WORKING PAPER

December 2017; revised March 2018 B RFF WP 17-20-REV

The Effects of Climate
on Leisure Demand

Evidence from North America

Nathan W. Chan and Casey J. Wichman

1616 P St. NW
Washington, DC 20036
202-328-5000 www.fffory ~ RESOURCES

FFFFFFFFFF



The Effects of Climate on Leisure Demand:
FEvidence from North America*

Nathan W. Chan® and Casey J. Wichman?

YUniversity of Massachusetts Amherst
2Resources for the Future

March 1, 2018

Abstract

There is extensive research documenting the economic consequences of climate
change, yet our understanding of climate impacts on nonmarket activities remains
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ing data from 27 million bicycle trips in 16 North American cities, we estimate
how outdoor recreation responds to daily weather fluctuations. Combining these
estimates with time-use survey data and climate projections, we project annual
surplus gains of $894 million from climate-induced cycling by mid-century. Ex-
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1 Introduction

Climate change will affect economic conditions globally, with wide-ranging implications for
economic growth, productivity, public health, and ecological function. Recent work has shown
that local climate affects the growth rate of national economies (e.g., Burke et al., 2015b; Dell
et al., 2012)), labor supply (e.g., |Graff Zivin and Neidell, 2014])), agricultural production (e.g.,
Deschénes and Greenstone, 2007; Schlenker and Roberts, [2009; [Burke and Emerick, 2016)),
and natural systems (e.g., [Walther et al., |2002; Tol, [2009). There is evidence that extreme
temperatures cause dramatic health consequences (Barreca et al.l 2016) and can even affect
traffic and driving risks (Leard and Roth, [2017).

Despite extensive research detailing the effects of climate change on economic production,
human health, and natural capital, we have relatively few causal estimates of climate change
effects in other realms, especially for nonmarket activities. In this paper, we help fill this gap
by quantifying impacts for leisure. We estimate outdoor recreation demand as a function of
weather anomalies, and we use these estimates to predict future impacts from climate change.
Our analysis highlights both short- and long-run implications and sheds light on the role of
adaptation.

Although much of the extant literature finds that climate change will have deleterious
effects on economic productivity, the implications for recreation demand are theoretically
ambiguous. Global warming entails a rightward shift of the temperature distribution. There-
fore, for most outdoor activities, we anticipate diminished recreation demand on the warmer
end of the distribution, where increases in temperature will make hot days and regions more
inhospitable for outdoor activity, holding rainfall constant. However, on the cold end of
the distribution, climate change will beget milder conditions, potentially stimulating greater
recreation demand. Identifying the net effect is an empirical question that depends on the
distribution of weather and its interaction with preferences, population, and wealth across
the geography in question. Prior research has found positive aggregate impacts on outdoor
recreation due to a reduction in the number of cold days (Mendelsohn and Markowski, (1999;
Loomis and Crespi), [1999)), but lacks a causal foundation.

In this paper, we estimate the net impact of weather on leisure demand by analyzing a
representative mode of outdoor recreation: riding bicycles[] Cycling is attractive to study for
two primary reasons: (1) it is prevalent throughout the world, undertaken in a wide range of
climatological zones and by people from vastly different socioeconomic backgrounds, and (2)
there are high-quality data sets on bicycle usage available from bicycle-sharing (bikeshare)
programs at fine spatial and temporal resolutions. These programs exist in hundreds of

cities worldwide, with tens of millions of trips recorded annually. We analyze temporally

'Here and throughout the paper, we use the term “leisure” interchangeably with warm-weather “outdoor
recreation.” Our primary outcome of interest is nonworking, nonproductive time that is complemented by
pleasant weather, including exercise and sightseeing.



disaggregated data over multiple years for 16 similar bikeshare programs throughout North
America, from Mexico City to San Francisco to Montreal. We use high-frequency data that
are recorded in real time, an advantage over traditional leisure studies that rely upon survey
data. Our diverse set of programs and the fine data resolution provide distinct advantages,
as we are able to compare, apples-to-apples, a leisure activity in climatologically distinct
settings, something that is not possible for more geographically specific activities such as
fishing, boating, or swimming.

Of course, not all bicycle trips constitute leisure activity. Individuals may use bikeshare
programs for work commutes, as well. To focus on recreation demand, we restrict our analysis
to weekend trips. Although weekend trips do not perfectly correspond to leisure rides, we
demonstrate that this is a very strong proxy using four additional pieces of evidence. First, we
show striking similarities between the weather responses in our sample and weather responses
for recreational cycling demand from time use surveys; however, we note that our estimates
are much more precise due to the unique nature of our data set and our estimand is more
economically meaningful for projecting future leisure demand under climate change. Second,
we find a virtually identical demand response to weather for a subsample of “casual” weekend
cyclists—those who have short term bikeshare memberships—that make up 27% of our sample.
Third, we observe similar behavior in our weekend sample and a separate sample of federal
holidays, both of which differ from weekday cycling demand. Fourth, the patterns of intraday
substitution that we observe are consistent with discretionary leisure activity, as individuals
shift their rides to morning and evening on hot days, presumably to avoid the intense heat of
the midday hours; no such substitution patterns are observed on weekdays, when obligatory
work commutes constitute a larger portion of rides.

Altogether, we observe more than 27 million weekend bicycle trips totaling more than
9 million hours of cycling time, one of the largest compilations of recreational trips used in
the economics literature. We couple these highly detailed bikeshare data with disaggregated
climatic variables, which allows us to parameterize the leisure-weather dose-response function
for cycling. In particular, we exploit within-city deviations in weather each month to estimate
a causal, nonlinear relationship between temperature and precipitation and resultant leisure
demand.

After establishing this relationship, we overlay an ensemble of climate projections from
coupled atmosphere-ocean general circulation models onto our weather-response functions.
From this, we project spatially explicit changes in leisure demand attributable to climate
change, and we derive economic values for these changes. Importantly, the weather varia-
tion in our data subsumes the most likely range of temperatures and precipitation in mid-
century climate projections, so that our final results do not rely upon large out-of-sample
extrapolations. By analyzing recreation data from time use surveys, we are able to scale our

cycling-specific estimates into overall estimates for outdoor leisure. Our results suggest that



climate change will generate net benefits from induced cycling demand around $894 million
per year (2016 USD) by 2060. Extrapolating this value to outdoor recreation more generally,
our back-of-the-envelope calculations suggest climate-induced outdoor recreation benefits on
the order of $20.7 billion per year. This value exceeds the negative impact of climate change
on US corn yields by a factor of 3 by midcentury (Burke and Emerick, [2016), but has received
comparatively little attention in the economics literature.

Our work contributes to a growing body of literature that projects climate impacts on var-
ious economic activities. We take a reduced-form approach, exploiting weather fluctuations
to identify the effect of climate variables on leisure demand, and we couple these empirical
estimates with climate model projections to predict how future leisure activity will be influ-
enced by a changing climate. Similar approaches have been used to predict climate change
consequences for economic growth, labor supply, human health, agricultural production, and
ecological systems (Walther et al., [2002}; |Deschénes and Greenstone, [2007; (Tol, |2009; |Dell et
al., 2012; |Graff Zivin and Neidell, 2014; Burke et al., 2015a; Burke and Emerick, [2016)).

However, relatively little work has studied the causal relationship between climate and
nonmarket recreation activityﬂ Mendelsohn and Markowski| (1999) conducted some early
work in this vein, using cross-sectional variation in weather patterns across the 48 contiguous
states to estimate how demand for six summer recreation activities (boating, camping, fish-
ing, golfing, hunting, and wildlife viewing) vary with weather. They then use this empirical
model to predict how the number of recreation days for each activity will change under nine
hypothetical climate scenarios. In particular, they consider temperature increases of 1.5, 2.5,
and 5.0 degrees Celsius and precipitation increases of 0, 7, and 15 percent, and they multiply
demand changes by values from the literature for (average) consumer surplus per day. Their
central estimates indicate net gains in the neighborhood of $3-$4 billion by the year 2060 (in
1991 USD).

Loomis and Crespi (1999) take a similar approach by estimating how visitation rates
for various recreation activities vary with weather conditions. Coupling these estimates with
Intergovernmental Panel on Climate Change climate projections and average consumer surplus
values from the literature, they estimate overall benefits of $3 billion (in 1992 USD). They
predict gains for golf and water-based activities such as swimming, fishing, and boating and
losses for skiing, hiking, and camping. However, the studies by |[Loomis and Crespi (1999)

and Mendelsohn and Markowski| (1999)) use aggregate (e.g., state or regional) measures of

2In complementary research, [Leard and Roth| (2017)) estimate the welfare impact from fatal traffic accidents
induced by climate change. They find large costs associated with traffic fatalities by the end of the century.
Further, they posit that “voluntary exposure benefits” from more pedestrians, cyclists, and motorcyclists on
the roads with higher temperatures offset the costs of fatalities, thus mitigating the consequences of climate
change on traffic accidents. This latter finding is in line with our estimates for cycling, although our data
permit us to estimate the benefits from climate-induced recreational activities. We find that annual welfare
benefits for climate-induced recreation by midcentury constitute more than half of Leard and Roth’s discounted
stream of costs from climate-induced traffic fatalities from 2015-2099.



participation, relying on cross-sectional variation across jurisdictions to pin down weather
effects. The reliance on cross-sectional variation in both cases creates challenges for causal
identification if local climates are correlated with recreational opportunities.

Further, |Graft Zivin and Neidell (2014) use short term temperature shocks to study how
temperatures affect individuals’ allocation of time between labor and leisure, using data from
the American Time Use Survey. They report that additional warming at high temperatures
reduces labor hours, but that these impacts are primarily concentrated in industries exposed to
climate. They also find that such warming encourages individuals to take part in indoor leisure
activities in lieu of outdoor leisure. The leisure substitution works in the opposite direction
when there is warming at the low end of the temperature distribution, as expected, and they
find no appreciable response in labor time in such cases. They also provide evidence that
individuals may acclimatize to higher temperatures or adapt through temporal substitution
of activities.

Like our paper, |Obradovich and Fowler| (2017) also examine how climate change will
influence physical activity patterns. They use data from 1.9 million respondents to the the
Behavioral Risk Factor Surveillance Survey (BRFSS) and examine dose-responses to short
term weather variation. They find large, pronounced effects at low temperatures and more
modest effects at high temperatures, which is consistent with our findings; however, the
magnitudes of their responses are more muted. We posit that this discrepancy arises because
the BRFSS questions elicit binary responses about general physical activity for the 30-day
window prior to the interview (“During the past month, other than your regular job, did you
participate in any physical activities or exercises such as running, calisthenics, golf, gardening,
or walking for exercise?”), providing a coarse measure of the outcome variable of interest.
Moreover, given the temporal scale of their survey data, they use month-long averages of
explanatory variables like temperature and precipitation, which likely attenuate the estimated
responses.

We are not the first researchers to consider the responsiveness of cycling to weather. Us-
ing automatic bicycle-traffic receptors, Nosal and Miranda-Moreno| (2014) explore a similar
dose-response relationship between weather and cycling along 14 routes in Montreal, Ottawa,
Vancouver, and Portland, and Quebec over a span of 1-to-3 years. They segment their data
into utilitarian and recreational routes on weekdays and weekends. They model the tempera-
ture relationship as quadratic and their results suggest an inverted U-shape, which is amplified
when considering weekend, recreational trips. These results are consistent with what we find,
although we model our dose-response function more flexibly and include a wider variety of
cities, over a longer timespan, with a broader set of controls and fixed effects, thus extending
the validity of the results estimated by Nosal and Miranda-Moreno| (2014)). Going several
steps further, we combine our estimates with climate projections and an economic welfare

framework to predict climate change impacts on a national scale.



In this paper, we add to the small but growing literature studying the future impacts of
climate change on leisure. The basic arc of our research is similar to those discussed above,
as we use short-run variation in weather in conjunction with climate projections to predict
future outcomes. However, we distinguish our work from others in several key dimensions.
First, this study takes advantage of a unique, high resolution data set. By their nature, many
recreational activities are infrequent, leaving researchers with relatively coarse data aggregated
over large jurisdictions (e.g., state level), long temporal scales (e.g., months or seasons), or
both. Such data limitations make it challenging to estimate precise effects and to identify
causal relationships cleanly, especially because weather data must often be averaged over long
time periods or large regions to mesh with the available recreation data. The bikeshare data
that we use, on the other hand, are extremely rich, with bike usage information discernible at
timescales finer than a minute. As a virtue of these detailed data, we can control for a battery
of fixed effects to remove confounding variation from location- or time-specific unobservables,
thus giving us confidence in the causal interpretation of our estimates. Moreover, we can
analyze the effects of climate change at the daily or intradaily level to infer substitution and
adaptation behavior.

Second, our application is unique, as we study short cycling trips made in bikeshare
programs. Not only is this particular focal area unexplored, but it also differs in nature from
the activities typically studied in the recreation demand literature. That is, more standard
analyses examine activities such as boating, fishing, or camping—activities that often entail
significant fixed costs and investments of time to undertake. Bikeshare trips, by contrast,
constitute an everyday activity that individuals can engage in on a whim and that may take
as little time as a few minutes. Such everyday activities have typically been overlooked by the
recreation literature; this represents an important oversight because the value of cycling and
other quotidian pursuits can be significant and large, as we show. Although these activities
may seem insignificant, their sheer participation rates and revealed demand lead to substantial
welfare impacts that should not be ignored [

This research has immediate policy implications and fills an important gap in the existing
literature. This is the first study, to our knowledge, to generate causal estimates of weather on
recreation demand to provide insight on notoriously difficult-to-measure nonmarket climate
damages. In doing so, our analysis complements existing work that examines market impacts,

making it possible to construct a more comprehensive measure of climate damages.

2 Analytical and empirical framework

We begin with a model of consumer behavior to motivate our empirical analysis. Consider

a representative consumer who derives utility from a numeraire x and leisure Y. She has

3We observe more than 3,500 years of cumulative time spent on bicycles in our full 8-year sample.



utility u(z,Y; W, Z), where W captures a vector of weather variables that influence the value
of leisure and Z is a vector of shifters such as demographic characteristics. Her budget

constraint is 4+ pY = I, where p is the price of leisure. She optimizes
max u(z,Y; W, Z) subject to x +pY =1 (1)

which yields the demand function Y (p, I; W, Z).

Our empirical goal is to relate leisure demand Y to weather W, and by doing so, we can
quantify the welfare impact of weather changes. Specifically, we seek to establish a causal
relationship between weather outcomes and usage of the bikeshare system. For each city,
¢, in our sample, we aggregate bicycle trip statistics to the daily level, t. We focus on two
outcomes, Y, € {Trips,,, Durationy }, that capture both the aggregate number of trips taken
in a given day and the aggregate number of minutes spent by all bikeshare users within the

day for each city. We specify the following baseline equation to link demand and weather:
InYy = f(Wet|O) + ac + At + 0em + K1te + Hztz + Eet. (2)

The city fixed effect is captured by ., while A; is a set of common time fixed effects (in our
primary specification, these are day-of-week and month-of-sample indicator variables). 0, is
a city-by-month-of-sample fixed effect. t. is a (quadratic) city-specific time trend, which is
important to capture the effect of different start dates, growth rates, and other time trends
across sites. €. is the residual error, with serial correlation present within a city over time.
And, finally, f(W|©) is a flexible function of prevailing weather conditions, parameterized
by ©.

To capture the relationship between weather and our dependent variable of interest, we

specify the partially nonparametric functional form to f(-|©) in Equation

f(1e) = Z'ys]l[Tct =s|+ ZBT]I[PCt = r| + nSnow, (3)

s€s reR
where the first term in the summation s indicates a set of 10°F temperature bins that equal one
if the observed daily average temperature T,; falls within that range, and zero otherwise. The
second term is a set of i—inch precipitation bins that equal one if observed daily precipitation
P, falls within that rangeﬁ Snow; is an indicator equal to one if any snowfall is observed
that day.
The relationship captured empirically by the set of coefficients in f(:|©) provides a foun-

dation to understand how bicycle users respond to deviations in weather outcomes in the

4Formally, the temperature bins, in degrees Fahrenheit, are (—oo,30], (30,40], (40,50], (50,60], (70, 80],
and (80, 00), with the (60, 70] bin omitted. The precipitation bins, in inches per day, are (0,0.25], (0.25,0.50],
(0.50,0.75], (0.75,1], and (1, 00), with days with no precipitation omitted.



short run. In our primary specifications, we control for (1) global day-of-week effects (e.g.,
Saturday), (2) global month-of-sample effects (e.g., February 2012), and (3) idiosyncratic
city-by-month-of-sample effects (e.g., June 2014 in Chicago), so the identifying power in our
sample is driven by day-of-week-specific variation within each month-city combination in our
sample. That is, identification arises by comparing an unusually warm Saturday in Chicago
in June 2014 with a relatively more temperate Saturday in Chicago in June 2014.

Our two outcome variables, Trips and Duration, provide insight into both the extensive
and intensive margin of choice for cyclists. That is, how does weather affect the likelihood of
cycling, and conditional on choosing to bicycle, how much time is spent cycling in response to
weather? By estimating the change in quantity of minutes demanded by cyclists in response
to weather and employing existing estimates of consumer surplus per unit of time from prior

work, we can directly estimate welfare changes in response to deviations in weather.

2.1 Weather vs. climate?

We follow recent empirical work that uses weather fluctuations to identify relationships be-
tween climate and economic outcomes (e.g., [Schlenker and Roberts, 2009; Dell et al., 2012
2014; [Burke et al.| 2015b; [Barreca et al.l |2016; Hsiang et al.| 2017)E] Specifically, consider two
stylized climate distributions presented in the top panel of Figure [I} These two distributions
could represent geographic differences at a single point in time (e.g., comparing Boston with
San Francisco) or these could represent hypothetical climates for one geography at different
points in time (e.g., Washington, DC, in 2015 and Washington, DC, in 2050).

Now, consider realizations of temperature holding precipitation fixed. In our quasi-
experimental setting, we seek to identify the relationship between leisure demand and tem-
perature, represented in the lower panel by Y (7'). By allowing nature to take random draws
from the distributions Cy and C4, which we observe as fluctuations in temperature, we are
able to identify points along the dose-response function, Y (7"). Our approach, then, derives
an empirical relationship between leisure demand and weather conditional on climate.

An immediate conclusion from the hypothetical construction in Figure [I|is that it is am-
biguous whether a positive mean shift (e.g., moving from Ty to 77) will stimulate or diminish
leisure demand. Assuming that there is some optimal temperature 7™ associated with leisure
demand (holding precipitation and other factors fixed), any rightward shift in local mean tem-
peratures for Ty < T will result in positive welfare benefits denoted by the region A, whereas
rightward shifts for Ty > T™ will negatively affect welfare derived from leisure, the region
B. It stands to reason that there may be winners and losers with respect to climate-induced
changes in leisure demand. The net value of this effect will be determined by geographically

explicit climate effects and their interaction with the distribution of preferences, population,

5See Dell et al|(2014) and [Carleton and Hsiang| (2016) for broad reviews of this literature.



and wealth across the area considered.

Of course, this conclusion is complicated by the fact that climate is multidimensional and
represented by higher-order moments than its mean temperature, and that demand for leisure
is potentially correlated with unobservable factors also associated with climate at the local
level. Our rich set of weather variables, time controls, and geographic fixed effects, then, plays
an important role in interpreting our results as causal.

Another concern is that long-run responses to climate may differ from short-run reactions
to weather because of factors such as adaptation or sorting, an important challenge for studies
that use dose-response functions to infer climate impacts. For example, a farmer may react
differently to year-to-year weather fluctuations than to longer-term changes in climate, so
measurements of the former shed little light on the latter. Our focus on bikeshare usage
mitigates this concern to an extent. Because our outcome variable has virtually zero fixed
cost, especially relative to phenomena like locational sorting or agricultural adaptation, it is
easier to claim that our estimated dose-response function for spontaneous bicycle trips may

be quite close to that of climate.

2.2 Welfare measurement

Upon estimating demand as a function of weather, we use the following framework for calculat-
ing welfare implications stemming from likely changes in weather due to climate change. This
approach follows the methodology adopted by Mendelsohn and Markowski| (1999) and eval-
uated by |Chan and Wichman| (2018). Recall the demand function for leisure, Y (p, I; W, Z).
To focus on the variables of interest, let us suppress I and Z and consider an initial set of
weather conditions, Wy. Demand can be written as Yy(p), and we define the choke price py
as the value of p for which Yy(pg) = 0.

For any opportunity cost p*, we can calculate the consumer surplus as

Do
CSo= [ Yop)dp.
p

Climate change will result in different weather conditions, W7, and a shift in demand to

Yi(p). A new choke price p; and consumer surplus C'S; will then arise, with accompanying

welfare implications. The change in welfare can be quantified as
ACS =CS; — CSp.

This conceptual framework provides a guide for empirical investigation into the welfare im-
pacts of climate change. In particular, one needs to estimate a price-quantity relationship
and characterize how this demand function shifts based on weather. From this, it is possible

to compute consumer surplus by integrating between the estimated curves.



Our dose-response function precisely estimates how weather influences the equilibrium
quantity of demand at p*, but we do not observe necessary price variation to identify the full
shifted demand curve. Thus, we will approximate welfare changes by coupling our estimates of
weather-induced shifts with C'Sy values available in the literature, a benefits-transfer approach
also taken by others such as Mendelsohn and Markowski (1999)) and Loomis and Crespi (1999).
Specifically, we multiply the estimated change in aggregate cycling duration by the average
consumer surplus per hour of cyclingﬁ

Formally, we compute
AY x CSp =~ ACS (4)

where AY = Y — Y and CSy = CSp/Y{ is the average consumer surplus per unit of activity
given the original demand curve Yy(p). Y;* and Y represent the equilibrium levels of demand
under weather conditions Wi and Wy, respectively. CSy is available from prior work, while
Y and Y can be calculated from our analysis.

Although imperfect, this approximation will have a predictable bias, as shown by |Chan
and Wichman| (2018]). In particular, Expression {4| will underestimate the magnitude of welfare
changes for common specifications of demand, such as linear demand models or demand
functions that shift linearly in weather, thus yielding conservative estimates. Alternatively,
for semi-log specifications, such as the commonly-used Poisson and negative binomial forms,
Expression [4] will give an exact measure of consumer surplus changes. Figure |2 explains the
intuition for this welfare calculation, while more detailed analysis is available in [Chan and
Wichman (2018).

3 Data

3.1 Bikeshare data

Bikesharing is an urban transit system in which members can use bicycles from stations in
public places and return them to other stations when their ride is complete. Modern systems
require members to purchase a membership for a specified time (e.g., 24 hours or one year).
A member uses a key to unlock a bicycle at any station and can return it to an empty dock at
a station near the end destination. Generally, the marginal cost of a trip completed within a

given amount of time (typically 30 minutes) is zero; trips that last longer than that are priced

SNote that C'Sp is revealed from travel cost studies, yielding a measure that is net of opportunity costs.
Therefore, when calculating the value of additional cycling activity, we do not need to explicitly account for
forgone wages or reductions in other leisure activities. Opportunity costs are already embedded in the ACS
calculation via C'Sp.
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according to an increasing tiered schedulem

We compiled data from each bicycle-sharing program in the United States, Canada, and
Mexico, and obtained publicly available trip history records for each program online. Our
sample contains all publicly available bikesharing data for programs in North America in the
spring of 2017. Overall, we use data from 16 independent programs across North America as
shown in Figure [3] Each data set contains the start and end time and location of each bicycle
trip. From this, we can calculate each trip’s elapsed duration. We aggregate individual trips
to the daily level (i.e., the calendar date on which the trip began). Our primary outcomes
of interest are (1) the total number of trips in a given day for a given city, and (2) the
total duration (in minutes) of all trips taken during a given day in a given city. To isolate
leisure demand (as opposed to commuting behavior), we analyze trips on Saturdays and
Sundays. [Wichman and Cunningham|(2017) find cycling behavior on weekends commensurate
with lower values of time that are likely more representative of leisurely rides than weekday
commutes. In subsequent discussion, we provide several additional pieces of evidence to
corroborate our claim that these are leisure trips.

We summarize the bikeshare data in Table Our sample spans from February 2010
through May 2017, although the time periods differ by data availability in each city’s bikeshare
program. In our full sample, we observe more than 120 million bicycle trips totaling more than
32 million hours in elapsed duration. When restricting the sample to weekend observations,
we observe 27 million trips totaling more than 9 million hours of recreation. The number and
duration of trips scale with the size of the program and the length of its operation. New York
has the largest program, averaging more than 24,000 trips per weekend day. Los Angeles has
the smallest program primarily because it has been in operation only since the summer of
2016. We have the longest panel of data in Washington, DC, spanning 654 daily weekend

observations.

3.2 Weather data

We use daily weather data from the Global Historical Climate Network (GHCN-Daily). For
each city in our sample, we gather four weather measurements from each weather station
within 100km of the city’s centroid: maximum and minimum daily temperatures, precipita-
tion, and snowfall. We remove any weather station that has all values missing for any of these
four measuresﬁ We weight observations by the station’s inverse distance squared from the
city centroid. We also take a simple geographic average, giving each weather station within

100km equal weight, as a sensitivity check.

"For more details on bikesharing programs, see Hamilton and Wichman| (2018) and [Wichman and Cunning-
ham| (2017).

®Further, we interpolate seven observations total in Montreal, San Francisco, and Seattle for missing snow-
fall.
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Our final weather data set is a balanced panel of daily observations for each city in our
sample spanning the time period in which we observe bikeshare trips. We take a simple average
of maximum and minimum daily temperatures to construct a daily average temperature. Our
primary weather variables are this average daily temperature (degrees F) along with rainfall
(inches) and snowfall (inches).

As shown in Figure [4] our sample includes a wide variety of climatological conditions,
including hot cities such as Austin, colder cities such as Minneapolis and Montreal, and
temperate cities such as San Francisco. This figure illustrates the variation we use to trace
out leisure demand across a diverse set of climates.

We also use a supplementary weather data set to test the robustness of our findings. We
hand-select weather stations (one station for each city) from the Local Climatological Data
(LCD) Daily Summary. These data allow for daily observations of an additional suite of
weather metrics for our US cities, including wind speed and direction, wet-bulb temperature,
and pressure, among others. Because we use a parsimonious measure of daily temperature in
our primary specification, we utilize these observations to assess whether alternative measures

of weather influence our results

3.3 Climate projection data

Together, the bikeshare data and weather data allow us to identify how leisure demand is
influenced by weather. We seek to project this relationship into the future to quantify cli-
mate impacts, which requires highly detailed weather projections. We obtain daily average
temperature predictions and daily precipitation fluxes from models in the CMIP3 archive
(Phase 3 of the Coupled Model Intercomparison Project). We select models that ran the A1B
(“business-as-usual”) climate scenario and had projections for 2055 through 2060, giving us
15 climate models in total. For this set of climate model outputs, we assign observations from
each model’s grid point nearest to the city centroid in our sample.

For each of the 15 climate models, we calculate the percentage change in temperature
and level change for precipitation between 2055-2060 and 1995-2000, the baseline climate
period for this CMIP3 experiment, for each day in that period. That is, we compare weather
projections for January 1, 1995, with those for January 1, 2055. We truncate precipitation
changes from below at zero. We assume that temperature and preciptiation changes trend
linearly and remove the fraction of the change prior to our 2011-2016 sample. Finally, for
each climate model, we add these predicted changes in temperature and precipitation to our
observed local weather from the GHCN-Daily data set to account for any location-specific

biases (Auffhammer et al., 2013). By retaining a large suite of climate models, we allow

9Because the primary purpose of this exercise is to establish robustness, we do not correct or impute missing
values.
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the disagreement across models to capture uncertainty in climate predictions (Burke et al.,

2015a). A more detailed exposition of this procedure is provided in the next section.

3.4 Leisure demand data

Using the 2016 American Time Use Survey (ATUS), we construct a nationally representative
data set of time spent cycling and engaging in other outdoor recreational activities. We
calculate the average number of minutes spent cycling and recreating outdoors per day per
ATUS respondent, averaged at the state level. For each state, we multiply this average
recreation demand by its 2016 population (obtained from the US Census), which provides an
approximation of the total time spent recreating outdoors per day for state residents. The
ATUS data provide a means for extrapolating our bikeshare results to inform effects on cycling

and recreation more generally.

4 Results

4.1 A precursory note on standard errors

The identifying variation in our data arises from comparing outcomes within a city-month,
which serves as an appropriate level to cluster standard errors (Bertrand et all 2004). In
our primary results, we take a more conservative approach and cluster standard errors at the
city level, which provides generally wider confidence bands. This conservatism comes at the
price of biased standard errors with few cluster groups. In our case, a sample of 16 cities is
too few to trust asymptotic results from common adjustments for clustered standard errors
(Cameron et all [2008). In the appendix (see Figure [A.3]), we present our primary city-level
results alongside alternative standard error formulations with clustering at the city-season
level, clustering at the city-month level, and using wild-cluster bootstrap standard errors
(Cameron et all 2008; |Cameron and Miller, 2015)). Importantly, inference based on any of
these clustering variations is similar: coefficients that are significant in our primary results
remain so under the three alternative formulations, and coefficients that are insignificant are
consistently so across all variations. In what follows, we use larger but potentially biased
standard errors clustered at the city level for our primary results rather than clustering at the

city-month level to avoid creating a sense of false precision in our estimated effects.

4.2 Dose-response function

In Tables [2] and |3| we present marginal coefficients from our initial model specifications that
regress the log quantity of trips and the log duration of trips on binned weather variables.
Moving from left to right in both tables, we estimate the same model while adding a progres-

sively richer set of controls. In column (1), the only included fixed effects are for day-of-week
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and month-of-year. In column (2), we add city fixed effects, which absorbs any time-invariant
factors that may affect the propensity to use the bikeshare system (e.g., the bicycle-friendliness
of an urban area) and increases the precision of our estimates substantially. The coefficient on
the > 80°F temperature bin in Table [3[ column (2) is —0.21, which can be interpreted as the
marginal effect of exchanging one day in the 60° — 70° bin for one additional day in the > 80°
bin conditional on day-of-week, month-of-year, and city fixed effects. That is, one additional
> 80° day results in a 0.21 reduction in the log duration of trips.

With the exception of our most naive model excluding city fixed effects, the results within
and across Tables [2] and [3] are in relatively strong agreement. Additional days below 60°
reduce the quantity and duration of bicycle trips, with colder days being incrementally more
detrimental, relative to the omitted temperature bin (60° — 70°). Days above 80° have a
marginal effect on demand that is statistically similar to zero in our richest specification
(column (6)). Coefficients on precipitation bins and snowfall are also consistent: all results
suggest that the quantity and duration of bicycle trips decrease with additional rain and
snowfall.

To illustrate these effects, we present in Figure || the percentage change in the quantity (in
panel (a)) and duration (in panel (b)) of trips as a function of temperature and precipitation
bins. The quantities shown are transformed marginal effects from the final column of Tables
and These figures highlight our primary results. Demand for bicycle trips increases
as temperature increases, but this trend flattens out beyond average temperatures of 70°.
Exchanging one 60° —70° day with a < 30° day within a given month-city combination would
reduce demand for and duration of bicycle trips by roughly 75 percent. Our failure to find a
statistically significant reduction on the upper end of the temperature distribution suggests
that bicyclists in North America dislike recreating in cold temperatures but are not averse
to riding in warm temperatures. Rainfall reduces demand monotonically, with higher levels
of precipitation displaying a more pronounced effect. In Figure we show that inference
on these primary effects is unchanged when considering alternative methods of clustering to
construct confidence intervals.

We also consider the interaction between temperature and rainfall. To do this, we interact

10Because our outcome variables are natural logarithms and our variables of interest are dummy variables,
we transform all marginal coefficients, as summarized by [Wichman| (2017)), prior to interpreting our results as
percentage effects. Specifically, percentage effects are calculated as

§ = exp (B - 0.517(3)) 1

where 3 is our estimated marginal effect and V(B) is an estimate of its variance. Similarly, our measure of
variance around percentage effects is calculated as

7(5) = exp(2i) [exp (~7(5)) — exp (~27/(3))]

We present our primary results in log scale for comparison in Figure and in levels in Figure
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each temperature bin with a dummy variable indicating whether there was any rainfall that
day. We present trends for each response function in Figure [f] As shown, days with rainfall
reduce demand for bicycle trips relative to days without rainfall across temperature bins. For
the 60° — 70° bin, the magnitude of the additional effect of rainfall is roughly —20 percent.
This effect is less pronounced in the tails of the temperature distribution, where the effects
with and without precipitation are statistically similar. This observation could perhaps be
explained by a selection effect between “committed” riders who are relatively insensitive to
weather and “fair-weather” riders who are sensitive to extreme temperatures and precipita-
tion. At moderate temperatures, fair-weather riders may be deterred by precipitation, leading
to the drop in demand observed in the middle of the distribution. However, at the tails, only
committed riders participate and fair-weather riders have already opted out because of inhos-
pitable temperatures; thus, conditional on extreme temperature, precipitation does little to
change overall demand.

Having established average effects across our study sites, we now consider the question of
heterogeneity. How do results vary across climatic zones? We segment our cities into climatic
zones according to the classifications specified by the United States Department of Agriculture
(USDA, [2012). In Figure m we plot zone-specific response functions for temperature and
precipitation moving from coldest (Zone 4) to warmest (Zone lO)H Although there is more
variation in the estimated parameters, the overall trend for each zone reflects that of the
pooled model. For temperature, colder days reduce demand for every zone. An additional
< 30°F day for warm southern cities (Zone 8) reduces duration of trips by roughly 85 percent.
A similar metric for cold northern cities (Zone 4) is noticeably smaller, at roughly 50 percent
for the same temperature bin. This effect, however, is much less pronounced when we analyze
the log quantity of trips as our dependent variable. This variation across cities suggests that
acclimatization may take place to some extent, as those living in colder climates are less
deterred by bouts of cold temperatures.

On the warm end of the temperature distribution, the duration of trips is reduced in
hotter cities much more than in cooler cities. At first glance, this result seems to undermine
the notion of acclimatization. However, this regional heterogeneity is likely driven by the
fact that the > 80° bin pools a wide variety of heat conditions, including moderate heat
near the 80° threshold as well as extreme heat exceeding 100°. We suspect that the estimated
effects for the > 80° bin include a larger preponderance of extreme-heat days in warm-weather
cities than in cooler cities, leading to divergence in the estimates. In this light, the strong
negative response for hotter cities makes sense, as they will experience an increasing number
of extremely hot days that dampen outdoor activity. At more moderate temperatures, there

is little dispersion across cities. For the precipitation response, results are relatively consistent

1We present these same figures with confidence intervals in Figure We omit confidence intervals in the
main text for clarity.
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across zones, with precipitation reducing demand at all levels for all citiesE

Overall, although there are different responses to extreme temperature across cities, our
results paint a consistent picture. Colder, wetter days are much less pleasant for outdoor
recreation than are hot days. All regions in our sample will benefit from a reduction in the
number of cold days, while an increase in hot days will have spatially distinct effects. Still,
on average, the negative effects from extreme hot temperatures are small.

Acclimatization is not the only form of adaptation that could be present in our data.
Individuals may shift recreational trips away from the hottest times of day in favor of be-
ing outside during cooler mornings and nights. We exploit the temporal granularity of our
data and estimate time-of-day effects, and we present results in Figure In panel (a),
our results correspond with intraday substitution toward mornings (5AM-10AM) and nights
(8PM-12AM), as hypothesized, for warmer temperaturesE This result likely explains why
we do not observe a drop in cycling demand on hot days in our prior estimates pooled across
climate regions. On average, cyclists respond to hot days by altering the timing of their trips
(morning and night instead of afternoon and evening) rather than reducing the number or
duration of their trips. For colder temperatures, there is little variation in effects across time
of day. The effect of precipitation also appears rather homogeneous across time of day, which

is a sensible result for rain that falls at exogenous times throughout the day.

4.2.1 Bikeshare usage as leisure

Do our observed bike trips actually constitute leisure activity? We have restricted our anal-
ysis throughout to trips that take place on weekends, thus excluding commuting trips that
take place during the WorkweekE However, weekend trips may be an imperfect proxy for
leisure activity, so we examine this claim further by analyzing a subset of “casual” users. In
our primary bikeshare data, we have information on the membership type for each tripE
Memberships can be long term, such as annual subscriptions, or short term, such as day-long
or week-long subscriptions; some users even purchase single trip passes at the bikeshare kiosk.
We define “casual” users as individuals who have a membership of 7 days or less, and we
observe 7,293,568 casual, weekend trips, which is approximately 27 percent of our full sample.
We believe that bikeshare usage by casual users on weekends almost certainly constitutes
leisure. In Figure [0 we present our primary results alongside the same models estimated on

the subset of trips taken by casual users. The response function is virtually identical between

128ee Tables and in the appendix for city-specific regression results.

13This result is sustained when using log duration of trips as our dependent variable in Figure

Tn a model of transportation demand, [Cutter and Neidell (2009) categorize trips in an analogous manner.
They consider trips during rush hours to be commuting (work-related), while classifying trips at other times of
day as discretionary (leisure). They also comment that dividing their data into weekday and weekend samples
would help sharpen the distinction between discretionary and commuting trips.

15We do not, however, have membership designations for Hoboken, Mexico City, or Pittsburgh.
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the two samples, although our coefficients are estimated less precisely for casual users presum-
ably due to a loss of statistical power. We take this as very strong evidence that our primary
dose-response function, which uses the full sample of all weekend trips, is reflective of leisure
activity.

Our prior analysis of intraday effects also lends further support to the notion that weekend
cycling is indeed leisure. Returning to Figure there is a virtually identical pattern of
intraday substitution on weekend days (panel (a)) and US federal holidays (panel (b)). In
both cases, intraday substitution takes place on hot days, with riders shifting their bike
trips away from the afternoon and evening in favor of trips during morning and night. This
pattern of behavior is consistent with leisurely, discretionary trips as opposed to commuting
trips that must take place during a certain window of time due to scheduling constraints (see,
e.g., [Bento et al., 2014). By contrast, we see the wedge between cooler times of day and
warmer times of day shrink when we apply the same model to weekday observations in our
sample (panel (c)); here, the reduction in intraday substitution is consistent with inelastic
demand for nondiscretionary, commuting trips. A similar relationship holds when we analyze
the duration of trips taken as well (see Figure [A.7).

In a final analysis, we match individual-level ATUS data from the 2003-2016 surveys with
county-level weather to generate dose-response functions for cycling along with two aggregate
measures of outdoor recreation. Our approach is nearly identical to that of|(Chan and Wichman
(2018) and we refer readers to that paper for details on data processing. Overall, we model
recreation participation decisions in a logit framework as a function of the same temperature
and precipitation bins in Equation [3] including household-demographic controls and climate-
region, season, and year fixed effects. We focus on three outcomes: recreational cycling and
aggregate recreation with and without winter sports. All ATUS estimates are weighted to
account for the nationally representative survey design and standard errors are clustered at
the climate-region-by-year level.

We present these results in Figure As shown in panel (a), the temperature response
function from our bikeshare outcome is statistically equivalent to the relationship we esti-
mate from nationally representative participation in recreational cycling. For precipitation,
the percentage changes are statistically similar as well, except for an anomaly in the ATUS
response for 0.5-0.75-inch precipitation bin. These results give us further confidence that
the weather-response relationships observed for bikesharing is representative of recreational
cycling more broadlym Although the relationships here look similar, our outcome variables
are different (number of bikeshare trips vs. propensity to recreate) and comparisons should

be made cautiously. Further, the identifying variation in the ATUS data is much coarser and

16We also find striking parallels between our cycling dose-response functions and those of |Obradovich and
Fowler| (2017)), who use survey data on a wide range of physical activity along with month-average weather
observations; discrepancies in magnitude likely arise because of measurement error from their use of coarser
survey data.
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more likely subject to omitted-variables bias. As such, we place more faith in our bikeshare
estimates.

We also present in panel (b) of Figure our bikeshare response relative to nationally
representative aggregate recreation (i.e., participation in any recreation activity recorded in
the ATUS). The estimated response functions for aggregate recreation (including or excluding
winter sports) possess the same general shape as our estimated bikeshare relationship for
temperature and precipitation. The aggregate recreation functions are, however, closer to
zero relative to our bikesharing estimates. This comparison provides some evidence that
the primary relationships estimated in this paper are not unique to cycling but, perhaps,
emblematic of preferences for other recreational activities on net.

Lastly, we take additional comfort from the fact that we will tend to underestimate climate
impacts on cycling if our sample is contaminated by nonleisure rides such as work-related
commutes. By their nature, these commutes are obligatory and will be relatively inelastic
when compared with discretionary, recreational rides. As such, the presence of such trips in
our data set will be attenuative, biasing our estimates toward zero. Thus, if anything, our

measure of leisure demand will provide a conservative estimate of the response to weather.

4.2.2 Robustness

Could our results be driven by the functional form of temperature and precipitation? Our
binned approach restricts the nonlinear relationship between leisure demand and weather to
be constant within each bin. This approach offers flexibility in allowing the data to inform
the shape of the weather-response function. We can, however, represent this relationship
in other ways. In Tables [4 and [5] we present results from alternative assumptions about the
form of the weather-leisure demand function. In the first column, rather than six temperature
bins, we present coefficients for two bins: days with average temperatures less than or equal
to 60° and days with temperatures greater than 80°. We also include precipitation as a
continuous variable. Results suggest a similar shape to the binned approach. For both
dependent variables, we estimate a significantly negative coefficient for > 80° temperatures,
but its effect is relatively small. Interacting these two temperature bins with precipitation
strengthens the negative effect for lower temperatures, while offsetting the negative effect for
higher temperatures for log trips. Further, implementing a quadratic or cubic relationship
between our weather variables and leisure demand suggests the same functional relationships
as the primary specifications in Figure [5] Cycling demand is a positive, concave function of
temperature and a negative, convex function of precipitation. These sensitivity tests suggest
that our primary results are robust to other functional impositions on the data.

Could our results be affected by alternative measures of relevant weather variables? We

have simplified the recreation decision to simple summary statistics of weather—mnamely the
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mean of daily maximum and minimum temperatures. However, these instrument readings may
provide an imperfect proxy for actual rider comfort; a different measure, such as maximum
temperature or humidity-adjusted temperature, may be a more proximate driver of cycling
demand. Moreover, our interpolation between weather stations may introduce measurement
error.

To explore how sensitive our results are to our temperature measure, we rerun our analy-
sis with 9 alternative temperature specifications. We present these results in Tables and
Across all models and specifications, there is strong agreement among signs, magni-
tudes, and statistical significance. For each pair-wise combination, using maximum wet-bulb
temperature (column (2)), which accounts for humidity among other factors, returns statis-
tically similar coefficients to the weighted average temperature (column (10)) used in our
primary specifications. Using maximum (minimum) temperatures shifts the average response
function sensibly rightward (leftward), but preserves its shape. Simple geographic weighting
of weather stations has minimal impact on coefficient estimates. This agreement suggests that
average temperature provides a sensible, robust, and relevant summary statistic of tempera-
ture factors that affect leisure demand.

Is our panel specification too restrictive? Does exploiting cross-sectional variation across
cities reveal anything about adaptation to warmer temperatures? In Figure we show
that the cross-sectional response functions for temperature and precipitation possess the same
shape as that of the panel model. For all precipitation bins and for all temperature bins except
the most extreme hot temperatures, the 95% confidence intervals overlap. The invariance of
the response functions to this stratification suggests that there is little adaptation that can
be revealed from cross-sectional variation. Although there is a larger negative effect for hot
temperatures in the cross-sectional model, we believe this to be an artifact of unobserved

city-level heterogeneity, rather than an adaptive effect with economic significance.

4.3 Projections of leisure demand under future climate change

We now proceed to project climate change impacts on cycling demand, and we also speculate
on implications for a broader class of recreation activities.
Climate impact projections are fraught with many uncertainties, but we believe our ap-

plication offers several distinct advantages. The first is that our observed temperature and

17Specifically, we construct our binned temperature variables with (1) average daily wet-bulb temperature,
(2) maximum daily wet-bulb temperature, (3) average daily dry-bulb temperature, (4) maximum daily dry-
bulb temperature, (5) maximum daily temperature in which each weather station within 100km is weighted
equally, (6) maximum daily temperature in which each weather station within 100km is weighted by its inverse
distance squared, (7) minimum daily temperature in which each weather station within 100km is weighted
equally, (8) minimum daily temperature in which each weather station within 100km is weighted by its inverse
distance squared, and (9) average daily temperature in which each weather station within 100km is weighted
equally. We derive the first four measures from the LCD weather data set, and the last five measures from the
GHCN-Daily data set.
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precipitation ranges—from Mexico City to Montreal, from Boston to Seattle—cover the po-
tential temperature-precipitation combinations projected by climate models by midcentury.
This broad support enables us to have minimal out-of-sample predictions. The second is
that our data provide a representative analysis of demand behavior measured on very fine
timescales. We measure the precise quantity and duration of trips at the daily level, giving us
direct insight into demand responses at a frequency that is infeasible for other applications.
Whereas other research infers climate exposure from longer-term weather trends at a coarse
spatial scale, our work can help elucidate the climate-induced recreation benefits (costs) that
affect individuals in their daily lives. The precise, causal estimates that we generate from our

bikeshare data form the foundation for broader welfare implications.

4.3.1 Projecting future weather

The projection exercise entails several successive steps. First, we obtain daily average tem-
perature predictions and daily precipitation fluxes from the CMIP3 archive. We select models
that ran the A1B (“business-as-usual”) climate scenario and had daily projections for 2055
through 2060, giving us a total of 15 climate models to work WithE For each of these 15
climate models, we take the temperature and precipitation values for each day during the
years 2055-2060, and we assign observations from each model’s grid point nearest to the city
centroid in our sample. We then calculate the percent change in temperature and level change
for precipitation day-by-day relative to 1995-2000, the baseline climate period for this CMIP3
experiment.

Formally, the calculation is as follows. Let m = 1,..., 15 denote the specific model within
CMIP3 and y = 1995, ...,2060 denote the year. Then we calculate the percentage change in

temperature for y = 2055, ..., 2060 for a given location as

CMIP CMIP

_ Ttmyy t,m,y—60
%ATt’m’y - TCMIP ' (5)
t,m,y—60

We can calculate %AT} p, , for each model m =1, ...,15, yielding 15 different predictions for

18We acknowledge that our climate projections use data from CMIP3, which has been superseded by a
larger set of climate models in CMIP5. Further, the SRES scenarios in CMIP3 have been replaced with
RCP scenarios in CMIP5. There is relatively strong agreement in midcentury temperature and precipitation
projections in the contiguous United States between CMIP3’s A1B scenario and CMIP5’s RCP4.5 and RCP6.0
scenarios (Sun et al., [2015). Our scenario produces slightly higher mean annual temperatures than RCP6.0
and RCP4.5 and similar mean annual precipitation levels, although confidence intervals overlap substantially.
Relative to other sources of uncertainty in our modeling exercise, we do not feel that incorporating CMIP5
projections would change our results in a way that substantially improves the precision of our estimates or
better characterizes uncertainty. Further, we use a large set of models spanning the range of temperature-
precipitation combinations within CMIP3’s A1B scenario (Burke et al., |2015a)); this range encompasses the
vast majority of projections contained in RCP4.5 and RCP6.0, including their central estimates. Our overall
conclusions are based on measures of central tendency that have not changed in a statistically meaningful way
between CMIP3 and CMIP5 (Sun et al.l 2015]).
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each day in the 2055-2060 window relative to 1995-2000 levels. To mitigate potential location-
specific biases, we then add these predicted changes in temperature and precipitation to our
actual observed weather from the GHCN-Daily data set (Auffhammer et al) [2013). Given

model m, we project future temperature based on 2011-2016 temperatures as

44
Ep:Tf‘]Z/ TtGTﬁl?? 44 X <1 + %ATtmy X 60> (6)

By retaining a large suite of climate models, we allow the disagreement across models
to capture uncertainty in climate predictions (Burke et al., 2015a). We examine the daily

TPTOJ

25th percentile, median, and 75th percentile of T; "

as summary statistics. We repeat this
exercise for precipitation projections, although we calculate changes in precipitation in levels
rather than percentage changes because of the preponderance of zeros in our data. Median
temperature projections used for this exercise are presented in Figure|l1| (and by city in Figure
. As shown, fewer colder days and more warmer days are expected in 2055-2060. This

relationship holds for all cities in our sample.

4.3.2 Projecting changes in cycling demand

Upon projecting future temperatures for each bikeshare program, we now proceed to infer

changes in riding demand. Recall that we estimate the relationship
InYy = f(Wa|©) + ac + At + Sem + Kite + ﬁztz + eet (7)

with
22751 ct = S ‘*’Zﬂr ct—r —|—778H0WCt (8)
s

From this, we obtain estimates of coefficients 4 and 3, along with fixed effects and time
trends. We use these estimated coefficients and parameterize the dose-response specification
at 2011-2016 levels to get a baseline measure of log duration for each city. Then, we predict
what log duration would be for each city under the temperature and precipitation projections
for 2055-2060. We construct projections using nine pair-wise combinations of temperature
and preciptiation at their 25th percentile, median, and 75th percentile values.
The difference in log duration between 2055-2060 and 2011-2016 is our projected climate
impact:
AlnY.=InY.; —InYe; 44, (9)

which can be translated into a percentage change.

9This formula uses baseline years from 2011-2016 (current weather data). We assume that the 60-year
change %AT; m,y calculated in Equation [5 proceeds linearly over time, so we can remove the changes prior to
the 2011-2016 by scaling by %
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Figure presents these differences in log duration for the nine pair-wise temperature-
precipitation scenarios. The median climate prediction for both temperature and precipitation
will lead to a 5.8 log point increase in trip duration. Pairing the 75th percentile temperature
projection with the median precipitation suggests a 13.1 log point increase. Similarly, the
25th percentile temperature projection with the median precipitation projection suggests a
2.9 log point decrease. The log difference grows monotonically with temperature but shrinks

with precipitation@

4.3.3 Inferring aggregate effects from bikeshare projections

Having projected the effects of climate change on bikeshare utilization, we now seek to scale up
these bikeshare-specific results to produce a nationally representative measure of recreational
cycling and, more speculatively, aggregate leisure demand changes. We do so at the state
level to provide aggregate values for these changes and to demonstrate heterogeneity in the
effects of climate change on leisure demand.

We use data from the 2016 wave of the American Time Use Survey (ATUS), which catalogs
how much time Americans spend on a wide array of activities. We should note that the ATUS
is nationally representative and not intended to provide representative state-level information;
however, analyzing the ATUS data at the state level provides a reasonable approximation
despite introducing potential measurement error (Aguiar et al., 2013).

We first calculate the annual per capita hours spent cycling for each state for our baseline

year, 2016. Following Aguiar et al.|(2013]), we compute

L& Wis

D= ; (vas1 wis) D
where D;s is hours per year that individual i in state s spent on activity D € {Cycling,
Outdoor recreation}; N is the number of ATUS respondents in each state; and w;s is the
national ATUS sampling WeightE

In our sample, the average person spent 0.009 hours per day or roughly 3.35 hours per

year cycling. The state-level cycling demand for 2016 is shown in panel (a) of Figure
To understand the economic implications, we calculate the value of time spent cycling by

multiplying total demand by the national average of consumer surplus derived from cycling,

20For context, the minimum temperature projection paired with the maximum precipitation projection (that
is, roughly today’s temperature with rain nearly every day, a highly unlikely scenario), we see more than a
60% reduction in duration of trips. This projection aligns with our dose-response function for precipitation,
where additional days with a large quantity of rain reduce demand by roughly the same quantity as this
projection. Notably, our estimates are positive for the interquartile range, centered at a 4%—6% increase,
giving us confidence that climate change will tend to stimulate outdoor recreation demand.

21For a small number of states, we did not observe positive time spent cycling, and we replaced those values
with the national average.
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as obtained from the Recreational Use Values Database (Oregon State University}, 2006). We
plot this measure in panel (b) of Figure

Next, we project cycling demand and cycling value for the year 2060. We follow the
procedure used to project city-level changes described above, except we adapt it to define a
range of future climates in 2055-2060 at the state level. That is, we parameterize our measure
of cycling demand at its 2016 level for each state, assuming the weather-leisure demand
coefficients are homogeneous across states. Then, we take the average median temperature
and precipitation projection for 2055-2060 and predict cycling demand under the new climate.
The difference between these two levels provides an estimate of the average climate-induced
change in cycling demand per day. We present these results graphically in panel (c) of Figure
As shown, the Northeast, Pacific Northwest, and some Mountain states will gain the most
from fewer cold days. The Southeast states will see a reduction in demand.

In terms of the welfare benefits of these changes, we present the annual value of climate-
induced demand changes in panel (d) of Figure [L3| (we also present state-by-state projections
in Table in the appendix). California, Illinois, and Washington display the largest gains
in welfare due to induced demand. For California, the change in the value of cycling demand
exceeds $100 million per year (2016 USD). The Northern Rockies, Great Plains, and Southeast
states see very little change in the value of induced demand. In aggregate terms, our exercise
suggests that cycling alone is valued at more than $29 billion (2016 USD) annually, and that
this value stands to increase by $894 million by 2060 as a result of additional climate-induced
demand. The magnitude of this gain is larger than, or comparable to, corresponding mea-
sures for other types of recreation, such as fishing, coastal and stream recreation, and golfing
(Mendelsohn and Markowski, [1999; Loomis and Crespi, [1999). This fact is especially notable
because standard analyses of recreation tend to overlook everyday activities like cycling.

To assess the general magnitude of climate-induced changes in aggregate recreation, we
repeat this exercise for our overall measure of outdoor recreation in Figure which is com-
prised of activities similar to cycling—that is, leisure activities that are performed primarily
outdoors and are more enjoyable when it is not too cold, too warm, or too Wet@ The
weather-response functions for these activities, shown in Figure are similar to those of
bikeshare usage (Figure [5). We adopt the consumer surplus value for cycling and apply it

to each activity in our measure of outdoor recreation. This choice is driven by the assump-

22The Recreational Use Values Database (Oregon State University, 2006)) reports a mean consumer surplus
value of $47.52 per day (2016 USD) for leisure cycling from 17 primary studies. Our analysis of the primary
studies suggests an average of two-hour cycling trips, so we divide the given value by 2 to scale consumer
surplus into an hourly measurement of $23.76 per hour.

Z3The list of recreational activities, as defined in the American Time Use Survey, that our measure of outdoor
recreation comprises is: playing baseball, playing basketball, biking, boating, climbing/spelunking/caving,
participating in equestrian sports, fishing, playing football, golfing, hiking, hunting, playing racquet sports,
participating in rodeo competitions, rollerblading, running, playing soccer, softball, walking, participating in
water sports. Any activity that is performed primarily indoors (e.g., bowling) or is primarily a winter activity
(e.g., skiing) is removed from our measure of recreation.
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tion that all leisure demand has common opportunity costs@ Further, we assume that all
outdoor recreation has a common dose-response function to fluctuations in weather. Both
of these assumptions are strong, although we believe this provides a reasonable first-order
approximation to valuing climate-induced changes in outdoor recreation.

The general pattern of results in Figure [14]is similar to the pattern of results for cycling.
California, New York, and Pennsylvania stand to gain the most in induced-leisure value, with
New York experiencing more than a $3 billion welfare gain. Overall, our exercise suggests that
2016 baseline outdoor recreation is valued at more than $607 billion (2016 USD) annually,
and we estimate that climate change—induced recreation demand will yield additional welfare
benefits of $20.7 billion annually by 20607

4.4 Interpretation and caveats

As with any complex modeling exercise, there are numerous assumptions, uncertainties, and
simplifications built into our analysis. Our state-level welfare estimates are illustrative but
should be interpreted with care. For one, we use the population centroid in assigning local
variables such as temperature and precipitation to states. Although this may be reasonable for
relatively small states like those in the Northeast, it will create inaccuracies in our estimates
for larger, more climatologically diverse states like California and Texas. We also assume that
projected weather changes between 1995-2000 and 2055-2060 can essentially be prorated to
shorter time frames, even though climate change may in fact take place in a nonlinear fashion.
Furthermore, we use a parsimonious measure of temperature and employ a particular method
for assigning local weather variables from different weather stations, although the robustness
checks shown above suggest that these choices do not unduly influence our results. Moreover,
we apply a uniform value for cycling consumer surplus, although individuals’ valuation of
cycling is likely to vary from place to place.

In spite of these caveats, we think that these projections provide useful insights into
the scale of climate change effects on leisure and how these effects are distributed across
states. In particular, we show that climate will induce large, positive effects on leisure and
that benefits will accrue especially to states with large populations and high baseline leisure
demand. Alternative assumptions, such as nonlinear progression of temperature changes over

time or different methods for assigning local variables to state-level calculations, can easily

24This assumption is supported by theory according to the equimarginal principle. Empirically, this as-
sumption may actually bias our valuation downward. As shown in Table 2 of |(Chan and Wichman| (2018), the
per-day value for cycling ($47.52) tends to be lower than for other outdoor recreation activities, such as hiking
($78.27), running ($60.37), and boating ($83.34). Alternatively, if we value opportunity costs at the full wage
rate, as in, e.g., Becker| (1965), |/Ashenfelter and Greenstone| (2004)), or [Deacon and Sonstelie| (1985)), our results
are virtually identical.

25Note that this estimate comprises induced warm-weather recreation only. If the entire winter sporting
industry, valued at $12.2 billion annually (Burakowski and Magnusson, 2012])), were to collapse, our net estimates
of climate impacts on recreation would still be positive.
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be incorporated into our projection framework and will affect results in predictable ways.
Moreover, while such adjustments to our protocol may yield minor changes in the quantitative
estimates, they are unlikely to alter the overall story and interpretation of our results. Lastly,
our hourly measure of consumer surplus aligns quite well with the average hourly wage (i.e.,
pretax median household income divided by 2,080), which is often used as a proxy for the
opportunity cost of time.

That said, there remains one outstanding issue that does have an important bearing
on our interpretation. In overlaying climate projections onto our dose-response function, we
implicitly assume that the estimated weather-leisure relationship will remain stable over time.
This essentially takes for granted that adaptation or sorting will not appreciably affect how
leisure demand responds to weather, which could lead us to overestimate the leisure benefits
from warming. For example, riders may “adapt” to warming by becoming less tolerant of
frigid riding conditions. Although they will benefit from warmer temperatures overall, they
will also have a larger demand response (and, therefore, welfare loss) on the days that cold
temperatures do arise. This countervailing effect is ignored if adaptation is assumed away.
Likewise, as individuals acclimate to higher temperatures, they may also begin to “take for
granted” warmer days, thus muting the leisure benefits from warming.

However, we should note that this issue is not unique to our paper alone; this caveat applies
to any paper that estimates a dose-response function and uses that relationship to project
future climate impacts. In all such cases, the analyst allows the walue of variables such as
temperature and precipitation to change according to climate projections while assuming that
the underlying structure of the dose-response relationship remains unchanged.

As a virtue of our high-quality data, we can shed some light on the magnitude of potential
bias from adaptation. Returning to Figure [7] panels A and B, we see that different regions
respond somewhat differently to temperature changes. To the extent that the observed vari-
ation is attributable to acclimatization (e.g., residents of cold cities are less sensitive to cold
temperature because of frequent exposure), we can get a sense for how influential adaptation
is. We see that there is little dispersion across cities at moderate temperatures, so our results
will be unaffected if climate change primarily shifts the distribution of temperatures in this
range. However, there is some dispersion at extreme cold and warm temperatures, with nearly
a twofold difference in responsiveness for days below 30 degrees. If residents of cold regions
acclimatize to future climate by behaving like their warm-weather counterparts, then they
will become more sensitive to cold riding conditions, thus reducing the overall leisure benefits
from warming. As a second dimension of adaptation, we also find evidence of intraday sub-
stitution patterns. Our welfare values are based on daily-level estimates, so they implicitly
assume that such intraday substitution is costless. This, too, could lead us to overestimate the
benefits from additional leisure opportunities, as we neglect the costs of adaptive substitution

behavior. However, because these concerns are relevant for only a small subset of our data
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and because our overall modeling framework will tend to generate conservative estimates of
true welfare changes as described in Section [2] we do not believe these adaptation pathways
to be of first-order importance.

We should also note that our analysis is partial equilibrium in nature. We have not
accounted for the fact that increases in leisure will necessarily entail less time spent on other
activities. Although such substitution effects do not affect valuation estimates at the margin,
they could be significant in a general equilibrium framework. The gains in leisure value from
climate change could be negated, for example, by lower labor productivity. Such effects are
important to keep in mind when interpreting our results, especially because of the scope and

scale of climate change impacts.

5 Discussion and implications

Climate change will have far-reaching effects on all aspects of society, and there has been
great scientific interest in characterizing its multifarious impacts on agriculture, industry,
and ecosystems. In this paper, we obtain causal estimates of how weather influences outdoor
recreation behavior by analyzing a unique and detailed data set on bicycling activity. Drawing
from tens of millions of bicycle trips, we estimate a dose-response relationship between weather
and leisure precisely, and we use these estimates in tandem with time-use surveys and an
ensemble of global climate models to project future climate impacts. In doing so, we offer a
fresh angle on the problem of climate change by quantifying its implications for nonmarket
recreation activities.

Our research is distinctive in part because it takes advantage of an exceptionally rich
data set. The quality of the data allows for a more precise and deeper understanding of
how climate change will influence recreational demand and welfare. Our work also examines
an everyday recreation activity that is typically not accounted for in analyses of recreation
and leisure (and certainly not in the climate impact literature). We demonstrate that such
activities have a significant role to play in welfare and are critical to include when studying
climate change impacts. Our results suggest that climate change will have a sizable, positive
impact on leisure by midcentury, with economic gains of nearly $900 million per year for
cycling alone and, more speculatively, $20.7 billion per year for aggregate outdoor recreation.
Although uncertainty is inevitable for projections of this sort, our analytical approach gives
us confidence that the sign of our results is correct and that the overall welfare effect is, if
anything, conservative. We run a battery of robustness checks—using different temperature
specifications, functional forms, and weightings—all of which tell the same overall story.

This research adds to the broader literature on climate change impacts. Although climate
change will indubitably bring about many costs for society, our work suggests that these losses

will, at least in some small part, be offset by accompanying changes in leisure opportunities.
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Table 1: Summary statistics for bikeshare data

Full sample
City First Last Daily obs. No. trips Ave. trips Duration Ave. duration
month  month (trips/day) (1000 hours) (hours/day)

Austin 201312 201702 1104 550,420 499 263 238
Boston 201107 201612 1749 5,116,385 2,925 1,313 751
Chattanooga 201207 201512 1256 163,914 131 579 461
Chicago 201306 201612 1282 9,993,244 7,795 2,858 2,229
Denver 201004 201612 2161 1,934,816 895 954 442
Hoboken 201510 201612 444 169,482 382 94 212
Los Angeles 201607 201612 178 98,641 554 40 227
Mexico City 201002 201607 2315 34,813,696 15,038 8,194 3,540
Minneapolis® 201006 201611 1450 2,240,726 1,545 440 303
Montreal* 201404 201705 692 11,366,431 16,425 2,586 3,738
New York 201307 201612 1276 36,902,024 28,920 9,514 7,456
Philadelphia 201504 201612 617 1,084,768 1,758 441 715
Pittsburgh 201505 201612 581 138,884 239 127 218
San Francisco 201308 201508 733 669,959 914 206 281
Seattle 201410 201612 811 263,136 324 87 107
Washington, DC 201009 201612 2295 15,462,158 6,737 4,664 2,032
Total 18,944 120,968,684 6,386 32,360 1,708

Weekends only

Austin 315 220,399 700 125.0 397
Boston 499 1,216,145 2,437 407.9 817
Chattanooga 358 72,314 202 487.6 1,362
Chicago 367 2,853,608 7,775 1,038.1 2,829
Denver 615 546,737 889 355.3 578
Hoboken 126 40,008 318 28.6 227
Los Angeles 51 26,436 518 15.1 296
Mexico City 662 5,204,986 7,863 1,434.2 2,166
Minneapolis™ 414 727,113 1,756 145.1 350
Montreal™ 199 2,789,221 14,016 696.0 3,497
New York 363 8,813,202 24,279 2,675.3 7,370
Philadelphia 175 279,172 1,595 150.9 862
Pittsburgh 166 48,565 293 55.8 336
San Francisco 210 83,176 396 62.4 297
Seattle 231 65,326 283 32.5 141
Washington, DC 654 4,292,460 6,563 1,675.2 2,561
Total 5,405 27,278,868 5,047 9,384.7 1,736

Notes: * Minneapolis’ and Montreal’s programs operate only between April 1 (15) and November 30 (15),
respectively.
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Table 2: Model results for temperature and precipitation bins on log quantity of trips

O NE) @ ® ©
Dep. var.: In(Trips)
Temp. bin: < 30°F -1.12 -1.76 -1.72 -1.74 -1.43 -1.35
(0.74)  (0.18) (0.18)  (0.18) (0.14) (0.15)
Temp. bin: 30 — 40°F -0.82 -1.07 -1.02 -1.03 -0.84 -0.80
(0.69) (0.13) (0.13)  (0.14) (0.10) (0.10)
Temp. bin: 40 — 50°F -0.63  -0.58 -0.53 -0.53 -0.43 -0.41
(0.52)  (0.07) (0.07) (0.07) (0.05) (0.06)
Temp. bin: 50 — 60°F -0.60 -0.25 -0.20 -0.18 -0.17 -0.15
(0.25)  (0.06) (0.04) (0.04) (0.04) (0.04)
Temp. bin: 70 — 80°F -0.25 0.05 0.05 0.05 0.04 0.05
(0.35)  (0.04) (0.04)  (0.04) (0.02) (0.02)
Temp. bin: > 80°F -0.55  -0.20 -0.25 -0.24 -0.08 -0.04
(0.65) (0.07) (0.07) (0.07) (0.04) (0.04)
Precip. bin: 0.01 — 0.25 in. -0.20 -0.15 -0.16 -0.16 -0.16 -0.16
(0.18) (0.03)  (0.02) (0.02) (0.02) (0.02)
Precip. bin: 0.25 — 0.50 in. -0.46  -0.50 -0.53 -0.53 -0.50 -0.50
(0.31)  (0.06) (0.06)  (0.06) (0.07) (0.07)
Precip. bin: 0.50 — 0.75 in. -0.69  -0.62 -0.61 -0.63 -0.60 -0.59
(0.30) (0.10)  (0.09) (0.09) (0.09) (0.08)
Precip. bin: 0.75 — 1 in. -0.82 -0.68 -0.68 -0.70 -0.66 -0.64
(0.35) (0.10)  (0.10) (0.09) (0.10) (0.09)
Precip. bin: > 1 in. -1.18  -0.78 -0.79 -0.80 -0.77 -0.78
(0.38)  (0.15) (0.15)  (0.15) (0.15) (0.14)
1{Snowfall} -0.59  -0.33 -0.32 -0.32 -0.30 -0.31
(0.40) (0.05)  (0.06) (0.05) (0.05) (0.06)
Observations 5,405 5,405 5,405 5,405 5,405 5,405
R-squared 0.15 0.86 0.90 0.91 0.93 0.94
City FE: - Y Y Y Y Y
Month FE: Y Y Y Y Y Y
Day-of-week FE: Y Y Y Y Y Y
Month-of-sample FE: - - - - — Y
City-by-month-of-sample FE: - - - - Y Y
City-specific time trend: - - Linear Quadratic Quadratic Quadratic

Notes: Dependent variable is the natural log of the number of trips each day. Robust standard
errors clustered at the city level are presented in parentheses.
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Table 3: Model results for temperature and precipitation bins on log duration of trips

O NE) @ ® ©
Dep. var.: In(Duration)
Temp. bin: < 30°F -1.80 -2.06 -2.09 -2.12 -1.69 -1.59
(0.61) (0.26) (0.23)  (0.21) (0.15) (0.16)
Temp. bin: 30 — 40°F -1.20 -1.14 -1.18 -1.24 -0.95 -0.90
(0.53)  (0.24) (0.18)  (0.15) (0.11) (0.12)
Temp. bin: 40 — 50°F -0.84  -0.55 -0.56 -0.60 -0.46 -0.43
(0.42) (0.17) (0.12) (0.09) (0.09) (0.10)
Temp. bin: 50 — 60°F -0.57 -0.19 -0.22 -0.22 -0.21 -0.18
(0.17)  (0.10)  (0.06) (0.06) (0.06) (0.07)
Temp. bin: 70 — 80°F 0.03 0.18 0.09 0.08 0.07 0.08
(0.31) (0.12) (0.07)  (0.06) (0.04) (0.04)
Temp. bin: > 80°F -0.13 -0.21 -0.33 -0.31 -0.12 -0.05
(0.61) (0.11) (0.10) (0.10) (0.06) (0.07)
Precip. bin: 0.01 — 0.25 in. -0.22 -0.15 -0.20 -0.21 -0.18 -0.19
(0.13)  (0.04) (0.03) (0.03) (0.02) (0.02)
Precip. bin: 0.25 — 0.50 in. -0.56  -0.60 -0.69 -0.68 -0.61 -0.62
(0.26)  (0.09) (0.08)  (0.07) (0.09) (0.08)
Precip. bin: 0.50 — 0.75 in. -0.75  -0.61 -0.77 -0.78 -0.72 -0.70
(0.30)  (0.20) (0.12)  (0.12) (0.13) (0.13)
Precip. bin: 0.75 — 1 in. -1.01 -0.79 -0.85 -0.90 -0.80 -0.79
(0.33) (0.17) (0.15) (0.13) (0.15) (0.14)
Precip. bin: > 1 in. -1.18  -0.70 -0.85 -0.88 -0.82 -0.84
(0.31)  (0.33)  (0.24)  (0.22) (0.24) (0.21)
1{Snowfall} -0.45 -0.45 -0.41 -0.41 -0.41 -0.40
(0.32) (0.07) (0.08) (0.08) (0.09) (0.09)
Observations 5,405 5,405 5,405 5,405 5,405 5,405
R-squared 0.15 0.70 0.80 0.84 0.86 0.87
City FE: - Y Y Y Y Y
Month FE: Y Y Y Y Y Y
Day-of-week FE: Y Y Y Y Y Y
Month-of-sample FE: - - - - — Y
City-by-month-of-sample FE: - - - - Y Y
City-specific time trend: - - Linear Quadratic Quadratic Quadratic

Notes: Dependent variable is the natural log of the duration of trips each day. Robust standard
errors clustered at the city level are presented in parentheses.
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Table 4: Model results for alternative nonlinear specifications for weather effects on log quan-
tity of trips

(1) (2) ®3) (4)
Dep. var.: In(Trips)

1{Ave. Temp. < 60°F} -0.21  -0.16
(0.05)  (0.05)
1{Ave. Temp. > 80°F} -0.09  -0.09
(0.03)  (0.02)
1{Ave. Temp. < 60°F} x Precip. -0.57
(0.11)
1{Ave. Temp. > 80°F} x Precip. 0.25
(0.08)
Ave. Temp. 0.08 0.04
(0.01)  (0.02)
(Ave. Temp.)? -0.00 0.00
(0.00)  (0.00)
(Ave. Temp.)? -0.00
(0.00)
Precip. -0.57  -0.36 -0.93 -0.94
(0.10)  (0.10) (0.20) (0.20)
(Precip.)? 0.21 0.21
(0.13)  (0.13)
1{Snowfall} 064 -062 -0.32 -0.31
(0.07)  (0.07) (0.06) (0.06)
Observations 5,405 5405 5,405 5,405
R-squared 0.93 0.93 0.94 0.94

Notes: Dependent variable is the natural log of the number of trips each
day. All models include city fixed effects, city-by-month fixed effects,
month-of-sample fixed effects, city-specific quadratic time trends, day-
of-week fixed effects, and year-by-month effects. Robust standard errors
clustered at the city level are presented in parentheses.

33



Table 5: Model results for alternative nonlinear specifications for weather effects on log du-
ration of trips

(1) (2) ®3) (4)

Dep. var.: In(Duration)

1{Ave. Temp. < 60°F} -0.24  -0.16
(0.08)  (0.08)
1{Ave. Temp. > 80°F} -0.12  -0.11
(0.04) (0.04)
1{Ave. Temp. < 60°F} x Precip. -0.85
(0.14)
1{Ave. Temp. > 80°F} x Precip. 0.13
(0.20)
Ave. Temp. 0.09 0.05
(0.01)  (0.02)
(Ave. Temp.)? -0.00 0.00
(0.00)  (0.00)
(Ave. Temp.)? -0.00
(0.00)
Precip. -0.65 -0.33 -1.17 -1.19
(0.15)  (0.13) (0.26) (0.26)
(Precip.)? 0.31 0.31
(0.13)  (0.13)
1{Snowfall} -0.80  -0.77  -0.43  -0.42
(0.09) (0.09) (0.10) (0.10)
Observations 5,405 5405 5,405 5,405
R-squared 0.86 0.86 0.88 0.88

Notes: Dependent variable is the natural log of the duration of trips
each day. All models include city fixed effects, city-by-month fixed effects,
month-of-sample fixed effects, city-specific quadratic time trends, day-of-
week fixed effects, and year-by-month effects. Robust standard errors
clustered at the city level are presented in parentheses.
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Figure 1: Stylized depiction of leisure demand as a function of temperature
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Figure 2: Welfare change from weather changes. Changing weather shifts demand from Y{(+)
to Y1(-). The original consumer surplus is the area a while the new consumer surplus is the
area a+b+c, yielding ACS = b+ c. In the absence of the full demand curve, we approximate
ACS =~ %CSO — CSp, which is captured by the area b. This approximation will, in most
standard cases, provide a conservative or exact estimate of the true change in welfare. While it
is possible to conceive of a function that violates this, we are unaware of any commonly-used
empirical demand functions that do so. |Chan and Wichman| (2018) provide more detailed
analysis.
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Figure 3: Location of cities included in sample
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Figure 4: Distribution of daily average temperatures and precipitation by city. Note that
these distributions display values only for weekends for which bikeshare data are available
in each city. Because the Minneapolis and Montreal programs do not operate in the winter,
winter weather in these cities is not reflected in their respective graphs.
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Figure 5: Nonlinear relationship between cycling demand and daily weather
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Figure 6: Percent change (and 95% CI) in quantity of trips due to changes in daily average
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Figure 7: Nonlinear relationship between cycling demand and daily weather by climate zone
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Figure 10: Comparing bikeshare estimates with 2003-2016 ATUS recreation participation
changes. Bikeshare estimates are the same as presented in Figure[pal All ATUS estimates are
percentage effects (relative to weighted sample mean participation rates) estimated in a logit
model. Dependent variable is whether a household participated in a given activity (recreation,
recreation (omitting winter sports), or recreation cycling). All ATUS models include climate
region fixed effects, season fixed effects, and yearly fixed effects. Standard errors are clustered
at the climate-region-by-year level. ATUS models are adjusted for sampling weights to account
for the nationally representative survey design.
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Figure A.2: Regression results in (trimmed) levels. Dependent variable in panel (a) is number
of daily trips. Dependent variable in panel (b) is duration of trips. Panel (c) replicates panel
(b) but trims the top/bottom 5% of the duration distribution to mitigate the effect of outliers.
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(a) Percent change (and 95% CI) in quantity of trips due to changes in daily average temperatures
and daily precipitation

Temperature response Precipitation response
& &1
o “»A\g Tﬂ o {emso—
-g s ¢ é S
2 £ g e i
o - - J .
8 7 8 SN
c c :
£ £
§s £a
o ' 2] !
B : J [
5 5
& e .
(=] o
2 21
' dll() 30140 4[1-‘50 5()‘-6[] 60170 TDlHO >{IIU No Precip. 0-0.25 0.25-0.50 0.5-0.75 0.75-1.0 >1.0
Temperature Bin (degrees F) Precipitation Bin (inches)
—=e— Wild-cluster bootstrap (city) ----M---- Clustered by city
— 4- — Clustered by city-season 0 Clustered by city-month
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Figure A.3: Nonlinear relationship between cycling demand and daily weather with different
standard error specifications. Our wild-cluster bootstrap procedure (clustered at the city level)
provides a 95 percent confidence interval around our marginal effects by bootstrapping the
Wald test statistic (imposing the null hypothesis of § = 0) with 10,000 replications. Statistics
presented in this figure use the implied standard error that would produce the 95 percent
confidence interval from our bootstrap procedure, suggested by Cameron and Miller| (2015)),
using standard critical values from the t-distribution. Although the wild-cluster bootstrap is
intended primarily to provide critical values for the rejection rate of a test statistic, we require
an estimate of the standard error of our estimated marginal effects to calculate estimates of
percentage effects and their confidence intervals.
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(b) Percent change in total duration of trips due to changes in daily average temperatures and daily
precipitation by climate zone

Figure A.4: Nonlinear relationship between leisure demand and daily weather by climate zone
with 95 percent confidence intervals
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Figure A.5: Percentage change (and 95% CI) in quantity of trips due to changes in daily
average temperatures using panel vs. cross-sectional variation
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Figure A.6: City-specific distributions of temperatures on weekends in sample (blue) and
projected temperatures for corresponding days in 2055-2060 (black). Projected temperatures
are percentage changes from observed baseline for the median projection from 15 climate
models in the CMIP3 ensemble reporting the A1B (“business-as-usual”) climate scenario.
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(b) Intraday substitution on federal holidays
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Figure A.7: Nonlinear relationship between log duration of trips and weather conditional on
time of day. Morning is defined as 5AM-10AM; afternoon is 10AM-3PM; evening is 3PM—
8PM; and night is SPM—-12AM. All times are local.
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