"Answers" to Charge Questions

Ben Groom

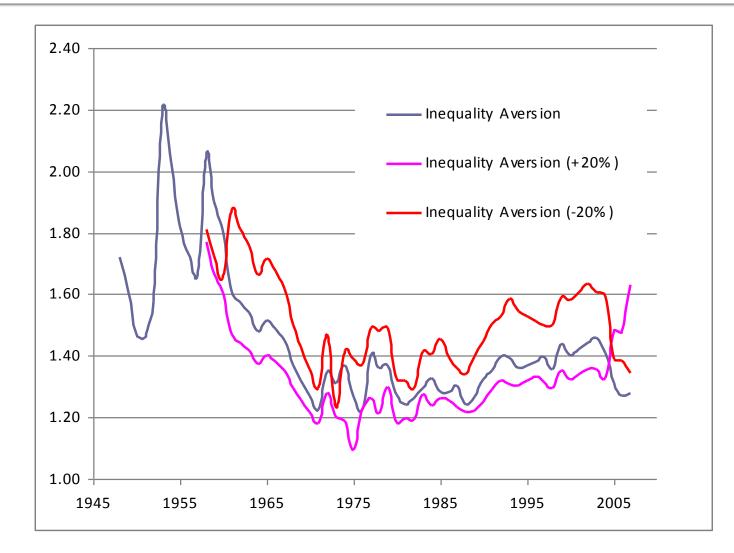
School of Oriental and African Studies, University of London

Question 1: Ramsey

- Descriptive: Problematic
 - Puzzles
 - Restrictive preferences: `siblings not triplets'
 - Externalities and other imperfections
 - Ethics of market rates
- Prescriptive
 - A particular SWF
 - Optimal?

General Issues

- Non-marginal impacts
- Aggregation
- Representative agent and population
- Compensation Criterion
- Descriptive vs prescriptive
 - Neither measures changes in welfare precisely
 - Show profiles and distributions of benefits and costs


Question 1b: parameters

- η:Social siblings
- ρ: Social
 - Stern approach seems fair
 - Agent relative ethics?
- Point estimates in time or space?
 - Aggregation

- Applied Social Ethics
 - Reflective
 - 'Mock referendum' (Kopp and Portney 1999, Sen 1967?)

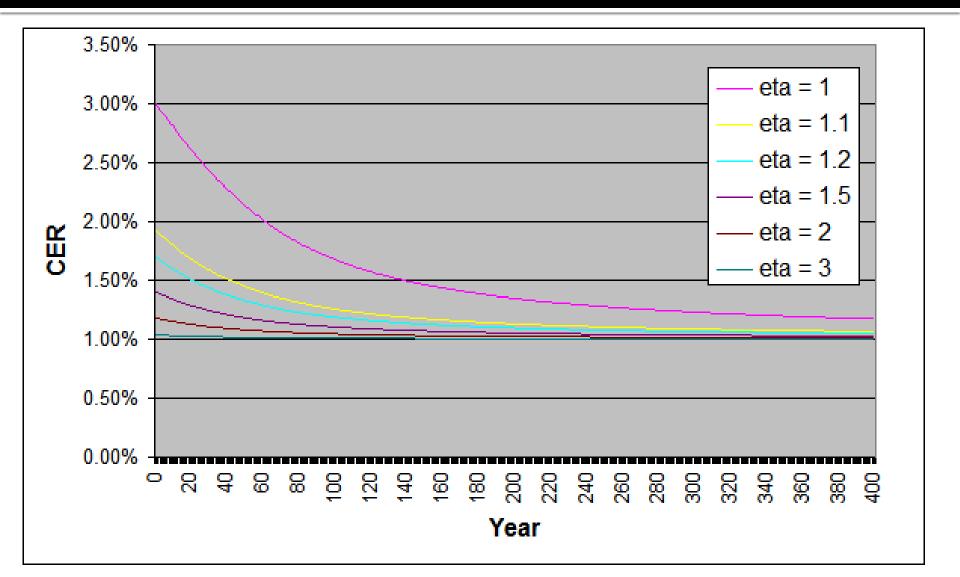
Socially revealed inequality aversion

Question 1c: Uncertainty

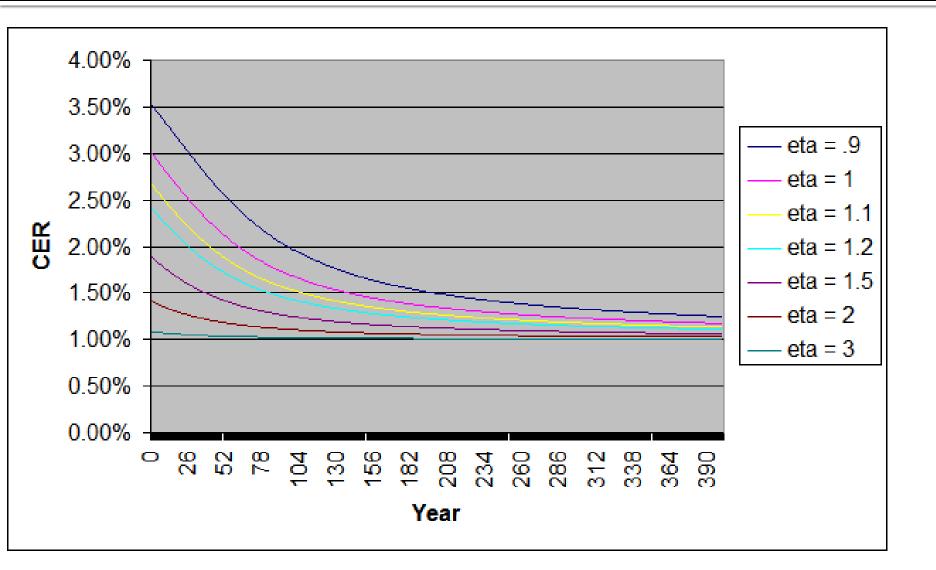
- In growth: Extend Ramsey, welfare analysis
- In parameters? Monte Carlo
- Uncertainty or heterogeneity?
 - Jouini, Marin and Napp (2010), Weitzman (2001)
 - Beliefs differ about ρ and g: $r_i = \rho_i + \eta g_i$

$$\Rightarrow R^{JMN}(H) = -\frac{1}{H} \ln \left[\sum_{i} \frac{\omega_{i} \rho_{i}}{\sum \omega_{i} \rho_{i}} \exp(-r_{i} H) \right]$$
$$\Rightarrow R^{Weitz}(H) = -\frac{1}{H} \ln \left[\frac{1}{n} \sum_{i} \exp(-r_{i} H) \right]$$

Question 2: DDRs


Gollier and Weitzman (2010):

- General preferences, production economy
- Perfectly elastic supply of the risk free asset
- ENPV valid with log preferences
- Otherwise risk adjustment/'term premium'


Freeman (2010)

- Time inseparable prefs, risk neutral, exchange economy
- C(o) fixed: perfectly inelastic
- ENPV valid more generally
- See Traeger (2011)

G&W (2010) r = 1% or 5%, ρ = .1%

G&W (2010) r = 1% or 5%, ρ = 1%

Question 2a: Empirics of Persistence

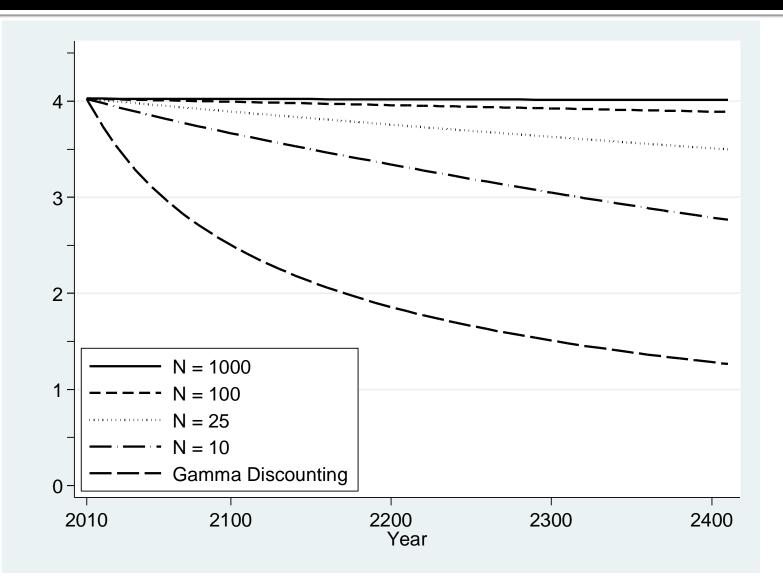
Historical Data

- Model selection: Econometric methods plus intuition
- Data: inflation, smoothing, negative values, etc.
- Expert Opinion
 - Persistence due to 'irreducible disagreement'
 - Normative: no true value, irreducible
 - Positive: forecast error about true value

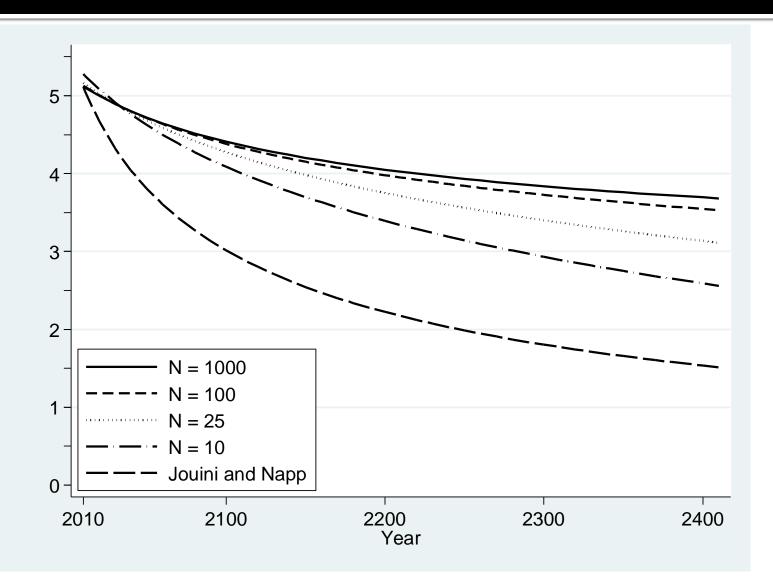
Groom, Koundouri, Panopolou and Pantelidis (2007), Newell and Pizer (2003)

Historical Data		
Model	SCC	
State Space	14.4	
Random Walk	10.4	
Mean Reverting	6.4	
Constant 4%	5.74	

A Descriptive Approach


- Unbiased $r_i = \overline{r}_H + \varepsilon_i, \quad E(\varepsilon_i) = 0 \quad \forall i$
- \sum is diagonal
- Where the CLT holds:

$$\phi(\bar{r}_H) \approx N(\bar{r}_H^n, \sigma^2 / n)$$


$$E\left[\exp\left(-rH\right)\right] = \int_0^\infty \exp\left(-r_iH\right)\phi\left(\overline{r}_H\right)dr_i$$

$$\Rightarrow R^{FG}(H) = \overline{r}_{H}^{n} - 0.5 \frac{\sigma^{2} H}{n}$$

Descriptive vs Prescriptive

Mixed Descriptive-Prescriptive

Social Cost of Carbon

	Exper	t opinion	
(Weitzman 2001)		(Jouni and Napp, 2010)	
Method	SCC	Method	SCC
Prescriptive	15.02	Prescriptive	10.01
Descriptive (N=10)	6.10	Mixed (N = 10)	4.65
Descriptive (N=1000)	5.38	Mixed (N =1000)	4.01
Constant 4%	5.34	Constant 5%	4.00

Effective independent experts

- Non-independent experts
 - Schools of thought' vs idiosyncratic

$$r_{i} = x \left(\sum_{k}^{K} w_{ik} r_{k} \right) + (1 - x) \varepsilon_{i}$$
$$N = \left[\frac{x^{2}}{K} \sigma^{*} + \frac{1}{n} \left[1 - \frac{\alpha x}{\sqrt{K}} \right]^{2} \right]^{-1}$$

x = 0.5

K = 10

 $n = 2160 \Longrightarrow N = 34$

x = 0.75 K = 10 $n = 2160 \Longrightarrow N = 18$