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Abstract

Nonmarket damages are largely missing from aggregate climate impacts, although
reduced-form research is beginning to quantify these effects. We propose a general,
theoretically consistent method for calculating welfare changes for nonmarket climate
damages. This approach has minimal data requirements and provides a bridge between
standard valuation techniques and reduced-form climate impact research. We elucidate
the theoretical properties of our welfare measure, showing that it tends to produce exact
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1 Introduction

Climate change will have far-reaching effects on agricultural and industrial productivity,

real estate markets, human health, and even recreational opportunities. Crafting efficient

climate policy requires a comprehensive understanding of these many consequences. A com-

mon approach to measuring climate damages is to identify the effects of short-term weather

fluctuations on outcomes of interest (Dell et al., 2014). The resultant “dose-response” func-

tion can then be coupled with climate projections to infer responses to future climate change

(Deryugina and Hsiang, 2017).

In terms of decisionmaking, quantifying these responses is only a stepping stone. What

ultimately matters for policy and management is the costs and benefits of these induced

changes. In some cases, climate impacts translate naturally into welfare consequences using

standard producer and consumer theory—particularly in research that focuses on market

impacts such as agriculture (e.g., Deschênes and Greenstone, 2007; Schlenker and Roberts,

2009; Burke and Emerick, 2016). Alternatively, macroeconomic approaches (e.g., Dell et

al., 2012; Burke et al., 2015) measure the effects of temperature fluctuations on the growth

of national GDP accounts, although by definition these are not measures of welfare nor do

they account for nonmarket impacts. Our understanding of nonmarket implications of cli-

mate change—such as on human health and mortality, ecological function, and recreation—

remains sparse, and additional links must be made before arriving at a final measurement of

benefits or costs. In this paper, we outline a framework for valuing nonmarket impacts of cli-

mate change by tying together reduced-form climate estimates and classical environmental

valuation techniques.

In principle, valuing consumption changes is simple. Weather and climate can be concep-

tualized as shifters of the demand curve for a nonmarket good or service. The dose-response

function will inform the magnitude of this shift, and the analyst can then integrate between

old and new demand curves to capture the accompanying consumer surplus change. Thus,

one only needs to estimate the dose-response function for the activity of interest and inte-

grate accordingly.

Although theoretically straightforward, this approach turns out to be infeasible for em-

pirical analysis. In order to map out the full demand shift, one would need to observe

the quantity demanded under new and baseline weather for every level of opportunity cost

(price). In practice, the shift (dose-response) is identified off of short-term weather fluc-

tuations, revealing only a single point on the new demand curve (the one corresponding

to the current price). Thus, a problem arises: one can observe only the marginal effect

of weather holding all else constant, but the full demand shift, including inframarginal

changes, is necessary for welfare calculations. Such an approach is difficult even for market
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value estimation because the data requirements are prohibitive, and the challenge is further

compounded for nonmarket estimation.

To meet this challenge, we describe and analyze a straightforward measure for the

value of climate change impacts on nonmarket consumption. In particular, we propose

that welfare changes can be approximated as the product of average consumer surplus

under baseline conditions and the estimated climate response. Only two simple pieces of

information are necessary: (1) baseline consumer surplus or demand estimates, which can

be calculated using benefits transfer techniques or extracted from prior work, and (2) a dose-

response function that quantifies induced changes from short-term weather shocks. In this

way, we view our approach as a bridge between reduced-form climate damage estimation

and theoretically consistent valuation techniques, similar in spirit to a sufficient statistics

approach to estimating welfare changes (Chetty, 2009).

This approach is particularly attractive because it is simple to apply and modular in

nature, so one can calculate dose-responses and consumer surplus separately, then over-

lay this approximation to derive welfare estimates. Moreover, the data and information

burdens are low, requiring only the original demand curve and a point estimate for the

dose-response function. For example, to evaluate climate impacts on recreation demand,

one can estimate a climate–recreation dose-response function and couple this with existing

measures of recreation surplus from the environmental valuation literature.

Our method for approximating welfare changes is not novel in and of itself, as it is

featured in several prior works estimating recreation demand (for example, see Mendelsohn

and Markowski (1999) and Loomis and Crespi (1999)). However, this approach has been

used primarily as a matter of convenience, given its modest data requirements, and its

underlying assumptions and potential shortcomings have been left unexamined. Thus, it is

unclear how well it accords with welfare theory, raising questions about the reliability of

resultant estimates.

Despite the simplicity of this approximation, we demonstrate that its theoretical sound-

ness through a series of propositions and proofs. We examine the relevant underlying

assumptions and analyze potential bias, showing that any bias will tend to attenuate wel-

fare estimates. We also provide several illustrations that highlight the usefulness of our

approach. In one application, we use this technique to value recreation site quality changes

from an existing study. Our approximation succeeds in reproducing prior estimates with

only minimal (0.2%) error, and the direction of bias accords with our theoretical predic-

tions by (modestly) underestimating the true welfare change. In a second application, we

use our approach to predict future impacts of climate change on participation in a suite

of outdoor recreation activities, ranging from swimming to hiking to skiing. Drawing on

nationally representative time-use survey data, we estimate dose-response functions that
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characterize the relationship between each activity and weather for the continental United

States. By combining these estimates with climate predictions and recreational surplus

values from prior work, we are able to project resultant welfare consequences, and we find

positive net benefits by the end of the century. Although warm-weather and cold-weather

activities (e.g,. swimming versus skiing) will respond differently to the changing climate,

we find that future warming will tend to stimulate outdoor recreation on net, consistent

with complementary work using alternative data sources and identifying variation (Chan

and Wichman, 2017).

This paper brings together two primary lines of inquiry in environmental economics.

First, we draw from prior work on environmental valuation. There have been extensive

efforts to understand the welfare implications of environmental quality changes, including

water quality (e.g., Whitehead et al., 2000; Hanley et al., 2003), recreational amenities (e.g.,

Eiswerth et al., 2000; Morey et al., 2002), and cost of access to recreation sites (e.g., Englin

and Cameron, 1996).

Second, our research relates closely with the quickly growing literature on estimating

weather-response functions to identify climate impacts. Prior work has used this technique

to investigate how climate will influence labor productivity (Graff Zivin and Neidell, 2014),

agriculture (Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; Burke and Em-

erick, 2016), economic growth (Burke et al., 2015; Dell et al., 2012), and so forth. In all

cases, these authors exploit short-term weather fluctuations to derive causal dose-response

functions, which can in turn be used to infer future consequences of climate change for

the activities in question. Rarely, however, do authors translate these impacts into welfare

consequences.

Our research lies at the interface of these two literatures. We tie together classic envi-

ronmental valuation techniques and the more recent wave of reduced-form climate identifi-

cation research, providing a crucial link between reduced-form estimates and welfare. Our

approach has several attractive features. First and foremost, our technique is transparent,

easy to understand, and simple to implement. Second, it is versatile and can be applied

to a wide range of nonmarket activities. Candidate applications include climate impacts

on human health, mortality, and morbidity; outdoor recreation; ecosystems, habitats, and

biological diversity; and nonuse values for pristine wildernesses, flora, and fauna. Third, it

is readily scalable because it takes a modular approach; it draws from, and can be easily

combined with, existing analyses of climate responses and nonmarket values. Lastly, as

we show, it has desirable theoretical properties, offering conservative or exact estimates of

surplus changes in most standard cases.

In the next section, we model consumer behavior and construct our welfare measure.

Using a series of propositions and proofs, we show how our measure performs under common
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functional forms for demand. We find that our measure will typically offer conservative or

exact estimates of true consumer surplus changes, and we verify this finding by reproducing

prior results from the literature. In the subsequent section, we examine a nationally repre-

sentative data set on individual time use decisions, focusing on outdoor recreation activities.

Using the approach outlined in the theoretical section, we predict future impacts of climate

change on recreational behavior. The final section summarizes and concludes.

2 Basic model

In what follows, we begin from first principles to construct our consumer surplus approxima-

tion. The measure can be used for any specification of demand, although its performance

will vary depending on the form of demand and the manner in which demand shifts in

response to quality changes. We characterize the bias from our measure under several com-

mon specifications for demand, and we also provide general propositions that cover two

overarching classes of demand models.

Consider a representative consumer who allocates her scarce budget I over a numeraire

x and good y. Let p capture the price, implicit or explicit, of good y. y may denote a

physical consumption good with a standard market price, or it may represent a nonmarket

good like leisure activity that incurs a time cost or other opportunity cost. There is a

vector W of environmental quality variables that influence the utility derived from y. We

will focus primarily on W as a (vector of) weather variable(s), but it could stand in for any

environmental quality dimension that is a weak complement for y, such as air quality, water

quality, or availability of fish.1 We can write the consumer’s problem as

max
x,y

U(x, y;W ) subject to x+ py = I,

which yields the demand function y(p, I;W ).

Consider two sets of climatic conditions, present and future, denoted by W0 and W1,

respectively. Let us denote the demand curve for each circumstance as y0(p) and y1(p), with

accompanying choke prices p̄0 and p̄1. Assume without loss of generality that W1 > W0 and

that W1 represents more favorable conditions, so that p̄0 ≤ p̄1. For any prevailing price p∗,

we can calculate consumer surplus as

1For helpful discussions of weak complementarity, see Bockstael and McConnell (2007), Freeman et al.
(2014), and Phaneuf and Requate (2017).
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CS0 =

∫ p̄0

p∗
y0(p)dp

CS1 =

∫ p̄1

p∗
y1(p)dp,

and the climate-induced welfare effect from changing weather is simply

∆CS = CS1 − CS0.

Figure 1 shows y0(p) and y1(p), which yield consumption levels y∗0 and y∗1, respectively.

The area between these two curves represents ∆CS. Thus, the welfare change is simple

to calculate in principle: one need only integrate between the demand curves over the

appropriate range. Equivalently, if the “quality shift function” σ(W,p) were known—that is,

the translation that would transform y0(p) into y1(p) according to y1(p) = y0(p)+σ(W,p)—

one could simply integrate that quality shift function from p∗ to p̄1 to measure the surplus

change.

In practice, y0(p) will be revealed through consumer choice over some range of p. Pur-

chasing decisions will reveal y0(p) for market goods, while demand can be inferred for

nonmarket activities through valuation methods such as the travel-cost method or stated-

preference elicitations. However, information on y1(p), and therefore the quality shift func-

tion, is more limited. One may observe y1(p∗) for the prevailing value of p∗ through short-

term weather variation. For example, one may observe a large rise in ice cream consumption

on an unusually hot day while ice cream prices remain fixed, but it is much less likely that

one can observe ice cream demand under extreme temperatures over a range of prices, as

such climatic conditions are anomalous by definition. Thus, data constraints make identi-

fication of y1(p) over the full range of p infeasible. How, then, should one proceed?

The task is to approximate ∆CS using available information, namely the demand func-

tion y0(p) (or a baseline consumer surplus measure CS0) and a single point on y1(p∗)

corresponding with current price p∗. The former can be estimated through standard en-

vironmental valuation techniques. The latter identifies the magnitude of the quality shift

function at p∗ and is the focus of the large and growing reduced-form climate literature.

The question is how to combine these pieces of information and transform them into welfare

estimates.
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We propose the following approximation:

∆ĈS = ∆y × CS0

= (y∗1 − y∗0)× CS0

y∗0

=
y∗1
y∗0
CS0 − CS0,

where CS0 is the average consumer surplus per unit of consumption under current conditions

and asterisks indicate the optimal quantity demanded at the given price p∗. Essentially, we

multiply the predicted change in consumption by the average consumer surplus per unit

of consumption. This seems like an intuitive way to approximate ∆CS, and indeed, this

approximation has been used in the literature (Mendelsohn and Markowski, 1999; Loomis

and Crespi, 1999). However, despite its intuitive appeal, it also seems rather ad hoc, and

we are unaware of any prior work that explores the validity of this measure or the biases

that may arise from it.2

Mathematically, this approach is equivalent to approximating the shifted demand func-

tion as ŷ1 =
y∗1
y∗0
y0(p) and the resultant CS as ĈS1 =

y∗1
y∗0
CS0. These various framings are

useful for gaining intuition on subsequent propositions and proofs. Figure 2 offers an intu-

itive graphical depiction of ŷ1 and ∆ĈS.

2.1 Quantifying bias

The bias from our approximation is

∆ĈS −∆CS =
y∗1
y∗0
CS0 − CS0 − (CS1 − CS0)

=
y∗1
y∗0
CS0 − CS1. (1)

2In related work on valuing recreational sites, Morey (1994) describes the “consumer surplus per day
of use,” which is essentially the marginal surplus enjoyed by a consumer who experiences a price drop
or a quality improvement. He notes that this value will be constant (and therefore scalable for welfare
calculations) for price changes but not quality changes. For quality changes, scaling up consumer surplus per
day of use by the usage amount will yield an accurate measure of welfare only under restrictive assumptions;
namely, the utility per trip must be independent of the number of trips, such that the welfare effect can be
calculated as a quality-equivalent price change. Our approximation may sound similar to the one proposed
by Morey, so it is important to note that Morey’s is based on a marginal measure, which may be difficult
to estimate in practice, whereas ours is based on an average consumer surplus measure, which is readily
available from prior work.
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We will have an exact measure of welfare changes if CS1 =
y∗1
y∗0
CS0, which will hold with

certainty in the special case where

y1(p) =
y∗1
y∗0
y0(p). (2)

Meanwhile, ∆ĈS will yield a conservative estimate when

CS1 ≥
y∗1
y∗0
CS0∫ p̄1

p∗
y1(p)dp ≥ y∗1

y∗0

∫ p̄0

p∗
y0(p)dp.

To show that
∫ p̄1
p∗ y1(p)dp ≥ y1

y0

∫ p̄0
p∗ y0(p)dp, it is sufficient to verify that, for all p∗ ≤ p ≤ p̄0,

y1(p) ≥ y∗1
y∗0
y0(p)

y1(p)

y0(p)
≥ y∗1
y∗0
, (3)

By definition, this expression holds with equality at p∗. Thus, to ensure that ∆ĈS is

conservative, we need only prove that this expression holds for other values of p in the

specified range.

Lemma 1. If y1(p)
y0(p) is increasing in p over the range p∗ ≤ p ≤ p̄0, then Condition 3 will be

satisfied.

We will characterize bias under two broad classes of empirical demand models:

y = f(p) + σ(W,p) (4)

log(y) = f(p) + σ(W,p), (5)

where f(p) captures the basic demand (price-quantity) relationship and σ(W,p) is a“quality

shift function” that denotes how the demand curve shifts in response to changes in W .

Conveniently, f(p) is the demand curve studied in much of the environmental valuation

literature, whereas σ(W,p) is the primary object of interest in the reduced-form climate

literature.3 In our exposition, we allow both f(p) and σ(W,p) to be fully general and to

take on any functional forms, although we will highlight several special cases below because

of their empirical relevance and the intuition they provide. We will refer to Equation 4 as

demand “in levels” and Equation 5 as demand “in logs” or a “semilog” specification.

3Recall, however, that σ(W, p) can only be estimated at p = p∗ given typical data constraints.
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The performance of this approximation will depend on the demand specification and

the manner in which demand shifts. We will show that our measure underestimates true

consumer surplus changes for many standard demand models. This is a desirable property,

consistent with the principle of favoring a null conclusion over a false positive. We also

show that our approximation will be exact when the demand function and quality shift

function adhere to certain properties. Indeed, such is the case for several popular demand

specifications, such as Poisson and negative binomial models, for which our approach will

yield exact consumer surplus changes.

Demand in levels

Consider the demand function

y(·) = f(p) + σ(W,p), (6)

where the demand shift is some flexible function σ(W,p) that is monotonic in p.

Proposition 1. If the quality shift function increases in p (i.e., ∂σ
∂p > 0), then ∆ĈS will

underestimate the consumer surplus change. If the quality shift function decreases in p (i.e.,
∂σ
∂p < 0), then the bias will be ambiguous, and the sign of bias will depend on the relative

magnitudes of the price elasticity of demand and the price elasticity of the quality shift

function.

Proof. Normalize σ(W0, p) = 0 such that we have

y1(·) = f(p) + σ(W1, p)

y0(·) = f(p),

giving

h(p) ≡ y1(·)
y0(·)

=
f(p) + σ(W1, p)

f(p)
.

We can calculate h′(p) =
∂σ
∂p
f(p)−σ(W1,p)f ′(p)

f(p)2
, which is positive if and only if

∂σ

∂p
f(p) > σ(W1, p)f

′(p)

p

σ

∂σ

∂p
>

p

f(p)
f ′(p)

εσ,p > εf,p (7)
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where εf,p is the price elasticity of demand and εσ,p is the price elasticity of

the quality shift function σ(·). When ∂σ
∂p ≥ 0, this expression holds trivially.

However, when ∂σ
∂p < 0, we can rewrite this condition as

|εσ,p| < |εf,p|.

That is, Lemma 1 will hold as long as the price elasticity of the quality

shift function is smaller in magnitude than the price elasticity of demand.

Intuitively, this implies that the graph of y1(·) should be steeper than that

of y0(·) for any given p. This is a reasonable condition that we might expect

to hold in standard cases; however, even if it does fail to hold in certain

unusual cases, ∆ĈS may still underestimate true CS changes, and the result

will depend on the quantitative tradeoff presented in Figure 3.

Proposition 1 applies to any demand function of the form described in Equation 6.

Although it does not provide clear-cut prescriptions, it is fully general. Several special

cases offer more unambiguous results.

Corollary 1. If the quality shift function is linear in W , then ∆ĈS will underestimate the

magnitude of consumer surplus changes.

Proof. Consider demand of the form

y = f(p) + γW,

which captures the underlying demand curve f(p) along with a constant

linear quality shifter σ(W,p) = γW . We maintain the assumption (without

loss of generality) that W1 is more favorable than W0, so it must be the case

that γ > 0. Define

h(p) ≡ y1(·)
y0(·)

=
f(p) + γW1

f(p)

= 1 +
γW1

f(p)
,

Then we can compute h′(p) = −f ′(p)γW1

f(p)2
> 0, satisfying Lemma 1.

Thus, if the demand shift is linear in W , ∆ĈS gives a conservative estimate of consumer

surplus changes.

Corollary 2. If the quality shift function is linear in an interaction of W and p, then ∆ĈS
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will understimate ∆CS if (i) the interaction coefficient is positive, or (ii) the interaction

coefficient is negative and demand is sufficiently elastic.

Proof. Consider a quality shift function that allows for interactions between

weather and price, σ(W,p) = γW + θW × p. For W1 to be more favorable

than W0, it must be the case that (γ + θp) > 0. We have

y1(·) = f(p) + γW1 + θW1 × p

y0(·) = f(p),

giving

h(p) ≡ y1(·)
y0(·)

=
f(p) +W1(γ + θp)

f(p)
.

We have h′(p) = ((θf(p)−f ′(p)(γ+θp))W1

f(p)2
, which is positive if and only if

θf(p)− f ′(p)(γ + θp) > 0

θf(p) > f ′(p)(γ + θp)

θp

γ + θp
>

p

f(p)
f ′(p) ≡ εf,p (8)

where εf,p is the price elasticity of demand. This inequality holds trivially if

θ ≥ 0. If instead θ < 0, then the condition can be rewritten as follows:

|εf,p| >
∣∣∣∣ θp

γ + θp

∣∣∣∣ .
This relationship holds if demand is sufficiently elastic or if θ is sufficiently

small.

Notice that as θ → 0, we approach the case treated in Corollary 1. Even if this condition

fails, consumer surplus may still be underestimated, but this will depend on the quantitative

tradeoff presented in Figure 3.

Demand in logs

Consider the general class of semilog demand specifications of the form

log(y) = f(p) + σ(W,p), (9)

which includes the oft-implemented Poisson and negative binomial models as special cases.
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Proposition 2. If the quality shift function increases (decreases) in p, then ∆ĈS will

underestimate (overestimate) ∆CS. If the quality shift function is constant in p, then ∆ĈS

will be an exact measure of ∆CS.

Proof. Using the form log(y) = f(p)+σ(W,p) and normalizing σ(W0, p) = 0,

we have:

log(y1) = f(p) + σ(W,p)

log(y0) = f(p)

or

y1 = ef(p)+σ(W,p)

y0 = ef(p).

At p∗, we have
y∗1
y∗0

= eσ(W,p∗). Define ŷ1(·) ≡ y∗1
y∗0
y0(·), where ŷ1 is the approx-

imation of y1(·) that yields ∆ĈS. If σ(W,p) is invariant in p (i.e., ∂σ
∂p = 0),

then ŷ1(·) = y1(·) If instead ∂σ
∂p > 0, then ŷ1 < y1, and ∆ĈS will underes-

timate ∆CS. Lastly, if ∂σ
∂p < 0, then ŷ1 > y1, and ∆ĈS will overestimate

∆CS.

In the case of semilog specifications, the function σ(W,p) becomes a simple scaling factor

that stretches the demand function horizontally (i.e., y1 = y0e
σ(W1,p)). If this scaling

factor is constant in p, then demand will be stretched by the same amount at p∗ as at all

other values of p, yielding ∆ĈS = ∆CS. If the scaling factor varies in p, then ∆ĈS will

systematically under- or overestimate ∆CS. It is worth noting that the semilog specification

is very common in the valuation literature, especially the Poisson and negative binomial

forms. As Kling (1989) observes, most practitioners prefer the semilog form because of its

goodness-of-fit properties. Examples abound, including Eiswerth et al. (2000), Whitehead

et al. (2000), Hanley et al. (2003), and Eom and Larson (2006).

2.2 A test of our approximation using prior work

Here, we assess our measure ∆ĈS by applying it to prior work on valuation of environmental

quality changes. First, we should note that most authors implictly assume that ∂σ
∂p = 0,

which ensures a parallel shift when demand is specified in levels and a constant scaling

factor when demand is specified in logs. Thus, our approximation ∆ĈS will be an exact

measure of ∆CS if true demand is semilog; meanwhile, our measure will yield a conservative

estimate of ∆CS if demand is specified in levels. Indeed, for prior work that employs a
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semilog specification, we can reproduce authors’ original estimates of CS1 and ∆CS exactly

using our parsimonious measure ∆ĈS = ∆y × CS0.4,5 The more interesting case is when
∂σ
∂p is not assumed to be zero.

To our knowledge, Whitehead et al. (2000) are the only authors to estimate full demand

curves before and after a quality change while allowing the demand shift to depend on

p (i.e., ∂σ
∂p 6= 0). They combine revealed- and stated-preference techniques to estimate a

semilog recreation demand function for trips to Pamlico Sound in North Carolina, allowing

for quality-price interaction on the right-hand side. Their estimates suggest that ∂σ
∂p > 0,

because their estimated quality-price interaction (which they call “D 3 TCP”) coefficient is

positive.

Whitehead et al. (2000) report consumer surplus values of $64.14 per trip under current

quality and $84.99 per trip under improved quality, with the predicted number of trips

per person rising from 1.88 to 2.49 with the quality change. This amounts to a change in

consumer surplus of ∆CS = $20.85. Given their estimates of the quality-price interaction

(∂σ∂p > 0), we should expect our approximation to yield a downwardly biased estimate of

true CS changes. Using our approximation, we calculate ∆ĈS = 2.49
1.8864.14−64.14 = $20.81.

This underestimates the true change in surplus by $0.04, an error of less than 0.2 percent.

Thus, not only does this exercise confirm the theoretical results regarding underestimation

of true surplus changes, it also demonstrates that this downward bias can be exceedingly

small, at least for this particular application.

We should not rely too heavily on any particular empirical application to validate our

approach; rather, we intend for the calculations above to be illustrative. Meanwhile, our

theoretical framework assures us that bias from our approximation will be minimal in many

cases, as it is for the Pamlico Sound application. Specifically, as long as the “shift elasticity”

(∂σ∂p ) is sufficiently small, our approximation will tend to give precise estimates that are only

modestly biased.

4For example, Eiswerth et al. (2000) combine revealed preference and contingent behavior survey data
to investigate how water levels in Nevada’s Walker Lake influence recreation behavior in the area. They
report average per trip consumer surplus values of $88 for one of their empirical specifications. They also
estimate that individuals will make an additional 0.132 trips per year for each one-foot increase in water
levels. Calculating ∆ĈS = ∆y×CS0 according to our framework gives a consumer surplus change of $11.62
per foot of water level increase, exactly equal to their results (with a slight discrepancy due to rounding
error).

5This exact match is simply an artifact of the assumed semilog function. We should note that the
analyst’s assumption of a semilog function does not guarantee that the semilog function actually matches
the underlying data-generating process. In such cases, our theoretical exposition above remains useful as a
mean for characterizing the bias that arises from misspecification.
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2.3 Two points of clarification

Two finer details underlying our framework merit clarification, as they are frequent sources

of confusion and can undermine the theoretical consistency of welfare calculations in prac-

tice.

First, we have focused on how climate change or environmental quality changes will

affect demand for good y. However, as consumption of y changes, so too will consumption

of other goods and activities. At first glance, this appears to complicate welfare calculations.

How does welfare change in net? Should we calculate consumer surplus changes for y in

addition to all other goods that may be affected by changes in y? If so, estimation of net

welfare changes verges on infeasibility because of the sheer number of activities that must

be studied.

Fortunately, CS0 values taken from prior work already embed the value of other forgone

opportunities. For example, consumer surplus values derived from the travel cost method

will be net of opportunity costs; travel cost studies model the “price” of recreation as the

sum of admission fees, travel expenditures, and the value of time. As a virtue of this, it is

not necessary to catalog and calculate demand changes for all other potential uses of time;

instead, those trade-offs are already accounted for in the reported value of CS0. This fact

remains a frequent source of confusion, even though it can be established via inspection of

the CS calculation. Reassuringly, comparative statics for ∆CS will be equivalent whether

CS is defined net of all opportunity costs (including competing activities) or CS is defined

net of only market prices. We relegate the full discussion, proof, and illustrative graphs to

the Appendix.

The main point here is to dispel concerns about changes in other activities. When

evaluating the impact of environmental quality changes in W , it is sufficient to focus only

on the response in y; one need not catalog gains and losses from other related activities

when applying our approximation ∆ĈS, as they are implicitly accounted for in the baseline

CS0 value. In short, our approximation accords with standard welfare theory, even though,

at face, it appears to ignore the value of substitute activities.6

Second, some studies use the average wage rate to approximate welfare changes at the

margin. The intuition is that the wage rate captures the earnings from one additional hour

of work, so someone who enjoys a recreation activity in lieu of work must derive at least

that much pleasure from the recreation activity. Other studies use a fraction of the average

wage rate, reasoning that many workers have inflexible hours, so the marginal hour of work

6These arguments are based on partial equilibrium analysis. In general equilibrium, ceteris paribus
conditions will fail, potentially introducing bias into our welfare measure. However, this problem is not unique
to our approximation; it will apply equally to standard approaches to welfare measurement as well. The issue
could be addressed by incorporating a more sophisticated benefits transfer model into our approximation
technique to capture other changes, a point that we discuss later in the paper.
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is unlikely to earn as much as the average hour.

Although this is sound reasoning at the margin, we would advise against using the wage

rate for such calculations, as it is not itself an appropriate welfare measure and should not

be used as a direct measure of value. The wage rate is a measure of opportunity costs, not

benefits. Therefore, it is a mistake to conflate the wage rate with the amount of benefit

derived from an activity. True, the wage rate will be exactly equal to benefits at the margin,

but this equivalence will fail to hold elsewhere. Instead, consumer surplus, which measures

the consumer’s willingness to pay (demand) in excess of opportunity costs (price), is a more

appropriate measure.

3 Empirical application

In the previous section, we tested our approximation by cross-validating it with prior work

on demand for recreational sites and environmental quality changes. We verified that it

performed as predicted by our theory, and we also showed that the bias from our approxi-

mation, at least for that application, was small.

In the remainder of this paper, we look forward and consider the problem of climate

change. Although there has been extensive work documenting a wide array of climate

change impacts, measures of nonmarket outcomes remain sparse. For one, it is difficult to

identify the causal impacts of climate on human activity, and this problem is compounded

by the challenge of estimating welfare changes for nonmarket goods and services. We now

show how to tackle these dual challenges by applying our theory in a novel context.

Our analysis proceeds in three distinct parts: we empirically estimate a quality shift

function σ(W,p∗) using an extensive data set on individual time use and recreation behavior;

we obtain estimates of W1 and W0 from climate projections and observed weather; and we

combine these values with estimates of CS0 using a database of recreation values from the

environmental valuation literature. Through this application, we highlight an important and

powerful feature of our approximation technique: it offers a theoretically founded means

for combining reduced-form climate impacts estimates with existing nonmarket valuation

calculations to generate plausible predictions of climate damages (or benefits) in welfare

terms.

3.1 Data

We use annual data from the American Time Use Survey (ATUS) from 2003 through 2016.

The ATUS is a nationally representative survey intended to capture how Americans allocate

their time. The survey format instructs respondents to document how each minute was spent

for a given 24-hour period. For each survey respondent, we calculate the total amount of
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time spent engaged in recreational activities. The activities of interest are summarized

in Table 1. We construct three aggregate outdoor recreation variables that capture all

outdoor recreation (including team sports), all outdoor recreation (excluding team sports),

and a “limited” outdoor recreation variable comprising bicycling, boating, fishing, hiking,

hunting, running, skiing, ice skating, snowboarding, and water sports. We omit activities

that take place primarily indoors (e.g., bowling).

ATUS responses are also linked with responses to the Current Population Survey. From

these data, we gather household and respondent characteristics as controls for preferences

toward recreation participation decisions. Specifically, we construct indicator variables for

educational attainment of the respondent, race, age, income groups, and employment and

retirement status.

Additionally, we require geographic information for respondents. In the publicly avail-

able 2003–2016 ATUS data, county of residence is provided for respondents in 2016 only. We

append this information for the previous years with a request from the IPUMS American

Time Use Survey Data Extract Builder (Hofferth et al., 2017).

We link the diaries of ATUS respondents with contemporaneous daily weather con-

ditions. For each day between 2003 and 2016, we assemble daily summary statistics for

temperature, precipitation, snowfall, and snow depth for weather stations within the re-

spondents’ county of residence. For respondents who lack county information, we merge

state-level summary statistics of weather. Our weather variables are derived from weather

station data in the Global Historical Climate Network Daily summary file (GHCN-Daily).

We spatially match each weather station to county (state) boundaries and collapse our

variables of interest using simple averages, ignoring missing values.

3.2 Empirical strategy

In our empirical framework, we seek to illustrate the value of our conceptual contribution.

To do so, we focus on identifying the value of changes in outdoor recreation attributable

to changes in climate (i.e., changes in environmental quality complementary to recreation).

We implement a simple and commonly used framework to estimate a reduced-form dose-

response function of weather fluctuations on economic outcomes. We model the extensive

margin for participation in outdoor recreational activities. Let Rait represent individual i’s

binary choice to participate in recreational activity a at time t. We define our outcome

variable as equal to one if time use survey respondents report allocating any amount of

time on activity a during their diary day, and zero otherwise.

We specify the following estimating equation

Rait = α+ f(Wit|Θ) + βXi + Ci + St + τt + εit (10)
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where f(Wit|Θ) is a flexible function of prevailing weather conditions parameterized by Θ,

Xi is a vector of individual-specific attributes, Ci are climate-region fixed effects, St are

season fixed effects, and τt are year dummies. The error term εit is adjusted for correlation

within states. We estimate equation 10 using logistic regression weighted to account for the

nationally representative survey sampling design.

Reduced-form climate impact studies seek to estimate the coefficient vector Θ, and we

follow suit. In our application, f(·) defines the relationship between a suite of weather vari-

ables and the likelihood of choosing to participate in a given recreation activity, conditional

on household characteristics and common climate-region, seasonal, and year fixed effects.

We choose a flexible functional form for the weather-response function. Note that this

weather-response function corresponds to the “quality shift function” σ(W,p∗) described in

the theory section above. We specify

f(Wit|Θ) =
S∑
s=1

γs1[Tit = s] +

Q∑
q=S+1

γq1[Pit = q] + η1Snowfallit + η2Snow Depthit (11)

where the first summation over s indicates a set of S 5◦ Celsius temperature bins that equal

one if observed daily average temperature falls in bin s and zero otherwise. In our primary

models, we use average daily temperatures, defined as the simple average of maximum and

minimum temperatures. Likewise, the second summation over q indicates a set of Q 10-

millimeter precipitation bins that equal one if observed daily precipitation falls in bin q

and zero otherwise. Snowfall and Snow Depth linearly summarize snowfall and snow depth

patterns in millimeters.7

Upon estimating the model in Equation 10, we use the estimated parameters to project

changes in recreation due to changes in weather, providing us with measures of y∗0 and y∗1
from our theoretical model. For this exercise, we specify mean temperature changes and

percentage changes in precipitation for the period 2070–2099. Within each climate region,

we assume that temperature changes are additively constant and that precipitation changes

are proportionally constant. We approximate temperature and precipitation changes at the

climate-region level using the multimodel mean statistics for each of the CMIP5 Representa-

tive Concentration Pathways (RCP) scenarios reported in Sun et al. (2015). We assume no

change in snowfall; if snowfall decreases monotonically with climate change, this would bias

our results toward zero for positive responses to snowfall and away from zero for negative

responses. Mean temperature and precipitation changes used for our projection exercise

are presented in Table 4, and these values correspond with W0 and W1 from our theoretical

model.

7Note that the model for “running” did not converge; rather, we report coefficient estimates after 15
iterations.
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3.3 Results

3.3.1 Responsiveness to weather

We present coefficients from our primary estimation results in Table 3. As shown, tem-

peratures below the omitted temperature bin (16–20◦C) are generally negative for each of

our activity categories. Notably this statistic is positive for hunting and skiing, which typi-

cally take place during colder seasons. Precipitation is generally negatively correlated with

participation in our activities, with the exception of skiing.

Coefficients on socioeconomic characteristic correspond generally with expectations.

Higher-income and higher-educated households participate more frequently in recreation,

while nonwhite households and older populations participate less frequently in recreation.

Results for employed and retired households are mixed.

To put these coefficients into context, we illustrate the weather-response relationship for

each of our activity categories. We center marginal effects from our previously estimated

logit model at the weighted sample mean of each covariate. Then, we calculate percentage

changes for each activity by dividing the marginal effects (and their 95 percent confidence

intervals) by the weighted sample mean of the dependent variable. We present these results

graphically for our temperature and precipitation bins for each of our activity categories in

Figures 4 and 5.

For our three aggregate measures of outdoor recreation (all, nonsport, and limited), the

relationship between recreating and contemporaneous weather is similar. Individuals par-

ticipate in recreation less during colder temperatures relative to the omitted 16–20◦C bin.

Recreation generally peaks in the 21–25◦C bin, and in warmer bins, confidence intervals

overlap with zero, suggesting no significant change with respect to the warmest tempera-

tures. For our limited set of aggregate recreation activities (defined in Table 1), we continue

to see positive responses of about 15–25 percent increases in recreation for days above 30◦C

relative to more moderate temperatures. For precipitation, recreators appear willing to

tolerate a small amount of rain but generally reduce their participation rates as the daily

amount of rain increases.

Our aggregate measures of recreation, however, mask activity-specific responses to

weather. For example, the response of cycling to temperature may be quite different than

that of skiing. In Figure 5, we show weather-response functions for eight of our major

recreational activities (which jointly constitute our “limited” recreation variable). Boating

and fishing display similar responses, with a noticeable reduction on very hot days relative

to our aggregate results. Cycling mirrors the shape of our nonsport aggregate measure

of recreation quite closely, albeit with slightly larger magnitudes on the cold end of the

temperature distribution. The results for hiking suggest that hikers dislike extremely hot
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temperatures and rainy days but can tolerate cold temperatures fairly well.

For hunting, we see increases in participation on the cold end of the distribution, with

little reaction to hot temperatures or precipitation. This result could be driven by rigid

constraining factors associated with typical hunting seasons in the fall and winter. Running

appears similarly unresponsive to wet or very hot temperatures, but we observe participation

decreases on very cold days. Sensibly, participation in skiing, ice skating, and snowboarding

increases with colder temperatures and precipitation. Although we do not present figures for

snowfall and snow depth, these factors are also positively associated with winter recreation.

Finally, participation in water sports (e.g., swimming) increases when it is very hot out,

and decreases when it is very cold or wet.

In sum, we find that outdoor recreation is most responsive to extremes on either end

of the temperature distribution, but the direction of the effect is activity-specific. Fur-

ther, more precipitation is almost universally bad for participating in recreational activ-

ities. These results are intuitive: for some activities (e.g., swimming), hot temperatures

complement the desirability of participation; for other activities (e.g., skiing), cold temper-

atures are complementary. These weather responses form the foundation for our climate

projections. If recreators dislike cold temperatures, but tolerate hot temperatures fairly

well, then any climate-induced rightward shift in the temperature distribution may induce

more participation in recreational activities.

3.3.2 Climate impact results

For each of our activities and our three aggregate recreation groups, we project the expected

change in participation under a set of climate scenarios for 2070–2099. The four RCP climate

scenarios characterize four possible climate futures, with RCP 2.6 being the most optimistic

and RCP 8.5 being the most pessimistic. For our purposes, we are interested in the spatially

explicit multimodel mean change in temperature and precipitation within each scenario.

By scaling observed temperature and precipitation by anticipated changes in 2070–2099,

we can predict likely changes in recreation participation using the estimated relationships

in Table 3. First, we predict participation under observed weather conditions, then we

predict participation under weather conditions perturbed by each of our climate scenarios.

We take the difference of these two predictions to be our measure of climate impacts on

outdoor recreation, which corresponds with ∆y from our welfare estimation model. We

present these statistics as percentage changes (from the weighted sample mean) for each

activity and each climate scenario in Table 5.

For each climate scenario and each of our aggregate recreation categories, we see strictly

positive impacts. That is, our nationally representative results predict that climate change

will induce increases in participation in outdoor recreation activities by 2070–2099 on the
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order of 1.6–9.6 percent. This result is consistent with the central estimate of a 5.5 percent

increase in outdoor recreation that Chan and Wichman (2017) find using bike-share micro

data.

Climate impacts for specific activities are mixed. For running, cycling, and water sports,

we estimate large positive impacts of climate change on participation. For hiking, hunting,

and skiing, we see increasingly negative impacts on participation. The effects for boating

and fishing are relatively small, suggesting that the benefit from a reduction in cold days is

almost completely offset by the negative effects from more hot days.

3.3.3 Valuing climate impacts

We can produce a plausible lower-bound of welfare changes using the reduced-form rela-

tionship in Equation 10 and anticipated changes in weather due to climate. To do so, we

simply calculate the expected change in recreation participation in person days per year

and multiply this value by average consumer surplus (CS) estimates from the literature.

In the previous subsections, we obtained measures of W0, W1, and σ(W,p∗), which can be

compiled into a single measure of ∆y. We now draw on prior estimates of CS0 from the

Recreational Use Values Database to complete our calculation of ∆ĈS = ∆y×CS0 (Oregon

State University, 2006).

Our results are presented in Table 6. Taking an average CS value for all outdoor recre-

ation, we can approximate a net effect for our aggregate recreation measures. This value

ranges from $9.8 billion to $37.6 billion per year depending on the variable and climate

scenario. Of note is how closely our estimate for all outdoor recreation in RCP 4.6 is to

the estimates of Chan and Wichman (2017) for 2060 ($20.7 billion per year) and Mendel-

sohn and Markowski (1999) for 2060 under a 5◦C scenario ($14.4 billion to $26.5 billion

per year), even though we use different data and different variation in our data to estimate

our weather-response function, a different climate projection and time horizon, and differ-

ent consumer surplus values. Further, we value the extensive margin of the participation

decision, whereas Chan and Wichman (2017) value the intensive margin for a similar set of

activities. Despite these differences, our projected welfare changes are quite similar.

For activity-specific results, we find the largest welfare gains for cycling, running, and

water sports, totaling (respectively) $1.8 billion, $4.5 billion, and $4.6 billion annually

under the RCP 6.0 scenario. Within the same climate scenario, we estimate annual welfare

losses for hunting and skiing on the order of $1.6 billion and $1.4 billion, respectively.

Although we do see welfare losses for relatively high value winter sports, these losses are

offset entirely by gains in other sectors. This is due, in part, to low levels of participation in

skiing and hunting compared with more commonplace activities such as cycling, running,

and swimming. Adding up our eight activity-specific welfare estimates within each scenario
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provides an estimate of net aggregate climate welfare impacts on recreation demand ranging

from $3.6 to $12.4 billion.

Building off our exercise here and existing results in the literature, we posit that climate

change will have large net welfare benefits for outdoor recreation in the continental United

States by the end of the century.

3.3.4 Caveats

Our empirical exercise is intended to illustrate the value of our conceptual contribution

from Section 2. Because of this, we have made several simplifying assumptions for the sake

of transparency.

First, we have estimated a relatively simple model to capture the responsiveness of

outdoor recreation to changes in weather. Our justification is that our welfare framework

is intended to leverage the vast quantity of reduced-form models in the empirical climate

damage literature, the majority of which mirror the general specifications of our model

in Equations 10 and 11. Structural models of recreation participation decisions can be

implemented (e.g., Dundas and von Haefen, 2017), although the data requirements are

large and the modeling assumptions are relatively strict. Our approach, on the other hand,

provides a theoretically consistent way to approximate welfare impacts of climate change

on nonmarket activities with few a priori assumptions.

Second, our climate projection is somewhat rudimentary. Although we match the aver-

ages of temperature and precipitation with geographic specificity for commonly used climate

model ensembles under the full range of scenarios, we do not capture seasonal changes or

changes in snowfall, humidity, and other elements important for recreation decisions. For

the purposes of this paper, we view these concerns as second order. Our analysis could

be augmented by a more detailed climate projection, but it is unlikely that the magni-

tude of our primary results would change in a meaningful way relative to the host of other

uncertainties inherent in 50- to 70-year climate projections.

Third, we note that our estimates embed a benefits transfer exercise. When drawing

on prior estimates of recreation values, we are conducting a (mean) value transfer from

the study sites to a much broader policy context: nationwide outdoor recreation activity.

Basic value transfers of this sort are prone to bias, and researchers advise using more

sophisticated function transfer methods (Boyle et al., 2010; Johnston et al., 2015). We

acknowledge that our use of more parsimonious value transfers may introduce bias, but we

do so to maintain clarity and to focus on the broader conceptual contribution. Investigating

how to incorporate function transfers into our welfare framework would be an interesting

avenue for future work.

Finally, like all long-run projections, we cannot anticipate all changes in the US econ-
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omy that may affect preferences for recreation or the supply of environmental resources

conducive to recreation. Notably, we have a limited understanding of how demand for

recreation would change with climate-induced changes in ecosystems or environmental ser-

vices that complement recreation. Further, advances in technology may reduce the welfare

costs of climate change on outdoor recreation. For example, advances in snow-making tech-

nology could substantially reduce the losses borne by the skiing industry that we estimate

here. Many of these challenges harken back to the seminal work of Krutilla (1967) and

warrant further exploration. We leave those deep questions for future research. Notably,

our framework here provides a theoretically consistent way to value those very changes in

these nonmarket goods and services.

4 Conclusion

Optimal climate policy requires a comprehensive understanding of climate impacts. In this

paper, we have proposed a transparent, simple measure for valuing nonmarket consequences

of climate change. Our approach draws from and unites two separate literatures on envi-

ronmental valuation and reduced-form climate damage estimation. It provides a framework

for combining techniques and findings from each to develop much-needed welfare estimates

of nonmarket climate damages.

In deriving our welfare measure, we investigate its theoretical properties with an eye

toward empirical application. Overall, the accuracy of our measure will depend on the

functional form of the demand function that underlies consumer behavior. We show that

it provides reliable estimates of consumer surplus changes with predictable bias. For many

commonly used functional forms, our approach will yield an exact measure of surplus

changes.

We use our approach in two distinct settings to demonstrate its empirical relevance.

First, we use the framework to reproduce estimates of environmental value changes from

prior research. We find that it matches reported values exactly in many circumstances, and

in cases where it does not, the bias is predictable in sign and negligible in magnitude. Then,

we use it to estimate climate impacts on outdoor recreation. By amalgamating weather and

time-use data, climate model projections, and recreational use values, we find that climate

change will beget recreation benefits on the order of $9.8 billion to $37.6 billion annually.

We could obtain even more precise estimates by using more refined climate projections,

benefits transfer techniques, and additional models of consumer choice. However, for this

paper, we seek primarily to demonstrate our measure as a conceptual contribution, and we

view these refinements and extensions as promising avenues for future research.

Overall, our work fills an important niche in the literature. Reduced-form approaches,
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using weather fluctuations for econometric identification, are becoming increasingly preva-

lent as a means for predicting climate impacts. Although such studies are useful for generat-

ing precise, causal responses to climate change, it is not immediately clear how to translate

these behavior changes into welfare implications, a gap that we attempt to fill here. In this

way, our approach bears similarities to the sufficient statistics literature, which seeks to

reduce the analytical burden of welfare calculations (see Chetty (2009) for a review). Our

analysis has a similar flavor. Although we cannot observe the full, quality-shifted demand

curve under climate change, we can still credibly estimate welfare changes using a point

estimate of the weather dose-response function. By bridging the gap between reduced-form

climate impact research and the extensive literature on environmental valuation, we provide

a missing link between nonmarket climate impacts and welfare.
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(a) Changing weather shifts demand from y0(·) to y1(·) according to the quality shift function
σ(W,p).

y

$

p̄0

p̄1

p

y∗0 y∗1

y1(·)

y0(·)

CS0 ∆CS

(b) The original consumer surplus is CS0 while the new consumer surplus is CS1 = CS0 + ∆CS,
with the area between the two curves representing the change in welfare ∆CS.

Figure 1: Welfare measurement from environmental quality changes. When weather or
environmental quality changes, the demand for y shifts, and the equilibrium quantity con-
sumed increases from y∗0 to y∗1. In turn, consumer surplus increases, as shown in the figures
above.
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Figure 2: Exact CS change compared with authors’ approximation. Changing weather
shifts demand from y0(·) to y1(·) The original consumer surplus is CS0 = a but the new
consumer surplus is CS1 = a + b + c, yielding ∆CS = b + c. In the absence of the full

demand curve, we approximate ∆ĈS =
y∗1
y∗0
CS0 − CS0, which is captured by the area b.
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Figure 3: Welfare change from weather changes. Changing weather shifts demand from

y0(·) to y1(·). Approximating the change in consumer surplus as ∆CS ≈ y∗1
y∗0
CS0 − CS0

may have countervailing biases when there is an interaction between the demand shift and
price. Note that the approximation will underestimate CS changes at low y (high p) and
overestimate change for high y (low p). The net bias will depend on the relative magnitudes
of each.
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(a) Percentage change (and 95% CI) in participation for all outdoor recreation due to changes in
daily average temperatures and daily precipitation

(b) Percentage change (and 95% CI) in participation for nonsport outdoor recreation due to changes
in daily average temperatures and daily precipitation

(c) Percentage change (and 95% CI) in participation for limited outdoor recreation due to changes
in daily average temperatures and daily precipitation

Figure 4: Relationship between aggregate recreation and daily weather. Percentage changes
(and 95% CI) are calculated as the marginal effect from logistic regression, centered at the
sample mean of each covariate, divided by the weighted sample mean of the dependent
variable. 29



Figure 5: Activity-specific relationship between recreation and daily weather. Percentage
changes (and 95% CI) are calculated as the marginal effect from logistic regression, centered
at the sample mean of each covariate, divided by the weighted sample mean of the dependent
variable.
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Figure 5 (cont.): Activity-specific relationship between recreation and daily weather. Per-
centage changes (and 95% CI) are calculated as the marginal effect from logistic regression,
centered at the sample mean of each covariate, divided by the weighted sample mean of the
dependent variable.
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Tables

Table 1: Primary activity categories used for aggregate measures
of outdoor recreation

Outdoor recreation Outdoor recreation
(all) (limited)

Playing baseballS

Playing basketballS

Biking Biking
Boating Boating

Climbing, spelunking, caving
Participating in equestrian sportsS

Fishing Fishing
Playing footballS

GolfingS

Hiking Hiking
Hunting Hunting

Playing racquet sportsS

Participating in rodeo competitionsS

Rollerblading
Playing rugbyS

Running Running
Skiing, ice skating, snowboarding Skiing, ice skating, snowboarding

Playing soccerS

SoftballS

Walking
Participating in water sports Participating in water sports

Notes: Activities are adopted from the 2003–2016 American Time Use Survey. Each
is a subcategory of the Sports, Exercise, and Recreation time use primary category.
Activities marked with a superscript S are designated as sports.
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Table 2: Summary statistics for participation in recreational activities

Average Average minutes per
of participants activity per day Consumer surplus

per day (conditional on value per day
Mean SD (in 1000s) participating) (US$2016)

Outdoor recreation (all) 0.115 0.320 27,877 101.22 69.05
Outdoor recreation (nonsport) 0.098 0.298 23,712 88.52 69.05
Outdoor recreation (limited) 0.043 0.204 10,461 121.55

Boating 0.002 0.042 426 178.36 83.34
Cycling 0.006 0.075 1,352 83.64 47.52
Fishing 0.005 0.067 1,091 251.82 77.37
Hiking 0.002 0.040 389 146.00 78.27
Hunting 0.002 0.048 569 289.72 71.84
Running 0.014 0.119 3,464 52.61 60.37
Skiing, ice skating, snowboarding 0.001 0.031 234 190.22 66.30
Participating in water sports 0.014 0.117 3,340 107.49 27.79

Notes: All statistics are weighted to account for nationally representative stratified sampling design. Consumer surplus
estimates are taken from the OSU Recreation Use Value Database (RUVD) as a simple average across all primary consumer
surplus (CS) values for each activity. Aggregate CS values are approximated as the simple average across all CS estimates in
the RUVD.
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Table 3: Estimation results from logistic regression

Outdoor recreation

(all) (nonsport) (limited) Cycling Boating Fishing Hiking Hunting Running Skiing Watersports

Temp. Bin: <0◦C -0.71 -0.62 -0.55 -1.50 -1.93 -1.49 -0.77 0.56 -0.56 2.79 -0.73
(0.06) (0.07) (0.09) (0.26) (0.66) (0.30) (0.44) (0.36) (0.16) (0.44) (0.24)

Temp. Bin: 1-5◦C -0.47 -0.43 -0.52 -1.04 -3.80 -1.54 -0.40 1.08 -0.44 1.67 -0.77
(0.06) (0.06) (0.09) (0.22) (1.03) (0.26) (0.44) (0.28) (0.15) (0.44) (0.24)

Temp. Bin: 6-10◦C -0.26 -0.22 -0.28 -0.58 -1.16 -0.84 -0.30 0.94 -0.26 1.07 -0.63
(0.04) (0.04) (0.08) (0.18) (0.50) (0.22) (0.28) (0.30) (0.13) (0.49) (0.17)

Temp. Bin: 11-15◦C -0.10 -0.08 -0.20 -0.37 -0.66 -0.31 0.16 0.51 -0.18 0.14 -0.47
(0.03) (0.03) (0.06) (0.19) (0.31) (0.16) (0.27) (0.28) (0.08) (0.58) (0.15)

Temp. Bin: 21-25◦C 0.09 0.11 0.26 0.04 0.26 -0.05 0.27 -0.21 0.14 -1.02 0.66
(0.03) (0.03) (0.06) (0.11) (0.19) (0.14) (0.20) (0.38) (0.12) (0.77) (0.12)

Temp. Bin: 25-30◦C 0.05 0.08 0.23 0.04 0.07 -0.61 -0.72 -0.59 0.02 -1.33 0.85
(0.05) (0.05) (0.07) (0.18) (0.25) (0.18) (0.52) (0.35) (0.12) (1.29) (0.12)

Temp. Bin: >30◦C 0.01 0.07 0.31 -0.09 -0.88 -0.51 -1.05 -0.18 0.43 1.15 0.78
(0.11) (0.13) (0.16) (0.32) (0.47) (0.38) (0.47) (0.90) (0.25) (0.91) (0.19)

Prcp. Bin: 1-10mm -0.03 -0.00 0.01 -0.01 -0.18 0.28 0.12 0.46 0.03 0.06 -0.13
(0.03) (0.03) (0.04) (0.13) (0.16) (0.12) (0.15) (0.31) (0.10) (0.30) (0.07)

Prcp. Bin: 11-20mm -0.18 -0.20 -0.18 0.07 -0.92 -0.31 -0.76 0.09 0.06 0.53 -0.50
(0.05) (0.05) (0.08) (0.23) (0.40) (0.26) (0.42) (0.43) (0.13) (0.43) (0.11)

Prcp. Bin: 21-30mm -0.39 -0.40 -0.59 -0.87 -1.28 -0.74 -1.71 -0.26 -0.30 1.40 -0.90
(0.13) (0.14) (0.17) (0.43) (0.75) (0.38) (1.00) (0.64) (0.33) (0.57) (0.29)

Prcp. Bin: >30mm -0.11 -0.15 -0.34 -1.57 -0.16 -1.11 -1.59 0.21 -0.16 1.83 -0.41
(0.12) (0.12) (0.23) (0.67) (0.74) (0.67) (1.02) (0.70) (0.41) (1.23) (0.23)

Snowfall (mm0 0.00 0.00 0.00 0.01 -0.01 -0.01 -0.02 0.01 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.02) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00)

Snow depth (mm) 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Edu ≥ college (=1) 0.31 0.40 0.35 0.71 0.14 -0.78 0.98 -1.29 0.61 0.72 0.32
(0.02) (0.02) (0.04) (0.08) (0.15) (0.13) (0.19) (0.20) (0.08) (0.19) (0.07)

Race nonwhite (=1) -0.17 -0.24 -0.58 -0.41 -1.37 -0.34 -1.14 -1.30 -0.31 -1.36 -0.83
(0.05) (0.07) (0.11) (0.10) (0.43) (0.10) (0.26) (0.35) (0.11) (0.34) (0.20)

Age ≥ 70 (=1) -0.06 -0.03 -0.54 -0.22 -1.54 -0.67 -0.98 -1.16 -1.25 -0.32 -0.31
(0.05) (0.05) (0.10) (0.19) (0.33) (0.20) (0.33) (0.35) (0.36) (1.13) (0.13)

Income <25k (=1) -0.27 -0.20 -0.39 -0.55 -0.68 -0.38 -0.73 0.77 -0.35 -0.38 -0.41
(0.06) (0.06) (0.07) (0.18) (0.34) (0.20) (0.27) (0.31) (0.13) (0.63) (0.10)

Income 25-50k (=1) -0.15 -0.14 -0.12 -0.33 0.03 -0.28 0.07 1.28 -0.20 0.50 -0.13
(0.05) (0.05) (0.07) (0.19) (0.27) (0.16) (0.24) (0.29) (0.13) (0.51) (0.12)

Income 50-75k (=1) -0.00 -0.03 0.14 -0.14 -0.01 -0.09 0.06 1.07 0.20 0.48 0.27
(0.05) (0.06) (0.07) (0.15) (0.32) (0.18) (0.24) (0.29) (0.12) (0.55) (0.14)

Income 75-100k (=1) 0.10 0.08 0.24 0.01 0.44 -0.03 -0.55 1.34 0.36 0.64 0.32
(0.04) (0.05) (0.09) (0.18) (0.28) (0.22) (0.28) (0.30) (0.15) (0.50) (0.16)

Income >100k (=1) 0.27 0.21 0.40 0.15 0.48 -0.29 0.16 0.93 0.62 0.49 0.42
(0.05) (0.05) (0.08) (0.18) (0.27) (0.22) (0.35) (0.37) (0.13) (0.50) (0.13)

Employed (=1) -0.55 -0.34 -0.36 -0.46 0.22 -0.08 -0.35 1.03 -0.38 -0.44 -0.62
(0.03) (0.03) (0.04) (0.14) (0.15) (0.11) (0.24) (0.19) (0.08) (0.29) (0.08)

Retired (=1) -0.05 0.17 -0.46 -0.14 0.53 0.26 0.01 0.94 -1.71 -2.12 -0.45
(0.04) (0.04) (0.07) (0.14) (0.24) (0.21) (0.37) (0.40) (0.23) (0.93) (0.10)

Observations 171,780 171,780 171,780 171,780 171,319 171,780 171,780 171,319 171,780 171,780 171,780
Pseudo-R sq. 0.0324 0.0318 0.0504 0.0491 0.124 0.0551 0.100 0.129 0.0612 0.216 0.111
Log pseudolikelihood -4.0e+11 -3.6e+11 -2.0e+11 -3.9e+10 -1.3e+10 -3.3e+10 -1.3e+10 -1.8e+10 -8.2e+10 -7.3e+09 -7.5e+10

Notes: Dependent variable is whether a household participated in a given activity. All models include climate-region
fixed effects, season fixed effects, and yearly fixed effects. Standard errors are clustered at the state level. All models
are adjusted for sampling weights to account for the nationally representative survey design. Asterisks indicating
statistical significance are suppressed for clarity.
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Table 4: Temperature and precipitation change projections by climate region for 2070–2099

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Temp. Prcp. Temp. Prcp. Temp. Prcp. Temp. Prcp.
Climate region: (deg C) (%) (deg C) (%) (deg C) (%) (deg C) (%)

Ohio Valley 1.4 2.5 2.5 5.0 2.8 5.0 4.7 7.5
Upper Midwest 1.4 5.0 2.8 7.5 3.1 7.5 5.3 7.5
Northeast 1.4 7.5 2.5 7.5 3.1 7.5 5.0 12.5
Northwest 1.4 2.5 2.2 2.5 3.1 2.5 4.2 2.5
South 0.8 0.0 1.9 -2.5 2.5 -5.0 4.4 -7.5
Southeast 0.8 5.0 1.9 7.5 2.5 2.5 3.6 2.5
Southwest 1.4 0.0 3.1 -2.5 2.8 -5.0 5.0 -7.5
West 1.1 0.0 2.2 -2.5 2.5 -2.5 4.2 -2.5
Northern Rockies and Plains 1.4 2.5 2.5 2.5 3.1 2.5 4.7 2.5

Notes: Temperature changes (in degrees C) and precipitation changes (in percentages) are applied uniformly within
the climate region. Climate-region averages are approximated as the multimodel mean from CMIP5 running the given
scenario. Representative Concentration Pathways (RCP) scenarios are reported in Sun et al. (2015).

Table 5: Climate impacts on activity-specific participation rates by RCP
scenario, 2070–2099

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Outdoor recreation (all) 1.6 3.0 3.5 5.3
Outdoor recreation (nonsport) 1.6 3.0 3.6 5.6
Outdoor recreation (limited) 2.6 5.0 6.0 9.6

Boating 1.4 0.8 0.2 -3.5
Cycling 3.5 6.3 7.5 11.3
Fishing 0.8 1.4 1.8 2.6
Hiking -0.9 -2.8 -2.9 -6.3
Hunting -4.6 -9.0 -10.8 -17.3
Running 2.2 4.7 5.9 10.3
Skiing, ice skating, snowboarding -11.5 -21.1 -25.0 -37.5
Participating in water sports 6.3 11.6 13.6 20.5

Notes: All statistics are percentage changes in participation rates from their weighted sample
means. Representative Concentration Pathways (RCP) scenarios are reported in Sun et al.
(2015).
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Table 6: Annual welfare impacts of climate change on recreation activities
by RCP scenario, 2070–2099 (consumer surplus estimates in billions of 2016
USD)

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Outdoor recreation (all) 11.43 20.93 24.82 37.56
Outdoor recreation (nonsport) 9.79 18.11 21.75 33.33

Boating 0.19 0.11 0.02 -0.46
Cycling 0.82 1.47 1.76 2.65
Fishing 0.24 0.43 0.55 0.81
Hiking -0.10 -0.31 -0.32 -0.70
Hunting -0.69 -1.35 -1.62 -2.59
Running 1.69 3.60 4.49 7.87
Skiing, ice skating, snowboarding -0.65 -1.20 -1.42 -2.12
Participating in water sports 2.14 3.94 4.61 6.95

Outdoor recreation (limited) 3.62 6.69 8.08 12.41

Notes: All values are consumer surplus changes in billions of US$2016. Positive values indicate
welfare gains and negative values indicate welfare losses. Statistics for Outdoor Recreation (all)
and Outdoor Recreation (nonsport) are calculated using the mean consumer surplus value for all
recreation in the OSU RUVD. Outdoor recreation (limited) is calculated as the sum total of the
8 activity-specific welfare impacts within each climate scenario. Representative Concentration
Pathways (RCP) scenarios are reported in Sun et al. (2015).
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A Appendix for Online Publication

A.1 Quantifying welfare changes from other goods

Consider a consumer with utility U(x, y, z;W ), where x is a numeraire, y is the activity
of interest, and z is an alternative activity. The consumer faces a standard money budget
(x + pyy + pzz = I) as well as a time budget (y + z = τ , where τ is total available time).
To simplify exposition, consider the linearly separable form U(x, y, z;W ) = x+f(y) + g(z).
Then the consumer’s maximization problem in Lagrangian form is

max
x,y,z

U(x, y, z;W )− λ1(x+ pyy + pzz − I)− λ2(y + z = τ),

which gives the first-order conditions

λ2 = f ′(y)− py = g′(z)− pz

along with the money and time budget constraints. Given the quasilinear form of utility,
MBy(y) ≡ f ′(y) and MBz(z) ≡ g′(z) are the inverse demand (marginal benefit) functions
for y and z, respectively.

Now we turn to calculating changes in consumer welfare from a change in W . We can
do so in either of two ways.

Calculating consumer surplus: Method 1

The first is to directly measure the consumer surplus for each activity, y and z, and sum
across the activities. That is, we could calculate

CS = CSy + CSz

=

∫ y∗

0
MBy(y)− pydy +

∫ z∗

0
MBz(z)− pzdz. (A.1)

Figure A.1 provides an intuitive graphical depiction of how consumer surplus can be
calculated independently for the two markets, with the overall consumer surplus being
the sum of the two. The binding time constraint creates an opportunity cost of time, so
consumption does not follow the standard p = MB rule.

Figure A.2 offers a different but equivalent graphical representation, where the demand
curve for z is transformed into a function of y using the correspondence between y and z
implied by the time budget; moreover, the curves shown are shifted so that they represent
the marginal benefits net of price. As such, the net demand curves and consumer surplus
areas can be visualized on the same axes. Increases or decreases in available time will cause
a horizontal translation of the demand curve for z. Intuitively, the equilibrium occurs where
the net demand curves cross, adhering to the equimarginal principle.

A change in W will yield a change in welfare ∆CS = CS1−CS0. This will have multiple
effects: it will shift MBy(·), which will in turn change the optimal y∗ and z∗ to y′ and z′,
thus altering the bounds of the integral above. For empirical applications, one must observe
prices for y and z and measure how y∗ and z∗ each respond to changes in W to calculate
consumer surplus in this way.
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Calculating consumer surplus: Method 2

As an alternative measure of surplus, we can focus only on y, accounting for z as an implicit
cost to consuming y. That is, for each unit of y consumed, the individual must forgo a unit
of z because of the time constraint. Then the full cost of consuming y is py + M̂Bz(y)− pz,
where the first term is the monetary cost (price) and the later two terms constitute the
surplus from forgone units of z as a function of y.

In this case, we can calculate consumer surplus as

CS =

∫ y∗

0
MBy(y)− (py + M̂Bz(y)− pz)dy

=

∫ y∗

0
MBy(y)− pydy −

∫ y∗

0
M̂Bz(y)− pzdy. (A.2)

A graphical representation is provided in Figure A.3. Here, the full opportunity cost of
consuming a unit of y is the price py plus M̂Bz(y)− pz, the forgone surplus from a unit of
z. The overall consumer surplus will be the area below the demand curve for y and above
the full opportunity cost curve.

To use this calculation in empirical applications, one needs information only on the
opportunity cost of time and the response of y∗ to changes in W ; this formulation captures
z∗ implicitly via the time constraint.

Calculating consumer surplus: Synthesis

We can now compare the two different methods for calculating consumer surplus. Let
us return to Expression A.1. Taking advantage of y + z = τ , we can employ a change
of variables to write M̂Bz(y), so that the (inverse) demand for z is a function of y, and
therefore on the same axes as the MBy(y) function. To do so, we define z = τ − y and

M̂Bz(y) = MBz(τ − y), giving dz = −dy and limits of integration τ and y∗.

CS = CSy + CSz (A.3)

=

∫ y∗

0
MBy(y)− pydy +

∫ z∗

0
MBz(z)− pzdz

=

∫ y∗

0
MBy(y)− pydy +

∫ τ

y∗
M̂Bz(y)− pzdy. (A.4)

Note that the first term in Expression A.2 is identical to the first term in Expression A.3.
However, the second terms of these expressions differ by a normalization. Thus, calculating
consumer surplus in these two ways will yield different quantitative results. This fact is
readily apparent when Figures A.2 and A.3 are examined side by side.

At first glance, this may seem problematic. However, it is not critical that the consumer
surplus calculations match up exactly; rather, what is important is that the changes in
consumer surplus (i.e., comparative statics) with respect to W are consistent across the two
methods.

We seek to verify that ∆CS is the same regardless of which method we use to calculate
consumer surplus. In comparing the two formulations of CS, we can dispose of the first
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term
∫ y∗

0 MBy(y) − pydy because it is the same in each instance. Thus, we only need to
verify the (change in) the second term is identical across cases. Letting ∆ imply a change
from y∗ to y′, we have:

∆

[∫ τ

y∗
M̂Bz(y)− pzdy

]
= −∆

[∫ y∗

0
M̂Bz(y)− pzdy

]
[∫ τ

y′
M̂Bz(y)− pzdy

]
−
[∫ τ

y∗
M̂Bz(y)− pzdy

]
=[∫ y∗

0
M̂Bz(y)− pzdy

]
−

[∫ y′

0
M̂Bz(y)− pzdy

]
T̂Bz(y

∗)− T̂Bz(y
′) + pzy

′ − pzy∗ = T̂Bz(y
∗)− T̂Bz(y

′) + pzy
′ − pzy∗,

where T̂Bz(·) is the total benefit function, which is simply the integral of M̂Bz(·) from 0 to
the specified value of y. Thus, either way of calculating consumer surplus changes will give
equivalent results. Figure A.4 illustrates this point graphically. For many applications, the
CS0 value reported in the literature is calculated net of opportunity costs, implying that
Method 2 can be used, and explicit treatment of z is not necessary.



z = 0 z = τ

y = 0 y = τ

z

y

$

$

MBy(·)

MBz(·)

py

pz

y∗

z∗

CSy

CSz

z = τ z = 0

y = τ y = 0

Figure A.1: Consumer surplus calculation: Method 1. Consumer surplus can be calculated
in each market independently; the results are then summed to obtain the overall consumer
surplus enjoyed by the consumer. Note that optimal consumption levels are not where
p = MB; this is because of the binding time constraint.
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y = 0 y = τ y

$

MBy(y)− py

M̂Bz(y)− pz

y∗

CSy CSz

z = τ z = 0z∗

Figure A.2: Consumer surplus calculation: Method 1 (alternative view). The curves are
marginal benefit curves net of prices. The demand curve for z has been transformed into a
function of y using the time constraint y+z = τ , allowing it to be graphed on the same axes
as the demand for y. The intersection of the two net demand curves yields the equilibrium
quantities, which satisfy the equimarginal principle.
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y = 0 y = τ y

$

MBy(y)

MOC(y)

M̂Bz(y)− pz
(forgone surplus from z)

py

y∗

CSy

z = τ z = 0z∗

Figure A.3: Consumer surplus calculation: Method 2. MOC(y) is the marginal opportunity
cost of consuming y, which includes the monetary cost embodied in the price py as well as
implicit costs from forgone consumption of z.
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y = 0 y = τ y

$

MBy(y)− py

M̂Bz(y)− pz

y∗ y′

a

e

b c d

f
g

h

Figure A.4: Consumer surplus can be calculated using either of the two methods described
above. The first method calculates consumer surplus directly in each market, whereas the
second method focuses on a single market, calculating consumer surplus net of forgone
opportunities. The numerical value of CS will differ between the two methods; however,
the change in consumer surplus from a demand shift will be equivalent across the two
methods. This fact is depicted graphically and in the calculations below.

Method 1 Original Shifted Gain/loss

CSy a+b a+b+c+e+f c+e+f
CSz c+d+f+g+h d+g+h -c-f

CStotal a+b+c+d+f+g+h a+b+c+d+e+f+g+h e

Method 2 Original Shifted Gain/loss

CStotal a a+e e
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