Frameworks for Evaluating Different Policy Approaches to Address the Competitiveness Concerns of Mitigating Greenhouse Gas Emissions

> Joseph E. Aldy Harvard Kennedy School

Workshop on Addressing Competitiveness and Leakage Concerns in a Carbon Tax: What are the Options? October 27, 2015

Competitiveness Frameworks

- Competitiveness Risks
- Risks from Competitiveness Policies
- Frameworks for Evaluating Competitiveness Policies

Competitiveness Risks

Economic Risks

• Pollution haven hypothesis

"Footlooseness"

• Defining competitiveness

- Discern trade effects from regulatory compliance costs
- Relative carbon price differentials

Economic Risks: Environmental Rules

- Competitiveness impacts of environmental rules
 - Ederington et al
 - Levinson and Taylor
- Greater response to within-US variation in regulatory costs
 - Greenstone
 - Kahn and Mansur
 - Deschenes

Economic Risks: Carbon Pricing

- Competitiveness impacts of carbon pricing
 - Aldy and Pizer JAERE 2015
- Estimate impacts of energy prices on net imports, production for ~450 industries over 35 years
 - Use these estimated elasticities to simulate net import impacts of \$15/tCO2 price
 - Based on EIA estimate of energy price increases under a \$15/tCO2 price

Estimated Impacts of \$15/tCO2 Price

Table 5. Predicted Impacts of a \$15/ton CO2 Price on Various Manufacturing Sectors						
Industry	Energy Intensity (%) (1)	Production- Energy Elasticity (2)	Production Effect (%) (3)	Net Import Elasticity (4)	Net Import Effect (%) (5)	ΔNI as a % of Δ Production (6)
Iron and						
steel	5.39	27***	-2.99	01	13	04
		(.09)	(1.03)	(.06)	(.68)	(.23)
Chemicals	10.47	35***	-3.95	.02	.28	.07
		(.11)	(1.20)	(.06)	(.72)	(.19)
Paper	8.96	33***	-3.73	.02	.18	.05
		(.10)	(1.15)	(.06)	(.71)	(.19)
Aluminum	23.51	46***	-5.12	.07	.77	.15
		(.13)	(1.46)	(.07)	(.82)	(.17)
Cement	18.00	42***	-4.74	.05	.61	.13
		(.12)	(1.37)	(.07)	(.78)	(.18)
Bulk glass	16.99	41***	-4.65	.05	.57	.12
		(.12)	(1.35)	(.07)	(.77)	(.18)
Industry						
average	1.97	14*	-1.53	07	75	49
		(.08)	(.88)	(.06)	(.68)	(.53)

Economic Risks: CGE Models

• Ho et al. 2008

- US \$10/tCO2 price
- Evaluate impacts over various time horizons

• Stanford EMF-29 Exercise

- 12 multi-sector, multi-region CGE models
- Base case: Annex I (excluding Russia) agrees to cut emissions to 2004 -20% (mean CO2 price ~ \$40/tCO2)
- Evaluate economic, emission impacts with and without a border tax adjustment

EMF-29: EITE Manufacturing Output

Source: Bohringer et al. Energy Economics 2012 (EMF-29 Summary)

Environmental Risks

• Two types of emission leakage

- Competitiveness
- World energy markets
- Potential to offset emission reductions in domestic mitigation program
 - Adversely impacts cost-effectiveness, reduces welfare

Environmental Risks: CGE Models

Source: Bohringer et al. Energy Economics 2012 (EMF-29 Summary)

Political Risks

- Basis for political opposition to carbon tax
 - From business
 - From environmental groups
- Importance of analysis and transparency
 - Avoid conflating competitiveness with compliance costs

Risks from Competitiveness Policies

Distributional Risks

- Forego opportunities to use revenues for other purposes
 - Transfers to low-income households
 - Tax reform (lowering marginal rates, corporate reform)
 - Supporting R&D
- Potential for excessive compensation
 - Waxman-Markey example

Efficiency Risks

• Output-based policies distort the carbon price

- Domestic price wedges
- Complexity of policy instruments may undermine efficiency
- Prospect of trade retaliation in response to border tax adjustment

International Relations Risks

• WTO risks

- Legality of border tax adjustment, output subsidies
- Implications for ongoing trade talks

• Climate negotiations risks

- Create a rift with developing countries (China?)
- Alternatively, create incentive for developing countries to implement domestic C pricing (China?)

Framework for Evaluating Competitiveness Policies

Social Welfare Framework

• Maximize net social benefits

• Evaluating the benefits of competitiveness policies

- Carbon price gap
- Efficacy of policy instrument
- Administratively feasible tax policy
- Beyond BCA: WTO impacts, distributional impacts

Political Economy Framework

- Political revealed preference
 - Consider constrained political revealed preference
- Recognizes that competitiveness is more a political than economic issue
- How economic analysis can inform this framework

Conclusions

- Balance competitiveness risks with risks from competitiveness policies
- Economic analysis important to illustrate the potential magnitude of these two types of risk
- Applying both frameworks could inform real-world policy deliberations

References

- Agan, John, Wesley Look, Joseph E. Aldy, Gilbert E. Metcalf. 2015. Evaluating Policy Design Options of a Carbon Border Tax Adjustment. Working paper.
- Aldy, Joseph E. and William A. Pizer. 2015. "The Competitiveness Impacts of Climate Change Mitigation Policies." Journal of the Association of Environmental and Resource Economists 2(4): 565-595.
- Aldy, Joseph E. and William A. Pizer. 2016. "Alternative Metrics for Comparing Domestic Climate Change Mitigation Efforts and the Emerging International Climate Policy Architecture." *Review of Environmental Economics and Policy*, forthcoming.
- Bohringer, Christoph, Edward J. Balistreri, and Thomas F. Rutherford. 2012. "The Role of Border Carbon Adjustment in Unilateral Climate Policy: Overview of an Energy Modeling Forum Study (EMF 29)." *Energy Economics* 34: S97-S110.
- Deschenes, Olivier. 2012. "Climate Policy and Labor Markets." In Fullerton, Don and Catherine Wolfram (eds.), *The Design and Implementation of U.S. Climate Policy*. University of Chicago Press, Chicago.
- Ederington, J., A. Levinson, J. Minier. 2005. "Footloose and Pollution-free." *Review of Economics and Statistics* 87(1): 92-99.
- Fischer, Carolyn and Alan K. Fox. 2012. Comparing policies to combat emissions leakage: border carbon adjustments versus rebates. *Journal of Environmental Economics and Management* 64(2): 199-216.
- Greenstone, Michael. 2002. The impacts of environmental regulations on industrial activity: Evidence from the 1970 and 1977 Clean Air Act Amendments and the Census of Manufactures. *Journal of Political Economy* 110(6): 1175-1219.
- Ho, Mun S., Richard Morgenstern, and Jhih-Shyang Shih. 2008. "Impact of Carbon Price Policies on U.S. Industry." RFF Discussion Paper 08-37. Resources for the Future, Washington, DC.
- Kahn, Matthew E., and Erin T. Mansur. 2013. Do local energy prices and regulation affect the geographic concentration of employment? *Journal of Public* Economics 101: 105-114.
- Levinson, Arik, and M. Scott Taylor. 2008. Unmasking the pollution haven effect. *International Economic Review* 49(1): 223-254.