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Outline of Talk

• Current status of CO2 capture technology

• Potential for advanced lower-cost systems

• What’s needed to achieve capture goals
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Many Ways to Capture CO2
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Amine-Based CO2 Capture
at a Natural Gas Processing Plant

BP Gas Processing Plant, In Salah, Algeria 
Source: IEAGHG, 2008



E.S. Rubin, Carnegie Mellon

Power Plant Option 1:
Post-Combustion CO2 Capture
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Post-Combustion Capture 
at the Boundary Dam Power Plant

Source: SaskPower, 2014

~120 MW

90% capture

~1 MtCO2/yr
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Post-Combustion Capture 
at the Petra Nova Power Plant

Source: NRG, 2017

240 MW

90% capture

1.4 MtCO2/yr
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Power Plant Option 2: 
Oxy-Combustion CO2 Capture
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Oxy-Combustion CO2 Capture 
from a Coal-Fired Boiler
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30 MWt Pilot Plant (~10 MWe) at 

Vattenfall Schwarze Pumpe Station 
(Germany)
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Power Plant Option 3:
Pre-Combustion CO2 Capture
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Pre-Combustion CO2 Capture 
at the Kemper IGCC Power Plant

Source: Southern Co., 2017

582 MW

65% capture

~3 MtCO2/yr



Coal Gasification to Produce SNG
(Beulah, North Dakota, USA)
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Industrial Process Applications 
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Current CCS Projects

Source: GCCSI, 2017
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CCS Cost Estimates for New Power 
Plants Using Current Technology

Incremental cost of 
CCS relative to same 
plant type w/o CCS 

(based on 90% capture                             
with geological storage)
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Increase in levelized 

electricity generation 

cost (2013$/MWh)

~ 30–70 ~ 35–75 ~ 25–50 ~ 20–50

• Capture accounts for most 

(~80%) of total CCS cost 
(Details in IJGGC paper, 2015)

• EOR credits can reduce            

CCS cost significantly 



Potential for advanced 

lower-cost capture systems
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R&D Programs Seek to Develop 
Lower-Cost Capture Systems
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Two Principal Goals of 
Advanced Capture Technology

• Improvements in performance

 Lower energy penalty 

 Higher capture efficiency

 Increased reliability

 Reduced life cycle impacts

• Reductions in cost 

 Capital cost

 Cost of electricity 

 Cost of CO2 avoided

 Cost of CO2 captured
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Most Goals Focus on Reducing Cost

Source: USDOE/NETL, 2012

;

Recent R&D goals of the U.S. Department of Energy

;

The specific form and magnitude of goals may change over time.
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Projected cost reductions from “bottom-up” 
analyses of advanced plant designs (1)
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What we do not learn 
from bottom-up cost studies 

• Likelihood of achieving performance and/or 
cost goals for technologies that are still at 
early stages of development

• Time or experience needed to achieve cost 
reductions of different magnitude



What it takes to achieve 

CCS cost reductions
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A Model of Technological Change
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“Learning Curves” reflect the notion that 
experience is critical to reducing costs

Data fitted to learning (experience) 

curves of the form:  Ci = a xi 
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Key Barriers to CCS Deployment

• Policy

• Policy

• Policy

Without a policy requirement or strong economic incentive

to reduce CO2 emissions significantly

there is no reason to deploy CCS widely
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Policy options that can foster 
CCS and technology innovation  

“Technology Policy” Options 
Regulatory 

Policy Options 

Direct Gov’t Funding of 

Knowledge Generation 

Direct or Indirect Support for 

Commercialization and Production 

Knowledge Diffusion and 

Learning 

Economy-wide, 
Sector-wide, or 
Technology- Specific 

Regs and Standards 

 R&D contracts with 
private firms (fully 
funded or cost- 

shared) 

 Intramural R&D in 

government 
laboratories 

 R&D contracts with 

consortia or 

collaborations 

 R&D tax credits 

 Patents 

 Production subsidies or tax credit 
for firms bringing new 

technologies to market 

 Tax credits, rebates, or payments 

for purchasers/users of new 
technologies 

 Gov’t procurement of new or 

advanced technologies 

 Demonstration projects 

 Loan guarantees 

 Monetary prizes  

 Education and training 

 Codification and diffusion 

of technical knowledge 
(e.g., via interpretation and 
validation of R&D results; 

screening; support for 
databases) 

 Technical standards 

 Technology/Industry 

extension program 

 Publicity, persuasion and 

consumer information  

 Emissions tax 

 Cap-and-trade 

program 

 Performance 

standards (for 
emission rates, 
efficiency, or other 

measures of 
performance) 

 Fuels tax 

 Portfolio standards  
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Future
Policy 

Drivers

• Sustained R&D is essential to 
achieve lower costs; but …

• Learning from experience 
with full-scale projects is 
especially critical

• Strong policy drivers that 
create markets for CCS are 
needed to spur innovations 
that significantly reduce the 
cost of capture

• WATCH THIS SPACE FOR 
UPDATES ON PROGRESS 

What is the Outlook for 
Lower-Cost CCS Technology?



E.S. Rubin, Carnegie Mellon

Thank You

rubin@cmu.edu


