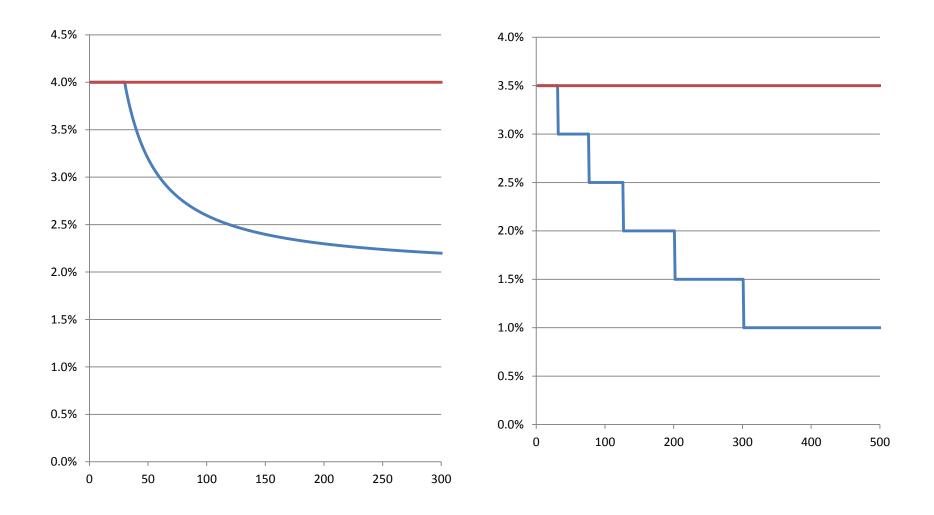
Prescriptive AND Theory + descriptive

3 comments on declining or lower discount rates Thomas Sterner

Country	Agency or sector	rate	Long-term rate	Theoretical approach
UK	HM Treasury	3.5%	Declining > 30 yrs	SRTP
France	Commiss gén. du Plan	4%	Declining > 30 yrs	SRTP
Italy	Central recommend	5%		SRTP
Germany	Bundesmin. Finanzen	3%		Federal refinancing
Spain	Transportation	6%		SRTP
	Water	4%		SRTP
Netherlands		4%		
Sweden	SIKA* - transport	4%		SRTP
	EPA	4%		SRTP
Norway		3.5%		Gov borrowing
USA	Office of Man & Budget	7%	Sens. check, >0%	SOC
		2%–3%	Sens check, 0.5%-	
	EPA		3%	SRTP
Canada	Treasury Board	8%		SOC
Australia	Office of Best Practice	7%		SOC
N Zealand	Treasury	8%		SOC

Declining rates in France and UK



Many Issues; Pick the important: I will focus on 2

- Discounting depends on Growth. There will be no growth in some sectors. We will not have "more" nature nor more time for our children.
- Some of the attraction of growth is that we become richer than the neighbour. This is a private motive but does not make sense socially as the whole society gets richer.
- Disaggregation into Rich and Poor has effects

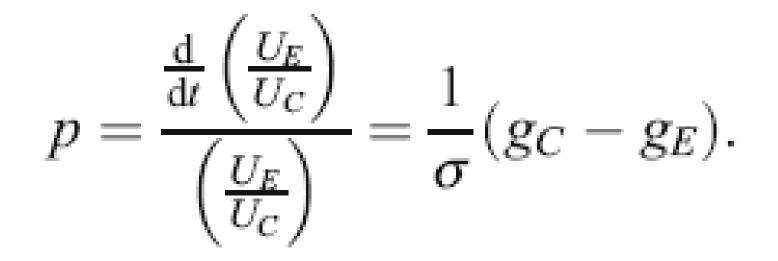
Two sectors with diff growth rates C grows; E does not

$$W = \int_{0}^{\infty} e^{-\rho t} U(C, E) dt$$

The appropriate discount rate r is then

$$r = \rho + \frac{-\frac{d}{dt}U_{c}(C, E)}{U_{c}(C, E)}$$

Relative price effect >>> Typically lowers discount in slow growth sector



DISCOUNTING and relative income

$$U_t = u(c_t, R_t) = u(c_t, r(c_t, z_t)) = v(c_t, z_t)$$

du/dc captures individual partial benefit of more c. dv/dc captures total effect of more c

3 Welfare Functions

$$\operatorname{Max}: w^{p} \equiv \int_{0}^{T} u(c_{\tau}, r(c_{\tau}, z_{\tau})) e^{-\delta\tau} d\tau = \int_{0}^{T} v(c_{\tau}, z_{\tau}) e^{-\delta\tau} d\tau$$

$$\{c_{0}, \dots, c_{T}\}$$

$$\operatorname{Max}: w^{s} \equiv \int_{0}^{T} u(c_{\tau}, r(c_{\tau}, c_{\tau})) e^{-\delta \tau} d\tau = \int_{0}^{T} v(c_{\tau}, c_{\tau}) e^{-\delta \tau} d\tau$$

$$\{c_{0}, \dots, c_{T}\}$$

Max:
$$w^{R} \equiv \int_{0}^{T} u(c_{\tau}) e^{-\delta \tau} d\tau$$

 $\{c_0, ..., c_T\}$

Intuition Arrow Dasgupta

- Rat Race: Work/consume more to beat Jones.
- But people will be positional in future too
- Beat Jones's now -->Lose in future
- Same optimal growth part IFF

$$v_{2t}(c_t) = \beta v_{1t}(c_t)$$

Defining degree of positionality

 $U_{t} = u(c_{t}, R_{t}) = u(c_{t}, r(c_{t}, z_{t})) = v(c_{t}, z_{t})$

 $\boldsymbol{u}_{2t} \boldsymbol{r}_{1t}$ Yt $u_{1t} + u_{2t}r_{1t}$

We find same results and more..

$$\rho^{s}(t) = \delta - \frac{1}{t} \ln \left(\frac{v_{1t}}{v_{10}} - \frac{v_{1t}}{v_{10} + v_{20}} (\gamma_{t} - \gamma_{0}) \right) = \delta - \frac{1}{t} \ln \left(\frac{v_{1t}}{v_{10}} \left\{ \frac{1 - \gamma_{t}}{1 - \gamma_{0}} \right\} \right)$$

We find same results and more..

$$\rho^{s}(t) = \delta - \frac{1}{t} \ln \left(\frac{v_{1t}}{v_{10}} - \frac{v_{1t}}{v_{10} + v_{20}} (\gamma_{t} - \gamma_{0}) \right) = \delta - \frac{1}{t} \ln \left(\frac{v_{1t}}{v_{10}} \left\{ \frac{1 - \gamma_{t}}{1 - \gamma_{0}} \right\} \right)$$

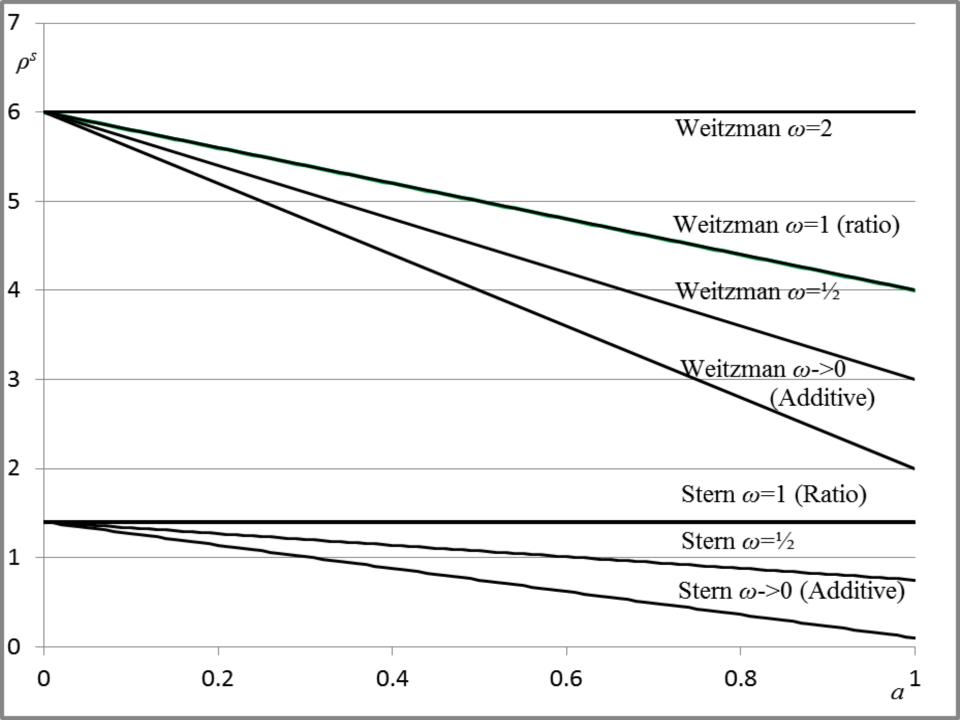
- Assume increasing positionality
- Then $\rho^{s} > \rho^{p}$

Assuming Constant Positionality

• Ramsey Discount rate > Optimal Rate

• $\rho_{\rm R} = \rho_{\rm S} + v_{12}/v_1$ (cg)

• Generally $\rho_R > \rho_S > \rho_p$



THREE relevant Discount rates

1. The Privately optimal (assuming z unchanged)

2. The Socially optimal (assuming R unchanged)

3. Ramsey Rule which decision makers use

Comparing 3 discount rates

$$\rho^{p} = -\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}} = \delta - \frac{1}{t} \ln \frac{v_{1t}}{v_{10}}$$

$$\rho^{p} = -\frac{\partial (\partial w^{p} / \partial c) / \partial t}{\partial w^{p} / \partial c} = \delta - \frac{v_{11}}{v_{1}} cg - \frac{v_{12}}{v_{1}} cg = \delta + \sigma g - \frac{v_{12}}{v_{1}} cg$$

$$\rho^{s} = \delta - \frac{v_{11} + 2v_{12} + v_{22}}{v_{1} + v_{2}} cg = \delta + \sigma g - \frac{v_{12}}{v_{1}} cg + \frac{d\gamma / dt}{1 - \gamma_{t}}$$

 $\rho^{R} = \delta - cv_{11} / v_{1}g = \delta + \sigma g$

Private < Social < Ramsey

$$\rho^{p} = -\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}} = \delta - \frac{1}{t} \ln \frac{v_{1t}}{v_{10}}$$

$$\rho^{p} = -\frac{\partial (\partial w^{p} / \partial c) / \partial t}{\partial w^{p} / \partial c} = \delta - \frac{v_{11}}{v_{1}} cg - \frac{v_{12}}{v_{1}} cg = \delta + \sigma g - \frac{v_{12}}{v_{1}} cg$$

$$\rho^{s} = \delta - \frac{v_{11} + 2v_{12} + v_{22}}{v_{1} + v_{2}} cg = \delta + \sigma g - \frac{v_{12}}{v_{1}} cg + \frac{d\gamma / dt}{1 - \gamma_{t}}$$

 $\rho^{R} = \delta - cv_{11} / v_{1}g = \delta + \sigma g$