the dotted black line represents cumulative
trip durations under a model of splitting behavior. As shown, the density moves smoothly
through the discontinuity in the price schedule, and displays bunching on the less favorable
side of the threshold because consumers are linking multiple shorter trips get from their
starting destination to their end destination. In this way, daisychaining bikeshare trips can

be viewed as sorting along an extensive margin.

3 Data

We use trip data provided by Denver B-cycle (henceforth, “B-cycle”) to analyze the patterns
of bikeshare users.E] B-cycle began in 2010 and, as of Fall 2016, had approximately 90 stations
with more than 700 bicycles throughout Denver, Colorado. For each trip taken, we observe
the start and end destination and their geographic coordinates; the start and end time of
the trip, providing its duration; a unique subscriber ID; and an indicator for whether the
user is a registered (annual) member or casual (3-day) member. For each route defined by
its start and end locations, we construct an estimate of time needed to bike the route and
the distance of the optimal route using the Google Maps Directions APIL.

To identify what we define as daisychaining (i.e., consumption splitting in the context of

bikesharing programs), we use B-cycle trip data from January 2013 through December 2016,

5Denver B-cycle provides publicly available trip level data at https://denver.bcycle.com/company.
Station metadata can be found in the page source for the station map at https://denver.bcycle.com/.
Denver B-cycle provided us with information on retired stations and other helpful information about the
data via email.
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inclusiveﬁ We use the subscriber ID to isolate each member’s trips, sorting from oldest to
newest, and we flag pairs where the second trip began three minutes or less after the first
trip ended. We are then able to combine each group of two or more consecutive trips into
one multi-segment trip, and view the aggregate trip time, starting station, and ultimate
ending station.m In the interest of finding trips where the user stopped at an intermediate
station between their true start and end destination, we include other restrictions to eliminate
observations that might confound our modeling approach: (i) we eliminate round trips, where
a user’s start and end destination are identical; (ii) we eliminate trips over 150 minutes
from the data, because they are often caused by failure to dock the bike properly; (iii) we
eliminate daisychain trips where one or more segments exceeded 65 minutes; and (iv) we
remove daisychain trips if the two segments went in opposing directionsﬁ

Further, we take advantage of changes in the pricing structure that affect incentives to
daisychain. At the beginning of 2015, costs for the daily and annual passes increased (from
$8 to $9 and $80 to $90, respectively), which should only affect virtual income and should
not affect the distribution of trip time or the proportion of trips that were splitﬂ In October
of 2015, B-cycle increased the overage charges (see Table . Previously, the first overage
charge was $1, and each half hour afterwards was $4. The new overage price fee is $5 for
the first overage charge, and $5 for every 30 additional minutes. Within this analysis, we
analyze “pre-Oct. 2015” observations and “post-Oct. 2015” observation separately. Our
primary results are drawn from the pre-Oct. 2015 sample, although we analyze the effect of
the 400% increase in the price of exceeding the free ride allotment on the distribution of trip
time and frequency of trip splitting by comparison with the post-Oct. 2015 sample.

After imposing these restrictions, we identify roughly 20,000 daisychain trips taken by
more than 2,100 registered and 6,600 casual users within the universe of trips between 2013
and 2016. 28 percent of all registered users had daisychained at least once, as well as 7

percent of casual users.

62013 was the first year that a unique subscriber ID was provided in the trip data.

"For our analysis, we only use two-segment daisychains, although we identified a small number of trips
with three or more segments.

8We identify trips where the first segment and second segment point in opposing directions using the
bearing (angle from North) of each trip. If the linear direction for the second segment is larger than 135
degrees from the linear direction from the first segment, we drop the entire trip from our sample.

9At the same time, B-cycle introduced an “Annual Plus Membership,” which allowed 60 minutes of free
ride time instead of 30. The price difference between this membership and the annual membership that only
provides 30 minutes free per trip was $10. Significant migration to the annual plus membership would change
the distribution of annual member trip times and reduce split trips. Because of these differential incentives,
we remove Annual Plus members from our analysis. In the calendar year of 2016, annual memberships were
no longer available for purchase. Thus, we only observe registered users in our sample in 2016 if they had
purchased an annual membership in 2015. Marginal trip costs change for all users simultaneously regardless
of when the membership was purchased.



As shown in Table , mean trip time for trips in our full sample (n1=930,694) in 2013-2016
was 14.52 minutes, with a standard deviation of 12.93 and a median of 10. For registered
users (n=652,918), the mean is 10.35 with a standard deviation of 7.73 and median of 8. For
casual users (n=277,653), the mean is 24.32 with standard deviation of 16.82 and a median
of 20.

4 Empirical strategy

4.1 Evidence of consumption splitting

In Figure 3, we plot the distribution of trip time over all years and member types in our raw
B-cycle trip data for both registered and casual users. As shown, registered users have a
smaller mean and the majority of the mass of the distribution is below the 30-minute mark.
Casual users have a higher mean, and a slightly more uniform distribution of trip time. The
raw data show virtually no bunching near the 30-minute notch.

To determine whether there is strategic avoidance of the notch price at 30 minutes, we
append individual trips that meet our criteria for a daisychain trip. In Figure [ we plot the
trip time distributions for each individual segment of a trip that was daisychained by user
type. For both registered and casual users, we begin to see apparent sorting around the 30-
minute notch. Users appear to end their first segment before the notch, but not immediately
so, contrary to typical bunching in the presence of notches (Kleven and Waseem, 2013). This
strategic behavior occurs because the second segment is also subject to a 30-minute notch
and, hence, cyclists can link two shorter trips together to avoid the notch.

In Figure [5, we append both segments for each daisychain trip in our data and plot
the resulting distribution. The result is a set of trips that displays more obvious sorting
around the notch point. For casual users, the distribution is roughly symmetric, peaking
between 35 and 40 minutes. There appears to be a small, but abrupt, discontinuity in the
distribution at the 30-minute mark. The distribution for registered users is more irregular.
There is substantially more mass below the 30-minute notch and a relatively smooth change
across the notch point. Between 35 and 40 minutes, however, there is a dramatic drop in the
distribution, which suggests that consumers may add multiple short trips together to bunch

directly on the unfavorable side of the notch.

4.2 Confronting selection and simultaneity

The consumer’s choice problem is simple: Do I choose to daisychain to avoid the price notch?

Two straightforward identification problems arise in this context. First, if daisychain trips

10



are not representative of all bikeshare trips, then we have a sample selection issue and any
estimate of the time elasticity of prices will be inconsistent. Second, because the cost of a
trip is a function of trip duration, the choice to daisychain is made concurrently with the trip
duration. If there is some unobserved component of choice that affects both the extensive
margin (whether to daisychain) and the intensive margin (duration of the trip), then any
econometric estimate of consumers’ value of time will embed simultaneity bias.

We approach each of these empirical concerns as follows. First, we adopt a two-step
covariate matching algorithm to construct an observationally similar comparison sample prior
to applying any parametric estimator. This strategy, by balancing “treated” (i.e., daisychain)
and “comparison” (i.e., direct) trips on observable characteristics of the route and user,
effectively eliminates the selection concern and, importantly, reduces model dependence (Ho
et al., 2007). We do not contend that our matching approach solves the potential simultaneity
problem. Rather, we contrast different parametric approaches to controlling for omitted
variables that may influence the decision to daisychain. By including individual-specific
fixed effects, we remove time-invariant characteristics associated with a user’s propensity
to daisychain (including, e.g., her income, ability, and risk preferences). Alternatively, by
including route-specific fixed effects, we are able to eliminate attributes that comprise the
geography of a trip. Lastly, we instrument the choice to daisychain using information from

the price schedule. All models produce similar results.

4.3 Matching

Our primary empirical concern in estimating the time cost of daisychaining is selection: trips
that are likely to be daisychained are not representative of all direct trips. For example, a
short trip that is expected to take less than 10 minutes does not serve as a good counterfactual
for a trip that is likely to exceed 30 minutes. This fact is borne out in the data by a simple
comparison of means for direct and daisychain routes, indicating that daisychain trips are
16-18 minutes longer in duration and 1.2-1.9 miles longer in distance (see Tables , |§|, and .
This estimate almost certainly is biased upward by sample selection. The proper comparison
is the time difference between daisychain trips and direct trips that are of similar distances,
on similar routes, during similar times, and so forth. We contend that for trips along similar
dimensions in our observed covariates, any omitted variables that affect the propensity to
daisychain are also balanced. We use matching methods to construct a balanced comparison
group.

Specifically, we use one-to-one Mahalanobis covariate matching without replacement with

calipers (equal to one standard deviation) to reweight our comparison sample. That is, for

11



each daisychain observation in our data set, we search for a direct route that is within the
caliper width for each variable using the Mahalanobis distance metric. If a daisychain trip
does not have a match within the caliper width, it is dropped from our sample. We use
our matching algorithm to construct frequency weights that are passed on to our parametric
models described below. The covariates used for matching are: distance of the trip re-
turned by Google Maps’ API, start station latitude and longitude, end station latitude and
longitude, month of sample, hour of day, and a suite of hourly weather variables.

Rather than matching on categorical variables, we implement our matching algorithm
for subsets of our full data set, including: (i) whether the trip was taken by a casual or
registered user, (ii) whether the trip was taken on a weekday or weekend, and (iii) whether
the trip was taken before the October 2015 rate change. Primary results for each of our
4 user-time combinations are presented for pre-Oct. 2015 rate change, although post-Oct.
2015 results are replicated in the appendix. Definitions and sources for our primary variables
are presented in Table ] Our matched sample thus returns a comparison group of direct
trips that are virtually identical to daisychain trips, the only difference being the choice to

daisychain and the trip’s corresponding difference in duration.

4.4 Econometric models

On our matched samples, we apply several alternative models. To control for confounding

factors that influence trip time, and to increase the precision of our estimates, we estimate
Trip Time,;, = a + SDaisy,;;, + Ry + Ajye + Wins + A\ + i (2)

where Trip Time;j; is the elapsed duration of a trip in minutes for subscriber 7, on route j, at
time ¢. Daisy;;; is a dummy variable equal to one if the trip is identified as a daisychain trip
rather than a direct trip. R; is a vector of route-specific controls that are fixed over time,
including distance and, in some specifications, route fixed effects. A, is a vector of subscriber-
specific controls that are fixed over time, including, in some specifications, subscriber fixed
effects. W, is a vector of hourly weather conditions, and ); is a set of hour-of-day and month
fixed effects.

We consider two alternative sets of fixed effects specifications. The first incorporates
subscriber-level effects. For this specification, we identify § by observing variation in the
choice to daisychain within a given subscriber. The notion here is that for similar routes we
observe a single bicyclist multiple times—sometimes she rides a direct route and sometimes
she daisychains, and the difference in trip times conditional on other covariates is our estimate

of B. The subscriber-level effects control for individual characteristics such as income, cycling
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speed, ability, preferences for risk, and so forth. Inclusion of subscriber fixed effects are
important because we do not have detailed individual-level data on subscribers. Limitations
of this approach, however, are that we have fewer repeated observations for casual users than
registered users and our identifying assumptions imply that an individual’s VOT might vary
over time.

An alternative specification controls for route-level fixed effects. For this specification,
we identify our parameter of interest by fixing the route (i.e., traveling from point A to point
B) and observing multiple cyclists using the same start and end stations, but some cyclists
split their trip into two trips. The identifying assumption is that for a given route variation
in the choice to daisychain for similar individuals provides an estimate of the additional
time it takes to daisychain. Allowing the propensity to daisychain to vary across individuals
appeals to the intuitive notion that an individual’s value of time is fixed, however it allows
for the possibility that individual-level unobserved heterogeneity may bias estimates of [.

Our final specification addresses our omitted-variables problem by instrumenting for the
dichotomous Daisy;;; variable. We contend that the conditional choice to daisychain is
explained entirely by the overage fee incurred by cycling longer than 30 minutes. In other
words, in the absence of an increase in the cost of a trip after 30 minutes, the likelihood
of daisychaining is zero. Thus, Daisy;;; is a function of the expected trip time, which only
affects Daisy;;; through the rate schedule. Our empirical measure of expected trip time is
the cycling duration between two points returned by Google Maps’ API. Intuitively, ex ante
expected trip time is not correlated with the unobserved component of trip time, €;;;, because
it is a deterministic function of distance traveled, urban street layout, elevation change, stop
lights, and so forth.

For instrumental variables, we construct a set of 10-minute bins for whether a trip’s
expected duration falls within the specified range. Specifically, we estimate the first-stage

regression,

Daisy,;; = 6 + Z wy1[Time Bin?] + RiA1 + Alfs + Wids + A + e, (3)
b

where each Time Bin? is equal to one if Google Maps’ API returns a trip time estimate for
trip j within bin b and zero otherwise. We include 5 time bins, ranging in minutes from
[10,20), [20,30), [30,40), [40,50), and greater or equal to 50 minutes. Expected trip dura-
tions less than 10 minutes serve as our omitted category. Given the discontinuous increase
in the cost of a trip beyond 30 minutes, we anticipate the likelihood of daisychaining to
increase monotonically across bins. Because our matching approach balances the probability

of daisychaining at 50%, we are comfortable estimating Equation [3] linearly.
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Further, we examine heterogeneity by user groups that likely possess different knowledge
of the bikesharing infrastructure. We run each of our econometric models on registered
(i.e., annual) and casual (i.e., sub-annual) members. We contend, generally, that annual
users will have better knowledge of where intermediate stations are located and they will
be representative of cyclists who use B-cycle for regular commuting. Casual users, on the
other hand, are more likely to be tourists with less knowledge of urban infrastructure and,
importantly, different constraints on their time. To segment our sample further along these
dimensions, we analyze differences between weekday and weekend travel for each user type.
Further, we examine time-of-day heterogeneity to explore the importance of temporally
distinct values of time.

Finally, we explore the impact of a 400% increase in the cost of a trip beyond 30 minutes.
We exploit a change in rate structure on October 1st, 2015, that increased overage fees
from $1 to $5. By using the price increase as a treatment indicator, we implement a simple
difference-in-difference design to estimate both the change in the likelihood of daisychaining

as well as the change in the trip time associated with daisychaining. Specifically, we estimate
Daisy,;; = a + 011{Post Oct. 2015} + R)y1 + Ajya + Wiys + A + e (4)

where the 1{Post Oct. 2015} equals one if the trip takes place after October 1, 2015. The
coefficient §; provides an estimate of the increase in the likelihood of daisychaining in response
to the price increase. We also re-estimate Equation 2] with an interaction between Daisy; ;, and
1{Post Oct. 2015} to provide an estimate of how much additional time spent daisychaining
can be attributed to the October 2015 price increase.

5 Results and discussion

5.1 Empirical results

Our empirical goal is to estimate the additional time spent daisychaining for a trip relative
to an otherwise identical trip. We can construct a simple lower bound using expected bicycle
trip time estimates returned from Google Maps. Using the B-cycle data, we create a variable
equal to the difference between a Google time estimate for a direct trip and the sum of the
time estimate for the two segments that make up a daisychain route for all observed trips in
our raw data. Table il shows that the median and mean of this variable are between 2.5 and
3.8 minutes. We expect this estimate to be low because the times do not necessarily reflect
the time cost of getting into and out of the flow of traffic and docking the bicycle.

Turning to our trip data, we provide a simple comparison of means to highlight the
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empirical difference in time for daisychain trips and direct trips, as well as an obvious source
of bias in our raw data set. As shown in Table [3, we display trip time statistics for our
unweighted “full sample” for each of our user-time combinations (i.e., registered-weekday,
casual-weekday, registered-weekend, casual-weekend). A naive comparison suggests that
daisychain trips take 16.6-18.3 minutes longer than direct routes. Of course, this estimate
is skewed upwards because daisychain trips are weakly longer in distance than direct routes
by definition. After reweighting our sample using one-to-one Mahalanobis matching without
replacement on a set of matching covariates that include the distance of the trip, start and end
location, time-of-day and month of the trip, segmented by our four user-time combinations,
we reduce the difference in trip time estimates substantially. On the matched sample (Table
, the data suggest that a daisychain trip is approximately 7.7-11.2 minutes longer than
an observationally similar direct trip. This comparison also reveals important distinctions
within our user-time groups. Registered users on weekdays have the smallest estimate, while
casual users have the largest. This initial result is sensible: registered users on weekdays are
more likely to be commuters, who value time and urgency, whereas casual users are more
likely to use the bikeshare for recreational purposes.

Before discussing our parametric results, we first consider how well our matching algo-
rithm performs. Tables[6]and [7] highlight common balance statistics for our matched samples
(Lee, 2013} |[Ferraro and Mirandal,[2017; 'Wichman and Ferraro, 2017). We report results from
one-to-one, nearest-neighbor matching using the Mahalanobis metric without replacement.
Our results, however, are remarkably robust to other matching approaches, including propen-
sity score matching, 1 : m matching (with m = 3,5), matching with replacement, and the
exclusion or addition of matching covariatesm Notably, if we include the Google Maps’
trip distance as the only matching covariate, we obtain qualitatively similar balance results
on trip time and all other covariates. We settled on our matching approach because of its
transparency, comprehensiveness, and its strong degree of balance.

Each of our covariates is nearly perfectly balanced on all measures, with the exception
of Google Distance. For this variable, the standardized mean difference in each of our four
samples improves drastically (by a factor of 10 in some cases), but remains at a value of
approximately 7-12, which can be considered a moderately large positive difference. To
provide a sense that balance on this covariate is adequate, we present k-densities for both
unweighted and weighted samples for each primary covariate for each of our user-time com-
binations before and after the rate change in Figures (A4l The plotted densities reveal
that the weighted density for Google Miles for daisychain trips tracks the distribution of

10Results from matching with an alternative caliper width (caliper = 0.250) are presented in the appendix.
Other results are available from the authors upon request.
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direct trips quite closely, although the direct trips have trivially more mass on the “shorter”
side of trips.

Our matched k-densities for trip time between daisychain and direct routes, presented in
Figure[0] illustrate our primary identification strategy. Because all daisychain and direct trips
are matched to be similar along observable route characteristics—and thus, by assumption,
balanced on unobservable characteristics that may affect the decision to daisychain—the
matched distribution of direct trips provides a proper, observed counterfactual density for
daisychain trips. As shown in Figure [6] we contend that the distribution of daisychain trips
(solid gray line) would look exactly like the weighted distribution of direct trips (dashed red
line) in the absence of a price discontinuity at 30 minutes. These figures reveal substantially
more mass on the unfavorable side of the of the price discontinuity for daisychain trips
than that of direct trips. Such sorting around the discontinuity is enabled by the low-cost
alternative to paying the overage free by splitting consumption of one trip into two smaller
trips.

In our parametric models, we take advantage of consumer sorting around the notch
point at 30 minutes and the observed counterfactual for daisychain trips. This approach
is distinct from recent applications of counterfactual estimation in the presence of notches
in the taxation (Chetty et al., 2011; Kleven and Waseem, 2013)) and fuel economy (Ito and
Sallee, [2014)) domains. Our approach is also distinct in that we are interested in what that
behavior reveals about our policy parameter of interest: consumers’ VOT.

In our first naive model, we regress trip time on a binary variable for whether the trip
was a daisychain trip, an estimate of trip distance returned by Google Maps’ API, and a
suite of weather variables that vary by hour. We apply each of our econometric models to
each of our four user-time groups. We report robust standard errors, clustered at the route
level in most specifications, and as suggested by Ho et al.| (2007) we do not account for any
variation that may be introduced by preprocessing our set of comparison trips.

In Table [8] results from a simple linear model improve the precision of our estimates for
the coefficient on Daisy relative to a comparison of means, but the point estimates remain
largely unchanged—daisychain trips for registered users on weekdays take approximately 7.4
minutes longer than direct trips, and this coefficient is larger (approximately 9-12 minutes)
for weekend trips or trips taken by a casual user. This pattern of coefficients is preserved
when we apply the same estimator to our matched sample (Table , Panel B). The weighted
estimates are all smaller than those of the unweighted sample, suggesting that positive
sample selection bias may be present in our most rudimentary models. But, the change in
coefficients is relatively small.

In Table [, we apply linear panel data estimators to our matched sample to explore
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the possibility that unobservable, time-invariant characteristics of users or routes affect the
likelihood to daisychain. In panels A and B, we eliminate subscriber-specific and route-
specific heterogeneity, respectively. These models produce smaller estimates than in Table
Bl Models with subscriber fixed effects possess larger coefficients for casual users, with
much larger estimates of variance, than do models with route fixed effects, potentially due
to fewer repeated observations within each casual subscriber. In models with route fixed
effects, coefficients on Daisy for registered users on weekdays are significantly smaller than
weekends (6.1 minutes vs. 8.0 minutes, p < 0.01); the same statistic for casual users is
slightly greater than 9 minutes for both weekdays and weekends and these estimates are
statistically similar.

We also instrument for the choice to daisychain using information from the price sched-
ule, as described in Equation [3] Because trip time and daisychaining are unconditionally
positively correlated (i.e., the likelihood of daisychaining increases with expected trip time),
we would expect that correcting for this simultaneity would produce smaller parameter es-
timates. As shown in Panel C of Table [9] however, the point estimates are generally larger
for the IV models than the route fixed effects models in Panel B. None of the coefficients,
however, is statistically different.

Comparing the three sets of results in Table [J] suggests that our matching approach
reduces model dependence (Ho et al., [2007) to the point where different model specifica-
tions and identification assumptions do not have a qualitatively important impact on our
estimated parameters. Indeed, within each user-time group, none of the specifications pro-
duces significantly different estimates by conventional standards. Our preferred estimates
are those with route fixed effects without instrumental variables (Panel B) primarily because
they are estimated with the most precision, and they rely on the most sensible variation in
the available data.

Using our preferred model specification, we explore how consumer VOT estimates vary
throughout the day. Other recent research has found within-day traffic variation to be of
substantial policy importance (e.g., |Anderson| (2014) and [LaRiviere et al. (2016])). We de-
compose our average effects for each user-time group by interacting Daisy with indicators for
morning, afternoon, evening, and night. By doing so, we hope to further isolate commuting
behavior from recreational behavior. In Table [I0] we observe a consistent pattern across
user-time groups: morning periods have smaller point estimates than the relatively homoge-
nous estimates at other times of the day. This difference is most striking for registered
users on weekdays, which accords with the notion that these are most likely commuters who
value prompt arrival at their workplace. The coefficient for this group is significantly smaller

(p < 0.05) than all other coefficients for registered-weekday trips. Although other user-time
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groups display similar intra-day patterns, the estimates are not estimated precisely enough
to reveal statistical differences.

Finally, we explore consumer behavior in response to a 400% increase in the price of a trip
beyond 30 minutes, from $1 to $5 in October 2015. Using a simple difference-in-difference
model, we ask two questions: did the price increase increase the likelihood to daisychain?
And, conditional on the choice to daisychain, did the price increase increase the time spent
daisychaining? The results for both of these extensive and intensive margin models are in
Table[IT} The answers are simple: no. In Panel A, the probability of daisychaining increased
by a small amount in two of the models, but the standard errors are large relative to the point
estimates. Further, in Panel B, an interaction between Daisy and the Post October 2015
dummy variable suggests that registered cyclists spent more time daisychaining during the
week in response to the price increase, but this difference is not statistically different from the
time spent daisychaining during earlier months in the sample[”T] Although we observe fewer
daisychain trips after October 2015, we do have sufficient power to identify the additional
effect of the price change.

5.2 Implications for VOT

In official federal guidance on using VOT estimates in economic analyses (U.S. Depart-
ment of Transportation) |2014), the only direct guidance for bicycling states: “Personal time
spent...bicycling, should be evaluated at 100 percent of hourly income, with a range of 80
to 120 percent to reflect uncertainty” [pp. 13]. This guidance is not, to our knowledge,
informed by any revealed preference estimate. The same guidance suggests valuing VOT
using the median hourly income, constructed as median household income for a given geo-
graphic region divided by the number of working hours in a year: 2,080. We present relevant
statistics for our application—median household income for residents in the U.S., Colorado,
Denver, and for B-cycle members—in Table [12]

In the most recent years available, B-cycle members reported annual household income
(399,000 in 2012) approximately one-half larger than that of Denver residents ($67,000 in
2014). This estimate suggests that our sample of bikeshare users is skewed towards relatively

wealthy individuals. Demographic surveysF_Z] for similar bikeshare programs reach the same

Note that our primary matched samples were constructed for trips that occurred prior to October 2015.
We construct a new matched sample using the post-October of 2015 observations only. As such, the matched
sample examining the price increases is comparing apples to apples (i.e., trips that were taken under the
same pricing regime).

12Gee, e.g., the 2016 Capital Bikeshare Member Survey Report, https://d21x1h2maitm24.cloudfront.
net/wdc/CABI-2016MemberSurveyReport-FINAL. pdf?mtime=20170302144201. Last accessed: July 7,
2017.
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conclusion: bikeshare users are more likely to be male, younger, white, and wealthier than
the population in the same urban area.

How do our estimates translate to an estimate of consumers’ VOT? As mentioned previ-
ously, the most common revealed preference estimates for VOT for automobile drivers range
approximately from 50% of the hourly wage (Wolff, |2014)) to nearly 100% (Small et al., 2005)).
Using B-cycle’s reported data, 50% of the prevailing wage for our sample is $23.8 per hour.
We previously asserted that a consumer can split her trip for a marginal time cost of A(3) to
avoid possibly paying an overage fee of k. Our empirical analysis provides an estimate of 3
attributable to daisychaining. Our argument is as follows: 1) the only reason to daisychain
is to avoid the overage fee k, and 2) the only reason to avoid paying k is if the user can incur
a smaller cost A(f). This logic reveals an implied value of time (upper bound) defined as
VOT = 60(k/p).

In Table we present implied VOT estimates for various estimates of 5 and values of k
that reflect the prevailing pricing structures. Our primary VOT estimates vary from $6.47—
$9.87 per hour for our four user-time combinations prior to Oct. 2015. These estimates
are approximately the level of the minimum wage, ranging from 13.6-20.7% of the B-cycle
members’ hourly wage. Further, our time-of-day results suggest substantial differences, which
is consistent with a higher value for urgency (Bento et al., [2014)) or heterogeneity in the
recreational vs. commuting populations. Registered users on weekday mornings, who are
most likely commuters, value their time at approximately $18.09 per hour, or 37.9% of the
hourly wage[™ Our results suggest that casual users on weekend nights, in contrast, value
their time at only 11.1% of the hourly wage. These results emphasize the importance of
incorporating temporal and user type heterogeneity when valuing bicycle transit for personal
and recreational use. If taken directly, these results suggest that official federal guidance may
overestimate the value of time spent bicycling, in some cases by a factor of eight.

Notably, while our estimates appear generally lower than that of previous analyses, our
best measure of the value of time spent commuting (i.e., registered users on weekday morn-
ings) comports with the majority of revealed preference estimates from automotive data.
This result, therefore, suggests that the value of improving bicycle infrastructure can be
assessed on equal footing with improvements of public and private urban transit options.

These implications, as do those from all revealed preference estimates of VOT, are pred-
icated on the assumption that consumers optimize perfectly with respect to their time-for-
money trade-off. Wolff| (2014) argues that drivers trade off speed for fuel efficiency, |[Small et
al.| (2005)) and Fezzi et al.| (2014)) model the driver’s decision to pay a toll for congestion-free

13A figure form Denver B-cycle’s 2012 Member survey showed that 43.6% of annual members use their
membership for commuting to or from work.
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travel, and Deacon and Sonstelie, (1985) evaluate the trade-off between time spent waiting in
line for cheaper gasoline. Our VOT estimates, in contrast, assume that consumer behavior
responds to a discontinuity in the cost of a bicycle trip. But, by exploiting a 400% increase
in that price, we find large magnitudes of VOT, ranging from 58-114% of the hourly wage.
These estimates are implausible primarily because they are generated by behavior that is
statistically identical to behavior generated by a much smaller price level. The conclusion
we arrive at, given this information, is that individuals are not responding to the change in
price, rather they are responding to the more salient information in the price structure: the
quantity notch at 30 minutes.

Relative to other papers in this literature that exploit variation in highway tolls or gasoline
prices, which tend to be salient signals (i.e., typically, this price information is advertised on
bright highway signs or roadside billboards), our application relies on a not-entirely-intuitive
price structure (see Figure . Thus, consumers might know that the price increases from
p = 0 to p > 0 at 30 minutes, but they might not know the level of p. Because of the
peculiarity in our price structure within transportation, it is unclear whether the behavior
we identify in this paper is useful for other transportation applications.

We do, however, believe our results have policy import in the context of nonlinear pricing
for electricity, water, cellular phone usage, and other consumer goods where inattention and
imperfect information play an important role (see, e.g., [Sexton| (2014); Wichman (2017);
Finkelstein (2009)); |Chetty et al.| (2009); [Li et al.| (2014)); |Grubb| (2014)). Because our results
suggest that consumers may respond more strongly to easily identifiable and familiar infor-
mation (e.g., a quantity of 30 minutes), perhaps increasing-block price structures intended
to encourage conservation of electricity or water could be improved by highlighting familiar
quantity signals. Rather than telling consumers, for example, that the marginal price of wa-
ter increases from $2.14 to $2.75 after 400 cubic feet per month, one could instruct consumers
that shortening showers to no more than 10 minutes could reduce monthly water bills by
an equivalent cost savings. Data overage charges for cell-phone use operate under a similar
premise. As a consumer reaches an pre-determined quantity, they are told via text message
of the percentage of data remaining before they are charged a fee. This insight suggests
that efforts to “teach” consumers how bills or taxes are calculated under complicated rate
structures (Kahn and Wolak], [2013; |Chetty and Saez, |2013) might be misguided. Simplifying
and isolating relevant information for use in decision making may be a more promising line
of research to induce expected outcomes than would attempting to affect consumer behavior

in a way that corresponds with our economic models.
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5.3 Caveats, confounders, and conclusions

Naturally, our estimates are subject to several caveats. Most glaringly, our analysis is an
evaluation of a single bicycle-sharing program on a subset of relatively wealthy users. Other
bikesharing programs, however, comprise similarly select populations, so our sample is likely
representative of behavior in other programs. More specifically, nearly all U.S.-based bike-
sharing programs, and many more globally, share commonality with the rate structure we
analyze here. One also might contend that even within our select sample, we analyze a dis-
tinct set of trips that are not representative of overall bikeshare user behavior. One response
to such a criticism is noting that opting in to ride-sharing programs (Cohen et al., 2016]),
car-pooling (Bento et al., [2013), and HOV lanes (Small and Yan, [2001), for example, are
equally select samples within their respective domains.

An alternative concern might be that bicycling is associated with other benefits in ad-
dition to commuting, such as health benefits from exercising. We reiterate that all of our
estimated effects are relative to the counterfactual of cycling for a slightly smaller amount
of time. Therefore, any relative benefits of daisychaining are likely trivial. Further, we
contend that cycling better isolates the margins on which these benefits might arise unlike
myriad potential benefits and costs (e.g., comfort, privacy, prestige) that arise in automobile
comparisons.

Our identification strategy relies upon the assumption that conditional on observable
characteristics, any unobservable components that affect the choice to daisychain are bal-
anced. One threat to this strategy is that a short trip, in distance, may embed other charac-
teristics associated with daisychaining that are not balanced but, in principle, unobservable.
For example, a 1-mile direct route may not be a good counterfactual for a daisychain trip
with the same start and end destinations if there are potential recreational, sightseeing ben-
efits nearby. That is, a direct route would be shorter than a meandering daisychain trip on
the same route, which would bias our coefficient estimates away from zero. In Table[A.4] we
interact the choice to daisychain with trip distance bins. Our primary results are robust to
this stratification for trips 4 miles long or less.

There are two additional confounding factors that could alter the interpretation of our
results: redocking a bicycle mid-trip because of a mechanical failure and falsely assigning
daisychain status to a trip when there was actually a brief layover at an intermediate des-
tination. For the former, we cannot identify this relationship statistically and it is possible
that we are partially attributing the daisychain response to riders going out of their way to
swap their bicycle for a better one. That said, it is difficult to justify a revealed disamenity
value for a squeaky bicycle seat at a sizable fraction of the prevailing wage. Second, because

we identify daisychain trips as trips that are checked-in and checked-out of the same sta-
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tions within 3 minutes, perhaps cyclists dock their bicycle on their way to a dinner party
to purchase a bottle of wine. We cannot rule out this behavior, but it seems unlikely that
such short intermediate stops are representative of all bikeshare trips in our sample. Further,
Table [0] reveals apparent sorting around the 30-minute price notch. There is no rationale
for why mechanical failures or wine retailers should respond to discontinuities in the price
structure of a bicycle trip.

A final concern is whether we have sufficiently purged our data of various forms of endo-
geneity. We contend that the consonance of our estimates in Table [9] using different iden-
tification assumptions, provides strong evidence that our matching procedure has reduced
our dependence on model choice and specification. A comparison of means on the matched
sample provides qualitatively similar results to our preferred econometric specification. It
is true that we have not formally modeled the decision to daisychain in our econometric
specification—that choice problem is not the focus of our analysis, nor would the structure
of that choice problem yield anything of broad value for economists and policymakers. The
present paper dispenses with all major sources of bias to provide a plausibly causal esti-
mate of consumers’ opportunity cost of time using reduced-form methods. Should ‘plausibly
causal’ seem too strong of a statement, recall that we have also estimated reasonable lower
and upper bounds for our parameters through a comparison of Google Maps’ travel time
estimates (Table [5)) and a comparison of means weighted by our matching approach (Table
3), respectively.

Overall, this paper provides evidence of novel consumer bunching in a novel market—
cycling within urban bikesharing programs. Our empirical results identify strategic behavior
that is applicable to other markets. We estimate revealed preference measures of the value
of time for bicyclists that depend on trip purpose and temporal heterogeneity. Although
some of our estimates largely comport with previous VOT estimates for commuters, we find
that individuals do not respond to a dramatic change in price. Our results, then, provide
justification for an attempt to better understanding how consumers assimilate information

within complicated rate structures into their decision-making process.
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Table 1: B-cycle membership and overage prices

Dates Effective 24-hour 7-day 30-day Annual Annual Plus 1st Overage 2nd(4) Overage
Fee Fee

Jan. 2012-Dec. 2014 8 20 30 80 N/A 1 4

Jan. 2015-Sep. 2015 9 N/A 15 90 100 1 4

Oct. 2015-Dec. 2015 9 N/A 15 90 100 5 5

Jan. 2016-Dec. 2016 9 N/A 15 N/A 135 5 5

Notes: All amounts are nominal U.S. Dollars. B-cycle has an “Annual Plus” membership that allows registered members to receive
an allotment of 60-minutes free per trip. We drop annual plus members from our sample.

Table 2: Trip time statistics by year and user type

Obs. Mean Std. Dev. Median

2013 198,539 14.81 13.48 11
2014 301,456  14.26 13.02 10
Jan. 2015-Sep. 2015 224,818 15.03 13.24 11
Oct. 2015-Dec. 2015 47,838  12.94 11.17 10
2016 157,920 14.38 12.01 10
Casual 277,653 24.32 16.82 20
Registered 652,918 10.35 7.73 8
Full sample 930,571 14.52 12.93 10

Table 3: Mean trip time statistics by user-time groups and daisychain vs.
direct trips for raw and matched samples

Raw data Matched data
Direct Daisychain  Diff. Direct  Daisychain  Diff.
Registered, Weekday 9.70 26.72 -17.02  18.71 26.39 —7.68
(7.13)  (12.76) (10.07)  (12.78)
Casual, Weekday 23.22 41.55 -18.33  29.95 41.18 -11.23
(16.77) (15.94) (16.60) (15.95)
Registered, Weekend  12.40 30.20 -17.80  20.71 29.99 -9.28
(9.01) (13.28) (10.48) (13.18)
Casual, Weekend 24.78 41.42 -16.64  30.64 41.24 -10.60
(17.05) (15.60) (16.46) (15.58)

Notes: Trip time means are presented along with standard deviations (in parentheses). Differences
are presented as Direct—Daisychain. Matched data presents the weighted sample after 1:1 Mahalanobis
matching without replacement. All differences are significant at the p<0.01 level as indicated by a
two-sided t-test. All observations are pre-Oct. 2015 price change.
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Table 4: Variable Descriptions

Variable Units Varies at Source
Daisy Binary Subscriber-by-trip level ~Author constructed
Google Distance Miles Route level Google Maps API
Trip Time Minutes Subscriber-by-trip level

Start Latitude Decimal Route level

Start Longitude Decimal Route level

End Latitude Decimal Route level

End Longitude Decimal Route level Denver B-cycle
Month Integer Trip level

Weekday Binary Trip level

Start Hour Integer Trip level

Member Type Integer Subscriber level

Precipitation Intensity
Precipitation Probability
Temperature

Dew Point

Humidity

Wind Speed

Visibility

Cloud Cover

Fog

Rain

Snow

Inches per hour
Proportion
Degrees Fahrenheit
Degrees Fahrenheit
Proportion

Miles per hour
Miles

Proportion

Binary

Binary

Binary

Hourly
Hourly
Hourly
Hourly
Hourly
Hourly
Hourly
Hourly
Hourly
Hourly
Hourly

Dark Sky API

Table 5: Google Maps’ bicycle trip time differences be-
tween daisychain and direct trips

Obs.  Mean Std. Dev. Median
All “daisychain” rides 15,353  3.16 3.714 2.50
Positive difference only 13,344  3.80 3.55 2.76

Notes: Positive difference in the second row looks only at trip time differences
where the segmented trip is expected to take at least as long as the direct route.
The difference between some trips is negative due to Google Maps returning
suboptimal routes for a subset of our sample.
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Table 6: Covariate balance for registered users from 1:1 nearest neighbor matching
without replacement

Weekday Weekend
Full Sample Matching Full Sample Matching
(Caliper = 10) (Caliper = 10)
Trip Time (minutes)
Mean difference 17.021 7.626 17.801 9.161
Std. mean difference 133.445 59.672 134.055 69.615
Mean raw eQQ difference 17.016 7.628 17.79 9.162
Variance ratio (Treat/Comp.) 3.2 1.594 2.173 1.547
Google Distance (miles)

Mean difference 1.857 0.117 1.599 0.146
Std. mean difference 102.317 6.882 111.48 10.497
Mean raw eQQ difference 1.856 0.117 1.598 0.146
Variance ratio (Treat/Comp.) 4.084 1.048 2.023 1.06

Start Latitude
Mean difference -0.004 0 -0.001 0
Std. mean difference -20.257 0.021 -7.951 1.096
Mean raw eQQ difference 0.004 0 0.003 0
Variance ratio (Treat/Comp.) 2.23 0.995 1.728 1.001

Start Longitude
Mean difference 0.003 0 0.001 0
Std. mean difference 14.898 -0.108 2.987 -0.84
Mean raw eQQ difference 0.004 0 0.003 0
Variance ratio (Treat/Comp.) 1.57 0.999 1.453 1.005

End Latitude
Mean difference -0.007 0 -0.002 0
Std. mean difference -30.135 -0.185 -10.791 0.201
Mean raw eQQ difference 0.007 0 0.004 0
Variance ratio (Treat/Comp.) 2.852 1.004 1.84 1.006

End Longitude
Mean difference 0.006 0 0.002 0
Std. mean difference 29.888 0.305 7.638 0.323
Mean raw eQQ difference 0.007 0 0.004 0
Variance ratio (Treat/Comp.) 1.867 0.985 1.666 1.018

Month
Mean difference 0.023 -0.015 -0.145 -0.005
Std. mean difference 0.885 -0.599 -5.626 -0.187
Mean raw eQQ difference 0.198 0.042 0.145 0.067
Variance ratio (Treat/Comp.) 0.888 1.038 0.939 1.055
Start Hour

Mean difference 1.169 -0.022 -0.192 0.031
Std. mean difference 26.874 -0.518 -5.411 0.872
Mean raw eQQ difference 1.17 0.102 0.449 0.078
Variance ratio (Treat/Comp.) 0.876 1.028 0.813 1.034

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Lee, [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., [2007); and (iv) variance ratio between treated and
untreated units (Sekhon) [2008). All observations are pre-Oct. 2015 price change.
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Table 7: Covariate balance for casual users from 1:1 nearest neighbor matching
without replacement

Weekday Weekend
Full Sample Matching Full Sample Matching
(Caliper = 10) (Caliper = 10)
Trip Time (minutes)
Mean difference 18.337 11.354 16.636 10.586
Std. mean difference 115.017 72.108 106.828 68.472
Mean raw eQQ difference 18.331 11.355 16.655 10.641
Variance ratio (Treat/Comp.) 0.904 0.901 0.834 0.86
Google Distance (miles)

Mean difference 1.282 0.164 1.225 0.178
Std. mean difference 89.219 11.964 83.209 12.456
Mean raw eQQ difference 1.281 0.164 1.224 0.178
Variance ratio (Treat/Comp.) 1.543 1.061 1.418 1.063

Start Latitude
Mean difference -0.002 0 -0.002 0
Std. mean difference -9.696 0.461 -13.216 0.326
Mean raw eQQ difference 0.002 0 0.002 0
Variance ratio (Treat/Comp.) 1.425 0.994 1.357 0.988

Start Longitude
Mean difference 0.003 0 0.004 0
Std. mean difference 13.581 -0.086 18.181 0.003
Mean raw eQQ difference 0.003 0 0.004 0
Variance ratio (Treat/Comp.) 1.379 0.994 1.333 0.993

End Latitude
Mean difference -0.002 0 -0.001 0
Std. mean difference -10.882 -0.731 -6.932 -0.394
Mean raw eQQ difference 0.002 0 0.001 0
Variance ratio (Treat/Comp.) 1.38 0.987 1.265 0.993

End Longitude
Mean difference 0.002 0 0.002 0
Std. mean difference 12.411 0.272 9.584 -0.015
Mean raw eQQ difference 0.003 0 0.003 0
Variance ratio (Treat/Comp.) 1.413 1.003 1.367 1

Month
Mean difference -0.11 0.007 0.012 -0.013
Std. mean difference -4.878 0.302 0.515 -0.55
Mean raw eQQ difference 0.121 0.046 0.057 0.066
Variance ratio (Treat/Comp.) 0.997 1.054 1.003 1.066
Start Hour

Mean difference -0.361 0.004 -0.476 -0.006
Std. mean difference -10.535 0.117 -15.115 -0.191
Mean raw eQQ difference 0.617 0.048 0.518 0.07
Variance ratio (Treat/Comp.) 0.746 1.022 0.822 1.056

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Lee, [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., [2007); and (iv) variance ratio between treated and
untreated units (Sekhon) [2008). All observations are pre-Oct. 2015 price change.
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Table 8: Regression results from linear models on full
and weighted samples

Weekday Weekend

Registered Casual Registered Casual

Panel A: Linear models on full sample

Daisy 7.399 12.208 9.096 10.819
(0.441) (0.367) (0.300) (0.354)
Google distance 5.075 4.849 5.367 4.645
(0.064) (0.112) (0.059) (0.106)
Obs. 410,935 126,283 89,259 103,130
R-squared 0.454 0.190 0.425 0.172

Panel B: Linear models on weighted sample

Daisy 7.117 10.466 8.628 10.037
(0.304) (0.430) (0.339) (0.429)
Google distance 4.093 4.385 4.610 4.495
(0.200) (0.174) (0.136) (0.189)
Obs. 9,008 8,164 4,559 8,056
R-squared 0.425 0.243 0.384 0.258

Notes: Dependent variable in all models is trip time (in minutes). All ob-
servations are pre-Oct. 2015 price change. All models include controls for
weather, month fixed effects, and hour-of-day fixed effects. Panel A presents
results from linear models on the full sample. Panel B presents results from
linear models on a weighted sample using 1:1 Mahalanobis matching without
replacement. Robust standard errors clustered at the route level are presented
in parentheses.
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Table 9: Regression results from panel models on weighted
samples

Weekday Weekend

Registered = Casual  Registered Casual

Panel A: Subscriber fixed effects on weighted sample

Daisy 5.733 12.325 7.215 10.921
(0.693) (1.987) (0.670) (2.357)
Google distance 4.920 4.240 4.644 4.966
(0.179) (0.733) (0.256) (0.705)
Obs. 9,008 8,164 4,559 8,056
R-squared 0.724 0.927 0.748 0.941

Panel B: Route fixed effects on weighted sample

Daisy 6.079 9.096 8.027 9.270
(0.404) (0.688) (0.621) (0.667)
Google distance 6.011 6.704 5.444 6.484
(0.755) (1.284) (1.243) (0.975)
Obs. 9,008 8,232 4,559 8,056
R-squared 0.750 0.626 0.776 0.649

Panel C: IV models with route fixed effects on weighted sample

Daisy 6.981 8.522 10.123 11.413

(1.359) (1.821) (1.473) (1.768)
Google distance 5.532 6.881 4.362 5.435

(0.903) (1.453) (1.049) (1.135)
First-stage F-stat 173.92 28650.30 81.34 90.34
Obs. 7,737 7,167 3,426 7,198
R-squared 0.209 0.158 0.235 0.174

Notes: Dependent variable in all models is trip time (in minutes). All observa-
tions are pre-Oct. 2015 price change. All models include controls for weather,
month fixed effects, and hour-of-day fixed effects. All panels present results
from linear panel models on a weighted sample using 1:1 Mahalanobis matching
without replacement. In Panel C, Daisy is instrumented for using indicators
for 10-minute bins of expected trip duration as described in Equation [3] Robust
standard errors clustered at the subscriber level (Panel A) and route level (Panels
B and C) are presented in parentheses.
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Table 10: Regression results with route fixed effects and
time-of-day heterogeneity

Weekday Weekend

Registered Casual Registered Casual

Daisy x Morning 3.316 9.032 5.360 8.758
(0.637) (2.501) (2.090) (3.202)
Daisy x Afternoon 6.931 9.194 8.130 9.437
(0.707) (0.942) (0.899) (0.870)
Daisy x Evening 6.720 9.399 8.276 8.774
(0.590) (0.990) (1.022) (1.045)
Daisy x Night 6.523 7.751 8.553 11.315
(0.982) (2.005) (1.645) (2.107)
Google distance 6.024 6.506 5.429 6.471
(0.741) (1.266) (1.241) (0.975)
Obs. 9,008 8,164 4,559 8,056
R-squared 0.752 0.627 0.776 0.649

Notes: Dependent variable in all models is trip time (in minutes). All observa-
tions are pre-Oct. 2015 price change. All models include controls for weather,
month fixed effects, and hour-of-day fixed effects. Morning = 1 if the trip began
between 6:00AM and 9:59AM. Afternoon = 1 if the trip began between 10:00AM
and 2:59PM. Evening = 1 if the trip began between 3:00PM and 7:59PM. Night
= 1 if the trip began at or after 8:00PM. Results are from linear panel mod-
els on a weighted sample using 1:1 Mahalanobis matching without replacement.
Robust standard errors clustered at the route level are presented in parentheses.
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Table 11: Regression results from linear probability models using 400%
price increase beginning on October 1, 2015 as treatment

Weekday Weekend

Registered Casual Registered Casual

Panel A: Linear probability model on weighted sample with route fixed effects

1{Post October 2015} 0.003 0.005 -0.042 -0.032
(0.018) (0.021) (0.041) (0.053)
Google distance 0.494 0.555 0.482 0.583
(0.058) (0.048) (0.076) (0.078)
Obs. 11,372 11,222 5,619 4,838
R-squared 0.366 0.450 0.516 0.610

Panel B: Route fixed effects on weighted sample with interactions

Daisy 6.058 9.641 8.062 8.984

(0.381) (0.608) (0.586) (0.626)
Daisy x1{Post October 2015} 0.556 -0.500 -0.523 -0.804

(0.606) (0.849) (1.194) (0.877)
Google distance 6.506 6.400 6.014 6.255

(0.709) (0.899) (1.128) (0.846)
Count of Daisy=1 < Oct. 2015 4,564 3,976 2,297 3,973
Count of Daisy=1 > Oct. 2015 1,196 1,681 532 1,764
Obs. 11,372 11,222 5,619 11,401
R-squared 0.727 0.593 0.748 0.605

Notes: Dependent variable in Panel A is whether a trip was daisychain. Dependent variable in
Panel B is trip time (in minutes). All models include controls for weather, month fixed effects,
and hour-of-day fixed effects. Results are from linear panel models on a weighted sample using
1:1 Mahalanobis matching without replacement. Robust standard errors clustered at the route
level are presented in parentheses.
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Table 12: Income statistics

Median HH Income % HHs less than $35K  Minimum Wage

2012 2014 2012 2014 2012 2014
United States $52,970  $53,657  28.1 26.4 $7.03 $7.25
Colorado $58,532  $61,303  24.2 21.6 $7.41 $8
Denver $63,366  $66,870 — — $7.41 $8
B-cycle annual members  $99,214 — 9.7 5.5 —
B-cycle casual users — — 12.6 18.3 — —

Notes: All dollar figures are in 2014 adjusted USD. % Households with income less than $35,000 is based
on nominal amounts. Median household income is estimated using the table on page 7 of the Denver
B-cycle Member demographics report, 2012 (https://denver.bcycle.com/docs/librariesprovider34/
default-document-library/denver-b-cycle-demography_2011-2012.pdf?sfvrsn=2). The percent of house-
holds with income under $35,000 comes from page 8 of the 2010-14 report (https://denver.bcycle.com/docs/
librariesprovider34/default-document-library/denver-b-cycle-demography_2010-2014.pdf?sfvrsn=2).
Household median incomes for the United States, Colorado, and Denver metro area come from
http://www.deptofnumbers.com/income/colorado/denver/. Estimates of the percent of households
with income less than $35,000 were constructed using the the 1-year ACS samples, which can be downloaded
from https://usa.ipums.org/usa. Minimum wage adjusted to 2014 USD.

Table 13: Implied estimates of consumers’ value of time ($/hour)

Weekday Weekend

Registered  Casual Registered Casual

Primary average effects
(Table 9, Panel B) 9.87 6.60 7.47 6.47
(20.7%) (13.8%) (15.7%) (13.6%)

Time-of-day results

(Table 10)

Morning 18.09 6.64 11.19 6.85
(37.9%) (13.9%) (23.5%) (14.4%)

Afternoon 8.66 6.53 7.38 6.36
(18.2%) (13.7%) (15.5%) (13.3%)

Evening 8.93 6.38 7.25 6.84
(18.7%) (13.4%) (15.2%) (14.3%)

Night 9.20 7.74 7.02 5.30

(19.3%)  (16.2%)  (14.7%)  (11.1%)

After 400% price increase
(Table A.8, Panel B) 54.59 27.82 43.75 32.16
(114.4%)  (58.3%)  (91.7%)  (67.4%)
Notes: VOT is computed as 60(k/3), where 8 is our estimated coefficient on Daisy and k is

the notch price. All VOT estimates are in 2014 adjusted USD. Percentages in parentheses
represent VOT as a proportion of the hourly wage, defined as $99,214 / 2080.
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0-30 minute  30-60 minute Each additional
checkout checkout 30 minutes

€+ 6l + ©)

Take an unlimited number of trips during
your access. Usage fees accrue
580 Annual on checkouts longer than 30 minutes.

Source: Denver B-cycle

Figure 1: Example of Denver B-cycle’s pricing structure in the fall of 2016.
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Figure 2: Stylized densities for alternative models of consumer behavior in response to a
notched price schedule p(d).
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Figure 3: Distributions of trip time by member type from raw data. Each distribution is
truncated at 60 minutes. All observations are pre-Oct. 2015 price change.
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Figure 4: Distributions of trip time by daisychain segment and member type. Each distri-
bution is truncated at 60 minutes. All observations are pre-Oct. 2015 price change.
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Figure 5: Distributions of daisychain trip time by member type. Each distribution is trun-

cated at 80 minutes. All observations are pre-Oct. 2015 price change.
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Figure 6: k-density distributions for trip time for each user-time combination after 1:1 Maha-
lanobis matching without replacement for key variables. All observations are pre-Oct. 2015

price change.
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Table A.1: Covariate balance for registered users from 1:1 nearest neighbor matching
without replacement with calipers equal to 0.25 standard deviations

Weekday Weekend
Full Sample Matching Full Sample Matching
(Caliper = 0.250) (Caliper = 0.250)
Trip Time (minutes)
Mean difference 16.893 6.933 17.790 8.075
Std. mean difference 131.405 56.520 134.157 63.906
Mean raw eQQ difference 16.887 6.933 17.779 8.103
Variance ratio 3.283 2.422 2.206 1.646
Google Distance (miles)
Mean difference 1.822 0.045 1.599 0.050
Std. mean difference 101.001 3.722 111.669 4.569
Mean raw eQQ difference 1.822 0.046 1.598 0.053
Variance ratio 4.102 0.990 2.032 1.004
Start Latitude
Mean difference -0.004 < 0.001 -0.001 < 0.001
Std. mean difference -20.054 -0.325 -7.788 -0.084
Mean raw eQQ difference 0.004 < 0.001 0.003 < 0.001
Variance ratio 2.205 0.993 1.735 0.995
Start Longitude
Mean difference 0.003 < 0.001 0.001 < 0.001
Std. mean difference 15.014 -0.296 2.727 -0.217
Mean raw eQQ difference 0.004 < 0.001 0.003 < 0.001
Variance ratio 1.575 0.997 1.440 0.996
End Latitude
Mean difference -0.007 < 0.001 -0.002 < 0.001
Std. mean difference -29.814 -0.381 -11.925 0.079
Mean raw eQQ difference 0.007 < 0.001 0.004 < 0.001
Variance ratio 2.804 0.994 1.872 0.990
End Longitude
Mean difference 0.006 < 0.001 0.002 < 0.001
Std. mean difference 29.924 0.164 8.878 -0.440
Mean raw eQQ difference 0.007 < 0.001 0.004 < 0.001
Variance ratio 1.869 0.996 1.657 0.999
Month
Mean difference -0.082 0 -0.158 0
Std. mean difference -3.088 0 -5.942 0
Mean raw eQQ difference 0.228 0 0.157 0
Variance ratio 0.876 1 0.947 1
Start Hour
Mean difference 1.184 0.028 -0.195 0
Std. mean difference 27.178 0.639 -5.507 0
Mean raw eQQ difference 1.185 0.055 0.452 0
Variance ratio 0.881 1.014 0.81 1

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Leel [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., 2007); and (iv) variance ratio between treated and
untreated units (Sekhon| [2008)). All observations are pre-Oct. 2015 price change.
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Table A.2: Covariate balance for casual users from 1:1 nearest neighbor matching
without replacement with calipers equal to 0.25 standard deviations

Weekday Weekend
Full Sample Matching Full Sample Matching
(Caliper = 0.250) (Caliper = 0.250)
Trip Time (minutes)
Mean difference 18.308 10.689 16.574 9.594
Std. mean difference 115.400 65.934 107.093 62.946
Mean raw eQQ difference 18.302 10.695 16.589 9.720
Variance ratio 0.903 0.938 0.828 0.824
Google Distance (miles)
Mean difference 1.276 0.084 1.249 0.080
Std. mean difference 89.378 7.948 84.763 7.036
Mean raw eQQ difference 1.275 0.084 1.248 0.081
Variance ratio 1.532 0.998 1.421 0.994
Start Latitude
Mean difference -0.001 < 0.001 -0.003 < 0.001
Std. mean difference -9.255 -1.070 -14.954 -0.418
Mean raw eQQ difference 0.002 < 0.001 0.003 < 0.001
Variance ratio 1.400 0.992 1.398 0.981
Start Longitude
Mean difference 0.003 < 0.001 0.004 < 0.001
Std. mean difference 13.459 -0.618 19.238 0.187
Mean raw eQQ difference 0.003 < 0.001 0.004 < 0.001
Variance ratio 1.370 1.002 1.326 0.997
End Latitude
Mean difference -0.002 < 0.001 -0.001 < 0.001
Std. mean difference -10.890 -1.242 -8.542 -0.295
Mean raw eQQ difference 0.002 < 0.001 0.001 < 0.001
Variance ratio 1.396 0.989 1.288 0.997
End Longitude
Mean difference 0.002 < 0.001 0.002 < 0.001
Std. mean difference 12.335 0.283 10.779 -0.334
Mean raw eQQ difference 0.003 < 0.001 0.003 < 0.001
Variance ratio 1.417 0.998 1.387 1.001
Month
Mean difference -0.036 0 0.091 0
Std. mean difference -1.533 0 3.674 0
Mean raw eQQ difference 0.062 0 0.115 0
Variance ratio 1.028 1 1.027 1
Start Hour
Mean difference -0.366 0 -0.488 0
Std. mean difference -10.753 0 -15.658 0
Mean raw eQQ difference 0.627 0 0.527 0
Variance ratio 0.740 1 0.809 1

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Leel [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., 2007); and (iv) variance ratio between treated and
untreated units (Sekhon| [2008)). All observations are pre-Oct. 2015 price change.
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Table A.3: Regression results from panel models on
weighted samples with caliper width equal to 0.25 stan-
dard deviations

Weekday Weekend

Registered Casual Registered  Casual

Panel A: Subscriber fixed effects on weighted sample

Daisy 5.126 7.645 6.414 13.203
(0.769) (4.171) (1.331) (6.235)
Google distance 5.300 4.712 5.194 4.361
(0.382) (3.055) (0.743) (3.270)
Obs. 4,612 3,074 1,416 2,812
R-squared 0.718 0.968 0.883 0.977

Panel B: Route fixed effects on weighted sample

Daisy 5.220 9.539 7.495 9.201
(0.536) (1.178) (1.002) (1.127)
Google distance 10.526 6.928 1.733 6.727
(2.363) (5.084) (4.737) (4.547)
Obs. 4,612 3,074 1,416 2,812
R-squared 0.724 0.636 0.784 0.646

Panel C: IV models with route fixed effects on weighted sample

Daisy 4.741 9.458 8.640 12.501

(2.063) (3.053) (2.305) (4.372)
Google Distance 11.279 7.050 -0.492 1.955

(3.647) (6.151) (5.362) (6.865)
First-stage F-stat 57.30 1410.72 25.26 66.84
Obs. 3,952 2,670 1,022 2,487
R-squared 0.197 0.162 0.265 0.149

Notes: Dependent variable in all models is trip time (in minutes). All observa-
tions are pre-Oct. 2015 price change. All models include controls for weather,
month fixed effects, and hour-of-day fixed effects. All panels present results
from linear panel models on a weighted sample using 1:1 Mahalanobis matching
without replacement. In Panel C, Daisy is instrumented for using indicators
for 10-minute bins of expected trip duration as described in Equation EI Ro-
bust standard errors clustered at the subscriber level (Panel A) and route level
(Panels B and C) are presented in parentheses.
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Table A.4: Regression results with route fixed effects and
distance heterogeneity

Weekday Weekend

Registered Casual Registered Casual

Daisy x 1{0-2 miles} 5.730 10.684 7.907 11.658
(0.626)  (1.589)  (1.414)  (1.378)

Daisy x 1{2—4 miles} 5.754 7.831 6.938 7.619
(0.939) (1.505) (1.428) (1.712)
Daisy x 1{4+ miles} 0.881 10.784 8.038 1.851
(0.919) (3.072) (4.040) (2.915)
Google distance 11.938 7.600 1.718 8.234
(2.368) (5.001) (4.779) (4.390)
Obs. 4,612 3,074 1,416 2,812
R-squared 0.728 0.637 0.784 0.651

Notes: Dependent variable in all models is trip time (in minutes). All observations
are pre-Oct. 2015 price change. All models include controls for weather, month
fixed effects, and hour-of-day fixed effects. Interactions with Daisy are for routes
that are between 0 and 2 miles, 2 and 4 miles, and greater than 4 miles, respectively.
Results are from linear panel models on a weighted sample using 1:1 Mahalanobis
matching without replacement. Caliper width is one standard deviation. Robust
standard errors clustered at the route level are presented in parentheses.
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Table A.5: Covariate balance for registered users from 1:1 nearest neighbor matching
without replacement (post Oct. 2015 price change observations only)

Weekday

‘Weekend

Full Sample

Matching
(Caliper = 10)

Full Sample

Matching
(Caliper = 10)

Trip Time (minutes)

Mean difference 17.021 7.626 17.801 9.161
Std. mean difference 133.445 59.672 134.055 69.615
Mean raw eQQ difference 17.016 7.628 17.79 9.162
Variance ratio (Treat/Comp.) 3.2 1.594 2.173 1.547
Google Distance (miles)
Mean difference 1.857 0.117 1.599 0.146
Std. mean difference 102.317 6.882 111.48 10.497
Mean raw eQQ difference 1.856 0.117 1.598 0.146
Variance ratio (Treat/Comp.) 4.084 1.048 2.023 1.06
Start Latitude
Mean difference -0.004 0 -0.001 0
Std. mean difference -20.257 0.021 -7.951 1.096
Mean raw eQQ difference 0.004 0 0.003 0
Variance ratio (Treat/Comp.) 2.23 0.995 1.728 1.001
Start Longitude
Mean difference 0.003 0 0.001 0
Std. mean difference 14.898 -0.108 2.987 -0.84
Mean raw eQQ difference 0.004 0 0.003 0
Variance ratio (Treat/Comp.) 1.57 0.999 1.453 1.005
End Latitude
Mean difference -0.007 0 -0.002 0
Std. mean difference -30.135 -0.185 -10.791 0.201
Mean raw eQQ difference 0.007 0 0.004 0
Variance ratio (Treat/Comp.) 2.852 1.004 1.84 1.006
End Longitude
Mean difference 0.006 0 0.002 0
Std. mean difference 29.888 0.305 7.638 0.323
Mean raw eQQ difference 0.007 0 0.004 0
Variance ratio (Treat/Comp.) 1.867 0.985 1.666 1.018
Month
Mean difference 0.023 -0.015 -0.145 -0.005
Std. mean difference 0.885 -0.599 -5.626 -0.187
Mean raw eQQ difference 0.198 0.042 0.145 0.067
Variance ratio (Treat/Comp.) 0.888 1.038 0.939 1.055
Start Hour
Mean difference 1.169 -0.022 -0.192 0.031
Std. mean difference 26.874 -0.518 -5.411 0.872
Mean raw eQQ difference 1.17 0.102 0.449 0.078
Variance ratio (Treat/Comp.) 0.876 1.028 0.813 1.034

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Lee, [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., [2007); and (iv) variance ratio between treated and
untreated units (Sekhonl [2008]).
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Table A.6: Covariate balance for casual users from 1:1 nearest neighbor matching
without replacement (post Oct. 2015 price change observations only)

Weekday Weekend
Full Sample Matching Full Sample Matching
(Caliper = 10) (Caliper = 10)
Trip Time (minutes)
Mean difference 18.337 11.354 16.636 10.586
Std. mean difference 115.017 72.108 106.828 68.472
Mean raw eQQ difference 18.331 11.355 16.655 10.641
Variance ratio (Treat/Comp.) 0.904 0.901 0.834 0.86

Google Distance (miles)

Mean difference 1.282 0.164 1.225 0.178
Std. mean difference 89.219 11.964 83.209 12.456
Mean raw eQQ difference 1.281 0.164 1.224 0.178
Variance ratio (Treat/Comp.) 1.543 1.061 1.418 1.063
Start Latitude
Mean difference -0.002 0 -0.002 0
Std. mean difference -9.696 0.461 -13.216 0.326
Mean raw eQQ difference 0.002 0 0.002 0
Variance ratio (Treat/Comp.) 1.425 0.994 1.357 0.988
Start Longitude
Mean difference 0.003 0 0.004 0
Std. mean difference 13.581 -0.086 18.181 0.003
Mean raw eQQ difference 0.003 0 0.004 0
Variance ratio (Treat/Comp.) 1.379 0.994 1.333 0.993
End Latitude
Mean difference -0.002 0 -0.001 0
Std. mean difference -10.882 -0.731 -6.932 -0.394
Mean raw eQQ difference 0.002 0 0.001 0
Variance ratio (Treat/Comp.) 1.38 0.987 1.265 0.993
End Longitude
Mean difference 0.002 0 0.002 0
Std. mean difference 12.411 0.272 9.584 -0.015
Mean raw eQQ difference 0.003 0 0.003 0
Variance ratio (Treat/Comp.) 1.413 1.003 1.367 1
Month
Mean difference -0.11 0.007 0.012 -0.013
Std. mean difference -4.878 0.302 0.515 -0.55
Mean raw eQQ difference 0.121 0.046 0.057 0.066
Variance ratio (Treat/Comp.) 0.997 1.054 1.003 1.066
Start Hour
Mean difference -0.361 0.004 -0.476 -0.006
Std. mean difference -10.535 0.117 -15.115 -0.191
Mean raw eQQ difference 0.617 0.048 0.518 0.07
Variance ratio (Treat/Comp.) 0.746 1.022 0.822 1.056

Notes: For each covariate, we evaluate the improvement in covariate balance in four ways (Lee, [2013): (i) difference
in means; (ii) standardized mean difference (Rosenbaum and Rubin| (1985) suggest that a standardized difference
greater than 20 should be considered large); (iii) eQQ mean difference, a nonparametric measure that evaluates
rank rather than the precise value of the observations (Ho et al., [2007); and (iv) variance ratio between treated and
untreated units (Sekhonl [2008]).
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Table A.7: Regression results from linear models on
full and weighted samples (post Oct. 2015 price change
observations only)

Weekday Weekend

Registered Casual Registered Casual

Panel A: Linear models on full sample

Daisy 8.416 14.248 9.511 11.929
(0.360) (0.455) (0.550) (0.489)
Google distance 4.996 5.080 5.120 4.846
(0.078) (0.112) (0.080) (0.126)
Obs. 120,212 86,369 22,219 39,804
R-squared 0.441 0.299 0.477 0.247

Panel B: Linear models on weighted sample

Daisy 7.378 11.484 9.080 10.424
(0.394) (0.518) (0.655) (0.613)
Google distance 5.099 4.341 4.086 4.128
(0.192) (0.259) (0.270) (0.243)
Obs. 2,364 4,308 1,060 4,001
R-squared 0.435 0.316 0.380 0.268

Notes: Dependent variable in all models is trip time (in minutes). All mod-
els include controls for weather, month fixed effects, and hour-of-day fixed
effects. Panel A presents results from linear models on the full sample. Panel
B presents results from linear models on a weighted sample using 1:1 Maha-
lanobis matching without replacement. Robust standard errors clustered at
the route level are presented in parentheses.
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Table A.8: Regression results from panel models on
weighted samples (post Oct. 2015 price change observa-
tions only)

Weekday Weekend

Registered Casual Registered  Casual

Panel A: Subscriber fixed effects on weighted sample

Daisy 5.781 11.508 7.884 14.343
(0.746) (2.314) (1.362) (2.388)
Google distance 4.933 4.501 2.951 4.369
(0.415) (0.699) (0.649) (0.827)
Obs. 2,364 4,308 1,060 4,001
R-squared 0.753 0.868 0.804 0.896

Panel B: Route fixed effects on weighted sample

Daisy 5.496 10.785 6.857 9.328
(0.699) (0.924) (2.281) (1.264)
Google distance 9.131 6.916 8.622 2.564
(1.867) (1.677) (8.092) (2.005)
Obs. 2,364 4,346 1,060 4,001
R-squared 0.828 0.758 0.876 0.761

Panel C: IV models with route fixed effects on weighted sample

Daisy 10.136 12.963 9.978 18.495

(1.735) (2.180) (2.380) (3.273)
Google distance 6.735 5.705 6.349 -4.428

(1.503)  (1.642)  (4.587)  (3.248)
First-stage F-stat 36.42 36.92 12.13 25.04
Obs. 1,642 3,430 558 3,346
R-squared 0.181 0.246 0.313 0.085

Notes: Dependent variable in all models is trip time (in minutes). All models
include controls for weather, month fixed effects, and hour-of-day fixed effects.
All panels present results from linear panel models on a weighted sample using 1:1
Mahalanobis matching without replacement. In Panel C, Daisy is instrumented
for using indicators for 10-minute bins of expected trip duration as described in
Equation |3] Robust standard errors clustered at the subscriber level (Panel A)
and route level (Panels B and C) are presented in parentheses.
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Table A.9: Regression results with route fixed effects and
time-of-day heterogeneity (post Oct. 2015 price change
observations only)

Weekday Weekend

Registered Casual Registered Casual

Daisy x Morning 4.440 10.451 7.059 3.988
(1.574) (2.991) (6.048) (6.840)
Daisy x Afternoon 7.030 11.145 5.441 9.883
(1.680) (1.338) (3.922) (1.687)
Daisy x Evening 5.623 10.462 8.325 8.778
(0.906) (1.478) (3.430) (1.537)
Daisy x Night 4.151 14.441 3.900 13.195
(1.718)  (3.894)  (6.474)  (4.084)
Google distance 8.920 6.820 9.024 2.483
(1.871) (1.690) (8.210) (2.009)
Obs. 2,364 4,308 1,060 4,001
R-squared 0.829 0.759 0.877 0.762

Notes: Dependent variable in all models is trip time (in minutes). All models
include controls for weather, month fixed effects, and hour-of-day fixed effects.
Morning = 1 if the trip began between 6:00AM and 9:59AM. Afternoon = 1 if
the trip began between 10:00AM and 2:59PM. Evening = 1 if the trip began
between 3:00PM and 7:59PM. Night = 1 if the trip began at or after 8:00PM.
Results are from linear panel models on a weighted sample using 1:1 Mahalanobis
matching without replacement. Robust standard errors clustered at the route
level are presented in parentheses.
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Figure A.1: k-density distributions for registered users on weekdays before and after
1:1 Mahalanobis matching without replacement for key variables. Repeated observations
are taken into account with frequency weights. First column is raw data for pre-Oct. 2015.
Second column is matched data for pre-Oct. 2015. Third column is raw data for post-Oct.
2015. Fourth column is matched data for post-Oct. 2015.
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Figure A.2: k-density distributions for registered users on weekends before and after
1:1 Mahalanobis matching without replacement for key variables. Repeated observations
are taken into account with frequency weights. First column is raw data for pre-Oct. 2015.
Second column is matched data for pre-Oct. 2015. Third column is raw data for post-Oct.

2015. Fourth column is matched data for post-Oct. 2015.

A1l




Weekend, Registered Weekend, Registered Weekend, Registered Weekend, Registered

Densty
)
Densiy
o os
Densty
o

@
wies)

) @
Ouwaton (inutes)

Unneghied Deect

[ —— |

Weekend, Registered (google_miles)

oo woske ol ies soog_mies
T ———T | [ — T | P — T T T —T T
Weekend, Registered (start_lat) Weekend, Registered (start_lat) Weekend, Registered (start_lat) Weekend, Registered (start_lat)

/”\/’"«‘

£l \ g

. / \\ .

- / \
— T/
Ermm B w7 wn o ww W Ww @ wm__wm wh wm ECEEEE T T
St e o

et e | T ey |

Weekend, Registered (start_long)

B
T LT L R R U . T U e T S T L 1
Lorgns sar oy Lorguia
T —r | Vet Doy~ Wit oveet |
Weekend, Registered (end_lat) Weekend, Registered (end_lat) Weekend, Registered (end_lat)
A
8 / \ 8 B
&R A &8 H
< 7\ \ o o
W ww e ED Wn o ww @ Wn W ww @
e i e
| Vepted Doy et oveet |
Weekend, Registered (end_long) Weekend, Registered (end_long) Weekend, Registered (end_long)
s 2 /\,\ 8 A 2
. . Y .
fe g \ §
e \\ /w\ i
o adw e ww b ww  ader ke s _whe e whe ke e % e e adim B ] e ke
Longuc e o Longu o
| I | reped ey~ Uriaea e
Weekend, Registered (month) Weekend, Registered (month)
g s g ]
3 7 & b T T T % B T & b =
e — | I — e | repied ey~ Uriaed e
Weekend, Registered (start_hour) ‘Weekend, Registered (start_hour) Weekend, Registered (start_hour)
5 E 1
8 8 g
° ° 7// N ° °
T — | Ve T T e Dy~~~ Wgea ot

Figure A.3: k-density distributions for casual users on weekdays before and after 1:1
Mahalanobis matching without replacement for key variables. Repeated observations are
taken into account with frequency weights. First column is raw data for pre-Oct. 2015.
Second column is matched data for pre-Oct. 2015. Third column is raw data for post-Oct.
2015. Fourth column is matched data for post-Oct. 2015.
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Figure A.4: k-density distributions for casual users on weekends before and after 1:1
Mahalanobis matching without replacement for key variables. Repeated observations are
taken into account with frequency weights. First column is raw data for pre-Oct. 2015.
Second column is matched data for pre-Oct. 2015. Third column is raw data for post-Oct.
2015. Fourth column is matched data for post-Oct. 2015.
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