Prescriptive AND Theory + descriptive

3 comments on declining or lower

 discount ratesThomas Sterner

Country	Agency or sector	rate	Long-term rate	Theoretical approach
U K	HM Treasury	3.5\%	Declining > 30 yrs	SRTP
France	Commiss gén. du Plan	4\%	Declining > 30 yrs	SRTP
Italy	Central recommend	5\%		SRTP
Germany	Bundesmin. Finanzen	3\%		Federal refinancing
Spain	Transportation	6\%		SRTP
	Water	4\%		SRTP
Netherlands		4\%		
Sweden	SIKA* - transport	4\%		SRTP
	EPA	4\%		SRTP
Norway		3.5\%		Gov borrowing
USA	Office of Man \& Budget	7\%	Sens. check, >0\%	SOC
	EPA	2\%-3\%	Sens check, 0.5\%3\%	SRTP
Canada	Treasury Board	8\%		SOC
Australia	Office of Best Practice	7\%		SOC
N Zealand	Treasurv	8\%		SOC

Declining rates in France and UK

Many Issues; Pick the important: I will focus on 2

- Discounting depends on Growth. There will be no growth in some sectors. We will not have "more" nature nor more time for our children.
- Some of the attraction of growth is that we become richer than the neighbour. This is a private motive but does not make sense socially as the whole society gets richer.
- Disaggregation into Rich and Poor has effects

Two sectors with diff growth rates C grows; E does not

$$
W=\int_{0}^{\infty} e^{-\rho t} U(C, E) d t
$$

The appropriate discount rate r is then

$$
r=\rho+\frac{-\frac{d}{d t} U_{C}(C, E)}{U_{C}(C, E)}
$$

Relative price effect >>> Typically lowers discount in slow growth sector

DISCOUNTING and relative income

$U_{t}=u\left(c_{t}, R_{t}\right)=u\left(c_{t}, r\left(c_{t}, z_{t}\right)\right)=v\left(c_{t}, z_{t}\right)$
du/dc captures individual partial benefit of more $c . d v / d c$ captures total effect of more c

3 Welfare Functions

$\operatorname{Max}: w^{p} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, z_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, z_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{s} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, c_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, c_{\tau}\right) e^{-\delta \tau} d \tau$ $\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{R} \equiv \int_{0}^{T} u\left(c_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$

Intuition Arrow Dasgupta

- Rat Race: Work/consume more to beat Jones.
- But people will be positional in future too
- Beat Jones's now -->Lose in future
- Same optimal growth part IFF

$$
v_{2 t}\left(c_{t}\right)=\beta v_{1 t}\left(c_{t}\right)
$$

Defining degree of positionality

$$
U_{t}=u\left(c_{t}, R_{t}\right)=u\left(c_{t}, r\left(c_{t}, z_{t}\right)\right)=v\left(c_{t}, z_{t}\right)
$$

$$
\gamma_{t}=\frac{u_{2 t} r_{1 t}}{u_{1 t}+u_{2 t} r_{1 t}}
$$

We find same results and more..

$$
\rho^{s}(t)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}-\frac{v_{1 t}}{v_{10}+v_{20}}\left(\gamma_{t}-\gamma_{0}\right)\right)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}\left\{\frac{1-\gamma_{t}}{1-\gamma_{0}}\right\}\right.
$$

We find same results and more..

$$
\rho^{s}(t)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}-\frac{v_{1 t}}{v_{10}+v_{20}}\left(\gamma_{t}-\gamma_{0}\right)\right)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}\left\{\frac{1-\gamma_{t}}{1-\gamma_{0}}\right\}\right.
$$

- Assume increasing positionality
- Then $\rho^{s}>\rho^{p}$

Assuming Constant Positionality

- Ramsey Discount rate > Optimal Rate
- $\rho_{\mathrm{R}}=\rho_{\mathrm{S}}+\mathrm{v}_{12} / \mathrm{v}_{1}(\mathrm{cg})$
- Generally $\rho_{R}>\rho_{\mathrm{S}}>\rho_{\mathrm{p}}$

THREE relevant Discount rates

1. The Privately optimal (assuming z unchanged)
2. The Socially optimal (assuming R unchanged)
3. Ramsey Rule which decision makers use

Comparing 3 discount rates

$$
\begin{aligned}
& \rho^{p}=-\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}}{v_{10}} \\
& \rho^{p}=-\frac{\partial\left(\partial w^{p} / \partial c\right) / \partial t}{\partial w^{p} / \partial c}=\delta-\frac{v_{11}}{v_{1}} c g-\frac{v_{12}}{v_{1}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g \\
& \rho^{s}=\delta-\frac{v_{11}+2 v_{12}+v_{22}}{v_{1}+v_{2}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g+\frac{d \gamma / d t}{1-\gamma_{t}} \\
& \rho^{R}=\delta-c v_{11} / v_{1} g=\delta+\sigma g
\end{aligned}
$$

Private < Social < Ramsey

$$
\begin{aligned}
& \rho^{p}=-\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}}{v_{10}} \\
& \rho^{p}=-\frac{\partial\left(\partial w^{p} / \partial c\right) / \partial t}{\partial w^{p} / \partial c}=\delta-\frac{v_{11}}{v_{1}} c g-\frac{v_{12}}{v_{1}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g \\
& \rho^{s}=\delta-\frac{v_{11}+2 v_{12}+v_{22}}{v_{1}+v_{2}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g+\frac{d \gamma / d t}{1-\gamma_{t}} \\
& \rho^{R}=\delta-c v_{11} / v_{1} g=\delta+\sigma g
\end{aligned}
$$

