

Optimal Siting of Shale Gas Pipeline Infrastructure: Tradeoffs between Costs and Habitat Impacts

Work-in-Progress

Kailin Kroetz, Jhih-Shyang Shi, Juha Siikamäki, and Jessica Chu

* Funded by the Bechtel Foundation, Sloan Foundation and RFF

Background

- Infrastructure development for shale gas extraction (well pads, roads, gas and water pipelines) can cause environmental impacts including:
 - Species loss through habitat loss and fragmentation
 - Water quality from sedimentation
- Impacts likely vary by habitat through which pipeline is run, so the siting of pipelines affects environmental outcomes

Background

- Infrastructure development for shale gas extraction (well pads, roads, gas and water pipelines) can cause environmental impacts including:
 - Species loss through habitat loss and fragmentation
 - Water quality from sedimentation
- Impacts likely vary by habitat through which pipeline is run, so the siting of pipelines affects environmental outcomes

Background Cont.

- Shale gas development is largely driven by bottom-up decision-making by shale gas developers
 - May not address broader community objectives
 - May require greater private investments than would be necessary under a coordinated approach to develop a similarly functioning infrastructure
- A more coordinate infrastructure development, taking into account both private costs and environmental impacts, could help reduce overall
 - Environmental effects
 - Economic costs

Purpose and objectives

Examine potential economic and environmental benefits from more coordinated approaches to shale gas development.

Develop a general conceptual model and apply it in a PA county to estimate:

- 1) Extent of potential economic gains (reduced costs) that could be realized through coordinated pipeline development
- 2) Degree to which a coordinated approach could mitigate negative environmental externalities
- 3) Cost of further addressing environmental objectives (e.g. habitat quality and fragmentation) in pipeline development

Methodology

- Spatial optimization models using infrastructure data from Pennsylvania
- Contrast current bottom-up decision-making to two alternative pipeline development approaches:
 - 1. Coordinated design among private developers
 - 2. Strategy that accounts for environmental externalities resulting from development, in addition to the private costs and benefits
- "Private optimality" is defined as minimizing the sum of private costs
- "Social optimality" minimizes the sum of private and external costs (in terms of environmental attributes associated with habitat)

Methodology Cont.

Tradeoff curve between cost and environmental degradation:

Pennsylvania Pipeline Development

- More than 35,000 miles of pipeline (including all pipelines, not just shale)
 - Distribution: 22K miles (23%)
 - Transmission: 13K miles (36%)
 - Gathering: 15K miles (41%)

Pipeline Density Highest over Marcellus Shale

Average Pipeline Density Varies by County

Density of Pipeline (m/acre), on average

Pennsylvania Landcover and Habitat

Pipeline Impacts on Habitat Vary by County

Habitat A	Affected	by Pip	elines:
Counties	with the	most	pipeline

	Forest & Wetlands	Agricultural	Developed
B. 4			•
Mercer	29%	43%	26%
Greene	63%	26%	9%
Crawford	36%	43%	18%
Bradford	39%	47%	13%
Armstrong	63%	24%	12%

Forest and Wetland Impacts by County

Habitat Impacts = Pipeline (meters) over forest and wetlands/Total county area (acres)

Bradford County

Susquehanna County

Spatial Optimization Model

- Use gathering pipeline and landcover data from Pennsylvania counties
- Create a grid with information on actual infrastructure development and habitat for each "grid cell":
 - Habitat type
 - Pipeline (yes/no)
- Solve for optimal gathering line configuration varying habitat impacts to create tradeoff curve

Grid for Analysis

Discussion and Next Steps

- Work-in-progress
- Methodological approach suits a variety of settings
- Results will quantify
 - Cost of addressing environmental goals in pipeline development
 - Potential cost savings from coordination among developers
- We are developing and running the model for one PA county
- Expansion to other counties and states possible in the future
- Other potential areas of future work include jointly evaluating the siting of wells and pipelines

Thank you

