

The Initial Incidence of a Carbon Tax across Income Groups

Roberton C. Williams III, Hal Gordon, Dallas Burtraw, Jared C. Carbone, Richard D. Morgenstern

September 22, 2015

Background

- Carbon pricing is widely viewed as the most cost-effective way to reduce greenhouse gas emissions
- Incidence of carbon pricing is important: equity and politics
- Both the efficiency and distributional consequences of carbon pricing depend crucially on how the collected revenue is used

Overview

- Looks at incidence of carbon tax and use of tax revenue, across income groups and geography
- Links an overlapping-generations (OLG) model to a microsimulation model
- Looks at initial incidence: short run effect (but from a fully dynamic model)
- Focuses on cost side: estimates leave out benefits of reducing pollution emissions

Roadmap

- Model structure and data
- Policy changes
- Incidence by income quintile
- Conclusions
- Future work

Model Structure

- OLG model of the U.S. (Carbone et al., 2012)
 provides price and aggregate quantity changes
 for consumer goods and sources of income
- Microsimulation model measures how those changes affect households at different income levels and in different locations

Incidence Model Data

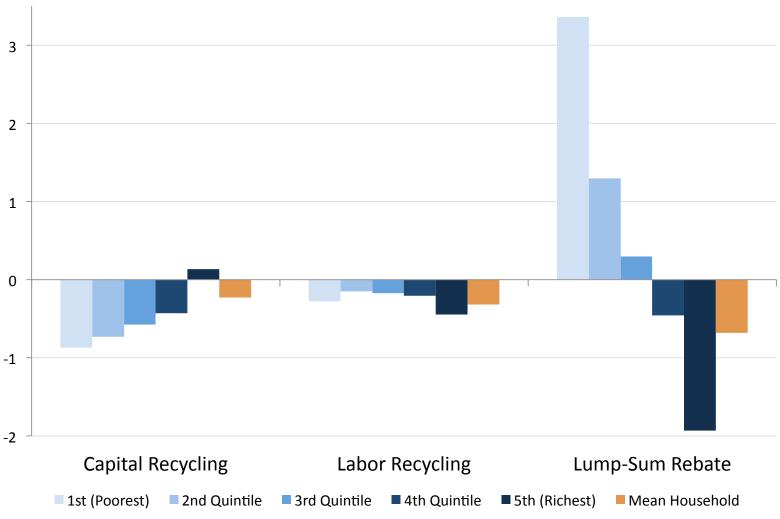
- State-level income shares: National Income and Product Accounts
- Income shares by income quintile: CBO's estimates (based on tax returns and CPS)
- Quintile expenditure shares, state expenditure shares for non-energy goods: Consumer Expenditure Survey
- State expenditure shares for energy goods: State Energy Data System

Policy Changes

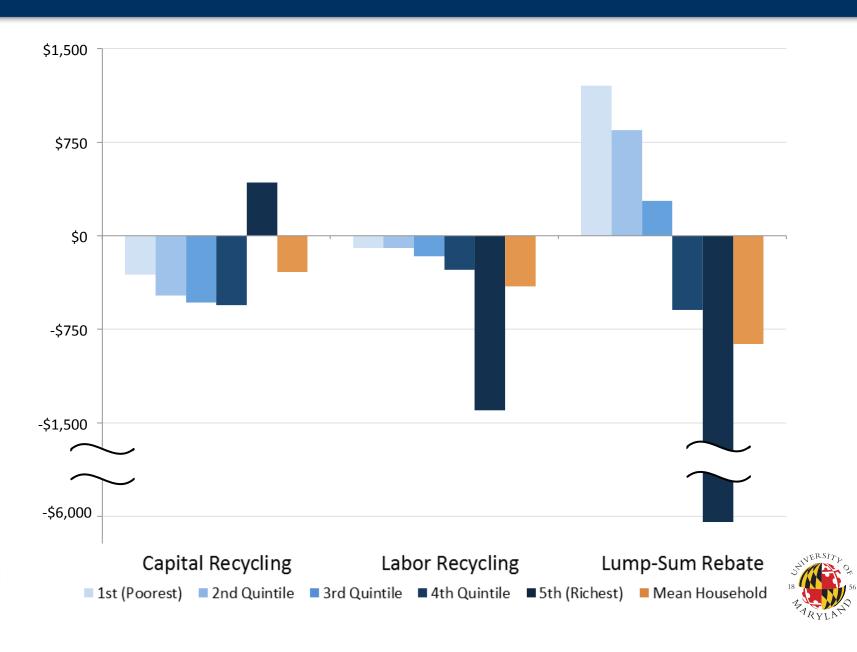
- We look at three simple cases built around a \$30 per ton carbon tax (constant in real terms)
 - Capital Tax Recycling
 - Labor Tax Recycling
 - Lump-Sum Rebate
- All policy changes are immediate, permanent changes
- Real net present value of government services, transfers, and deficits held constant

Mean Household Welfare Change (2012 dollars)

	Capital Recycling	Labor Recycling	Lump-Sum Rebate
Energy Goods	-\$530	-\$543	-\$540
Other Goods	\$529	\$543	\$539
Sources of Income	-\$290	-\$406	-\$865
Total	-\$291	-\$407	-\$866


Middle Quintile Household

	Capital Recycling	Labor Recycling	Lump-Sum Rebate
Energy Goods	-\$521	-\$534	-\$531
Other Goods	\$479	\$490	\$481
Sources of Income	-\$489	-\$120	\$329
Total	-\$534	-\$163	\$279


Incidence by Income Quintile (% of income)

Incidence by Income Quintile (2012 dollars)

Energy Good Price Changes Are Regressive

Change in Welfare from Energy Good Prices, % of Income

	1st (Poorest)	2nd Quintile	3rd Quintile	4th Quintile	5th (Richest)	Mean Household
Capital Recycling	-1.04	-0.70	-0.56	-0.46	-0.22	-0.42
Labor Recycling	-1.06	-0.72	-0.57	-0.47	-0.23	-0.43
Lump-Sum Rebate	-1.05	-0.71	-0.57	-0.47	-0.23	-0.42

Use of Revenue Drives Sources-Side Incidence

Change in Welfare from Income Sources, % of Income

	1st (Poorest)	2nd Quintile	3rd Quintile	4th Quintile	5th (Richest)	Mean Household
Capital Recycling	-0.64	-0.63	-0.53	-0.43	0.08	-0.23
Labor Recycling	-0.03	-0.04	-0.13	-0.21	-0.51	-0.32
Lump-Sum Rebate	3.57	1.39	0.35	-0.45	-2.00	-0.68

Conclusions and Caveats

- Carbon tax by itself is regressive, but use of revenue has much bigger effect
- Key caveats:
 - Labor not differentiated by skill level
 - National markets for all goods (except electricity)
 - Full employment
 - Immediate incidence only
 - Leaves out benefits of reducing emissions

Next Steps

- Consider longer-term incidence
- Link to other dynamic general-equilibrium models
 - Goulder-Hafstead E3 model (more tax detail)
 - New model that incorporates involuntary unemployment
- Consider policies that change path of deficits

