
1616 P St. NW 
Washington, DC 20036 
202-328-5000   www.rff.org   

 

January 2012       RFF DP 12-01  

 

 

Conservation Return 
on Investment 
Analysis  

A Review of Results, Methods, and  
New Directions 

 

James Boyd ,  Rebecca  Epanchin - Nie l l ,  and   

Juha  S i ik amäki

D
IS

C
U

S
S

IO
N

 P
A

P
E

R
 



 

© 2012 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without 

permission of the authors. 

Discussion papers are research materials circulated by their authors for purposes of information and discussion. 

They have not necessarily undergone formal peer review. 

Conservation Return on Investment Analysis:  

A Review of Results, Methods, and New Directions  

James Boyd, Rebecca Epanchin-Niell, and Juha Siikamäki 

Abstract 

Conservation investments are increasingly evaluated on the basis of their return on investment 

(ROI). Conservation ROI analysis quantitatively measures the costs, benefits, and risks of investments so 

conservancies can rank or prioritize them. This paper surveys the existing conservation ROI and related 

literatures. We organize our synthesis around the way studies treat recurring, core elements of ROI, as a 

guide for practitioners and consumers of future ROI analyses. ROI analyses involve quantification of a 

consistent set of elements, including the definition and measurement of the conservation objective as well 

as identification of the relevant baselines, the type of conservation investments evaluated, and investment 

costs. We document the state of the art, note some open questions, and provide suggestions for future 

improvements in data and methods. We also describe ways ROI analysis can be extended to a broader 

suite of conservation outcomes than biodiversity conservation, which is the typical focus. 
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Conservation Return on Investment Analysis:  

A Review of Results, Methods, and New Directions  

James Boyd, Rebecca Epanchin-Niell, and Juha Siikamäki 

1. Introduction 

Conservation organizations face important choices as they protect, restore, and manage 

natural resources. What are the most important conservation targets? How can we get the most 

conservation for a given budget? One way these questions can be addressed is by return on 

investment (ROI) analysis. Conservation ROI analysis quantitatively measures the costs, 

benefits, and risks of investments so conservancies can rank or prioritize them. It also can be 

used after an investment is made to evaluate its success or failure. 

ROI analysis is as applicable and relevant to conservation investments as it is to 

corporate, other private, or public investments, where it is applied routinely (Brealey et al. 2006). 

While more difficult to express in dollars and cents, conservation outcomes are socially valuable 

and thus akin to ―returns‖ relevant to setting strategy and evaluating success. 

This paper surveys the existing conservation ROI and related literatures. Our goals are to 

summarize the state of the art in terms of results, data, and methods and then identify strategies 

to improve the scope, accuracy, and applicability of conservation ROI analysis. The paper also 

describes the ways in which ROI analysis can be extended to a broader suite of conservation 

outcomes than biodiversity conservation, which is the typical focus. In particular, we discuss 

ROI‘s application to the provision of ecosystem goods and services. 

Conservation ROI analysis requires measurement or prediction of biophysical changes 

arising from conservation and (at a minimum) economic assessment of conservation‘s costs. 

Economists and conservation scientists are collaborating on analyses that suggest ROI analysis is 

both achievable and important to conservation strategy. As will be seen in this review, the simple 

inclusion of costs as a factor in conservation planning can yield enormous conservation benefits. 

Studies demonstrate that if adopted, ROI-based planning would in many cases significantly alter 

                                                 
 James W. Boyd is a senior fellow, Rebecca Epanchin-Niell is a fellow, and Juha Siikamäki is a fellow at 

Resources for the Future, Washington, DC. The authors wish to thank the Gordon and Betty Moore Foundation for 
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the location and targets of conservation, lead to more protection and higher-quality conservation 

outcomes, and save significant amounts of money (Balmford et al. 2000; Moore et al. 2004; 

Murdoch et al. 2007, 2010).
1
 Further development of data and models to capture ecological 

threats, ecological benefits beyond biodiversity, and social outcomes arising from conservation 

could have correspondingly important implications.  

2. What Is Conservation ROI Analysis? 

ROI methods are derived from, and consistent with, economic principles that emphasize 

the quantification of costs and benefits, discounting of future costs and benefits, and adjustments 

for risk. Among the wider range of approaches to conservation assessment (Salafsky and 

Margoulis 1998), ROI can be thought of as the most economic form of evaluation. But despite its 

economic features, ROI analysis does not necessarily measure monetary or anthropocentric 

outcomes. It can instead focus on the way to achieve a purely biophysical outcome at least cost. 

In fact, this is the most common form of conservation ROI analysis conducted to date.  

All ROI analyses compare an investment‘s costs to some measure of benefits. Costs may 

be one-time and upfront or recurring over time. Benefits are depicted as changes in desired 

outcomes attributable to the investment. In a business setting, new revenues attributable to the 

investment are the conventional benefit measure. In conservation, benefit measures include 

biodiversity improvements, land area conserved, or other desirable biophysical and social 

outcomes.  

In all cases, an investment‘s benefits are judged in relation to the baseline conditions 

prevailing if the investment is not made. Accordingly, ROI analysis requires not only prediction 

or measurement of the investment‘s outcomes but also measurement or prediction of baseline 

conditions.  

While an oversimplification, conservation investments in restoration, enhancement, or 

resource management (e.g., grazing restrictions) tend to produce improvements in current 

conditions. In contrast, land conservation and protection tend to preserve current conditions but 

avoid or slow future ecological losses. Both can generate positive conservation investment 

                                                 
1 The ROI benefits demonstrated by these studies arise from the inclusion of costs as a project-selection factor. 

Cheaper projects do not necessarily select the highest-value conservation targets in ecological terms, but they allow 

acquisition of a larger set of protections that yield more conservation benefit in aggregate. 
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returns. Note that evidence of biophysical improvements (e.g., improvements in biodiversity) is 

not necessary to demonstrate a positive conservation ROI. When baseline conditions are 

otherwise in decline, maintenance of existing conditions produces a conservation benefit. As will 

be clear from this survey, measurement and prediction of baseline ecological conditions is a 

central challenge facing conservation ROI analysis. 

In the conservation literature, ROI most commonly refers to ex ante analysis of 

investment portfolios designed to achieve a single objective—usually a biodiversity outcome. In 

general, this form of ROI analysis combines data on biodiversity richness and threats with data 

on the costs of land acquisition or protection. Single-objective ROI analysis is largely 

synonymous with cost-effectiveness analysis, where the goal is to achieve a given outcome at 

least cost or spend a given amount of money to achieve the greatest possible benefit. The goal of 

such analyses is the prioritization of lands for conservation across regions or countries. While 

this literature is our focus, we emphasize that multiobjective and social-outcome ROI analysis is 

of increasing interest within the conservation community. We turn to this issue in Section 5.  

We proceed by briefly reviewing conservation planning approaches based on purely 

biophysical criteria. We then present a detailed review of the growing ROI literature that 

includes conservation costs as a decision factor. Next we discuss multiobjective ROI analysis, 

including analysis of ecosystem service-based returns to conservation. This literature is much 

more limited. However, we review developments in a set of related literatures on ecosystem 

services and environmental valuation pertinent to the future development of multiobjective ROI 

tools. The paper concludes with thoughts on the practical implementation of ROI analysis by 

conservation planners. 

3. A Brief History of Conservation Planning and Objectives 

Systematic conservation planning has a long history, including early efforts in Europe 

and the United States to identify public lands for protection and acquisition (Fox 1986) and 

efforts to achieve soil conservation in the early 20
th

 century (Harlow 1994). The application of 

ecological science to conservation planning gained momentum with the creation of 

nongovernmental conservancies and environmental advocates, such as the Nature Conservancy 

(TNC) and Defenders of Wildlife, in the latter half of century. In the late 1980s the U.S. Fish and 

Wildlife Service launched a national resource survey to identify gaps in the network of 

conserved lands. These kinds of biodiversity assessments continue today within the United States 

and around the world, including surveys by the U.S. Geological Survey and nonprofit 

organizations like NatureServe.  
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An outgrowth of these surveys are conservation plans designed to address biodiversity 

―gaps‖ by identifying specific lands for conservation action and acquisition. Examples include 

U.S. State Wildlife Action Plans, TNC‗s ecoregional plans (Groves et al. 2000), Conservation 

International‘s biodiversity hotspot designations (Myers et al. 2000), and dozens of other 

governmental, nongovernmental, and academic prescriptions (e.g., Cowling et al. 2003).  

Some three decades ago, the development of the first reserve site selection (RSS) 

algorithms commenced a major shift toward the use of quantitative methods in conservation 

priority setting (Williams et al. 2004). Previously, potential target areas typically were assessed 

and ranked based on expert assessments, often using some form of scoring approach (Margules 

and Usher 1981; Smith and Theberge 1986; Pressey 2002). In an important extension to the 

scoring approach, Jamie Kirkpatrick (1983) developed an iterative procedure to repeatedly 

reassess candidate sites based on how their species compare to those already preserved by the 

existing reserves. After identifying the first priority area (with the highest initial score), each 

candidate site is reassessed. Its score is reduced if the site includes species already preserved, 

while sites with species not yet preserved have their scores upgraded. The process is then 

repeated in the selection of further priority sites. Kirkpatrick‘s assessment of conservation 

priorities for rare plants in Tasmania is considered the first RSS algorithm (Pressey 2002).  

Independent of Kirkpatrick (1983), other researchers were proposing similar ideas in the 

early to mid-eighties. Ackery and Vane-Wright (1984) evaluated options for critical butterfly 

conservation areas. For example, they proposed using an RSS-like algorithm to identify a set of 

areas to represent all known species (Vane-Wright et al. 1991). Margules and Nicholls (1987) 

used probabilistic estimates of species occurrence to examine the preservation of specific plant 

communities in South Australia, developing an algorithm intended to identify a set of 

conservation areas to achieve a minimum probability of representing different communities. 

Pressey (2002) vividly accounts these early developments and discusses several other studies that 

helped motivate RSS approaches as a central tool in conservation prioritization.  

As conservation planning has grown in sophistication, it has moved toward rigorous 

mathematical optimization (Possingham et al. 2000). Another central development involves 

expanding the relatively simple characterizations of biodiversity to more realistic considerations 

of ecological, population, and evolutionary processes and the spatial configurations of protected 

lands on which biodiversity depends (Groves et al. 2002). Increasingly, assessments of climate 

change, invasive species, and other threats to biodiversity are included in conservation planning 

(McLeod et al. 2009). The number of academic publications using RSS methods has vastly 

increased in the last decade or so, and these methods are somewhat routinely used to guide 
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practical conservation decisions. Several customized software are available to provide 

conservation decision support, including MARXAN (Watts et al. 2009).  

Although the boundaries and realism of RSS methods have considerably expanded in the 

last decade or so, incorporating increasingly realistic representations of the temporal and spatial 

dynamics and interdependencies of ecosystem and landscape processes remains one of the key 

challenges (Williams et al. 2004).  

4. Conservation Planning with Costs as a Factor 

While conservation is inevitably constrained by economic realities, costs as a planning 

factor mostly were absent from systematic conservation planning until the late 1990s. But since 

then, inclusion of costs as a planning factor has become a central concern in conservation 

planning (Ando et al. 1998; Polasky et al. 2001; Naidoo et al. 2006). Many studies have 

demonstrated that planning based on ecological benefits produced per dollar spent—the essence 

of ROI analysis—can help the same conservation budget achieve considerably greater 

conservation benefits (Naidoo et al. 2006). 

Conservation costs were first accounted for in single-species conservation problems, such 

as work by Haight (1995), Montgomery et al. (1994), Marshall et al. (1998), and Hof and Bevers 

(1998). Ando et al. (1998) showed that significantly greater biodiversity could be conserved and 

biodiversity targets could be achieved at much lower costs by explicitly accounting for costs in 

the planning process. They found that biodiversity targets could be met at 25–50 percent of the 

costs of plans that only considered spatial heterogeneity of biodiversity. The study by Ando et 

al., in particular, documented the importance of spatial heterogeneity in conservation costs as a 

driver of ROI analysis‘ benefits as a planning tool. Significant cost variation across conservation 

portfolios has been demonstrated by numerous subsequent studies (Balmford et al. 2003; Ferraro 

2003; Polasky et al. 2001).  

Examples of the conservation benefits of cost-based planning include a 66 percent gain in 

vertebrates species coverage in African conservation when costs were included (Moore et al. 

2004). At the global level, Balmford et al. (2000) found that twice as many mammal species 

could be conserved for the same budget when costs were considered. Examining vertebrate 

conservation in Oregon, Polasky et al. (2001) found that a budget-constrained solution cost less 

than 10 percent of a solution that ignored costs. Accounting for potential reductions in lobster 

catch during marine reserve planning for southern Australia reduced costs by more than 30 

percent (Stewart and Possingham 2005). An analysis of riparian buffer acquisition found that 
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only 16 percent of the benefits obtained by considering costs and benefits together could be 

gained by considering only biophysical characteristics (Ferraro 2003). Naidoo et al. (2006) 

summarizes this earlier ROI literature.  

Since 2006 the conservation ROI literature has grown and provided further evidence that 

costs are important as a conservation-planning factor. For example, Murdoch et al. (2007), 

Naidoo and Iwamura (2007), Low et al. (2010), and Provencher et al. (2010) documented ROI 

analysis‘ ability to dramatically change site prioritizations and yield better and cheaper 

conservation outcomes. Naidoo and Iwamura (2007) found that plans selecting global priority 

bioregions based on cost-effectiveness rather than benefits alone protected endemic vertebrate 

species at much lower cost. Specifically, conserving one-quarter or two-thirds of all endemic 

species could be achieved at less than 10 percent and 25 percent of the costs, respectively. When 

comparing conservation ROI targeting to two existing priority schemes, they also found that the 

same number of endemic vertebrates could be represented at 27 percent of the opportunity costs 

and the same number of threatened endemic species could be conserved for just 12 percent of 

costs. 

Joseph et al. (2009) showed that accounting for both costs and likelihood of project 

success substantially increased the number of species managed. Carwardine et al. (2008a) found 

that failing to consider socioeconomic factors resulted in reserve design that targeted twice as 

much cropped land and incurred 1.5 times the opportunity cost. In a parallel study, Carwardine et 

al. (2008b) also found that using the cost surrogate that most closely reflects the planned 

conservation action can cut the cost of achieving biodiversity goals by half; using area as a 

surrogate for cost was 1.4–2.3 times more expensive. Murdoch et al. (2010) found that targeting 

only benefits conserved twice the benefit as ROI but at 50 times the cost, whereas under a budget 

constraint ROI conserved three times the benefit. Similarly, Underwood et al. (2008) found that 

ROI protected between 32 percent and 69 percent more species compared to the other priority-

setting approaches. In a retrospective analysis of conservation in California, Underwood et al. 

(2009) estimated that direct consideration of costs during prioritization would have protected 

four times more distinct species and three times more threatened and endangered species than the 

observed allocation. 

Several studies have found that cost variability across space or conservation actions may 

be at least as important, if not more important, than variability in environmental benefits 

(Polasky et al. 2001; Ferraro 2003; Bode et al. 2008). For example, in the previously mentioned 

analysis of a riparian buffer acquisition program, 92 percent of the benefits obtained by 

considering costs and benefits together could be gained by just considering costs; in contrast, 
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recall that only 16 percent could be achieved by considering biophysical characteristics alone 

(Ferraro 2003). Similarly, Naidoo and Iwamura (2007) showed that cost-only targeting 

conserved biodiversity at lower costs than benefit-only targeting. When comparing different 

taxonomic groups as potential biodiversity surrogates across 34 global biodiversity hotspots, 

Bode et al. (2008) showed that conservation priorities were much more sensitive to variation in 

cost and the degree of threat facing a region than they were to changes in how biodiversity was 

measured.  

Incorporation of costs is most important when costs and benefits are positively correlated, 

costs are more variable than biological measures, and budgets are low (Babcock et al. 1997; 

Ferraro 2003). The intuition behind this dependency is that cost-efficient targeting depends on 

the ratio of costs to benefits. If costs and benefits are negatively correlated, this ratio is large 

when benefits are large. However, when costs and benefits are positively correlated this ratio can 

be small even when benefits are large, so costs can change the prioritization of sites (Naidoo et 

al. 2006). Similarly, when costs are more variable than benefits, the variation in the ratios is 

more driven by the costs (Naidoo et al. 2006). Low budgets make cost-efficiency more important 

for meeting biological objectives. Bode et al. (2008) and Perhans et al. (2008) also found cost 

considerations to be particularly important in the absence of complementarity or target-based 

objectives (Carwardine 2010). 

The small amount of existing empirical evidence points to a positive correlation between 

costs and conservation benefits (Naidoo et al. 2006). In addition, costs often vary by two to four 

orders of magnitude, while species richness or endemism typically vary by less than one (Naidoo 

et al 2006). For example, costs in the Ouachita Mountains on the North Atlantic Plain vary by 

more than an order of magnitude, while vertebrate species richness varies by less than 50 percent 

and plants by threefold (Murdoch et al. 2007). These explain the benefits of ROI analysis and 

underscore the importance of incorporating costs into conservation planning. 

In contrast to previous reviews of the ROI literature (Hughey et al. 2003; Naidoo et al 

2006; Murdoch et al 2007), we organize our synthesis around the way studies treat recurring, 

core elements of ROI, as a guide for practitioners and consumers of future ROI analyses. Our 

goal is to document the state of the art, note open questions, and provide suggestions for future 

improvements in data and methods. As described in Section 2, ROI analyses involve 

quantification of a consistent set of elements including the definition and measurement of the 

conservation objective as well as identification of the relevant baseline for comparison, the type 

of conservation investments evaluated, and measurement of investment costs. We discuss the 

literature‘s treatment of these distinct ROI components next. 
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4.1 The Biophysical Conservation Objective 

ROI-based conservation portfolio analysis maximizes a measure of conservation benefits 

for a given level of expenditures or minimizes the costs of achieving a predetermined 

conservation goal. The most commonly evaluated conservation benefit is some measure of 

biodiversity protection within a specified region. However, there is significant diversity in how 

this biophysical objective is evaluated and the scale at which actions are targeted. 

Studies have been applied to diverse geographical scales, including global (e.g., Naidoo 

and Iwamura 2007; Carwardine et al. 2008a), transnational (e.g., Moore et al. 2004; Kark et al. 

2009), ecoregional (Mandelik et al. 2010), biodiversity hotspots (Bode et al. 2008), specific 

countries or states (Ando et al. 1998; Carwardine et al. 2008b), and specific subregions of a 

country or state (Polasky et al. 2001; Arthur et al. 2004; Murdoch et al. 2010). The scale of 

individual conservation actions also has been diverse, with a focus on single land parcels 

(Ferraro 2003; Newburn et al. 2006), entire counties (Ando et al. 1998), or arbitrary land units of 

specific sizes (e.g., Carwardine et al. 2008b; Grantham et al. 2008). 

Biodiversity measures can include genetic or taxonomic, species, or even ecosystem 

diversity. The majority of conservation ROI studies focus on protecting the greatest number of 

species. While measurement of total species richness is not feasible, most studies use single or 

multiple groups of species as surrogates. Specifically, conservation objectives include protection 

of the greatest number of vertebrates (Polasky et al. 2001; Arthur et al. 2004); vertebrate and 

plant species (Murdoch et al. 2007; Wilson et al. 2007; Underwood et al. 2008; White and Sadler 

2011); threatened vertebrate and plant species (Murdoch et al. 2007); threatened vertebrate 

species and threatened endemic plants (Underwood et al. 2009); endangered plant and animal 

species (Ando et al. 1998); mammals (Carwardine et al. 2008a; Wilson et al. 2011); mammal and 

bird species (Williams et al. 2003); species threatened specifically by invasion (Evans et al. 

2011); a specific taxonomic group, such as proteas (Grantham et al. 2008); endemic mammals, 

birds, reptiles, freshwater fishes, tiger beetles, terrestrial plants (Bode et al. 2008); reptiles, 

amphibians, and freshwater fish (Kark et al. 2009); vascular plants, beetles, moths, spiders, and 

small mammals (Mandelik et al. 2010); and vegetation types, environmental domains, and 

distributions of floral and faunal species of national significance (Carwardine et al. 2008b). 

Some focus on measures of rarity, diversity, or taxonomic distinctiveness (Grantham et 

al. 2008; Joseph et al. 2009; Mandelik et al. 2010). Still others focus on less measurable aspects 

of biodiversity, such as threat reduction to coral reefs (Klein et al. 2010) or protection of 
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―conservation features‖ that include specific biogeographic zones, habitat types, and species 

occurrences (Stewart and Possingham 2005).  

Even with specific biophysical objectives in mind, there are many ways to link on-the-

ground management to the measure of the benefit, and each approach makes different 

assumptions. Some studies assume that a species is protected if it occurs in at least one protected 

site (Ando et al. 1998; Polasky et al. 2001). If a species‘ presence at sites is uncertain, the 

objective alternatively can be to maximize the probability of occurrence (Arthur et al. 2004). A 

focus on species coverage, however, ignores issues of persistence that depend on ecological and 

evolutionary processes (Balmford et al. 2000) because species occurrence at a site does not 

guarantee persistence. In a study that takes a similar approach to species coverage, Murdoch et 

al. (2007) considered species-specific threats and assumed that a species will persist if its threat 

is abated. Newbold and Siikamäki (2008) used a spatially explicitly model of an endangered 

species‘ long-term persistence so that persistence can be maximized by the conservation program 

configuration.  

In contrast, many studies have used habitat protection as a surrogate for species 

protection. Some set fixed targets (e.g., 10 or 15 percent) for the percentage of area, vegetation 

type, or species‘ historic range to protect (Stewart and Possingham 2005; Carwardine et al. 

2008a; Carwardine et al. 2008b). Naidoo and Iwamura (2007) assumed that conserving 30 

percent of an ecoregion conserves all its endemic species, and Balmford et al. (2000) assumed 

that a country‘s species are protected if 15 percent of its land area is protected. Wilson et al. 

(2011) set species-specific targets for different habitat types based on knowledge of each species, 

and Kark et al. (2009) set targets as percentages and total areas of species‘ range sizes, dependent 

in part on each species‘ current range and threat level. 

Fixed targets imply threshold or linear benefits (Arponen et al. 2005; Wilson et al 2011). 

Goldstein et al. (2008) assumed constant returns to additional numbers of individual birds and 

plants protected by restoration, and Klein et al. (2010) focused on threat minimization, assuming 

that ―threat‖ declines linearly with habitat protected. 

Although a habitat area threshold may be appropriate for the preservation of particular 

species, the returns to habitat preservation generally diminish when the goal is to conserve 

multiple species (Davis et al. 2006; Wilson et al. 2006, 2009). For this reason, studies 

increasingly employ species-area curves (Rosenzweig 1995) to link land protection to species 

protection (e.g., Murdoch et al. 2007; Bode et al. 2008; Underwood et al. 2008; Underwood et al. 

2009; Murdoch et al. 2010; White and Sadler 2011). The species area-curve links habitat area to 
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the total number of species conserved, reflecting that additional species are protected at a 

diminishing rate with increasing total area protected. This same type of diminishing returns to 

protection has been used to link other types of conservation actions to species protection, such as 

the relationship between area of invasive species control and the number of species protected 

(e.g., Wilson et al. 2007; Evans et al. 2011).  

Alternatively, benefits can account for species-specific conservation requirements. For 

example, Polasky et al (2008) considered species–habitat associations, species range, species–

area requirements, and dispersal ability to predict the number of breeding pairs supported by 

different landscape configurations. They then use the number of breeding pairs to estimate the 

likelihood that each species is sustained on the landscape. Similarly, some studies incorporate 

reserve compactness or other such details into the benefit function by including connectivity 

bonuses (Murdoch et al. 2010). 

A significant constraint to conservation ROI is identification of data on biophysical 

features and outcomes. Existing conservation ROI studies rely on data from a range of sources. 

Most employ previously compiled datasets. The publication of comprehensive, fine-resolution 

spatial databases of the world‘s mammals (Ceballos et al. 2005), birds (Orme et al. 2005), and 

amphibians (Stuart et al. 2004) has improved knowledge about patterns of species richness and 

endemism at the global scale (Lamoreux et al. 2006; Naidoo and Iwamura 2007). Ando et al. 

(1998) used county-level U.S. data on the estimated distribution of endangered species compiled 

by the U.S. Environmental Protection Agency. Balmford et al. (2000) employed mammal lists 

aggregated by country (Mace and Balmford 2000). Arthur et al. (2004) and Polasky et al. (2001) 

used data on the occurrence of terrestrial vertebrate species in Oregon, obtained from Master et 

al. (1995). Bode et al. (2008) used previously compiled data on the numbers of endemic 

mammals, birds, reptiles, freshwater fishes, tiger beetles, and terrestrial plants present in each 

terrestrial biodiversity hotspot (Mittermeier et al. 2004). Underwood et al. (2008) and Murdoch 

(2007) identified total numbers of plant and vertebrate species per ecoregion from existing 

databases (Kier et al. 2005; WWF 2006). Murdoch et al. (2007) were interested in the number of 

species at risk to specific threats, so they multiplied the total number of species in each region by 

the proportion of species on the IUCN red list for which each threat was listed as a major source 

of extinction risk. The Southeast Asia Mammal Database has the extent of occurrence and area 

of occupancy for more than 1,000 mammal species (Catullo et al. 2008); Wilson et al. (2011) 

used these data to classify habitat by its value to forest-dwelling mammals. Several studies (e.g., 

Carwardine et al. 2008a) have employed the global database of mammal distributions (Ceballos 

et al. 2006). Kark et al. (2009) used distribution range data compiled by the IUCN in the 
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Mediterranean Basin for amphibians, reptiles endemic to the Mediterranean countries, and 

endemic freshwater fish species. Stewart and Possingham (2005) used data on marine-related 

conservation features compiled from South Australian state government agencies. Carwardine et 

al. (2008b) employed a number of existing data layers to pinpoint vegetation types and 

environmental domains in Australia. They identified bird species‘ ranges by extrapolating from 

known occurrences. Evans et al. (2011) identified the spatial distribution of threatened species in 

Australia from a national database. 

Some studies complement such data with field surveys to link conservation actions to 

biodiversity. For example, Mandelik et al. (2010) used field surveys to identify distributions of 

annual and perennial vascular plants, ground-dwelling beetles, moths, spiders, and small 

mammals. Smith et al. (2008) used a combination of remote sensing, ground truthing, and 

modeling to map land cover. Goldstein et al. (2008) employed field studies to determine the 

relationship between conservation targets (e.g., specific taxonomic groups or ecosystem services) 

and a land-use gradient for restoration.  

Studies also have employed expert opinion, including to determine the probability of 

occurrence of each species at a site (Arthur et al. 2004), estimate the value of conservation 

easements for improving water quality at sites (Ferraro 2003), and parameterize how much a 

species‘ probability of survival would increase with a particular conservation project (Joseph et 

al. 2009). 

Most studies that employ species-area relationships use a conventionally accepted 

functional form (Rosenzweig 1995), a shape parameter of 0.2, and total species richness specific 

to their focal region. White and Sadler (2011), however, used a functional form specifically 

developed for their region using field surveys. While parameterization of species-area 

relationships only requires information on the total number of species in a region, species lists 

are necessary for planners to account for complementarity of species across regions. Underwood 

et al. (2008) showed that doing so globally allowed three times more species to be protected than 

if complementarity were ignored. 

As noted above, most studies focus on aggregate species measures and ignore species-

specific habitat needs, such as area and quality. Two reasons are likely. First, species-specific 

needs are difficult to quantify and identify, requiring expert opinion. Second, greater complexity 

in the relationship between conservation actions and biophysical outcomes (such as including 

measures of compactness as well as total area) makes it more difficult to solve for the optimal 

conservation portfolio. 



Resources for the Future Boyd, Epanchin-Niell, and Siikamäki 

12 

While biodiversity data are becoming increasingly available, acquiring and assembling 

data still can be challenging because datasets are not centrally warehoused and vary dramatically 

in their resolution and regional extent. 

4.2 Predicting Baseline Conditions 

Three types of objectives have been the most common within the conservation ROI 

literature: maximizing the amount of biodiversity protected for a given budget, minimizing the 

cost of achieving a target level of biodiversity protection, and minimizing the loss of biodiversity 

over a given time period. These approaches make different implicit assumptions about the future 

of biodiversity in the absence of conservation actions—that is, the baseline.  

Studies that select actions to maximize conservation benefits for a fixed budget implicitly 

assume that all unprotected areas or species will be lost or that risks are homogeneous across 

sites (Merenlender et al. 2009). Studies that focus on achieving conservation targets at the least 

cost (e.g., Stewart and Possingham 2005; Carwardine et al. 2008b; Kark et al. 2009) make the 

same assumption. In reality, biodiversity is likely to be maintained in areas that are not under 

direct protection by conservation actions. In fact, Wilson et al. (2011) found that failing to 

account for off-reserve biodiversity protection in East Kalimantan overestimated conservation 

costs by an order of magnitude. 

An approach that seeks to minimize the loss of biodiversity over a specified time frame 

accounts for threats to biodiversity protection during the planning process (Murdoch et al. 2007; 

Bode et al. 2008; Grantham et al. 2008; Underwood et al. 2008). This approach employs a more 

realistic baseline because it does not assume that unprotected biodiversity is always lost. When 

species have some probability of surviving outside reserves, minimizing the loss of biodiversity 

is not the same as maximizing the number of species conserved in a reserve network (Witting 

and Loeschcke 1993, 1995). 

Most studies account for the current baseline of protection and habitat loss by 

incorporating preexisting reserves into the eventual reserve network and excluding converted 

areas from analysis (e.g., Carwardine et al. 2008b; Underwood et al. 2008). Similarly, Evans et 

al. (2011) includes current invasive species control efforts when prioritizing future control.  

As a general rule, approaches to maximize biodiversity protection tend to protect areas of 

low risk because costs and risks are correlated (Merenlender et al. 2009). In contrast, approaches 

to minimize biodiversity loss tend to justify investment in areas of moderate price, with moderate 

to high threat, that are biodiversity rich (Merenlender et al. 2009). 
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Threats are highly variable across space, and researchers can evaluate them using many 

approaches (Wilson et al. 2007; Wilson et al. 2009). Bode et al. (2008) estimated extinction risk 

for species based on the rate of species extinctions from IUCN Redbook listings and species-area 

curves. Klein et al. (2010) identified threats to coral reefs using existing data on the impact of 

anthropogenic drivers to change (Halpern et al. 2008). Studies have used the ―Human Footprint‖ 

dataset (Sanderson et al. 2002) to predict intensity of threat across regions (e.g., Murdoch et al. 

2007; Underwood et al. 2008; Murdoch et al. 2010). This dataset identifies areas of high human 

impact based on land use, population pressure, infrastructure and access but does not provide a 

direct measure of risk. Grantham et al. (2008) used previously observed rates of clearing to 

simulate spatially explicit, stochastic clearing of native vegetation in South Africa. Joseph et al. 

(2009) compared the likelihood of species survival with and without certain conservation 

actions, using expert opinion to determine survival probabilities. Klein et al. (2010) focused on 

reducing current threat levels, also based on expert opinion. Evans et al. (2011) explored species 

protection through invasive species control, assuming that the invasive species were the only 

threat and species would go extinct without control efforts; this study did not account for 

potential future spread of the invasive species.  

While relatively rare, some studies model risk based on observed data. For example, 

Smith et al. (2008) predict patterns of land conversion based on distance from existing 

agriculture, elevation, slope and agricultural potential; however, they used threat as a measure of 

cost rather than represent threat itself. Newburn et al. (2005, 2006) estimate parcel-specific 

development probabilities using a model based on regional and site-specific characteristics. 

Similarly, Costello and Polasky (2004) predict land conversion threat based on projected 

urbanization using an existing model. 

While prediction of threat and baseline conditions is fundamental to measurement of 

conservation‘s benefits, data on and inclusion of threats in ROI analysis is rare. Threat 

analysis—in particular analysis of threats beyond land conversion—are a future priority for ROI 

studies.  

4.3 Types of Conservation Investment  

The vast majority of conservation ROI studies focus on land acquisition or creation of 

protected areas as the dominant conservation action. A few have focused on marine reserve 

creation (Stewart and Possingham 2005; Richardson et al. 2006), and Klein et al. (2010) focused 

on protection of both terrestrial and marine areas to reduce threats to coral reefs. Carwardine et 

al. (2008b) explicitly considered both acquisition and easements as potential control actions, 
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while several others focused only on implementation of conservation easements (Ferraro 2003; 

Newburn et al. 2006). Polasky et al. (2008) prioritized land use zoning—designation of areas 

allowable for rural residential development, forestry, and agriculture—to achieve conservation 

benefits. 

Researchers often use the creation of protected areas as an implicit surrogate for a 

broader range of conservation interventions (Margules and Pressey 2000; Chape et al. 2005; 

Wilson et al. 2009), including management of protected areas. Moore et al. (2004) selected 

protected areas, focusing on their management as the relevant action. Others have prioritized 

among specific management actions. Goldstein et al. (2008) selected vegetation types on which 

to focus restoration efforts. Wilson et al. (2011) and Low et al. (2010) considered a range of 

potential management changes to forested parcels. Evans et al. (2011) selected sites for rabbit or 

fox population control to reduce threats to native species. Joseph et al. (2009) prioritized among 

prespecified conservation projects for a variety of species. Wilson et al. (2007) prioritized a 

range of actions identified by expert opinion to abate threats to a variety of species. These 

actions included invasive riparian, predator, and weed control; fire management; and protection 

from urban and agricultural development. 

4.4 How are Costs Measured? 

Cost measures are closely linked to the type of conservation investments explored. Cost 

measures can include the cost of acquiring land or easements, compensation that a landowner 

receives to improve or manage their land for conservation, transaction costs incurred to complete 

a conservation action, social costs borne by people disadvantaged by a project, and opportunity 

costs—profits or other benefits foregone by those participating in conservation. Some of these 

costs, including management, social, and opportunity costs, are incurred over multiple time 

periods, while others, like acquisition costs, are incurred immediately. Conservation ROI 

analyses have included different subsets of these costs and used different types and scales of data 

to quantify them. 

Acquisition costs for land purchases have been estimated in a variety of ways. Frazee et 

al. (2003) and Pence et al. (2003) estimated acquisition and management costs in South Africa 

using expert knowledge and existing use values (Newburn et al. 2005). Murdoch et al. (2010) use 

an estimated purchase price as a proxy for conservation cost in Argentinean grasslands. They 

extrapolated per-hectare land costs for each parcel based on human population density and 

coarse land-cost maps created by an Argentine real estate company. Underwood et al. (2009) 

estimated land acquisition costs in each California county using public records on location, size, 
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and price of conservation land acquisitions from 1990 to 2006. Ando et al. (1998) and Murdoch 

et al. (2007) estimated acquisition costs using U.S. county-level agricultural land values, a type 

of data that also exists for Europe (Naidoo et al. 2006). Ando et al. (1998) observed that the 

value of undeveloped land would have been a preferable proxy but that the agricultural land 

values reflects land market conditions. Polasky et al. (2001) and Arthur (2004) used the assessed 

market value of all nonurban land rather than just agricultural land to estimate the cost of 

protecting each private land site in their eastern Oregon focal areas. Carwardine et al. (2008b, 

2010) used data on unimproved land values and sales cost provided by the Australian 

government, plus a transaction cost of US$10,000 for each site to represent administrative fees 

incurred when purchasing properties.  

Another approach to estimating acquisition costs was based on a study of conservation 

management costs by Balmford et al. (2003), who found that per-area management costs are 

positively correlated with a county‘s purchasing power, economic output, and local human 

population density—and negatively related to the size of the protected area. They found that 

acquisition costs were about 50 times the magnitude of these management costs. Other studies 

have employed this relationship—and an improvement on it by Moore et al. (2004)—to estimate 

land acquisition costs (e.g., Bode et al. 2008; Underwood et al. 2008). 

When land price coverage is incomplete, researchers can estimate more complete 

coverage of costs using statistical models (Naidoo et al. 2006). For example, to estimate 

acquisition costs in the Atlantic rainforest of Brazil, Chomitz et al. (2006) regressed land prices 

on characteristics such as soil type, climate, current land cover, and proximity to roads. Using the 

regression coefficients and geographic information system coverage of the relevant variables, 

they created a predicted land price layer for the entire study region.  

Assessed land values tend to be more available in developed than developing countries 

(Naidoo et al. 2006). However, opportunity cost often can be used as a surrogate for acquisition 

costs because the value of land is tied to its long-term expected value from potential and current 

uses. Polasky et al. (2001) estimated the cost of conservation on public lands as the net present 

value of resource use, using forest inventory, site quality, and data on livestock forage 

productivity. Richardson et al. (2006) estimated opportunity costs of marine reserves using the 

first-sale value of fish and shellfish caught within large political units; they estimated 

opportunity costs at a finer resolution using interviews of fishermen. Stewart and Possingham 

(2005) estimated the costs of marine protected areas from the total catch of the southern rock 

lobster as reported for each planning unit. Polasky et al. (2008) considered biodiversity 

protection across a variety of land uses, including agriculture, forestry, and rural residential use, 
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and they used models to predict the likely economic returns for each land parcel under the 

different land uses. Their approach used information on a parcel‘s soil, slope, elevation, and 

location to estimate yields, combined with commodity prices and production costs to generate 

economic returns for agriculture and forestry. They also estimated the value of rural residential 

development using information on location and characteristics of parcels. 

The only global cost data currently available was developed by Naidoo and Iwamura 

(2007). This data, available at 5' (minute) resolution, estimates land costs as the flow of 

economic benefits derived from crops and livestock. They integrate spatial information on crop 

productivity, livestock density, and prices to produce a global map of the gross economic rents 

from agricultural lands. A number of ROI studies have used this data (e.g., Carwardine et al. 

2008a). 

Conservation on private land can sometimes be achieved without outright acquisition, by 

using conservation easements. Ferraro et al. (2003) estimated easement costs as 50 percent of 

land value plus a $5,000 transaction cost per parcel. Carwardine et al. (2008b) estimated these 

costs as the net present value of opportunity costs from agriculture based on estimates of price 

times yield minus production costs, plus the $10,000 transaction cost. Newburn et al. (2006) 

estimated easement costs in Sonoma County, California, by employing tax assessor records 

linked to a digital parcel map within a geographic information system that provided data on 

recent property sales, land use, and other site information. They estimated the value of 

development rights for each developable parcel as the value of developable land minus the 

restricted-use value, which they estimated using hedonic price models. 

Another way to identify site-specific costs of conservation is the use of auctions. White 

and Sadler (2011) examined a perfect price-discriminating auction scheme, and Layton and 

Siikamäki (2009) used a reverse auction to elicit the willingness of nonindustrial private forest 

owners to preserve biodiversity-rich areas.  

A variety of studies (e.g., Bode et al. 2008) have estimated management costs using the 

previously mentioned correlations developed by Balmford et al. (2003) and Moore et al. (2004). 

Kark et al. (2009) adapted this cost estimate to also include a measure of threat; their index 

equaled the product of human population density (used as a surrogate of threat to biodiversity) 

and management costs divided by the average population density over the  Mediterranean Basin. 

Frazee et al. (2003) estimated the costs of management in the Cape Floristic Region based on 

expert opinion about what is needed to manage reserves of different sizes and the costs of those 

activities. 
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Wilson et al. (2007) focused on a diverse range of actions to abate threats to species and 

used expert opinion to estimate costs associated with each action. Evans et al. (2011) estimated 

the annual costs per unit area of fox and rabbit control in Australia from the literature and 

translated them into a single cost measure: the net present value of 10 years of management. 

Goldstein et al. (2008) estimated the costs of forest restoration activities based on existing 

literature and discussions with scientists, land managers, government employees, and other 

professionals knowledgeable about restoration in their focal region. 

4.5 Additional Factors that Add Realism 

Few portfolio-based conservation projects can be fully implemented at the outset. For this 

reason, many conservation ROI studies describe a dynamic planning process (e.g., Murdoch et 

al. 2007; Wilson et al. 2007; Bode et al. 2008; Grantham et al. 2008; Underwood et al. 2008; 

Underwood et al. 2009; Evans et al. 2011). A dynamic planning approach allows adaptation 

during the implementation process, as decisionmakers can consider previous actions and the set 

of actions that are feasible during each phase of decisionmaking. This approach is particularly 

relevant when accounting for threats to species or sites and when focusing on minimizing short-

term biodiversity loss (Bode et al. 2008; Grantham et al. 2008). A number of studies have 

explicitly considered development risk (Costello and Polasky 2004; Meir et al. 2004; Drechsler 

2005; Haight et al. 2005; Strange et al. 2006).  

Some studies also have considered the role of opportunism in conservation acquisitions. 

These studies explore the possibility that not all sites are immediately available for protection 

and that uncertainty exists about when and if a given site will be available (Meir et al. 2004; 

Drechsler 2005). Strange et al. (2006) also considered the possibility of selling parcels following 

acquisition, in response to either biodiversity loss on the parcel or changes in priorities due to the 

loss of availability of some unprotected parcels. But because none of these studies incorporate 

heterogeneous costs, decision rules have not been set forth that account for the combined 

influences of opportunism, risk, benefits, and costs. 

An aspect of conservation planning not widely addressed in the existing literature is the 

endogeneity of land prices and threat in response to parcel conversion and protection (Costello 

and Polasky 2004). Because they provide amenity values, protected properties can drive up land 

prices and threats on neighboring parcels (Armsworth et al. 2006; Wilson et al. 2009). These 

price and threat dynamics could affect the timing and choice of conservation actions. 
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A diversity of other factors add additional realism to prioritizing conservation 

investments. For example, the success of different conservation actions is influenced by 

numerous sociopolitical factors, including political stability and corruption, budget continuity, 

governance, and stakeholder willingness to be involved in conservation initiatives (O'Connor et 

al. 2003; McBride et al. 2007; Wilson et al. 2009). The presence or persistence of biodiversity 

benefits across the landscape also may be uncertain (Polasky et al. 2000; McDonald-Madden et 

al. 2011). Some studies account for these uncertainties by modifying the expected biodiversity 

benefit (e.g., McBride et al. 2007; Joseph et al. 2009; Wilson et al. 2009).  

While studies have begun to account for species complementarity when examining 

returns to land protection (Drechsler 2005; Underwood et al. 2008), complementarity across 

conservation actions has been largely ignored. For example, Wilson et al. (2007) assumed a 

species is protected via elimination of a single threat, without allowing for the possibility of 

multiple threats affecting a species. Evans et al. (2011) explicitly considered this type of 

complementarity. They point out that ignoring the issue of multiple threats can have two 

consequences: first, the benefits of abating a single threat may be overestimated because species 

may be threatened by multiple processes; second, the cost of abating two threats in one place 

may be cheaper than the sum of the costs of abating each threat alone. 

Other factors that can affect conservation investment priorities include the potential that 

funds are not fully fungible (e.g., funds may need to be spent in specific areas), the potential for 

leveraging or partnering, and start-up costs associated with investing in a new region (Murdoch 

et al. 2007). 

5. Multiobjective Conservation ROI 

The preceding review makes clear that there is a substantial literature on conservation‘s 

return on investment. To date, however, the empirical conservation literature has focused almost 

exclusively on single-objective, biodiversity-related ROI analysis. This is understandable 

because, as discussed in the previous section, single-objective ROI analysis is methodologically 

challenging in its own right, constrained by data availability, and beset by a rich set of still-

unresolved issues. Multiobjective studies only add to ROI‘s difficulty by expanding the set of 

outcomes and baselines to be modeled or measured. Moreover, multiobjective ROI studies reveal 
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trade-offs between conservation outcomes.
2
 If one project yields more biodiversity protection but 

less water quality improvement than another, which has the higher ROI? One of several ways to 

address the question is to translate outcomes into a common currency like dollars.  

5.1 Conservation Missions and Ecosystem Service Objectives 

Despite the difficulties, changes in conservancies‘ missions are driving a practical need 

for multiobjective ROI tools. Increasingly, conservation organizations are expanding their 

missions to include social objectives. For example, Conservation International unveiled a new 

mission in 2010 to ―empower societies to responsibly and sustainably care for nature for the 

well-being of humanity,‖ and The Nature Conservancy‘s states its aim as ―protecting nature, for 

people today and future generations‖ (emphases added).  

Social missions imply measurement of conservation-related social outcomes, otherwise 

known as ―ecosystem goods and services.‖ Biodiversity-driven conservation can produce a broad 

range of ecosystem goods and services, including cleaner air and water, more productive soils, 

reduced risks of flooding and disease, aesthetic, cultural, and recreational benefits, and carbon 

storage. These types of benefits represent a suite of mission-driven returns to be evaluated. 

5.2 Measuring Ecosystem Services’ Biophysical Returns 

Consider the species-area relationships commonly used to predict the biodiversity 

benefits of land conservation. Ecosystem services analysis demands a suite of analogous 

empirical relationships that translate conservation investments into outcomes like improved 

water quality, water availability, carbon storage, soil quality, flood risks, human health risks, 

pollination services, and air quality. These relationships are referred to as ―ecological production 

functions‖ (Daily and Matson 2008).  

Empirical studies of these production functions are occurring across the vast and growing 

literature on ecosystem services. Examples include the relationship between land use or 

conservation and water quality (Baker 2003), marine species (Mumby et al. 2004), aquifer 

recharge (Scanlon et al. 2005), surface water availability (NRC 2008), pollination services 

(Ricketts 2004), and flood risk reduction (Mitsch and Day 2006). Of particular relevance are 

                                                 
2 Note that ROI analysis is not the cause of these tradeoffs; it simply illuminates them.  
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modeling platforms being developed to assist planners with landscape-scale ecosystem service 

evaluation (Kareiva et al. 2011). 

Despite these many efforts, ROI analysts lack empirically verified production 

relationships robust to a wide range of biophysical contexts. Put differently, most ecosystem 

services lack relationships like species-area curves that are deployable over broad conservation 

portfolios (Kremen 2005; U.S. EPA 2009). Notable exceptions include models that relate land 

cover to water quality (e.g., the SPARROW model) and the Universal Soil Loss Equation that 

relates land cover to erosion phenomena. Evaluating carbon storage as a function of land cover is 

another example of an empirically determined biophysical production function (e.g., 

Kindermann et al. 2008; Siikamäki and Newbold forthcoming). Causal relationships usually 

must be verified using rigorous, data-intensive empirical methods. Moreover, the nonuniformity 

of biophysical systems means that relationships verified in one context need not hold in others. 

Of course, the same could be said of species-area curves. Species-area relationships are 

themselves not uniform, but enough empirical study over a wide range of contexts has created at 

least some degree of confidence in their use. In the near term, ROI analysis of ecosystem 

services will need to rely on production relationships that are qualitatively accurate and 

scientifically plausible but that may lack empirical validation. Validation and improved accuracy 

will take concerted empirical effort over a period of decades.  

Another challenge for ecosystem services production analysis is that the beneficiaries and 

economic value of ecosystem services often are located far afield from the conservation action 

itself. Examples include down-watershed water quality availability and flood-related benefits 

arising from up-watershed land protections. Similarly, recreational, commercial, or subsistence 

benefits from habitat improvements in one location can be delivered across a species‘ entire 

migratory range. ROI analysis therefore requires ecological production functions that capture the 

spatial delivery of ecosystem services (Bockstael 1996; Boyd 2008). 

5.3 Measuring Ecosystem Services’ Economic Returns 

Predicted changes in ecological conditions via production function analysis do not by 

themselves capture the social returns to conservation. Assessment of social returns requires an 

additional step: translation of ecological returns into economic returns. The relationship between 

changes in natural systems and corresponding changes in economic welfare is a central focus of 

ecosystem services research (Heal 2000; U.S. EPA 2000; Boyd and Banzhaf 2007; Polasky 

2008; Fisher et al. 2011). Ecological returns, such as improved soil productivity, more abundant 
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species, flood and human health risk reductions, cleaner air and cleaner, more abundant water, 

are valuable. But how valuable?  

Environmental and ecological economists over the last several decades have measured 

the economic value of a wide range of ecosystem goods and services, in specific spatial and 

social contexts (Freeman 2003). Boyd and Krupnick (2009) reviewed this literature, and the 

Environmental Valuation Reference Inventory provides a database of available studies. 

Valuation approaches include detection of environmental benefits in real estate prices (Polasky et 

al. 2011), referenda that approve local or state financing of land acquisitions (Banzhaf et al. 

2010), inferences based on the travel and time costs people bear to enjoy natural resources 

(McConnell 1992), and experiments that ask people to make choices between money and 

environmental improvements in hypothetical settings (Carson et al. 2001). As a rule, the 

academic valuation literature finds clear evidence that ecological systems and the goods and 

services they produce are indeed economically valuable.  

A challenge for measurement of economic returns is that the value of an ecosystem 

service improvement usually is highly dependent on the location where it is delivered (Boyd 

2008; Polasky et al. 2008). As a rule, ROI analysts cannot simply apply the value of an 

ecological improvement detected in one location to another because the demand for ecosystem 

services is a function of the number of beneficiaries, the economic activities enhanced by the 

service, the availability of substitutes for the service, and other factors that depend on the 

characteristics of the social and biophysical landscape in question. The so-called benefit transfer 

literature addresses this problem. Benefit transfer methods take existing valuations derived from 

any of the aforementioned methods and transfer them to new landscape and resource contexts 

using statistical methods designed to control for similarities and differences in spatial context 

(Johnston 2007; Loomis and Rosenberger 2006). 

5.4 Evaluatin Trade-Offs Across Multiple Objectives 

Trade-offs between ecosystem services arise when provision of one service comes at the 

cost of another. Synergies also can exist between ecosystem services, where the provision of one 

enhances the amount or quality of another (Raudsepp-Hearne et al. 2010).  

Many ecosystem services depend on habitat protection and are therefore synergistic to 

some extent. But trade-offs regularly emerge. For example, the long-standing focus of ecosystem 

management on readily marketable ecosystem services, such as food, fiber, and timber, is 

commonly seen as a root cause behind the decline of other, less easily marketable ecosystem 
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benefits, such as biodiversity or ecological functions and processes regulating the quantity and 

improving the quality of water.  

Given that ecosystems provide multiple benefits, a focus on biodiversity as the only 

measure of benefit can result in suboptimal conservation decisions (unless biodiversity is all one 

cares about). For example, it is possible that a given conservation action can yield large water 

quality benefits and a high—but not maximum—biodiversity benefit. If water quality benefits 

are given no weight, conservation planning can fail to select the highest value projects.  

Consider another pertinent example: conservation designed to achieve both biodiversity 

protection and carbon sequestration. In addition to providing potentially low-cost options for 

reducing global carbon emissions, reducing emissions from deforestation and forest degradation 

(REDD) projects could also support biodiversity conservation. Siikamäki and Newbold 

(forthcoming) examine the potential of global forest conservation programs to generate both 

biodiversity and carbon sequestration benefits. The global study of alternative forest 

conservation configurations indicates that the overlap between high-value sequestration and 

biodiversity areas is relatively small. The most attractive options for REDD programs occur 

where the opportunity cost per ton of avoided carbon dioxide emissions (accounting for the 

carbon content of the forest and the threat of deforestation) is lowest. Unfortunately, the 

correlation between species richness in major taxonomic groups and the opportunity cost per ton 

of avoided emissions is close to zero.  

Given this type of result, how can an ROI analysis resolve the trade-off between 

sequestration and biodiversity? One approach is to convert biodiversity benefits into dollars so 

that that monetary benefit can be compared to the cost of more expensive forest sequestration 

options. Note that the reason economists favor translation of benefits into dollars is because 

monetary benefit measures simplify the comparison of ―apples and oranges,‖ like biodiversity 

and carbon sequestration.  

When multiple outcomes are considered in an ROI framework, trade-offs can be 

evaluated, communicated, and resolved by weighting them via a common currency: i.e., dollars. 

Clarification of trade-offs is the reason environmental economists try to measure the monetary 

value of ecosystem services. The valuation methods described in the previous section are 

designed to measure the weight of different outcomes in a common currency. The problem, as 

noted earlier, is that the translation of many conservation outcomes—like biodiversity—can be 

difficult.  
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For this reason, studies like Polasky et al. (2005) and Nelson et al. (2009) are particularly 

relevant. These studies illuminate (but do not resolve) economic and biodiversity trade-offs by 

explicitly and formally depicting the biodiversity implications of planning that include multiple 

objectives, some of which are expressed in monetary terms.  

In a study examining land use options and species conservation in the Willamette Basin 

in Oregon, Polasky et al. (2005) combined an economic model of agricultural production with an 

ecological model of species protection and use the model to identify spatially explicit land use 

options that maximize both economic and ecological objectives. Rather than monetizing 

ecological outcomes, they measured them using a species conservation score. They used the 

species conservation scores and monetary agricultural benefits to determine a ―production 

possibilities frontier.‖ This frontier depicts the maximum agricultural output value for any given 

level of species conservation benefit, thus illustrating the trade-offs involved in land use 

decisions. In their particular case, the analysis revealed that while increased species benefits 

comes at a cost of reduced agricultural output, the added cost is relatively small when activities 

are sited optimally. In general, the value of such analyses is that they can visually describe trade-

offs without demanding the monetization of ecological outcomes. It is worth noting, however, 

that visual depiction of trade-offs becomes almost impossible when more than two objectives are 

being considered.  

Nelson et al. (2009) also examined different land use options in Willamette Basin. The 

study evaluated several outcomes: agricultural production, soil conservation, carbon 

sequestration, water services, and species conservation outcomes. The study did not monetize 

ecosystem services but instead scored them in a variety of ways. In other words, the study did 

not ―resolve‖ trade-offs by putting all outcomes in a common currency. However, the researchers 

described trade-offs in a manner similar to Polasky et al. (2005). The results suggest that 

scenarios that score high on ecosystem services also are beneficial to biodiversity. Perhaps not 

surprisingly, scenarios that target agricultural production had relatively high adverse impacts on 

ecosystem services and biodiversity. 

This review of economic approaches to valuation and analysis of environmental trade-

offs is far from exhaustive. We use it to emphasize that monetary valuation of ecosystem 

services is one way to derive the weights used in a multiobjective conservation ROI analysis. 

However, monetization is not strictly necessary if the goal is to describe, rather than resolve, 

trade-offs.  
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6. Conclusion 

The academic literature provides ample evidence of ROI‘s value as a conservation 

planning tool. Widespread deployment of ROI analysis by conservancies will lead to better 

conservation outcomes and cost savings. Conservation ROI‘s future is its application to 

ecosystem services outcomes beyond biodiversity. This approach will not only help 

conservancies maximize conservation‘s broader benefits but also help foster stakeholder 

engagement and recruit new support by articulating conservation‘s diverse contributions to 

human well-being.  

All organizations must make strategic choices about where to invest scarce resources and 

usually have to justify and communicate those choices to internal and external audiences. 

Because ROI analysis is an objective, analytically transparent, and data-driven approach to 

strategy and evaluation, it can help clarify the scientific and economic rationale for conservation. 

Existing studies already challenge conservation managers to think differently by 

highlighting the importance of investment costs and clearly articulating assumptions regarding 

conservation‘s positive effect on biodiversity. The fact that ROI analysis tends to prescribe 

significant changes in conservation strategy (e.g., different portfolio selection and project 

location) is evidence enough of its value as a complement to existing planning tools.  

Given ROI‘s promise and widespread acceptance in the academic conservation, natural 

resource management, and environmental economics literatures, why is it not deployed more in 

practice by conservation organizations? One reason is that data relevant to conservation ROI is 

relatively costly to collect. ROI analysis in the private sector can rely on a wide spectrum of 

market data—prices, sales, inventories, etc.—collected and reported by firms and governments 

in standardized formats. Environmental data is improving and can be applied to ROI analysis (as 

shown by this review of studies). However, ROI analysis clearly requires nontrivial investments 

in data, quantitative analysis, and human resources by conservation organizations 

ROI‘s relevance and value as a tool also presumes that managers have the flexibility to 

choose from a wide array of investment possibilities. This may not always be the case. 

Conservancies with missions and activities constrained to smaller geographic regions, for 

example, have less investment flexibility, and thus less need for tools to help set priorities. Even 

global conservancies can face geographic constraints on investment imposed by limits on 

financing and administrative authority (e.g., a state program‘s need to spend its budget within its 

own borders).  
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ROI analysis also requires organizations to clearly articulate their objectives. In the 

private sector, this is usually straightforward and uncontroversial: profits and shareholder value 

are the goal. For nongovernmental conservation organizations, the articulation of objectives with 

enough specificity to foster quantitative measurement of outcomes is more difficult and 

controversial. This will be particularly true if and when conservancies seek to measure their 

social impact. As noted earlier, social outcomes, such as those associated with conservation‘s 

ecosystem services benefits, are multidimensional. Not only do they add to the evaluation 

burden, but they also trigger debate among stakeholders as to what an organization‘s specific 

objectives are and how they are to be weighted.  

Conservation ROI‘s future lies in improved data and methods associated with assessment 

of threats (both biophysical and social) and experimental designs and models to measure or 

predict investment-related improvements in biodiversity and other ecosystem services. Further 

development of ROI will require a commitment on the part of conservancies to invest in data, 

methods, and skills—and to clearly articulate the ecological and social outcomes they most wish 

to pursue.  
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