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Abstract 

This study examines the spatial nature of optimal bioinvasion control. We develop a spatially 
explicit two-dimensional model of species spread that allows for differential control across space and 
time, and we solve for optimal spatial-dynamic control strategies. We find that the optimal strategies 
depend in interesting ways on the shape of the landscape and the location, shape, and contiguity of the 
invasion. For example, changing the shape of the invasion or using landscape features to reduce the extent 
of exposed invasion edge can be an optimal strategy because it reduces long-term containment costs. We 
also show that strategies should be targeted to slow or prevent the spread of an invasion in the direction of 
greatest potential long-term damages. These spatially explicit characterizations of optimal policies 
contribute to the largely nonspatial literature on controlling invasions and our general understanding of 
how to control spatial-dynamic processes. 
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Optimal Control of Spatial-Dynamic Processes:  
The Case of Biological Invasions  

Rebecca S. Epanchin-Niell and James E. Wilen 

1. Introduction 

Much of the economic research on bioinvasion management has framed the issue as a 

pest-control problem, in which the population density of the invader is controlled. This literature 

generally has focused on the aggregate pest population, without considering its spatial 

characteristics.1 However, a critical feature of bioinvasions is that they unfold over time and 

space. They generally begin with the arrival of just one or a few individuals to a region. The 

population density of the invader then may increase at the arrival site by reproduction. In 

addition, the population may spread over space by dispersal, so that the initial population of 

invaders eventually can impact locations far from the site of colonization. Bioinvasions are thus 

driven by spatial-dynamic processes, rather than by simpler dynamic processes.  

Although existing analytical work generally has abstracted away from the spatial features 

of invasions, it has provided important insights on how optimal invasion management depends 

on costs, damages, discount rate, growth and spread dynamics, and even the size of the invasion 

and landscape. Most of these findings have been derived using spatially implicit models of 

invasion spread that yield conclusions about when and how much to control.2 Since few studies 

have explicitly considered the spatial characteristics of bioinvasions, there is less understanding 

about where to optimally allocate control efforts or the effect of spatial landscape and invasion 

characteristics on optimal control choices. 

                                                 
 Epanchin-Niell (corresponding author): Resources for the Future, 1616 P St. NW, Washington, DC, 20036;  
epanchin-niell@rff.org, 202-328-5069. Wilen: Department of Agricultural and Resource Economics, University of 
California, Davis, CA 95616. 
1 See, for example, Pannell 1990; Deen et al.1993; and Saphores (2000). 
2 See, for example, Eiswerth and Johnson (2002); Olson and Roy (2002, 2008); and others reviewed by Epanchin-
Niell and Hastings (2010) and Olson (2006).With spatially implicit models, the state variable generally measures the 
size or extent of invasion over an entire landscape without respect to space. The state equation is often an ordinary 
differential equation that describes how the size or extent of the invasion varies over time as a function of itself and 
the quantity of control. This approach casts invasion control as a dynamic problem whose solution is a time path for 
the optimal control policy. 
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This paper develops a general bioeconomic model of bioinvasions that incorporates a 

spatial-dynamic spread process and allows us to explicitly characterize various aspects of space. 

The model departs from approaches based on optimal control and dynamic programming by 

casting bioinvasions in a manner that allows us to for optimal policies using an efficient integer-

programming algorithm. As a result, we can handle large-dimension characterizations of explicit 

space with realistic features, without being hindered by the curse of dimensionality. 

We use the model to examine optimal policies over a range of bioeconomic parameters, 

spatial configurations, and initial invasion types. The more interesting results show how the 

initial invasion’s shape, contiguity, and location in the landscape influence the qualitative 

characteristics of optimal control policies. We uncover a range of optimal solutions, from 

immediately eradicating the invasion to abandoning control, and from slowing and then stopping 

an invasion to slowing and then abandoning control. We provide intuition about why various 

sequences of controls are optimal, focusing on how topology of the invasion influences border 

length and containment costs. We also show how optimal policies utilize landscape features, 

including range borders, as part of their solutions. Our results provide important new insights 

into how adding space to dynamic problems matters and how spatial-dynamic solutions differ 

from simpler dynamic solutions. 

2. Related Literature  

Understanding spatial aspects of invasion management requires a spatially explicit model 

of invasion spread. In its most general form, a spatial spread process may be characterized with a 

partial differential equation (PDE) over continuous time and space. Because solving PDEs is 

notoriously difficult, however, characterizing all but the simplest forms of a spatial-dynamic 

spread process analytically is not possible. Solving a problem that involves optimization of a 

system characterized by a PDE is even more difficult. There is a paucity of literature in 

economics, mathematics, and optimization theory on characteristics of optimally controlled 

partial differential state equation systems.  

Several recent studies attempt to uncover general properties of spatial-dynamic systems 

using analytical approaches. The most general is the elegant work by Brock and Xepapadeas 

(2004, 2008), who derive modified Pontryagin conditions for the optimal control of a system 

governed by PDEs. Brock and Xepapadeas apply their method to the problem of optimally 

harvesting from a fishery with density-dependent growth and random local dispersal. They focus 

on the steady state of the system—in particular, whether the steady state is uniform over space or 

exhibits inhomogeneities. They simplify the spatial part of the system by assuming that space is a 
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one-dimensional circle, keeping the dimensionality to minimal size, and avoiding more complex 

boundary conditions.  

In parallel work, Sanchirico and Wilen (1999, 2005, 2007) model a renewable resource 

system in continuous time and discrete space, which allows the general PDE system to be 

converted into a system of ordinary differential equations of dimension equal to the number of 

patches. Sanchirico and Wilen (2005) apply optimal control methods to the system to show how 

the equilibrium configuration of biomass and harvest depend on cost, price, and discount 

parameters, as well as on the dispersal system that determines the links between patches. 

Sanchirico et al. (2010a) complete the modeling of optimal metapopulation harvesting by solving 

for the approach path to equilibrium using numerical methods. Costello and Polasky (2008) 

characterize the fisheries system as discrete in time and space, allowing them to use dynamic 

programming to analytically characterize features of the equilibrium of a metapopulation fishery 

system in the presence of stochasticity. 

This recent economic literature on optimal renewable resource management is not 

directly applicable to characterizing optimal bioinvasion management for a variety of reasons. 

First, solutions to fisheries problems rarely involve permanent and complete closure of the 

fishery or system-wide extinction. Instead, they define an infinite stream of harvest rates across 

space. In contrast, while relevant control options for bioinvasions include policies that define an 

infinite stream of controls across space (e.g., applying controls to stop an invader’s advance), 

they also include extremes such as system-wide eradication or complete abandonment of control 

efforts. Including eradication seems critical for a realistic depiction of bioinvasion control, but it 

complicates the solution since eradication policies eliminate damages and control options in 

finite time. As a result, characterizing optimal bioinvasion control solutions requires comparing 

finite and infinite horizon solutions over the parameter space (Wilen 2007).  

Second, while the steady-state equilibrium is arguably the more interesting part of 

renewable resource problems, the approach path is more important for bioinvasion problems. 

Solving for approach paths in dynamic analysis is always difficult and generally requires 

numerical methods. Numerical methods, however, face an enhanced curse of dimensionality for 

spatial-dynamic problems, limiting the size and complexity of the spatial landscape that can be 

analyzed.  

Third, aside from the extra dimensions associated with incorporating space, it is desirable 

to characterize space in realistic ways. For example, how do different shapes of the initial 

invasion and the landscape influence optimal policies? How does heterogeneity of costs or 
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damages over space affect policies? These kinds of questions are relevant to real-world 

bioinvasion control but generally are beyond the scope of analytical modeling.  

Fourth, the end-point conditions for spatial-dynamic problems only recently have been 

articulated (Brock and Xepapadeas 2008) and are difficult to incorporate in numerical solutions 

for all but the simplest of spatial structures. 

To address some of these difficulties, recent research has taken a variety of approaches. 

Some studies employ heuristic approaches that compare a predefined set of control strategies by 

simulating their outcomes, rather than finding a single optimal policy (e.g., Grevstad 2005; 

Higgins et al. 2000; Wadsworth et al. 2000). A study by Hof (1998) assumed the objective of 

minimizing the population of a spreading pest, subject to a budget constraint, exponential 

population growth, and linear costs. These assumptions simplify the problem but also mandate 

maximal control in all time periods. Other studies simplify by solving only for the equilibrium 

optimality conditions, rather than the path by which that equilibrium is optimally achieved 

(Albers et al. 2010; Potapov and Lewis 2008; Sanchirico et al. 2010b). Some approaches 

incorporate realistic features of control options and the characterization of space but make the 

problem tractable by reducing the dimension. For example, Albers et al. (2010) and Sanchirico et 

al. (2010b) identify equilibrium control solutions for a complex model of invasion spread and 

reproduction dynamics in a two-patch model allowing for multiple types of control.  

Blackwood et al. (2010) take the closest to our approach by accounting for large-scale 

explicit space, but solve for optimal spatial-dynamic control policies over a finite horizon with 

no transversality condition. They model a pest that exhibits exponential growth over time and 

quadratic control costs, assumptions that allow them to cast the problem as a linear-quadratic 

control problem. Their assumptions of exponential growth allow damages at any location to 

become infinite in the absence of control and thus force all optimal management policies to drive 

the invasion population near zero. In addition, their study assumes that the invasive species 

causes no damages after the final time period (generally 10 years) and allows for both negative 

invasion and control levels. 

This existing work has contributed three particularly important insights to the 

characteristics of optimal spatial invasion management: that it can be optimal to apply control 

heterogeneously across space; dispersal of the invader matters; and optimal control at each site 

depends not only on conditions there, but also at other sites. 
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3. A General Spatial-Dynamic Model of Bioinvasions 

Despite these insights, the general spatially explicit bioinvasion optimization problem has 

not been characterized in a manner that allows for a range of control outcomes, captures explicit 

spatial features of the invasion and the landscape in which it occurs, and can be solved for a large 

landscape. Our approach accomplishes these by exploiting a model that is stripped to its essential 

features but retains important flexibility for incorporating explicit spatial processes.  

We develop a spatially explicit, deterministic, discrete space-time model that allows for 

growth and spread of a species and differential control over time and space. In this problem, we 

focus on the situation in which an invasion has arrived, established itself, and been discovered 

within the focal landscape. Upon discovery, the initial invasion has some arbitrary character 

(e.g., size, shape, location) that may depend on the mechanism (e.g., animals, wind) responsible 

for its introduction. We then address the question of how this general, arbitrarily shaped, one-

time invasion should be managed beginning when it is discovered to minimize the total costs and 

damages incurred from the invasion. 

Although invasion spread can follow a variety of processes, we focus on species that 

exhibit random local dispersal, such that the spread can be represented as a reaction-diffusion 

process and approximated as a linear rate of spread.3 We focus on this spread process because it 

is tractable and much can be learned from even this simplest case. We discuss how our results 

and conclusions generalize to alternative spread processes, including those that account for 

stochastic, rare, long-distance dispersal events and repeat invasions. 

We model invasion spread in a two-dimensional landscape and allow for distinct 

landscape boundaries to represent the potential range of contiguous spread of an invasion. We 

model this landscape as a lattice or grid of cells that are linked by dispersal. Cells are either 

invaded or uninvaded, and the invasion spreads from invaded to adjacent uninvaded cells in each 

time period, approximating a constant rate of radial spread. In the absence of control efforts, the 

invasion spreads to fill the entire focal landscape. 

                                                 
3 Mathematically, reaction-diffusion equations describe how the concentration of one or more substances distributed 
in space changes under the influence of two processes: local reactions, in which the quantity of the substances can 
change, and diffusion, which causes the substances to spread out in space. When modeling the spread of biological 
invasions or other organisms, the reaction process characterizes the species population growth. Our reaction-
diffusion assumption thus depicts the combined processes of reproduction and dispersal. 
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Our model incorporates two types of invasion control: clearing of invaded cells and 

preventing spread between invaded and uninvaded cells. Each control action has an associated 

cost, and combinations of control actions can be used to eradicate, contain, or slow the spread of 

the invasion. 

The simplicity of this discrete spatial spread model and the specification of control 

options provide important benefits. First, we are able to depict the objective function and state 

equations in a manner that does not rely on dynamic programming or hill-climbing algorithms. 

Instead, our framework enables fast solutions to the spatial-dynamic optimal control problem— 

despite its high dimensionality—using integer programming.4 In more general spatial-dynamic 

problems, high dimensionality limits the size of the problem that can be solved, thus limiting the 

questions that can be addressed (Konoshima et al. 2008; Potapov and Lewis 2008). A second 

benefit of the model’s simplicity is that the intuition is more readily apparent from results despite 

the inability to derive an analytical solution to this complex problem. In the results presented 

here, we exploit the speed of the algorithm by solving hundreds of optimizations for a large span 

of the parameter space. This large array of results helps identify specific parametric assumptions 

and initial conditions that influence control strategies, which enables us to synthesize the 

intuition behind results. 

Our most interesting findings demonstrate the manner in which boundaries and geometry 

of the invasion and the landscape matter. For example, the location of an invasion relative to the 

boundaries of its potential range affects the prospective damages and the control costs, thereby 

affecting optimal control policies and the net present value of the invasion. In addition, small 

                                                 
4 Even with binary invasion states (i.e., each cell in the landscape grid is either invaded or uninvaded in each time 
period), the size of this optimization problem grows exponentially with the size of the landscape. For example, there 
are 225, or more than 33 million potential configurations of invaded and uninvaded cells in a simple 5x5 landscape 
grid in a single time period, and hence simple search or enumeration algorithms cannot be used to solve this 
optimization problem with multiple time periods. The state of the art in computational algorithms for solving our 
kind of problem via conventional dynamic programming–based algorithms is summarized in Farias et al. 
(forthcoming). Their approximation technique solves a complex game theoretic equilibrium with 50 firms and 20 
states per firm. This is approximate to a problem with a 13x13 grid. Our approach enables us to solve for optimal 
control of invasion spread in very large landscapes (greater than 25x25) and many time periods with integer-
programming software using a branch and bound algorithm. Two features of our model setup facilitate its solution. 
First, we are able to specify the nonlinear invasion and control dynamics as sets of linear inequalities, which greatly 
facilitates the solution to integer-programming programs. Secondly, our spatial-dynamic model retains some of the 
useful properties of more general dynamic problems. Specifically, the ordered structure imposed by time (i.e., a 
topological sort) maintains the applicability of the Bellman principle of optimality, thus allowing the problem to be 
reduced to collection of simpler, overlapping subproblems. 
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differences in the shape and contiguity of the initial invasion can change the qualitative nature of 

optimal controls. This is often because the extent of the exposed invasion edge determines long-

term containment costs. We find that employing landscape features and/or altering the shape of 

the initial invasion through spread or removal can optimally reduce the length of the exposed 

invasion front. We also show how optimal policies exhibit classic forward-looking behavior that 

characterizes optimal dynamic problems. In spatial-dynamic problems, however, optimal policies 

not only anticipate impacts over time, but they also look forward over space to determine where 

and when to apply various controls. In general, invasion control is targeted to slow the spread of 

an invasion in the direction of greatest potential local or long-term damages, or where the costs 

of achieving control are low. 

In the next section, we describe the bioinvasion-spread model, economic model, and 

solution approach. In section 5, we describe the results and derive features of optimal policies for 

a number of specific spatial-dynamic problems, with an eye toward deriving general qualitative 

properties of these systems. In section 6, we summarize and discuss results in the context of 

existing invasion literature. We conclude in section 7 by highlighting some general principles 

about controlling spatial-dynamic processes that we have deduced from our bioinvasion case 

study. 

4. Methods 

4.1 Spread Model 

We define the landscape as the total contiguous two-dimensional range over which the 

invader can spread, such that landscape boundaries represent ecological or physical barriers to 

spread. For example, aquatic species are confined to water bodies and may face particular 

temperature and depth requirements; many insect species are confined by the range of their hosts 

(e.g., wood-boring insects in forests); and, more generally, the potential range or spread of an 

invading species is bounded by physical or ecological barriers (e.g., temperature, elevation, 

soils).5 Although these often are not hard boundaries but gradients of habitability, we capture 

these important constraints to spread by defining a finite landscape whose edges represent these 

                                                 
5 The potential range of an invading species generally can be predicted using ecological niche modeling (Elith et al. 
2006; Peterson 2003). 
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boundaries. The landscape can take any shape to represent features of the potential invasion 

range, although we work primarily with rectangular, smooth shapes. 

As is common in ecological models, such as metapopulation and other spatial 

approaches, we make space discrete. One can think of this either as a representation of a 

landscape consisting of discrete cells linked by dispersal or simply as an arbitrary means for 

dividing space into indexable units. One could arbitrarily divide the landscape into a very large 

number of cells; as the number approaches infinity, discrete space becomes a better and better 

representation of continuous space. 

We model each cell as invaded or uninvaded rather than accounting for species density. 

This approach, which has been commonly employed in metapopulation models (e.g., Hanski 

1999; Kawasaki et al. 2006), abstracts away from detailed population dynamics but still captures 

species’ constraints to growth.  

Invasion spread occurs through the combination of reproduction and dispersal. Many 

species spread primarily based on random, local movements. In this case, invasion spread can be 

approximated by a reaction-diffusion model, which predicts a linear rate of spread (Shigesada 

and Kawasaki 1997). Researchers have used this model to predict spread for many invasions and 

help inform management decisions (e.g., Sharov and Liebhold 1998). We employ a discrete 

space-time version of this spread pattern by assuming that the invasion spreads radially by one 

unit of space in each time period. Others also have employed this basic contact process for 

spread.6 

Many invasions also spread by rare long-distance dispersal events (or stratified-diffusion 

processes), often driven by human assistance (Epanchin-Niell and Hastings 2010; Shigesada and 

Kawasaki 1997). Accounting for this type of dispersal and the potential for reinvasion from 

outside propagule pressure may be important for determining management of specific species. 

However, we focus on the simplest case, which provides intuition for the more general case and 

offers tractability. 

More precisely, we represent the landscape as a grid of square cells that comprises the 

total potential extent of contiguous invasion. Each cell is labeled by its row i and column j in the 

                                                 
6 For example, Kawasaki et al. (2006) model invasion spread using discrete space in which landscape cells are 
invaded or uninvaded. They employ a probabilistic model in which spread occurs to adjacent cells. Here we focus 
on the deterministic model for tractability within an optimization framework. 
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landscape grid, and each cell can take one of two states: invaded (xi,j = 1) or uninvaded (xi,j = 0). 

In the absence of any human intervention, the species spreads from invaded cells to adjacent, 

uninvaded cells in each time period, based on rook contiguity. Thus, if cell (i,j) were invaded at 

time t, cells (i,j), (i,j+1), (i,j-1), (i+1,j), and (i-1,j) would be invaded in the next time period. In 

each subsequent time step, all cells sharing a contiguous border with an invaded cell also become 

invaded. When making space and time discrete, an appropriate combination of cell size and time 

unit must be selected to model specific species; these choices are closely linked because the 

model assumes that the invasion spreads into adjacent uninvaded space at a rate of one grid cell 

per unit of time. 

4.2 Economic Model 

We assume that the invasive species causes damages proportional to the area invaded. 

Hence, landscape-level damages at each point in time are directly proportional to the number of 

invaded grid cells, with marginal (and average) damages equaling d per cell invaded. Our model 

incorporates two types of control: preventing invader establishment in uninvaded cells and 

clearing invaded cells. We assume that the cost of preventing establishment of the invasion in a 

cell depends linearly on the propagule pressure from adjacent invaded cells. Thus, the cost of 

excluding invasion from a cell increases with the number of adjacent (rook contiguous) invaded 

cells and equals invaded_neighbors*b, where b is the cost of preventing invasion along each 

boundary and invaded_neighbors is the number of invaded adjacent cells (0  

invaded_neighbors  4). Once a cell has been invaded, it remains so unless the invasion is 

removed from the cell at a cost e. The cost of clearing thus depends linearly on the area cleared. 

For a cleared cell to remain uninvaded in the following time periods, control must be applied to 

prevent reinvasion at a cost invaded_neighbors*b. If the entire landscape has been cleared, there 

are no subsequent control costs. 

To parameterize this model, damages and costs are tied to the size of the cell and scaled 

accordingly. Similarly, the discount rate is scaled to match the unit of time. By separately 

parameterizing removal costs e and spread prevention costs b, this model allows flexibility in 

specifying control costs based on species characteristics. For many species, such as plants with 

long-lived seed banks or species exhibiting Allee effects, preventing establishment in an area 

may be much less costly than removing an established invasion from that area; this can be 

reflected in the choice of cost parameters. Alternatively, parameters e and b can be thought to 

represent the cost of clearing high-density versus low-density cells since newly invaded cells are 

likely to have lower invader density than fully established ones. 
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4.3 Optimization Set-Up and Solution Approach 

Optimal control of the invasion requires minimizing the present value of the sum of 

control costs and invasion damages across space and time. With careful specification and choice 

of variables, we are able to formulate this nonlinear invasion problem as a set of linear 

constraints and objective function that can be solved as a binary integer-programming problem. 

We specify the problem as follows: 

minimize t * xi, j ,td  yi, j ,te
(i , j )C


(i, j )C
  zi, j ,k ,l ,tb

(i , j ,k ,l )N







tT ,t0
  (1) 

subject to 

Cjixx jiji  ),(,0,, ; (2) 

Cjiy ji  ),(00,, ; (3) 

Nlkjiz lkji  ),,,(00,,,, ; (4) 

1,,),(,,1,,,,   tTtCjiyxx tjitjitji ; (5) 

1,,),,,(,,,,,,1,,,,   tTtNlkjiyzxx tjitlkjitlktji ; and (6) 

TtCjix tji  ,),(}1,0{,, ; (7) 

where the following is true: 

Cji ),(  indexes cells by row i and column j, and C is the set of all cells in the 

landscape; 

Nlkji ),,,(  indexes pairs of neighboring cells, where Cji ),(  is the reference cell, 

Clk ),( is one of its neighbors, and N is the set of all neighboring cell pairs; 

Tt indexes time, where },...,2,1,0{ maxTT  ; 
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}1,0{,, tjix  is the state of cell ),( ji  at time t, where 1,, tjix  if the cell is invaded and 

0,, tjix  otherwise; 

}1,0{,, tjiy  is a binary-choice variable indicating if invasion is removed from cell 

),( ji at time t, where 1,, tjiy  if the cell is cleared and 0,, tjiy  otherwise; 

}1,0{,,,, tlkjiz  is a binary-choice variable indicating if control efforts are applied along 

the border between cell ),( ji  and cell ),( lk at time t to prevent spread from cell 

),( lk to cell ),( ji , where 1,,,, tlkjiz  if the border is controlled and 0,,,, tlkjiz  

otherwise; 

}1,0{, jix is the initial state (t=0) of invasion for cell ),( ji ; 

t is the discount factor at time t (t>0), where t
t r  1)1(  and r is the discount rate; 

d is the damage incurred per time period for each cell that is invaded; 

e is the cost of removing invasion from a cell; and 

b is the cost per time period of preventing invasion from a neighboring cell. 

Equation (2) establishes the initial state of the landscape by defining which cells are 

invaded at t=0. Equations (3) and (4) specify that control efforts do not begin until the first time 

period. Condition (5) requires that a cell invaded in the previous time period remains invaded in 

the current time period unless removal efforts are applied. Equation (6) requires that cell (i,j) 

become invaded at time t if it had an invaded neighbor in the previous time period, unless 
invasion is removed from cell ),( ji or control is applied to prevent invasion from the invaded 

neighbor; this condition must hold for cell ),( ji with each of its neighbors. Individually, 

constraints (5) and (6) provide necessary conditions for a cell to be uninvaded at time t; together, 

constraints (5) and (6) provide sufficient conditions for a cell to be uninvaded at time t. 
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Specifically, an uninvaded cell ),( ji will become invaded at time t+1 unless spread is prevented 

at time t+1 from each adjacent invaded cell at time t or removal efforts are applied to cell ),( ji at 

time t+1. An invaded cell ),( ji at time t remains invaded at time t+1 unless removal efforts are 

applied to it at time t+1. 

In this paper, we are interested in the optimal control solution over an infinite time 

horizon, but solving for this directly as an integer-programming problem would require 

specifying an infinite number of constraints and variables, making the problem infeasible. 

Instead, we solve for the infinite time horizon solution in a finite time horizon framework by 

taking advantage of Bellman’s principle of optimality and specifying appropriate terminal 

values. With a sufficiently long time horizon, our system eventually reaches a steady-state 

equilibrium in which none to all of the landscape is invaded. In fact, with an infinite time 

horizon, time consistency requires that the system has reached this equilibrium if the invasion 

landscape remains unchanged between two time periods. In contrast, for a finite time horizon, 

the system can reach and maintain the steady-state equilibrium for many time periods but can 

depart from the steady state toward the end of the finite time horizon. To deal with this difficulty, 

the steady-state equilibrium solution can be locked in using constraints after the equilibrium has 

been reached, and a terminal value function can be added to account for control costs and 

damages accrued after the final time period. We add the following constraints to the model 

defined above to lock in the equilibrium solution: 

midttTtCjiyy midtjitji _,,),(_,,,,  ; (8) 

midttTtNlkjizz midtlkjitlkji _,,),,,(_,,,,,,,,  ; and (9) 

midttTtCjixx midtjitji _,,),(_,,,,  ; (10) 

where 1<t_mid<Tmax. We choose t_mid and Tmax large enough for equilibrium to have been 

reached and maintained by time t<t_mid. We calculate the terminal value as the net present value 

of steady-state control costs and damages from time T+1 to infinity: 

  


  










1 ),,,(
,,,,

),( ),(
,,,,*

Tt Nlkji
Tlkji

Cji Cji
TjiTjit bzeydx  (11) 

and include this value in the objective function (1). 
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4.4 Model Implementation 

We program this problem in Zimpl (Zuse Institute Mathematical Programming 

Language, version 2.08) and solve it using SCIP (Solving Constraint Integer Programs, version 

1.1.0).7 To reduce the number of parameters, we scale damages d to 1 and measure costs b and e 

as units of damage; this rescaling imposes no loss of generality. We use Tmax=100 and 

t_mid=50 for all optimizations because these time horizons are long enough for the infinite 

horizon steady-state to be reached and maintained for all the invasion scenarios we consider. 

We use numerous comparative spatial-dynamic “experiments” to elucidate the role of 

economic parameters and invasion and landscape characteristics in determining the optimal 

control strategy. We focus on our novel results examining spatial features of the landscape and 

invasion, including landscape shape as well as initial invasion location and shape. For each focal 

characteristic, we ran optimizations for different levels of the characteristic while holding all 

other aspects of the invasion constant. We solved optimizations for a wide array of starting 

conditions, and we present a subset of these optimizations to illustrate key findings, including 

spatial strategies for controlling invasions. 

5. Results 

Optimal control strategies for invasions vary dramatically across invasion, landscape, and 

economic characteristics. Optimal policies range from no control to complete eradication. In 

between these two extremes, optimal policies include eradication of part of the invasion and 

containment or abandonment of the rest, immediate and complete containment, partial 

containment that allowed some spread prior to complete containment, and partial containment 

followed by abandonment of control efforts. For all examined scenarios, if clearing or 

eradication efforts are employed, they are optimally completed in the first time step.  

                                                 
7 SCIP is a framework for constraint integer programming based on the branch-and-bound procedure to solve 
optimization problems (Achterberg 2008). Branching divides the initial problem into smaller subproblems that are 
easier to solve, and the best solution found in the subproblems yields the global optimum. Bounding avoids 
enumeration of all (exponentially many) solutions of the initial problem by eliminating subproblems whose lower 
(dual) bounds are greater than the global upper (primal) bound. 
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5.1 Some Expected Results 

Although not the focus of this paper, we examine how economic parameters, size of the 

potential invasion range, and control delays affect optimal control policies. Our findings support 

those in existing literature, as reviewed by Epanchin-Niell and Hastings (2010). For example, 

high control costs, low damages, and high discount rates reduce the amount of optimal control.8 

All else equal, invasions that have a larger potential for spread demand greater control because 

they face higher potential damages. Larger invasions are less likely to be optimally controlled, 

implying that inadvertent delay of control (e.g., by late discovery) reduces the likelihood that 

eradication or containment will be optimal. In addition, the net present value of costs and 

damages increases with control delays, highlighting the importance of finding and controlling 

invasions early. 

5.2 Landscape Shape 

Landscape shape, an important feature of landscape geometry, has significant effects on 

the optimal policy of an invasion because invasion range boundaries affect the costs of invasion 

control and damages by constraining invasion spread. Figure 1 illustrates the optimal control 

policies for a 2x2 cell invasion spreading in three different-shaped landscapes. All three 

rectangular landscapes have equal area (256 cells) but vary in length and width. The figure 

shows that eradication or containment is optimal across a larger range of economic parameters 

for invasions occuring in the compact (square) landscape (Figure 1a) than in increasingly narrow 

landscapes (Figure 1b, 1c). The boundaries of narrow landscapes confine the spread of species 

more than compact landscapes, so damages accrue more slowly, resulting in lower potential total 

damages. 

The landscape’s particular shape beyond length and width also affects optimal control 

policies. For example, constrictions and expansions in the landscape can alter optimal control 

strategies by affecting the cost of controlling the invasion (Figure 2) or the rate the invasion 

spreads (Figure 3). 

                                                 
8 Because we normalized marginal damages to one and scaled control costs accordingly, the effect of an increase in 
marginal damages is represented in our optimizations as a reduction in control costs. Specifically, a doubling of per-
unit damages is modeled as halving border control and removal costs. 
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Figure 2 illustrates how landscape geometry can be employed strategically to optimally 

reduce long-term containment costs. In this scenario, complete containment in the first time 

period is not optimal because the extent of the exposed invasion edge (11 cell edges) is large. 

Instead, optimal policy slows the growth of the invasion along the center of the invasion front, 

delaying damages centrally, and then contains the invasion in perpetuity when it reaches the 

landscape constriction. This control policy slows the invasion along the region of the invasion 

front that has the greatest potential long-term growth of damages (because it is spreading toward 

the largest extent of uninvaded area) and delays complete containment until landscape features 

constrain long-term costs. 

Landscape geometries that include areas with potentially large rates of damage 

accumulation, as illustrated in Figure 3, also can lead to interesting strategic containment of an 

invasion. In this scenario, the invasion is spreading along a narrow section of the landscape 

toward a region where the landscape becomes wider (and future damages from spread become 

larger). The narrow section of the landscape confines the invasion to spread at a rate of four cells 

per time period, and neither containment nor eradication is optimal because the costs of control 

are high relative to the avoided damages. However, if the invasion were to spread beyond the 

narrow region of the landscape, the rate of damage accumulation would increase rapidly because 

the invasion would spread in three directions rather than one. Consequently, optimal policy 

contains the invasion when it reaches the end of the constricted region, at which point the 

containment costs remain the same but the avoided damages increase. 

5.3 Invasion Location 

Figure 4 illustrates optimal control policies for invasion of a single cell in a 15x15 

landscape at 3 different locations. From top to bottom, the panels in Figure 4 represent an 

invasion beginning at the center, at an edge, and in the corner of the landscape. In this example, 

containment is optimal across a larger range of border control costs for invasions occurring more 

distally, while eradication is optimal across a greater range of marginal eradication costs for 

invasions occurring more centrally. However, the relationship between invasion location and 

control costs varies across scenarios we examine. 

The effect of invasion location on optimal control policy is ambiguous because invasion 

location affects long-term damages and costs of control in opposing ways. An invasion 

beginning near an edge takes longer to fully invade the landscape than an invasion that begins 

near the center because the furthest reaches of the landscape are more distant and the growth of 
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the invasion is constrained by the landscape boundaries. Thus, although an uncontrolled invasion 

will eventually spread throughout the landscape regardless of its starting location, the net present 

value of potential damages from an invasion beginning near an edge are lower, which reduces 

the range of total control costs for which eradication or containment is optimal. 

On the other hand, invasions that occur along an edge of the landscape have lower 

containment costs because the landscape boundaries prevent spread along the bounded edge at 

no cost, mediating the effects of lower damages on optimal policy. Across all optimizations, for 

invasions with similar characteristics, the net present value of costs and damages is higher for 

central invasions than for invasions that begin distally because central invasions have higher 

potential damages and higher control costs than do distal invasions.9 

Invasion location can influence control costs even if the invasion does not begin 

immediately adjacent to a landscape boundary. Figure 5 shows the spread of an optimally 

controlled invasion across four time steps, demonstrating how landscape boundaries are 

strategically employed. The initial invasion (t=0) is a 4x4 block of cells located 2 cell widths 

from the corner of a 15x15 cell landscape. Optimal control policy contains the invasion along its 

central edges, while allowing the invasion to spread toward the corner of the landscape. In time 

periods 1–4, control is applied along the 12, 10, 8, and 10 most central borders of the invaded 

region, respectively, after which the invasion is contained in perpetuity. This strategy, which 

confines the invasion using landscape boundaries, reduces the number of exposed borders from 

16 to 12, reducing periodic containment costs by 25 percent for the long term. In contrast, for an 

identical invasion located centrally in the landscape, immediate containment is optimal because 

landscape boundaries cannot be employed to reduce long-term containment costs, and total costs 

and damages are higher (3,696 versus 3,176). This provides another illustration of how invasion 

location affects optimal control policies and the net present value of costs and damages. 

                                                 
9 In general, the relative effect of invasion location on damages and control costs is determined largely by the size of 
the potential landscape and the extent of the invasion that is confined by landscape boundaries. The difference in 
potential damages from central versus distal invasions is greater in larger landscapes, and more confined invasion 
edges increase the range of border control costs for which containment is optimal. The range of costs for which 
eradication is optimal is much less mediated by the adjacency of landscape boundaries because eradication costs 
depend primarily on the amount of area invaded rather than the amount of edge. Thus, in most cases central 
invasions are optimal to eradicate across a larger range of eradication costs than invasions occurring distally (Figure 
4). Furthermore, the cost-effectiveness of eradication relative to containment tends to be higher for more central 
invasions, because the costs of containing central invasions cannot be reduced by landscape boundaries. This result 
is illustrated by the steeper line dividing eradication and containment in Figure 4 for the central invasion. 
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Figure 6 provides an example of the effect of invasion location on optimal policy for a 

two-patch invasion: a corner patch in the uppermost left-hand cell of the figure and another 

located one cell width from the opposite corner. A large number of optimal control policies are 

possible for this invasion depending on the economic parameters. For example, eradication of 

both patches, containment of both patches, or abandonment of control are optimal policies for 

situations with low eradication costs, low border control costs, and high control costs, 

respectively. However, because of the different locations of the two patches relative to the 

borders, optimal policy applies dramatically different types of control to each patch for small 

variations in cost parameters. 

For example, the lower right-hand patch is more costly to contain because it has four 

exposed edges; in some circumstances it is optimal to eradicate that patch and perpetually 

contain the patch that has only two exposed edges (Figure 6a). For the same invasion with 

slightly higher eradication costs, the optimal policy switches so that initial containment of the 

upper left-hand patch is still optimal, but the patch with more exposed borders is neither 

contained nor cleared (Figure 6b). Because the invasion is not fully controlled, the invasion 

spreads, reducing the benefits of containing the upper left-hand cell, and eventually all control 

efforts are optimally abandoned. 

Although the landscape boundaries cannot be used to reduce the amount of exposed edge 

on the lower right-hand patch in Figure 6b, the optimal policy applies control to the lower right-

hand patch to slow the advance centrally and direct growth toward the corner for the first two 

periods. This approach, which was also employed for the invasion in Figure 2, reduces the long-

term damages from the invasion by delaying spread in the direction with the highest potential 

growth. Similarly, in Figure 5, control efforts slow the spread of the invasion into the corner and 

prevent spread centrally (where the long-term potential growth is greatest). These examples 

illustrate how invasion location within the landscape can affect optimal spatial allocation of 

control. 

5.4 Invasion Shape and Contiguity 

Even holding size and location constant, the shape and contiguity of an invasion affect 

optimal levels and spatial allocation of control effort. For example, containing a compact 

invasion, which has a lower edge-to-area ratio, is optimal over a wider range of border control 

costs than containing a similar patchy invasion. This is illustrated in Figure 7, which shows the 

optimal control strategies for a compact 2x2 cell invasion and a patchy invasion of 4 equidistant 

cells near the center of a 15x15 cell landscape. Optimal policy mandates abandoning control of 
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the patchy invasion across a larger range of marginal control costs because it has higher 

containment costs.10 Because containment is more costly for patchy invasions, eradication is 

optimal across a larger range of marginal eradication costs for patchy invasions than for compact 

invasions. This is evidenced in Figure 7 by the steeper slope of the line dividing containment and 

eradication for the patchy invasion. 

Clearly, an important feature of invasion geometry is its influence on the invasion edge 

and the effect of edge length on containment costs. Figures 2 and 5 show that employing 

landscape boundaries can reduce the extent of exposed edge. In other scenarios, optimal policies 

clear cells or allow spread before containment to alter the shape of an invasion and reduce the 

length of edge. For example, Figure 8 shows an initially “edgy” invasion for which optimal 

policy combines removal and spread prevention to reduce the number of exposed edges from 11 

to 8 before complete containment.  

Finally, with respect to patchy invasions, our scenarios show that optimal control 

strategies can vary across patches of invasion within a landscape and control strategies for 

individual patches depend on the entire landscape context (e.g., Figures 6 and 9). Just as dynamic 

problems involve choosing an entire time path of interdependent decisions, optimal control of a 

spatial-dynamic system involves simultaneously choosing control efforts across spatially 

separated patches because the avoided future damages of controlling each patch depend on the 

control efforts and spread rates at other patches. For example, Figure 9 shows an invasion for 

which optimal policy requires eradication of one patch and slowing, followed by abandonment, 

of the other. However, for an identical invasion with slightly higher border-control costs (b=16), 

the benefits of slowing the spread of the large patch are reduced so that the gains from 

eradication also are reduced, and eradication of the small patch ceases to be optimal. 

6. Synthesis and Discussion 

Our analysis shows that many spatial characteristics of an invasion determine the optimal 

policy, including such novel factors as landscape shape, invasion shape, and location. Nearly 

identical invasions can have dramatically different optimal control policies if they differ in any 

                                                 
10 This occurs even though long-term damages from abandoning control are slightly higher for the patchy invasion 
than for the compact invasion because the patchy invasion spreads faster. It is also important to note that across the 
range of border control costs for which containment of the compact invasion is mandated, optimal management for 
the patchy invasion may involve containment, spread followed by containment, slowing, and even abandonment. 
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of these characteristics. An unfortunate consequence is that deriving clear and simple rules for 

how to best manage all invasions is unlikely. However, we show how these factors affect the 

qualitative nature of optimal control policies and provide intuition for these results.  

6.1 Landscape Shape 

Our results show that invasions in more compact landscapes generally warrant more 

control because spread is less constrained, resulting in higher long-term damage potential. 

However, landscape shape also affects the likelihood that an invasion will be located near 

enough to boundaries to reduce long-term containment costs. Nonconvexities in the landscape, 

such as constrictions and expansions, influence optimal control policies by affecting the costs of 

containment and invasion spread rates in those regions. Interestingly, the presence of landscape 

nonconvexities are the only situation we found for which delaying the start of control efforts can 

be optimal.11 

6.2 Invasion Location 

The initial location of an invasion affects optimal control and total costs and damages of 

an invasion. Central invasions face higher potential damages because the invasion can spread 

through the landscape more rapidly, and control costs may be lower for invasions that begin 

distally if landscape boundaries can help contain the invasion. Thus, centrally located invasions 

tend impose higher total costs and damages than do distal invasions. Location also influences the 

optimal spatial allocation of control by determining the direction of greatest potential invasion 

spread. 

6.3 Invasion Shape and Contiguity 

The shape of an invasion also influences optimal control policies because it affects 

containment costs and spread rates in three important ways. First, a greater amount of invasion 

edge decreases the range of control costs for which containment is optimal, shifting policies 

                                                 
11 Several other studies have found that delaying control can be optimal, but for different reasons than shape. 
Burnett et al. (2007) and Olson and Roy (2008) find that when control costs are stock dependent (i.e., higher 
marginal control costs for smaller invasions), delaying control to reduce control costs can be optimal. For example, 
Burnett et al. suggest that delaying control is optimal for Miconia invasions on some of the Hawaiian islands. We 
are unaware of any other studies than ours that have explicitly examined the effects of landscape shape on optimal 
control policy. 
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toward eradication or abandonment. Second, for edgy invasions, spread or removal before 

containment to reduce the amount of exposed edge can reduce long-term control costs. Third, 

optimal control of patchy invasions depends on the entire landscape, and control efforts can vary 

across patches based on patch and total invasion characteristics. 

6.4 Spatial Aspects of Control 

Land managers can strategically use landscape boundaries to reduce long-term 

containment costs, further highlighting the role of landscape geometry in controlling invasions. 

These boundaries, which are determined by the habitability and porousness of the landscape to 

the invader, include elevational, temperature, and precipitation gradients, soil types, and water 

bodies. Land managers should account for them when determining optimal control.12 

Results regarding the effect of invasion shape on optimal control effort provide insight on 

improving the use of barrier zones, which have been used to control a variety of invasions, 

including the boll weevil and gypsy moth. This approach applies control efforts along the 

growing edge of an invasion to slow its spread (Sharov and Liebhold 1998). Our findings suggest 

that applying control efforts homogenously along the growing edge can be suboptimal. Instead, 

applying control to reduce the length of the invasion edge can be better in some cases. Also, 

greater amounts of control should be applied to slow the invasion in the direction of greatest 

long-term potential growth. 

High-density, established invasions can grow quickly and create new satellite 

populations. An unanswered question is whether control efforts should be focused on large, core 

patches or smaller, satellite patches.13 In this study, we do not consider long-distance dispersal 

processes or differential densities among invaded patches, but our results support two points. 

First, greater amounts of control tend to be optimal for smaller invasions because eradication and 

                                                 
12 For example, an elevationally constrained invasion spreading in a valley between two mountain ranges may best 
be contained in a narrow region of the valley. Also, it may be possible to employ restoration to create landscape 
barriers, because many species more easily invade disturbed ecosystems than diverse or undisturbed systems (e.g., 
Maron and Marler 2007). Creating barriers through restoration or habitat elimination in  strategic areas of the 
landscape may reduce the long-term costs of containing invasions that are too widespread to eradicate. 
13 This questions was first addressed in the literature by Moody and Mack (1988). Taylor and Hastings (2004) point 
out that even theoretical frameworks suggest different prioritizations: “the population biology approach suggests 
that, in general, outliers contribute the most to range expansion and should be removed first, whereas the 
metapopulation approach suggests prioritizing core populations that supply most of the new propagules.” Epanchin-
Niell and Hastings (2010) also review literature addressing this question. 
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containment costs are lower, suggesting that it may be optimal to focus more control effort on 

smaller, satellite invasions in some cases. Second, optimal control for each patch of an invasion 

depends on the entire invasion and landscape, so patches cannot be considered independently. A 

blanket strategy or prioritization is thus unlikely to be optimal. 

The management of many invasive plants is not regulated because they are classified as 

too widespread to justify eradication. Our results show that under some circumstances, however, 

it is optimal to eradicate one patch of an invasion even while allowing other patches to spread. 

Thus it may be worth controlling small populations that occur far from the main invasion, even 

when an invasion is widespread. Furthermore, it may be optimal to slow or contain widespread 

invasions, even when eradication is not justified, especially when large potential for further 

spread exists. 

6.5 Some Principles of Optimal Bioinvasion Control 

The following basic principles arise from this study:  

 Protect large areas of uninvaded landscape. Invasions with greater potential for spread, 

for example, portend larger future damages and thus warrant greater control effort.  

 Reduce the extent of exposed invasion front to reduce long-term containment costs. 

Methods include employing landscape features or altering the shape of the invasion 

through spread or removal.  

 Slow the spread of an invasion in the direction of greatest potential local or long-term 

growth. 

 Do not delay eradication. 

6.6 Assumptions and Generalizability 

As with any model, the one we employ makes simplifying assumptions so that the 

problem of bioinvasion control is computationally tractable. Our model captures important 

features of growth and spread, within which we represent relevant spatial features of invasions 

and solve for fully explicit spatial-dynamic optimal policies. One key feature of invasions not 

incorporated into our model is uncertainty. In particular, our model does not include uncertainty 

due to lack of information (e.g., about spread rates, damages, costs) or stochastic processes (e.g., 

in spread, damages, costs). Nonetheless, our deterministic framework provides important 

intuition about these more general, uncertain invasion cases.  
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Some recent work on invasions has relaxed the assumption of perfect information to 

examine issues of adaptive, robust invasion management and the value of information, primarily 

in the context of nonspatial control of pest density (e.g., Carrasco et al. 2009; Eiswerth and van 

Kooten 2007; Saphores and Shogren 2005; Yokomizo et al. 2009). Our work contributes insight 

to this branch of research by suggesting that space may play an important role in adaptive 

management and learning. In particular, our model shows that the costs and damages of allowing 

invasion to spread can vary depending on direction, even in a homogeneous region, simply due 

to differences in potential long-term growth and containment. Thus, during the learning process 

about a novel invader, it might be optimal to allow the invasion to spread specifically in the 

direction of natural barriers or low potential long-term growth, where the damages and control 

costs are likely the lowest. 

Stochasticity in spread processes, control effectiveness, costs, and damages are also 

potentially relevant to invasion management. The main limitation of our deterministic model is 

its inability to allow for stochastic, rare, long-distance dispersal events. Unfortunately, this is a 

very difficult problem to address in the context of explicit space and is yet unsolved. However, 

our model does provide some intuition. For species that exhibit long-distance dispersal, we 

expect eradication to be optimal across a greater range of economic parameters because damages 

would accrue faster than they would if dispersal was over a shorter distance. Also, we believe 

that containment would be optimal across a smaller range of economic parameters, because 

containment costs would be higher as satellite invasion patches were removed or the benefits 

would be lower as the invasion established beyond the containment zone. In contrast, we expect 

a shift away from eradication and containment in regions that incur repeat invasions because the 

benefits of both types of control are reduced.  

Nonetheless, we believe that the same qualitative patterns we found in this study with 

respect to economic, landscape, and invasion characteristics, as well as spatial strategies for 

control, will hold for invasions with different patterns of spread. As in our deterministic model, 

we expect that optimal control will favor the maintenance or formation of compact and 

landscape-constrained invasions to minimize the local containment costs and the potential for 

long-distance dispersal. In addition, we expect greater control efforts to be applied in the 

direction of high potential long-term damages. For an invasion of a species exhibiting long-

distance dispersal and spreading in a narrow, constrained region that opens into a more 

expansive area, we expect control efforts that employ the landscape constriction to facilitate 

control but begin earlier. With respect to stochasticity in costs and damages, our deterministic 
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model transfers easily because parameters can be viewed as expected costs and damages for a 

risk-neutral social maximizer. 

Another necessary modeling assumption regards the shape of the cost and damage 

functions. We employ constant marginal costs and damages, but alternative assumptions can 

apply depending on the particular invasive species (Epanchin-Niell and Hastings 2010). We 

chose what we believe is a general but tractable assumption and have tried to capture features of 

a wide diversity of potential invaders by optimizing over various cost and damage parameters. In 

addition, our specification of two separate cost parameters—one for clearing and one for 

preventing spread—allows particular flexibility for capturing biological and economic 

characteristics of particular species. 

Finally, we did not present results showing how heterogeneous costs, damages, spread 

rates, and other factors affects optimal control. However, our results provide some guidance as to 

how such heterogeneities might affect control. For example, if damages from the invasion are 

higher in certain regions of the landscape, control efforts will be directed to prevent or delay the 

spread of the invasion into those regions. Areas with lower rates of spread might be employed to 

contain an invasion at lower costs. 

7. Conclusions 

In this paper, we aim to provide useful and novel understanding of economically optimal 

control of bioinvasions. Employing a two-dimensional, spatially explicit biological spread model 

allows us to examine control strategies that vary across space and time. It also allows us to 

identify how the geometry of the invasion and landscape affect the qualitative nature of optimal 

control policies. As we show, the optimal solution for a spatially explicit optimization problem 

generates a far richer set of solution characteristics and more nuanced conclusions about how to 

control bioinvasions than work that treats space only implicitly or does not allow for 

differentiated control across space. We describe and provide intuition for the wide spectrum of 

optimal solutions that emerge as we perturb bioeconomic parameters as well as landscape and 

invasion geometry. 

The second purpose of this paper is to use bioinvasions as a model case study for learning 

about the wider class of spatial-dynamic problems. Economics has a rich legacy of analysis that 

addresses dynamic problems and the spatial nature of economic activities. In contrast, problems 
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driven by spatial-dynamic processes have only recently begun to receive attention.14 Spatial-

dynamic problems are characterized by diffusion or spread processes that generate patterns over 

space and time. Examples aside from bioinvasions include groundwater contamination, 

epidemics, forest fires, migration and movement, and technology adoption. In human-mediated 

landscapes, economic agents may be affected by these spatial-dynamic processes, and they also 

may affect the patterns that unfold. In a setting in which agents are located over space, a general 

question arises about how to control spatial-dynamic processes in a manner that maximizes 

welfare across the whole landscape. As we have shown for the bioinvasion case, where spread 

generates damages, the issue is not only when and at what level of intensity to initiate controls, 

but also where.15 We have found, in general, that the dynamic parts of the solution—those 

concerned with when and at what level of intensity to initiate controls—are intertwined in 

complex ways with the spatial part of the solution, or where to initiate controls. 

When we account for space and time, some results reflect our intuition about the dynamic 

components of the problem, while other features are novel. Most importantly, adding space 

necessitates concern about geometric characteristics of problems in addition to concern about 

more familiar metrics such as size or quantity. To highlight some of our new findings about 

bioinvasions that may shed light on the larger class of spatial-dynamic problems, we compare 

general principles that apply to dynamic problems with some new results that emerge from our 

consideration of spatial dynamics: 

 In dynamic problems, time is the index that differentiates decisions and runs only 

forward. Time and space identify decisions in spatial-dynamic problems, which run 

forward in time but can spread and contract in multiple directions over space.  

 The optimal solutions to interesting dynamic problems always involve a trade-off 

between contemporaneous benefits (costs) and the present value of long-term costs 

(benefits). Importantly, the solution is forward-looking, scanning the complete time 

                                                 
14 This includes work on marine systems by Clark (1973), Brown and Roughgarden (1997), Sanchirico and Wilen 
(1999, 2005, 2007), Janmaat (2005), Costello and Polasky (2008), Brock and Xepapadeas (2008), Ding and Lenhart 
(2009), and Smith et al. (2009); a study on spatial-endogenous fire risk and fuel management by Konoshima et al. 
(2008); work on bioinvasions by Wilen (2007) and studies described previously in this article; work on managing 
dispersive pests by Bhat et al. (1993, 1996) and Huffaker et al. (1992); work on disease management, including by 
Rich and Winter-Nelson (2007), Rich et al. (2005a, 2005b), and Ding et al. (2007); and an application to managing a 
semi-arid system by Brock and Xepapadeas (2010). 
15 When spatial-dynamic processes generate benefits, similar issues arise in choosing policies that encourage, rather 
than inhibit, spread. 
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horizon, adding up the marginal impacts over that horizon, and comparing those 

anticipated impacts with current marginal costs. Spatial-dynamic problems also are 

forward-looking but over time and space. Optimal bioinvasion controls in our problem 

account for the size and character of the potential space (and hence damages) that lies 

ahead in time and space of the advancing invasion front. Directionally differentiated 

damages influence the degree of control exerted at any point in time and space. Large 

prospective damages (either from a large amount of space or from high damages per unit 

of space) in the path of a spreading front will call forth higher levels of control early and 

at locations often roughly orthogonal to the path of the front.  

 Dynamic optimization solutions critically depend on the initial state of the system, 

generally measured by the size of capital or resource level at some starting date. For 

example, the smaller the initial capital level relative to its steady-state level, the larger 

current optimal investment should be. For spatial-dynamic problems, the geometry of the 

initial state matters as much as its size. As we show, small variations in shape and 

location in the landscape can lead to qualitatively different optimal solutions. For 

example, whether eradication or containment may be optimal depends on not only basic 

costs, damages, size of invaded area, and discount rate, but also how large the initial 

invasion is relative to the landscape, where it is located, the extent of exposed invasion 

edge, and other spatial features. 

Economists will need to develop new intuition about spatial-dynamic problems by 

analyzing these and other cases before we can understand what features of the solutions to this 

class of problems appear to be general. In the meantime, these are just a few of the 

characteristics that we conjecture may emerge as general properties of solutions of other spatial-

dynamic optimization problems. 
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Figures 

Figure 1.	Optimal Control Strategies for Three Landscape Shapes 

 

Notes: Parameter space shows how the optimal control strategy varies based on eradication and border control costs. 
The three equal-sized landscapes are: a) 16x16, b) 8x32, and c) 4x64. Each initially is invaded by a central 2x2 
invasion. (r = 0.05). 
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Figure 2.	Example of Optimal Control in a Landscape with a Constriction 

 

Notes: The region is 11x15 with two 4x9 sections removed (the light gray areas are not invadable). Optimal policy 
slows the spread of the invasion as it approaches the landscape constriction, where it is ultimately contained in 
perpetuity. (r = 0.05, b = 7, e = 250). 

 

Figure 3. Example of Optimal Control in a Landscape with an Expansion 

 
Notes: The region is 9x18 with two 3x6 sections removed (the light gray areas are not invadable). Optimal policy 
allows the invasion to spread until it reaches the end of the narrow section at time t = 4. Control efforts begin in time 
period 5 that contain the invasion in perpetuity. (r = 0.05, b = 27, e =250). 
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Figure 4.	Optimal Control Strategies for Three Initial Invasion Locations 

 

Note: Parameter space shows how the control strategy varies based on eradication and border control costs for a 
single cell invasion in a 15x15 cell landscape located: a) centrally, cell (8,8); b) at an edge (1,8); and c) at a corner, 
cell (1,1). (r = 0.05). 

 

Figure 5.	Optimal Control of an Invasion in a 15x15 Cell Landscape by a 4x4 Patch of 
Cells Near a Corner of the Landscape (r = 0.05, b = 10, e =230). 
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Figure 6.	Optimal Control of a 2 Patch Invasion in a 15x15 Cell Landscape for 2 Different 
Eradication Costs 

a) 

 

b) 

 
Notes: Invasion begins in cells (1,1) and (14,14) (in a corner and near a corner, respectively). In scenario (a) the 
optimal policy eradicates the cell in the lower right-hand corner in the first time period and contains the invasion in 
the upper left-hand corner in perpetuity. (r = 0.05, b = 27, e =1600). With slightly higher eradication costs in 
scenario (b), the optimal policy slows the invasion for the first 6 time periods and abandons control over the whole 
landscape at time t = 7. (r = 0.05, b = 27, e =1800).  
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Figure 7. Optimal Control Strategies for Two Invasions that Differ in Contiguity 

 

Notes: Parameter space shows how the optimal control strategy varies based on eradication and border control costs 
for invasion by: a) 4 contiguous or b) 4 equidistant, noncontiguous cells in a 15x15 landscape. The initial invasion 
occurs near the center of the landscape as: a) a block of 4 cells ((8,8), (8,9), (9,8), (9,9)), and b) 4 separated cells 
((7,7), (7,9), (9,7), (9,9)). (r = 0.05). 

Figure 8. Optimal Control of an Invasion in a 7x14 Cell Landscape by a Patch of Cells 
with Local Concavities 

 

Note: The optimal policy eradicates one cell and slows the spread in the first time period, partially contains the 
invasion in t = 2, and contains the invasion in perpetuity beginning in the third time period. (r = 0.05, b = 7, e = 83). 
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Figure 9. Optimal Control of an Invasion in a 15x15 Cell Landscape by a Small (1 cell) and 
Large (9 cell) Patch 

 

 

Optimal policy eradicates the small patch and slows the spread of the larger patch by directing spread into the corner 
of the landscape. Eventually the invasion spreads to fill the entire landscape. (r = 0.05, b = 14, e =450).  


