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Abstract

A heavy truck imposes an externality if its presence causes traffic accidents for which it is

not held liable. We obtain an estimate of the increase in accidents that occur when a truck is

added to a road, using quasi-experimental variation in the influx of truck traffic during the shale

gas boom in Pennsylvania. We find evidence that adding trucks to a road is relatively safe for

the trucks themselves, but less so for other cars on the road. We find an increase in the number

of car accidents when there is an additional truck on the road. While we find an increase in

car-accident counts, the additional accidents on city streets and rural roads are not more severe,

and on highways even are less severe. We find suggestive evidence that the accident externality

of trucking reverberates to even more road users through higher car insurance premiums.
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1 Introduction

Trucking is a ubiquitous form of transport: trucks carry the largest share of goods by weight in

the United States, truck driving has become the most common occupation in the majority of US

states, and the industry accounts for 1 percent of US gross domestic product.1 Does the presence

of trucks result in more accidents between other vehicles? And if so, is everyone paying through

higher car insurance premiums?

The aim of this paper is twofold. First, we estimate the accident externality caused by additional

trucks on the road. To do so, we exploit the large and rapid influx of trucks transporting water

for hydraulic fracturing in Pennsylvania, the state that produces the most shale gas in the US, and

estimate the effect of an additional truck on the frequency and severity of accidents. Second, we

quantify the monetary cost of the accident externality for other road users. We exploit a novel data

set that records the insurance premiums offered to new enrollees in Pennsylvania to estimate the

causal effect trucks have on insurance premiums.

Vickrey (1968) first pointed out that by merely being on the road, a vehicle imposes an accident

externality. Vickrey gives the example that a two-car accident would not have occurred had the

non-negligent party opted to take a train, so even the non-negligent party’s marginal damages are

equal to the total damages. Yet liability rules don’t hold both vehicles responsible for the full

damages, and therefore driving involves unpriced externalities. Examples are easy to envision in

the case of trucks: suppose to pass a heavy truck, a car enters oncoming traffic and collides with

another car. The accident would have occurred because the truck was on the road, but liability

rules would never hold the truck accountable for the damages. Moreover, in the case of trucks,

the accident externalities could be even more pronounced than in the case of cars, for two reasons.

First, for those accidents that involve a truck, the truck’s weight, larger frame, height, wheelbase,

braking distance, and rigidity will increase the amount of damage inflicted on the other vehicle.2

The additional damages from features of trucks would not be internalized in cases in which the

truck is not at fault. Second, the simple existence of a long and tall object on the road can require
1Trucks carried 67 percent, or 13 billion tons, in 2012 (US Department of Transportation, 2013); the most common

occupation includes the count of delivery truck drivers (“Map: The Most Common Job in Every State, NPR, Planet
Money,” February 5, 2015. Quoctrung Bui.); and the GDP estimate is from the Gross-Domestic-Product-(GDP)-by-
Industry Data, US Department of Commerce, Bureau of Economic Analysis, 2013.

2Nehiba (2020) exploits a new dataset of truck weights and estimates a strong impact of weight on the severity of
accidents.
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more difficult maneuvering of other drivers. Trucks as objects on the road can cause other types of

accidents to occur, for example, car-on-car collisions. On the other hand, it is possible that drivers

will compensate for being surrounded by heavy trucks by driving more carefully, which would result

in fewer and less severe accidents.3 Thus, the effect of an additional truck on the frequency and

severity of accidents is ultimately an empirical question.

Little work has been done on estimating the accident externalities of trucking (Nehiba, 2020).

The transportation literature has examined safety risks of heavy trucks, but with an eye toward

identifying predictors of truck accident rates (e.g., safety management practices and driver or

company characteristics), and has exploited cross-sectional variation (see the survey by Mooren

et al., 2014), which means that estimates could be biased if unobserved characteristics, such as road

infrastructure, drive both the number of trucks as well as the number of accidents. In contrast, we

use panel data with plausibly exogenous variation in trucks to examine both the impact on truck

accidents as well as on car-on-car collisions. Our difference-in-differences estimation strategy relies

on the short-lived, large quantities of water used and produced when hydraulically fracturing shale

formations for natural gas. Water is pumped into wells at high pressure, fracturing the shale rock

to release its natural gas, and wastewater is produced, consisting of salty water that flows to the

surface with the gas (alongside any fracturing fluid also returning to the surface). Freshwater and

wastewater are primarily transported using tanker trucks—with one well requiring 800 to 2,400

one-way trips. We exploit the spatial and temporal variation in the location of wells, water sources,

and waste destinations. We use geographic information systems (GIS) to predict the most likely

route that trucks take to haul water to and from a well.

The shale gas routes provide a unique setting in which a large influx of trucks is concentrated

in a small area over a short period of time (typically less than 90 days). This has advantages

for our identification strategy. If one were to estimate the effect of an observed increase in truck

traffic, without knowing the source of the increase, it could be that the trucks are coming from

control roads. In the case of the water-hauling trucks, these are trucks brought to Pennsylvania

in response to the rapid boom in shale gas. They are therefore new additions to the road and are

not the result of rerouting. A first challenge to our identification strategy is that a resource boom
3Or, outside the scope of this paper, in the long run, drivers could buy larger cars to protect themselves, which

could result in more severe accidents with other road users (Li, 2012).
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is not only associated with trucks, but also other confounding factors. In the case of shale gas

development, not only is the number of cars on the road changing, but also is the composition of

drivers—specifically, there are more young male drivers (Wilson, 2020), a group that is statistically

more likely to be in a crash (Massie, Campbell and Williams, 1995).4 We provide an estimation

strategy that isolates the impact of the trucks themselves by comparing, over time, the specific

roads used by shale gas trucks to similar roads in the vicinity not used by shale gas trucks.5

Increased accident rates following shale booms have been documented in Pennsylvania, Wis-

consin, and North Dakota (Graham et al., 2015; Kalinin, Parker and Phaneuf, 2017; Xu and Xu,

2020).6 But we note that these estimates are not used to back out the safety risks of adding a truck

to the road. The increase in truck traffic could coincide with an unobserved county shock (e.g., a

change in population) that also increases the number of accidents. Our estimation strategy centers

on individual roads: we compare changes on roads predicted to be used by trucks to changes on

similar roads, in the same county, that are predicted not to be used by trucks, such that we obtain

an estimate that is isolated from the shale boom at the county level. On our predicted truck routes,

we find a statistically significant increase in truck traffic that falls within the range of previous re-

ports’ predictions of shale gas truck traffic (we estimate each well requires 641-988 one-way truck

trips). In contrast, we estimate the number of cars on the truck routes is the same, suggesting that

we can isolate the impact of a truck from the general increase in traffic associated with a shale

boom. Importantly, we examine local roads separately from highways (with local roads being city

streets or rural roads with a single lane of traffic in either direction).

Depending on the subsample we find zero to small effects on the number of accidents involving a

truck. This finding is consistent with Nehiba (2020), who using data on truck counts across the U.S.

also finds trucks on the road cause only a small increase in the occurrence of accidents involving

trucks. Similarly, in our paper, adding a truck to a highway does not result in a statistically

significant increase in truck accidents. Adding a truck to a local road, has a small increase of
4 The in-migration of workers is smaller in Pennsylvania than other fracking states—Wilson (2020) finds the

migration response in the northeastern US was almost eight times smaller than in North Dakota.
5In the Appendix we also provide estimates that capture the overall impact of a well, including the impact from

the resource boom.
6These estimates provide insights into the costs of shale gas development, useful for county planners and relevant

to the literature on the economic impacts of hydraulic fracturing (see review, Mason, Muehlenbachs and Olmstead,
2015). In the case of Wisconsin, Kalinin, Parker and Phaneuf (2017) find an increase in truck accidents following a
sand-mining boom which was spurred by the shale boom.
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one truck accident occurring annually for every 93 trucks. More striking are our findings on the

occurrence of car accidents when trucks are added to the road. We estimate that one car accident

occurs annually for every 6 trucks on highways and one car accident occurs annually for every 7

trucks on local roads. The increased risk to other vehicles is a finding previously unreported in the

literature. We don’t find evidence that the results are driven by differences in the characteristics

of drivers and cars on the truck routes. What appears to change is driving behavior. Specifically,

the share of accidents attributed to aggressive driving, speeding, and changing lanes is significantly

higher on truck routes, including those routes far from wells.

The risk of a truck will depend on truck characteristics, road characteristics, traffic volumes,

and the alternative routes available for cars. Our estimates apply to a sample of mostly rural

Pennsylvanian roads and may not extend to other settings. For example, we find differential effects

of a truck on highways compared to smaller roads, which suggests that the impact of trucks in

more urban settings may be different from what is estimated in this paper. Furthermore, oil field

exemptions from limits on driving duration might result in the truck drivers in our sample to be

more fatigued than in other industries.7 As one might expect, fatigue has been identified as a

contributing factor of vehicle accidents (Williamson et al., 2011; Smith, 2016), and therefore our

estimates could be larger than in the case of heavy trucks. Moreover, our estimates may not

extend to other shale regions, because of differences in road characteristics, traffic volumes, and

alternative routes across shale states (of which there are over 30), even though they experience

similar compositional shifts in truck traffic. Xu and Xu (2020) find that hydraulic fracturing in

the Bakken formation in North Dakota lead to more truck traffic and truck accidents, but not

more non-truck accidents. As they point out, North Dakota’s population density, and consequently

traffic density, is much lower than Pennsylvania’s. With lower traffic density, the probability of

a car-on-car crash triggered by a truck, is much lower. Nonetheless, the qualitative finding, that

trucks can increase the number of accidents between other road users, is important to consider

when designing public policy involving trucking (e.g.,Leard et al., 2015, Cohen and Roth, 2017, or

Lichtman-Sadot, 2019).
7The Federal Motor Carrier Safety Administration’s regulations for the hours of service of drivers (§ 395.1) has

exceptions for drivers servicing the operations of natural gas and oil industry. After a consecutive eight days a driver
must take a 34 hour break; for oil and gas, the break is 24 hours. Waiting time at well sites is also not counted as
on-duty time, which would in other industries count towards the maximum allowed driving period of 14 consecutive
hours (US Federal Motor Carrier Safety Administration, n.d.).
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We obtain a dollar value of the externality using a unique data set of the car insurance premiums

offered by six national carriers to a representative new insurance enrollee.8 We expect that trucks

on the road will have an outsized impact on car insurance premiums for two reasons. First, as

pointed out by Vickrey (1968), the additional costs caused by additional parties on the road are

not accounted for in the liability regime. With more expensive truck accidents, the external costs

have the potential to be larger, materializing into even larger increases in car insurance premiums.

Second, even in cases in which the truck is deemed negligent, the accident can also impose an

externality if the truck does not carry sufficient insurance, raising the costs of those who are fully

insured (Smith and Wright, 1992). It is arguable that trucks on US roads are underinsured because

current required liability was set over thirty years ago, in 1985 at $750,000.9 While we find more

accidents, they are not more severe, and in the case of highways are even less severe. So it is an

empirical question as to whether more trucks on the road leads to higher car insurance premiums. In

examining insurance premiums, we find that areas exposed to shale gas truck traffic see insurance

premiums increase for representative new enrollees. Specifically, the average truck-traversed zip

code saw an increase in annual insurance premiums of $2.92, with the most-traversed seeing an

increase of $30.40. Importantly, the increase responds to the location of the truck routes, not the

location of the wells. Translating the impact to an estimate per kilometer driven by a truck, a

year’s worth of truck miles would increase new enrollee insurance premiums by 8 cents. While

this estimate is small, the full cost of the truck would entail multiplying this increase by all new

enrollees in the zip code. We don’t have the count of new enrollees in a given year, but if we assume

that the number of vehicles registered in Pennsylvania in a year are re-enrolled, then our estimate

would imply one truck imposes an external cost of $8,520 in higher aggregate insurance premiums.
8The data represent the rates offered to a single 40-year-old male who commutes 12 miles to work each day in a

new Honda Accord and has a clean driving record and good credit.
9Trucks are required to hold insurance, or a surety bond, to cover a minimum amount of liability (set by the

Federal Motor Carrier Safety Administration, FMCSA). In 2013, a federal bill was introduced to raise the minimum
to $4.422 million (H.R. 2730). However, the bill did not pass, and instead an amendment was passed prohibiting
any increase to the liability limit during fiscal year 2015 (H.R. 4745); to date the limit remains the same. Several
government and industry reports have differing conclusions on the frequency with which crashes exceeded the liability
limits. A government report found that only 1 percent of the of truck crashes exceed the limit (3,300 of 330,000
total crashes) (US Department of Transportation, 2013), and a report by the American Trucking Association found
that only 1.4 percent of accidents exceed $500,000. A report by the Trucking Alliance, however, found the limit
was inadequate for 42 percent of the claims (Simpson, 2014). Discussions about raising the limit bring objections
from small businesses. The industry is primarily made up of small operators; in 2015 the United States had 550,000
trucking companies, with an average of 20 trucks per company (US Department of Transportation, 2016). For a flavor
of these concerns, we direct the reader to the comments section of a trucking magazine (reader discretion advised):
http://www.overdriveonline.com/fmcsa-current-insurance-minimums-for-carriers-inadequate-new-rule-coming/.
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Edlin and Karaca-Mandic (2006) estimate the external cost of one car on existing car insurance

premia to be between $1,725-$3,239. Our estimate is larger not only because we are looking at

trucks and not cars, but we are also examining new insurance plans, which might be more elastic

than existing plans.

While we provide an estimate of the accident externality from trucking, this estimate does not

include other, yet-to-be measured costs, such as the added stress of driving on roads with trucks.

Similarly, there are a host of other documented externalities associated with trucking, such as the

costs of congestion, pavement damages, noise, energy security, and local and global pollution (for

example, Parry, 2008, Austin, 2015, Leard et al., 2015, He, Gouveia and Salvo, 2019, and Cohen

and Roth, 2017). We would be remiss to only discuss the costs without discussing the economic

benefits of trucking. While to the best of our knowledge these benefits have not been quantified for

trucking specifically, large benefits from transportation infrastructure have been documented, from

reducing trade costs and increasing productivity, income, manufacturing, and land values (Ghani,

Goswami and Kerr, 2016; Donaldson and Hornbeck, 2016; Donaldson, 2018).

Our paper proceeds as follows. Section 2 provides background on shale gas development and

describes our data. Section 3 describes our identification strategy. Section 4 reports our empirical

findings on traffic and accidents and 5 reports our empirical findings on the insurance premiums.

Section 6 concludes.

2 Background and data

Truck traffic induced by shale gas development is a major concern for local residents (Theodori,

2009), policymakers (Rahm, Fields and Farmer, 2015), and industry (Krupnick, Gordon and Olm-

stead, 2013). Multiple truck trips are needed to transport equipment, including the drilling rig,

pipe to construct the well, and sand used to prop open the water-induced fractures. However, most

of the truck trips involve water trucks; 2 million to 4 million gallons of freshwater and fracturing

fluids are pumped into each well to create the fractures and 10 to 70 percent of this volume may flow

7



back to the surface, along with formation brine (Veil, 2010).10 The waste fluids are then collected

for reuse, recycling, or disposal.

Indeed, if we look at the count of accidents that occur in counties with shale gas wells, we can

see that with the shale boom, accidents increase. Figure 1 shows the correlation between traffic

accidents, and wells drilled in Pennsylvania (where accident rates are expressed as the difference

between counties that at some point in time have a shale well and those that do not).
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Figure 1: Trends in accidents and wells drilled
Notes: Figure plots the number of wells drilled in a quarter along with the difference between the mean number of
accidents in Pennsylvanian counties with shale and in those without.

This increase in accidents represents the risk from drilling a shale gas well in a county; it could

be driven by additional cars and trucks on the road, but also by changes in the types of drivers

and/or cars on the road. To isolate the increase in truck traffic from other idiosyncratic shocks, we
10These estimates are from New York State Department of Environmental Conservation (2011); Abramzon et al.

(2014); Gilmore, Hupp and Glathar (2014). Transporting water by truck is a costly endeavor and there are moves to
transport more water via pipeline. The decision to pipe versus truck depends on water volumes, distances, pipeline
right-of-way access, and water quality (IHS Energy Blogger, 2014). Although there is investment in pipelines (e.g.,
“Energy Firm Makes Costly Fracking Bet–on Water,” Wall Street Journal, Russell Gold August, 13, 2013), it is
still not very commonplace (e.g., “Water Pipelines Mostly a Pipe Dream in the Marcellus,” Pittsburgh Post-Gazette,
Anya Litvak, October 21, 2014). Furthermore, the water pipes transport only fresh water, not wastewater, which is
transported via truck. Despite efforts to reuse wastewater, a significant portion is shipped for offsite disposal.
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zoom in to the road level. Using GIS (described in section 2.2), we predict the most likely route

that the trucks take. Because hydraulic fracturing is concentrated over a short period of time, we

can compare the rates of accidents before and after trucks use a given road relative to similar roads

not used by trucks, while controlling for the general increase in traffic on all roads in the county.

2.1 Description of data sources

For our analysis, we combine data from several sources and construct a sample at the road-segment

level, which provides insights into the impacts of trucks on road safety.

Accidents. We obtained detailed information on all motor-vehicle crashes in Pennsylvania from

the Crash Reporting System (CRS) maintained by PennDOT. We have crash reports from 1997

to 2014 with information on the type of vehicles involved and the latitude and longitude of the

accidents. The CRS data set covers more than 2 million crashes, 23,827 of which resulted in one

or more fatalities. Importantly, this data set also has information on accidents that did not result

in a fatality, which is an advantage over the national Fatality Accident Reporting System (FARS).

Accidents must be reported if at least one motor vehicle was involved and there was an injury or

death and/or damage to the vehicle that prevented it from being driven. Given that less serious

crashes would thus not be reported in the data, we potentially underestimate crash frequency.

Traffic counts. PennDOT also collects data on traffic counts, providing annual truck and vehicle

counts from 2004 to 2014. Traffic count data must be handled with caution. Some observations

are imputed by PennDOT, either by repeating the same traffic counts across different years, or

by inflating using estimates of population growth.11 In the years when traffic is measured, only

a 24-hour snapshot of time is used, and a “day-of-week-by-month” factor is applied to calculate

the average daily count for the year. The 24-hour period might not coincide with the quarter that

the shale truck traffic was the heaviest (discussed later when interpreting the coefficients). Despite

these shortcomings, we nonetheless obtain a shale-gas-truck count that is comparable to estimates

reported in the literature.
11We exclude observations that appear to be imputed (i.e., when both the count of vehicles and the count of trucks

remains exactly the same for more than one year, we keep only the first year; or if both increase but the percentage
change in both truck traffic and nontruck traffic are the same.
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Shale gas wells. We obtained the latitude and longitude of all 8,848 unconventional wells drilled

in Pennsylvania as of the end of December 2014 from the Pennsylvania Department of Environmen-

tal Protection (PADEP) and the Pennsylvania Department of Conservation and Natural Resources

(PADCNR). We have information on the “spud” date (i.e., date that drilling commenced) and the

date drilling was completed. Information on the timing of drilling is important because truck traffic

to and from a well is particularly concentrated around the drill date. Most water is used within 45

days of completion and completion occurs on average 80 days after the drill date.12

Water withdrawal and waste disposal points. We obtained data from PADEP on the lo-

cation of approved water withdrawal sources for hydraulic fracturing, including the approval date

and the expiration date. In 2009 there were 240 approved withdrawal points, but by 2014 there

were 1,124. From PADEP we also know the specific waste disposal location used by each well.

Wells are required to report all waste shipments, giving us the universe of shipments. We have

41,625 unique waste shipments from unconventional wells for which we know the location of the

well, the location of the disposal point, and the quantity shipped. These shipments were to 233

distinct locations (including industrial waste treatment plants, municipal waste treatment plants,

landfills, reuse, and injection disposal wells). The withdrawal and disposal locations in and near

Pennsylvania are depicted in Figure 2.13

2.2 Construction of truck traffic routes

We use GIS to predict the most likely transportation route that the trucks take to get from a water

withdrawal point to a well and from a well to a waste-disposal location. For the road network,

we use the TIGER dataset from the US Census Bureau. The TIGER dataset breaks up the

US road network into 630 thousand road segments that have an average length of .628km. The

TIGER dataset designates segments by different road types (primary roads, secondary roads, and
12We construct our variables around the spud date and not the completion date because spud dates are available

for all wells, but few have a completion date, even when completed (for only 20 percent of producing wells is a
completion date listed).

13There are more waste disposal sites even farther away than depicted in the map. Although some waste is shipped
as far as Utah, Michigan, and Idaho, the majority of the waste leaving Pennsylvania goes to Ohio, New York, and
West Virginia.
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Figure 2: Wells, waste disposal, water withdrawal, and weight-limit restrictions in Pennsylvania,
2014

local neighborhood roads).14 We calculate the “least cost” route, in which trucks would take the

shortest distance, and we add penalties to roads with lower speed limits. We assigned impedances

on each road depending on the speed limit of the road type.15 Private roads that are used for

service vehicles and unpaved dirt trails that require four-wheel drive are included in the GIS work

to connect wells to the road network, but otherwise, in our analysis we drop these roads.16

The roads that trucks are allowed to use change over time because roads can be restricted by

vehicle-weight limits. Communities can protect themselves from road damage induced by trucks

by imposing weight restrictions on certain roads. The posted weight limit is typically 10 tons, and

water-hauling trucks are typically over 40 tons. Vehicles weighing more than the posted limit can
14The TIGER definitions for road types are the following. Primary roads are generally divided limited-access

highways with interchanges and ramps; secondary roads are main arteries, with one or more lanes of traffic in each
direction, with at-grade intersections with other roads and driveways; local neighborhood roads are paved non-arterial
street, road, or byways with usually a single lane of traffic in each direction.

15Weighting by typical speed limits of the road types, primary roads were assigned the least impedance of 1,
secondary roads were assigned an impedance of 1.18, tertiary, 1.86, and trails and private roads, 4.33.

16Including these roads increases the size of our sample by 18% but only .02% of all accidents occur on these roads.
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drive on the roads if they obtain a permit, by providing a security bond that can be used to repair

the roads.17 We obtained data on which segments were posted and/or bonded as well as the start

and expiration dates from the Pennsylvania Department of Transportation (PennDOT). Primary

highways cannot be weight-limit restricted, but approximately 11,369 miles of secondary roads in

Pennsylvania have posted weight restrictions, of which 4,619 have been posted since 2008. We

calculate the different routes for different years, using the road’s weight-limit and bonding status

at the beginning of the year. We do not allow trucks to traverse weight-limit posted roads, unless

the road is listed as bonded. The decision to post a weight limit on a road is based on preventing

road damage and not accident risk, or of specific importance to our identification strategy, the

weight-limits are exogenous to the expectation of future accident risk. Figure 2 depicts the roads

that are weight-limit restricted (i.e., posted and not-bonded) as of the end of our sample period.

Interestingly almost all of the posted roads overlie the Marcellus formation (not depicted), indicating

the influx of trucks following shale gas development.

Figure 3: Example route from water withdrawal location to well to waste disposal site

17Typical bonds are $6,000 per mile of unpaved road and $12,500 per mile of paved road. As an aside, the estimates
of road damages are $13,000 to $23,000 per well (Abramzon et al., 2014).
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Counting road use for water withdrawal and waste disposal. We assume that the wells

use the nearest (in least-cost terms) approved water-withdrawal source. Since the water withdrawal

data start in 2009, we assume that the points that were approved in 2009 were also available in

earlier years.18 Because reported completion dates are on average 80 days after drilling begins, we

only count a road as connecting a well to a water withdrawal source one quarter after the well is

drilled. To obtain a road segment-year-quarter observation, we sum the total number of wells that

are predicted to use the road segment in the year-quarter.

In the case of waste disposal, we know how much waste was shipped as well as the location

of where it was shipped. Waste quantities were reported to PADEP annually from 2004 to 2009

and semi-annually from 2010 to 2014.19 The same well can have multiple shipments to different

waste disposal locations. We therefore rescale each shipment quantity so that total shipments over

the lifetime of a well sum to one, so that both withdrawal and shipment correspond to the trucks

needed for one well.20

2.3 Estimation sample

A criticism of empirical studies on accident risk is that road types are often not distinguished in

the analysis (Dickerson, Peirson and Vickerman, 2000): “it seems inappropriate to assume that

drivers’ behaviour, and thus accident rates, do not differ between, say, motorways and small side

streets.” And that implications exist from mileage on highways being associated with less risk than

mileage on undivided streets (Janke, 1991). Recognizing that the impact of a truck will most likely

be different depending on the type of road, we divide the sample into two groups of roads: (1) main

arterials and highways (these include both primary roads which are usually divided, limited access
18Although not in our data, approvals were also required before 2009, see Abdalla and Drohan (2009). Nonetheless,

of the 8,848 wells in our sample, only 507 were drilled before 2009.
19To divide the annual into sub-year intervals, we examine the distribution of half-year waste shipments as a

function of half-years since the well was drilled. We then divide the annual data into half-years using this empirical
distribution (55 percent of the waste is estimated to fall in the first half-year and 45 percent in the second). To
disaggregate into the quarter, we divide the half-year observations into equal halves across the quarters. Waste
shipment data in 2007 are likely incomplete; there are only 10 percent of the number of observations as there are in
2006. Therefore, we do not include 2007 in our estimation; however, when it is included, our results are qualitatively
and quantitatively similar.

20Eighty percent of the waste shipments are of wastewater, reported in barrels. Twenty percent of the waste
shipments are solids reported in tons (comprised of drill cuttings, flowback sand, frac-fluid waste, and general oil and
gas waste). We convert tons to barrels using the number of barrels of crude oil in a ton (7.3 Bbl/ton, Team, 2003).
This conversion will likely over estimate the number of trucks needed for much of the solid waste, because crude oil
is lighter than sludge (5.7Bbl/ton Speight and Arjoon, 2012), or solid shale rock itself (2̃.2Bbl/ton, Manger, 1963).
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roads distinguished by the presence of interchanges; and secondary roads, which are main arterials

that have one or more lanes of traffic in each direction, may or may not be divided and have grade

intersections) and (2) local-neighborhood and rural roads (these are tertiary roads, which are paved,

non-arterial streets, including city streets and rural roads, usually a single lane in each direction).

Table 1 compares the average characteristics across road types and treatment (truck routes) and

control roads, before and after the shale boom (pre and post 2007). We don’t have traffic data for

all roads, but of those measured, highways have more truck and car traffic than local roads. We

do have accident data on all roads, and we see that highway segments have more truck and car

accidents. Truck routes are roads that at some point in time are a predicted truck route for a well.

Compared to all other roads in the state, these roads have more accidents of any type, both in the

pre- and post- period, but even more so in the post- period.

We also construct a control group that is more comparable to the treatment group, following

a strategy similar to Kline and Moretti (2013). Specifically, using pre-2007 characteristics, we

estimate a probit model of the probability of a road being a truck route and then exclude roads

with a predicted probability in the bottom 25 percent.21 The last two columns of Table 1 show the

mean of the trimmed control group, pre- and post-shale boom.

In our main specifications, we use the trimmed control group, to reduce the difference between

control and treatment roads. However, as we show in the Appendix (Table A2), results are similar

if we include the full sample or if we are even more conservative and restrict the sample to only

roads that at one point and time are truck routes (such that the control group consists of roads

that are used by wells at some time in the past or future).22

21We match on pre-2007 characteristics of county-average total population, indicators for road types, the average
vehicle accident rate, truck accident rate, fatality rate, and injury rate, and average annual daily vehicle and truck
traffic counts.

22Specifically, using the full sample or the most conservative sample, the coefficient point estimates are not sta-
tistically different, but we lose some statistical significance when using the most restrictive sample, such that our
estimates are only significant at the 10% level.
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Table 1: Summary Statistics

Truck routes Control roads Trimmed control roads

Mean Mean Mean Mean Mean Mean
Pre Post Pre Post Pre Post

A. Sample of highways:
Quarterly truck accidents .083 .084 .035 .034 .033 .031
Quarterly car accidents .772 .835 .545 .598 .488 .521
Quarterly accidents with a fatality .013 .013 .006 .006 .006 .006
Quarterly accidents with an injury .452 .431 .325 .338 .285 .286
No. of observations (accident data) 302,749 188,410 645,202 380,541 605,530 362,894
No. unique segments (accident data) 7,606 7,606 16,196 15,642 15,168 14,818

Annual daily average truck count 623 832 592 811 582 771
Annual daily average car count 6,195 7,539 6,739 9,146 6,614 8,503
No. of observations (count data) 34,511 51,135 18,601 23,623 17,533 22,234
No. unique segments (count data) 6,732 6,969 9,010 7,523 8,477 7,186

B. Sample of local and rural roads:
Quarterly truck accidents .0006 .0009 .0003 .0004 .0003 .0004
Quarterly car accidents .020 .031 .011 .021 .010 .017
Quarterly accidents with a fatality .0003 .0004 .0001 .0002 .0001 .0002
Quarterly accidents with an injury .011 .015 .006 .011 .006 .008
No. of observations (accident data) 1,733,060 967,589 17,857,009 10,445,604 12,777,817 7,206,040
No. unique segments (accident data) 43,475 43,471 447,554 434,741 320,013 310,899

Annual daily average truck count 461 622 320 389 264 319
Annual daily average car count 5,109 6,055 4,643 5,500 3,632 4,163
No. of observations (count data) 34,507 45,381 105,479 104,492 81,411 74,989
No. unique segments (count data) 18,637 18,774 79,489 58,231 60,368 42,360

Notes: All data are by year-quarter (1997-2014) except traffic counts, which are annual (2004-2014). Here “Truck routes” are
roads that were at some point in time used by at least one well to access a water withdrawal or disposal site; “Control roads”
are all other roads never traversed; “Control roads in trimmed sample” drops control roads whose prediction of traversal, based
on pre-shale (i.e., pre-2007) characteristics, is in the bottom 25 percentile. “Pre” refers to pre-2007 and “Post” refers to post-
2007.

3 Identification strategy

We exploit the temporal and spatial variation in the location of shale gas wells, water withdrawal

locations, and disposal locations in the Marcellus shale region. Separately we estimate the effects of

shale gas development on traffic counts, and then the effects on traffic accidents. The combination of

these two outcome variables allows us to rescale the traffic accident estimates into an accident-per-

additional-truck estimate. This is akin to calculating our own IV-estimate using different samples,

but not estimating these together because the traffic counts are measured at the annual level and

for many fewer roads.
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We examine traffic and accident outcomes by individual road segments. Our treatment variable,

Truck Routesst is constructed from the GIS prediction of the least-cost route between wells, water

withdrawal, and waste disposal points and represents the number of wells predicted to use the

segment to reach a water withdrawal or disposal point in the quarter (rescaled for every 10 wells).

Using data by road segment, s, we examine traffic counts and accident counts, yst:

yst = αTruck Routesst + β Truck Routes × I(Near well)st + λs + µct + εst (1)

Our main coefficient of interest is α, which represents the change in our outcome variable when

a road is used to connect wells to a water source or waste disposal location, relative to the change

in control roads. We include road-segment fixed effects, λs, to capture time-invariant differences in

traffic and accidents across different roads. Importantly, also included in the accident regressions

are county-by-year-quarter fixed effects, µct. These control for changes in traffic accidents affecting

all roads in the county-year-quarter, but are not concentrated in the particular quarter on the

particular road used by trucks, including changes in weather from quarter to quarter and county-

wide boomtown effects, such as an influx of young male drivers. Our data on traffic counts are at

the annual level, and therefore in the traffic regressions we only include µct, representing county-

year fixed effects. To deal with the concern that there might be spillover effects of treatment roads

on our control roads, in all specifications, we drop control roads that are within 1,000 meters of a

truck route.23

The reason to zoom in to the road-segment level is to obtain an estimate of the increase of

accidents on shale gas truck routes, absent other boomtown impacts. However, one potential

concern is that some of these truck routes may also be used by workers needing to get to the

wells, particularly when there is only one road to access a well.24 Therefore, the assumption that

a comparison of segments used and not used by trucks over time, after controlling for county-year-

quarter and road-segment fixed effects, can isolate the effect of trucks per se is more plausible the

farther away from a well. We therefore include an additional regressor, Truck Routes × I(Near
23Our results are similar if we include all roads as well as if we drop only those within 500m. In the Online Appendix

(Table A3) we show results when we don’t drop any control roads and when we drop control roads within 500 meters
of the truck route.

24We are less worried about workers driving to and from the withdrawal and disposal points, because trucks are
parked at the well site.
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well), to capture the fact that routes nearest the wells are likely to have heavier traffic. Specifically,

we allow for a differential impact on truck routes within a certain distance of a recently drilled

well (drilled in the quarter or previous quarter). In our main specification we use 2km to designate

whether a route is near a well. However, we also show results from different regressions, each with

a different distance used to designate whether a route is near a well. If we are indeed isolating a

truck effect, increasing this distance should change the magnitude of the coefficient β, but should

not change the magnitude of α.

Another potential worry is that the influx of trucks could result in new developments on the

treated roads (for example, restaurants or gas stations) which would also increase the number of

cars and/or accidents on the road. If so, our estimates would be capturing the long-run impact of

adding trucks to the road, including changes in infrastructure in response to the trucks. For the

majority of routes this is not likely to be the case, because the routes are used for such a short time

(typically less than a quarter). However, for the routes used by many different wells over a longer

time horizon, then part of our estimate could be driven by new developments. We note that this is

more likely to be the case on arterials and highways than on local-neighborhood and rural roads.

4 Effects on Traffic Counts and Accidents

4.1 Main Results

Table 2 presents estimates of regression (1) using as outcome variables traffic counts and accidents.

Acknowledging that there will be different impacts depending on whether the road is a main arte-

rial/highway or a local-neighborhood/rural road, we estimate the impacts of trucks by road types

separately.

Changes in traffic counts on truck routes. In our sample of highways, when a segment is

used by one well, we see the annual average increase by 1.755 more trucks per day,25 which would

imply each well uses 641 waste and water trucks.26 We estimate a similarly sized increase in truck
25The independent variables in Table 2 are in counts of 10 wells, so dividing the coefficient on highway truck routes

(Panel A, Column 1) by 10 gives 1.755.
26The average daily truck count increase is the coefficient estimate divided by 10 multiplied by 365. The daily

increase is estimated using data generated from random draws of portions of the year and so we must multiply it by
365 days to get an estimate of the total number of truck trips.
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traffic on local/rural roads. In the sample of local/rural roads, road segments used by one well see

2.708 more trucks per day, which would imply each well uses 988 waste and water trucks, which

is in the range of government reports (800-2,400) (New York State Department of Environmental

Conservation, 2011).27

Key to our identification strategy, on truck routes we do not see an increase in car traffic on

either highways or local roads (Column 2). The coefficients imply that one well using a highway is

correlated with a statistically insignificant 1.384 more cars per day, and one well using a local road

is correlated with a statistically insignificant 3.970 more cars per day. The car increase represents

a statistically insignificant .2 to .8 percent increase in car traffic relative to the baseline. This effect

is an order of magnitude smaller than the relative increase in truck traffic (a statistically significant

2 to 4 percent), providing evidence that our county-year-quarter controls capture the increase in

cars on the road.28

Including controls for proximity to a well (Truck routes*I(Near Well)) captures the combined

accident effect of trucks and workers driving to the well. If we are capturing most of the shale truck

traffic to/from a well, we should expect to see no significant difference in truck traffic on the routes

nearest to the wells. If there are workers needing to get to the wells with cars, we should expect to

see more cars on the routes nearest to the wells. We don’t find more trucks on the routes nearest to

the wells or more cars nearest the wells. Our small and statistically insignificant estimates of cars

could be (1) because there is no difference on the roads nearest the wells, or (2) because the limited

coverage of traffic count data limits the power we have to detect a difference. Thirty percent of the

truck routes are near a well (I(Near well)>0), however, in our sample of truck routes with traffic

counts, only 16% are near a well. We discuss what these two different interpretations would mean

for our accident counts below.

Changes on accident counts. Now we turn to the count of truck (Column 3) and car

(Column 4) accidents in a quarter. We find that adding a truck to a highway does not increase the
27How do these compare to a regression if we used county-level observations? Comparing the estimates to county-

level estimates found in the Appendix (section A), we note that the segment-level estimate of the number of trucks
per well (641-988) is less than county-wide estimate (2,798). The larger county-level estimate includes other types of
trucks that are not concentrated on the water/waste routes.

28If we used county-level observations, instead of segment-level while controlling for counties, we would indeed
estimate an increase in car traffic. With each additional well the average segment in a county has 7.54 more cars per
day, or 0.16 percent of the average car traffic in treated counties (Appendix section A).
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Table 2: The impact of trucks on traffic counts and accidents, by road
type

Average daily traffic count Quarterly accident count

Truck Car Truck Car
(1) (2) (3) (4)

A. Highways
Truck routes 17.55** 13.84 -.0018 .0240**

(8.90) (25.72) (.0029) (.0120)
Truck routes*I(Near well) -.05 1.88 .0472** .1000**

(1.06) (4.05) (.0199) (.0430)
Segment FE Yes Yes Yes Yes
County-year-quarter FE No No Yes Yes
County-year FE Yes Yes No No
Mean of dep. var. 757 6,240 .08 .79
R2 .67 .76 .60 .81
N 37,330 37,330 1,436,809 1,436,809

B. Local and rural roads
Truck routes 27.08*** 39.70 .0006** .0068***

(9.97) (31.74) (.0003) (.0025)
Truck routes*I(Near well) 2.72 9.62 .0022*** .0083*

(2.78) (9.87) (.0008) (.0048)
Segment FE Yes Yes Yes Yes
County-year-quarter FE No No Yes Yes
County-year FE Yes Yes No No
Mean of dep. var. 640 5,256 .0007 .02
R2 .75 .85 .11 .59
N 53,505 53,505 22,321,018 22,321,018

Notes: Observations are by road segment-year in the case of traffic counts and by road
segment-quarter in the case of accidents.
Dependent variables are the annual-average daily truck count and daily car (non-truck) count
and the segment-year-quarter count of accidents with a truck, count of accidents between cars
only. Traffic regressions include segment fixed effects and county-year fixed effects. Accident
regressions include fixed effects for segment and county-year-quarter.
“Truck routes” are the count of wells (in counts of 10) in the year-quarter that are predicted
to use the road segment. “Truck routes*I(Near well)” are the counts within 2km of a recently
drilled well.
Panel A: Subsample of roads classified as primary or secondary: main arteries that have one
or more lanes of traffic in each direction.
Panel B: Subsample of roads classified as tertiary: local neighborhood roads, rural roads,
and city streets.
Implied %-effect is calculated using the coefficient on Truck routes.
Robust standard errors are clustered by road-segment. *** Statistically significant at the 1%
level; ** 5% level; * 10% level.

number of truck accidents but does increase car accidents.29 Specifically, when a highway is used
29On highways truck accidents are unchanged on the truck routes (Panel A, Column3) but accidents involving

other vehicles (non-trucks) increase (Panel A, Column 4).
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to connect one well, we see an increase in car accidents of .3%.30 Compared to highways, we find

that adding a truck to a local/rural road, is much more dangerous. We find an increase in both

more truck and car accidents on local/rural roads. When a local road connects a well, we see a

8.6% increase in truck accidents and a 3.4% increase in car accidents.31

Our traffic estimates suggest that we should not see more accidents nearer to the well (Truck

routes*I(Near Well)), because we did not estimate more traffic nearer to the well. However, we

do find an increase in both car and truck accidents nearest to the well. How to interpret these

conflicting results? If our estimate of no increase in traffic counts nearest to wells is correct, then

the increase in accidents would suggest that there is something specific about shale gas traffic

(e.g., compositional changes of riskier drivers).32 In this case our truck traffic results come with

the caveat that they are not generalizable beyond shale gas truck traffic. However, given that

we have many fewer segments in the traffic-count dataset, it is likely that our traffic counts are

under-powered, and that we see more accidents near wells, reiterates the importance of controlling

for (Truck routes*I(Near Well)) so that we don’t include the accidents nearest to the well when

trying to isolate a truck effect.

How to interpret the size of the effects? Using the estimate of the increase in the number

of trucks (Table 2, Column 1) and the estimate of the increase in truck accidents (Columns 3), we

can calculate a per-truck estimate truck accident rate. On highways we estimate that an additional

truck does not have a statistically significant impact on the number of truck accidents. On local

and rural roads, we estimate an additional truck increases the number of truck accidents. Using

the typical kilometers a truck drives in a year, and assuming they were to occur only on local and

rural roads, the estimates imply annually one truck accident for every 83 trucks.33

How to interpret the size of our truck accident estimates? First, we can ask whether our accident
30Truck routes is in counts of 10 wells, so the accident increase in levels is had from dividing the coefficient by 10

(we see an increase of .00240 car accidents from one well). On average segments have .79 accidents per quarter (so
the implied effect is an increase of .3%=(.00240/.79)*100).

31In levels, a local road used by one well results in .00006 more truck accidents in a quarter and .00068 more car
accidents in a quarter. In percentage terms, the percent increase in truck accidents is larger given far fewer baseline-
truck accidents (local roads have on average .0007 truck accidents per quarter, compared to .08 on highways).

32We explore the composition of the accidents in more detail in Table 4.
33The coefficient on truck routes in Column 3 suggests 0.00006 more truck accidents on rural roads after connecting

one well. Dividing by the estimate of the absolute increase in trucks on local roads (988 trucks) and the average
length of a local-road segment (.537km), we get the per kilometer risk. Scaling up by the number of kilometers a
truck typically travels in a year, 109,685 km (US Department of Transporation, 2013), this results in 0.012 truck
accidents per year of truck driving on local and rural roads.
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rates reflect current truck insurance premiums. If each truck accident was the fault of the truck

and reached the current liability limit of $750,000, the actuarially fair insurance premium would

be $0/km for highways to $0.085/km for local/rural roads. The average truck insurance premium,

including liability and cargo, was $0.057/km (American Transportation Research Institute, 2016),

which falls in the range of our estimates. Companies with larger fleets pay lower insurance (by

self-insuring, using higher deductibles, and relying on umbrella policies); for example, companies

operating more than 1,000 trucks pay $0.028/km, whereas companies with fewer than 5 trucks

pay $0.075/km. The average current rate is lower than the local/rural road estimate because this

average would cover trucks traveling on all types of roads and also not all accidents would reach

the full liability.

Second, we could compare how our estimate of accident costs compare to pollution costs from

trucks. The estimate for local/rural roads ($0.085/km) is larger in size than the CO2 emissions

costs ($0.05/km).34 However, both of these estimates are smaller than the health costs associated

with a truck’s local air pollution. He, Gouveia and Salvo (2019) show that in São Paulo, NOx

concentrations result in one hospitalization per year for every 10-20 trucks, and one death per

year for every 100-200 trucks. And then including our estimate of the increase in car accidents,

we have suggestive evidence that the presence of a truck results in an increase in the number of

accidents between other road users. On local and rural roads, annually one car accident occurs

for every 7 trucks and on highways annually one car accident occurs for every 6 trucks.35 The

car accidents would not be internalized through truck insurance premiums, and therefore would

be reason to implement a tax. Parry (2008) provides an estimate for the optimal tax structure to

account for externalities associated with trucking fuel use, such as local and global pollution, as well

as externalities associated with kilometers traveled, such as congestion, truck accidents, pavement

damage, noise (the optimal tax includes a diesel fuel tax of $.69/gallon and a per-kilometer tax of
34Using the average fuel economy for heavy trucks (specifically, from the Federal Highway Administration, the

average miles traveled per gallon of fuel consumed for combination trucks of 5.8 miles/gallon, or 9.3 km/gallon, https:
//www.fhwa.dot.gov/policyinformation/statistics/2013/vm1.cfm), .0113 tons of CO2 emissions per gallon of
diesel (or 10.21 kilograms per gallon according to the EPA’s Emission Factors for Greenhouse Gas Inventories), and
a social cost of carbon dioxide of $42/ton.

35Using the coefficient of accident count, coefficient on truck counts, road- specific segment lengths (.537km in the
case of local roads and 2.57km in the case of highways), and the average annual kilometers driven by trucks.
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$.04/km to $.20/km).36 We reveal an additional externality, that of more car accidents (Table 2),

and therefore the optimal tax will be larger than previously thought.

4.2 Placebo and Robustness Tests

Whether we can attribute our estimates to the impact of trucks alone, will depend on how well we

are controlling for other changes on these routes. In this section, we present results from a placebo

test and various robustness tests to provide evidence that our identification strategy likely isolates

the effect of trucks.

Trucking route placebo regression. We test the identifying assumption that trends in traffic

and accidents on control roads provide good counterfactuals for trends in treatment roads in absence

of treatment. Most wells were drilled between 2007 and 2014. We test for differential trends prior

to shale gas drilling by recoding the observations so that, falsely, the roads are used in earlier years.

We run the traffic count regressions using a shift of three years, since the data start in 2005, over

a sample from 2005 to 2011. And we run the accident regressions using a shift of eight years, since

those data start in 1997, over a sample from 1997 to 2006. If the trends are similar between treated

and control roads in the absence of shale gas drilling, then we would expect the point estimates to be

statistically insignificant. Indeed, the coefficients in this placebo test are statistically insignificant

with the exception of injuries on highways (Table 3).

Varying the distance to wells. If the coefficient on truck routes remains relatively constant,

even far from the well itself, then this would provide evidence that our estimate on truck routes

is not confounded by changes associated with the well (e.g., cars needing to access the well pad).

Figure 4 shows coefficients from separate regressions, differing in the distance defining “near” a

recently drilled well. On the roads nearest to the wells, we find a large significant increase in

both truck and car accidents, and this effect declines with the distance from a well. Thus, these

controls likely capture something that is related to well access but not solely related to trucks.

Including these controls, we find our estimates of accidents on truck routes vary little, regardless of
36The current federal diesel tax rate is $.244/gallon and Pennsylvania’s state diesel tax rate is $.64/gallon. Penn-

sylvania does not have a tax per vehicle-miles-traveled, while other states do (Kentucky for example charges $.02/km
driven by heavy trucks and Oregon charges up to $.18/km depending on the truck’s weight and number of axels).
Registration fees in Pennsylvania vary by class, from $62 per year to $1,664 per year.
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Table 3: Placebo test: Fictitious treatment dates

Average daily traffic count Quarterly accident count

Truck Car Truck Car
(1) (2) (3) (4)

A. Highways
Truck routes -13.07 -36.63 -.0015 -.0008

(9.07) (30.46) (.0027) (.0072)
Truck routes*I(Near well) -1.82 1.07 -.0082 -.0119

(1.99) (9.36) (.0103) (.0194)
Mean of dep. var. 766 6,445 .09 .80
R2 .73 .82 .61 .82
Obs. 23,635 23,635 799,234 799,234

B. Local and rural roads
Truck routes -1.15 35.74 -.0001 -.0033**

(14.87) (53.03) (.0001) (.0015)
Truck routes*I(Near well) -2.96 17.1354 .0003 -.0016

(5.74) (22.37) (.0006) (.0033)
Mean of dep. var. 708.98 5681.44 .00 .02
R2 .81 .91 .11 .59
Obs. 62,520 62,520 12,145,816 12,145,816

Notes: Regression specifications are the same as those for Table 2, difference is that treat-
ment variables are given fictitious dates. Specifically, treatment variables are shifted 3 years
prior in the traffic sample, since the traffic data start in 2004 (traffic sample therefore cov-
ers 2004-2011). Treatement variables are shifted by 8 years prior in the accident data, since
the accident data start in 1997 (accident sample therefore covers 1997-2006). Robust stan-
dard errors are clustered by road-segment. *** Statistically significant at the 1% level; **
5% level; * 10% level.

the distance used to control. The most variation comes from car accidents on highways, but they

are nonetheless pretty consistent (with coefficients fluttering between being statistically significance

and ranging from .0168 to .0271 in size).
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Figure 4: Truck and car accidents depending on distance from a well
Notes: Figures present the coefficients on Truck routes, α, and on Truck routes*I(Near well), β, from separate
regressions of equation (1) on truck and car accidents. For each distance indicated, a regression is run, differing by
the distance used to determine whether a route is near a well, I(Near well). Subfigures (a) and (c) use the subsample
of highways and subfigures (b) and (d) the subsample of local and rural roads. Shaded areas represent 90% confidence
intervals.

Testing for compositional changes on truck routes. To use the variation in shale gas truck

traffic to estimate the impact of adding a truck to a road, we are making the assumption that

this variation is not correlated with unobservables that increase the number of accidents. We

cannot definitively test whether this assumption holds, but we can look for evidence that it is

violated. We run equation (1), but use as outcome variables the fraction of accidents occurring in
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Table 4: Share of types of accidents in a segment-quarter, by road type

Highways Local or rural roads

A. Driver characteristics
Shale Lic. Male<25 Alcohol Unbelted Shale Lic. Male<25 Alcohol Unbelted

Truck routes -.0001 -.0023 .0001 -.0011 -.0000 .0002 -.0100* -.0067
(.0007) (.0027) (.0017) (.0022) (.0011) (.0066) (.0053) (.0056)

Truck routes*I(Near well) .0007 .0079** .0012 .0040 .0019 .0059 .0147 .0302*
(.0014) (.0037) (.0026) (.0031) (.0037) (.0151) (.0126) (.0174)

Mean of dep. var. .0046 .23 .1 .17 .0022 .27 .14 .2
R2 .08 .08 .10 .10 .16 .17 .20 .19
Obs. 273,485 273,485 273,485 273,485 208,334 208,334 208,334 208,334

B. Accident characteristics
Aggressive Speeding Changing Tailgating Aggressive Speeding Changing Tailgating

Truck routes -.0044 -.0054** .0025* -.0022 .0278*** .0193*** .0022* -.0014
(.0033) (.0026) (.0015) (.0014) (.0078) (.0071) (.0012) (.0019)

Truck routes*I(Near well) .0004 .0007 -.0016 .0034** -.0063 -.0225 -.0030 .0087*
(.0046) (.0045) (.0015) (.0016) (.0175) (.0193) (.0024) (.0046)

Mean of dep. var. .58 .25 .042 .061 .56 .29 .0065 .03
R2 .15 .22 .18 .15 .23 .31 .16 .18
Obs. 273,485 273,485 273,485 273,485 208,334 208,334 208,334 208,334

Notes: Dependent variable in each column is the share of accidents in a segment-quarter with a characteristic listed in the
column heading. Additional characteristics can be found in Appendix Table A4. Shale license refers to share of accidents in
the segment-quarter that involve a driver with a license from Arkansas, Louisiana, Oklahoma, or Texas (the states outside
of Pennsylvania producing the most shale gas). All specifications include fixed effects for segment and county-year-quarter.
Robust standard errors are clustered by road-segment. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

a segment-quarter that are attributed to accidents with particular characteristics.37

Truck routes are similar in characteristics associated with a shale boom (e.g., males younger

than 25, cars registered in the four-largest-shale-producing states, fatigued drivers, or share of

luxury vehicles). Exceptions are in directions one might not expect, and are small. Specifically,

we find fewer alcohol related accidents (but only a .7% decrease that is statistically significant at

the 10% level, Table 4), and fewer males aged 25 to 50 (but only a .2% decrease, Table A4). We
37Driver characteristics include the share of accidents with a driver with a license from the largest shale producing

states (Arkansas, Louisiana, Oklahoma, or Texas). Including Pennsylvania, 95% of production came from these states
according to the EIA’s production estimates for 2010. We also examine the share of accidents with a male driver
under 25 years of age, share of accidents that are alcohol related, or have an unbelted driver or passenger. Other
characteristics specific to the accident include the share of accidents with an aggressive driving indicator, speeding
indicator, merging/changing-lanes indicator, or tailgating indicator. In the Appendix, Table A4, we show the share
of accidents with vehicles registered in the four largest shale states, share of accidents involving a luxury vehicle (as
defined by the make of car being an Acura, Audi, BMW, Buick, Cadillac, INFINITI, Jaguar, Land Rover, Lexus,
Lincoln, Mercedez-Benz, Porsche, or Volvo), the average age of the vehicles in the accident, the share of accidents
attributed to avoiding an object (or animal, pedestrian, or vehicle), the share of accidents with a distracted-driver,
the share of accidents with a fatigue or asleep indicator, share of accidents with male drivers aged 25-50, or share of
accidents with male drivers 50 years or older.
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do see some statistically significant coefficients in the case of characteristics of driving behavior.

We find highways used by trucks result in less speeding (.2% less), perhaps driven by congestion

or defensive driving near trucks. This can be safety enhancing because with higher speeds comes

more accidents (van Benthem, 2015). When local and rural roads are used by trucks, we see the

opposite: an increase in the share of accidents attributed to aggressive driving (.5%) and speeding

(.7%). This increase could be from drivers attempting to make up lost time behind a truck or that

aggressive driving is needed in order to pass trucks on local roads. Consistent with trucks changing

driving behavior, we see an increase in accidents associated with changing lanes across both types of

roads (3.3% on local roads and .6% on highways). We do not find an impact on other risky-driving

indicators (such as tailgating, not using a seatbelt, or in the Appendix, distracted-driving). On

highways, vehicles are newer, but only by less than a month (.1% newer). Nearest to the well, we

do detect an increase in young men and tailgaters, reiterating the importance of controlling for the

roads nearest to the wells.

Importantly, we note that when we examine characteristics at the county-level (Appendix Sec-

tion B.3), we find boom counties indeed see different driver characteristics, which further demon-

strates the power of the county-year-quarter controls in the road-segment specification. Running

similar regressions as Table 4 but at the county level, we find that with each well drilled in the

county, there are more accidents with drivers from shale states as well as vehicles registered in

shale states (Table A5). There are more males aged 25-50 as well as unbelted drivers. These char-

acteristics do not show up in the road-segment specification, implying that control and treatment

segments in the same county see similar increases. At the county level, similar to the road-segment

level, vehicles are newer (but again by less than one percent) and counter-intuitive to what one

might expect from a shale boom, there are fewer luxury vehicles (but only by a very small amount,

of less than one percent).

Is the relationship between trucks and accidents nonlinear? The accident risk of a truck

could depend on how many other trucks are on the road. For example, it could be that the

incremental accident risk from a truck declines with each additional truck if traffic speed is reduced

and people drive more carefully in the presence of many tucks. However, it could also be that the

incremental accident risk increases with each truck if congestion results in more people attempting
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to pass the trucks. We examine whether the relationship between trucks and accidents is nonlinear

by splitting treated segments into five groups, roughly evenly spaced groups: segments connecting

up to four wells, segments connecting four to eight wells, segments connecting eight to 12 wells,

segments connecting 12 to 16 wells, and segments connecting more than 16 wells (with segments

connecting no wells as the reference category).38 We then estimate equation (1) where we replace

Truck Routes by separate indicators for each group.

Figure 5 plots the estimated coefficients on the indictors, for highways and local and rural roads

separately. On highways we find evidence for a nonlinear effect of trucks on car accidents: adding

an additional truck only causes more car accidents if many other trucks are already present. In

contrast, on rural roads adding an additional truck increases the accident risk for cars independent

of the number of trucks present. The car accident risk appears to increase with the number of

trucks, but we cannot rule out that the point estimates for the different groups are statistically

the same. Consistent with the main estimates, we find additional trucks have little effect on truck

accidents on highways, but do increase truck accidents on local and rural roads (although the

estimated effects are small in magnitude).
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Figure 5: Truck and car accidents by intervals of well counts
Notes: Each figure presents the coefficients from a regression that includes separate dummies for an increasing number
counts that a road segment is used as a well’s truck route.

38Taking an increment of four wells results in a similar number of treated segments in each group (except for the
first group, which contains more treated segments because most segments only connect one or two wells.)
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Table 5: The impact of trucks on injuries and fatalities

Minor Moderate Major Any injury Fatality

A. Highways
Truck routes -.0255*** -.0075*** -.0027*** -.0151** -.0001

(.0052) (.0019) (.0010) (.0062) (.0006)
Truck routes*I(Near well) -.0047 -.0162** .0016 .0124 .0005

(.0112) (.0072) (.0053) (.0171) (.0025)
Mean dep. var. .31 .1 .029 .44 .013
R2 .66 .43 .19 .75 .11
Obs. 1,436,809 1,436,809 1,436,809 1,436,809 1,436,809

B. Local and rural roads
Truck routes .0000 -.0001 -.0002 .0021 -.0001

(.0009) (.0003) (.0002) (.0015) (.0001)
Truck routes*I(Near well) .0021 .0010 -.0006 .0022 .0005

(.0024) (.0011) (.0004) (.0030) (.0004)
Mean dep. var. .0083 .003 .00088 .013 .00033
R2 .32 .14 .05 .41 .03
Obs. 22,321,018 22,321,018 22,321,018 22,321,018 22,321,018

Notes: Observations are by road segment-quarter. Dependent variables are, respectively, the count of accidents
with one or more minor injury, moderate injury, major injury, any injury, or fatality. All regressions include
fixed effects for segment and county-year-quarter. Robust standard errors are clustered by road-segment. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.

Impact of trucks on accident severity. On local roads, because we find more accidents in-

volving a heavy truck, we might expect to see more severe accidents. However, we don’t see more

injuries or fatalities on local roads (Table 5). In the case of adding a truck to a highway, we even

estimate a decrease in the number of injuries. This could be because of the reduced speed on

highways with trucks (Table 4). Even though average severity went down (highways) or remained

the same (local roads) the count of accidents increased, and accidents have cost. To get a measure

of the costs, we turn to data on insurance premiums (Section 5).

5 Valuation of the accident externality of trucking: evidence from

car insurance premiums

The previous sections provide evidence that adding one truck to a road increases the number of car

accidents not involving a truck, which would be classified as an external cost of trucking. Another

source of externalities is suggested by the estimated increase in truck accidents on local and rural

roads, especially if the trucks are underinsured. Here we look for evidence whether these accident
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externalities propagate into insurance premiums by looking at the data on the change in premiums

offered to a representative new enrollee of car insurance over time.

From CarInsurance.com, an online resource for consumers to find and compare car insurance

policies, we obtained a unique data set of zip-code level insurance premiums available to the same

hypothetical individual in 2012 and 2014. The auto insurance quotes come from six large carriers

(Allstate, Farmers, GEICO, Nationwide, Progressive, and State Farm) and are based on insurance

for a new Honda Accord driven by a single 40-year-old male who commutes 12 miles to work each

day and has a clean driving record and good credit.39 Using these data, we make the assumption

that changes to this representative driver’s insurance premiums will shed light on changes likely

happening to other individuals (e.g., with different ages, genders, or cars). Importantly, the data

are quotes for the same hypothetical person, which is an advantage over using population-average

data on existing insurance premiums, in which any change in premiums could be driven by changes

in the demographics of the drivers.

The data include all zip codes in Pennsylvania. Using our GIS-predicted routes we calculate

the total number of segments used by trucks within 25km of the centroid of a zip code (the total

number of segment well-connections in a year-zip code), given that most accidents occur within

25km of one’s residence.40

Table 6: Summary statistics at the zip-code level

Traversed Nontraversed
zip codes zip codes

Mean (Std. dev.) Mean (Std. dev.)

Average premium ($) 1076.3 (87.2) 1481.9 (472.2)
∆ in premium between 2012 to 2014 ($) 63.7 (30.2) 30.5 (84.0)
Truck routes (total, in 1000s) 7.30 (11.28) 0 0
Wells 23.92 (47.88) 0 0
Obs. 2,433 872

Notes: Data are by zip code for 2012 and 2014. Average premium (dollars) is the zip code average
quote obtained from six national insurance carriers for the same hypothetical 40-year-old male driver
of a Honda Accord. Traversed zip codes are zip codes that have at have had at least one truck route
(withdrawal or disposal connection) over the sample period.

39Rates are for policy limits of 100/300/50 ($100,000 for injury liability for one person, $300,000 for all injuries
and $50,000 for property damage in an accident) and a $500 deductible on collision and comprehensive coverage,
including uninsured motorist coverage.

40Abdalla et al. (1997) show that most casualties in accidents occur within 25km of one’s residence
and according to an insurance company survey, 77% of accidents occur within 24km of one’s residence.
https://www.progressive.com/newsroom/article/2002/may/fivemiles/
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Across both years of data, the average insurance premium in Pennsylvania is lower in zip codes

that are traversed by trucks (a $1,076 annual average premium compared with $1,482). But the

traversed zip codes saw a larger increase in premiums between the two years (a $64 increase versus

a $31 increase).

We run a regression in which we regress the zip code’s average insurance premium on the number

of segments used by wells in and around the zip code (within 25km of the center of the zip code).

The regression includes the count of wells drilled in the county-year, to capture impacts from local

shale gas production that don’t necessarily have to do with the number of segments traversed by

trucks, as well as zip code fixed effects to capture permanent level differences across zip codes, and

year fixed effects to capture the general increase in premiums across the state.

The coefficient on truck routes represents the dollar change in premiums when 1,000 segments

are used in or near the zip code (each time a segment connects a well in the quarter, the count

increases). When one road segment of a truck route, used by one well, is in or near a zip code, the

insurance premiums increase by less than a penny, however, in aggregate, the increase is not nec-

essarily trivial; the most heavily traversed zip code is near 76 thousand segment/well connections,

which would translate to a premium increase of $30. Furthermore, remember that this increase

could be applied to all new insurance enrollees, making aggregate costs larger. If we assumed that

all Pennsylvanians with registered vehicles saw the predicted increase on their insurance premi-

ums, then this would aggregate to an externality of $14 million dollars in 2014 from shale gas

development.41

We can also use the coefficient estimate to calculate a per-truck estimate. We estimate that

annual insurance premiums of new enrollees increases by $0.08 per truck.42 For comparison, Edlin

and Karaca-Mandic (2006) estimate that an additional car in a state will increase average insurance

premiums by $0.00036 to $0.0014. Our larger estimate could arise for three reasons: our treatment
41To get a Pennsylvania-aggregate estimate, we first obtained the count of vehicles registered in each county in

Pennsylvania in 2014 (Pennsylvania Department of Transportation, 2014). We multiplied each county’s number of
vehicles registered by the size of the county’s treatment (county’s registered vehicles*0.000401*county’s total truck
routes), and then summed over all counties in Pennsylvania (to get the total of $14 million). Note that this is an
upper bound because not all registered vehicles are new insurance enrollees, and so not all would see an increase in
insurance. We also use the zip-code-level estimate for a truck route and assume it is the same as a county estimate.

42To get the per-truck-year increase in premiums, we first divide the coefficients by the number of trucks per
segment (814, or the average between the highway and local road estimate) and the number of kilometers in a
segment (0.665km per segment). Then we multiply by the annual average of kilometers traveled (109,685 km). The
estimate implies a 8 cents increase (0.000401/814/0.665× 109, 685).
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is concentrated within a zip code rather than dispersed across a whole state; our outcome variable

is the insurance plan offered to a new enrollee, which will adjust faster than the average insurance

plan of all existing insurance contracts; and our treatment is an additional truck, which will pose

more risk than a car by function of its size and typical kilometers traveled. The magnitude of the

costs will depend on how many new enrollees see insurance increases. Using county-level vehicle

registration counts again we can get an upper bound on this estimate. If we assume all vehicles

registered in Pennsylvania see an insurance increase, then one truck would cause an externality of

$8,520 in aggregate.43

Table 7: The impact of trucks on car insurance premiums

Average Premium Uninsured Luxury Veh. Age Veh. Thefts
(Dollars) (Share) (Share) (Years) (County Count)

Truck routes (total, in 1000s) .401*** -.000 .000 -.003 .710
(.131) (.000) (.000) (.002) (.892)

Wells -.011 -.000 -.000*** -.003*** .071
(.047) (.000) (.000) (.001) (.113)

Year FE Yes Yes Yes Yes Yes
Zip code FE Yes Yes Yes Yes No
County FE No No No No Yes
Mean of dep. var. 1,183 .0397 .125 9.52 81.2
R2 .99 .86 .99 .93 1.00
Obs. 3,305 2,965 2,965 2,965 134

Notes: Dependent variables are (1) the average insurance premium offered across six national insurance providers for
the same hypothetical new insuree; (2) the zip code’s share of accidents with one or more uninsured driver; (3) the zip
code’s share of accidents with one or more luxury vehicles; (4) the average age of vehicles in accidents in the zip code;
(5) the number of vehicle thefts in the county.
In the first four columns, observations are by zip code and year (for the years 2012 and 2014) and truck routes are the
count of segments used within 25km of the zip code centroid (in count of 1000s). In the last column, observations are
by county and year (2012 and 2014) and truck routes are the count of segements used in the county (in count of 1000s).
Robust standard errors are clustered by zip code in columns 1-4 column (or county the last column). *** Statistically
significant at the 1% level; ** 5% level; * 10% level.

Interestingly, the count of truck routes is more important than the count of the wells themselves;

the coefficient on the count of wells drilled in and around the zip code is statistically insignificant.

This implies that the impacts from shale gas are felt beyond the location of the wells themselves.

The far reach of truck traffic results in an externality that is atypical of findings in the literature

on the burden of shale gas development. Typically, the negative externalities surrounding shale gas

production have been felt by those living nearby (e.g., from risks to drinking water, Muehlenbachs,
43To get the increase per truck, we divide the Pennsylvania-wide cost, of $14 million, by the total number of truck

routes (scaled by how many are driven in a year by one truck) as well as the number of trucks per well.
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Spiller and Timmins, 2015, Hill and Ma, 2017, air quality, Zhang et al., 2020, or local earthquakes

Cheung, Wetherell and Whitaker, 2018, Burnett, Mothorpe and Jaume, 2018) and the positive

externaltites have been felt by those farther away (e.g., from lower greenhouse gas emissions or

electricity prices from the shift from coal to gas-fired electricity, Linn and Muehlenbachs, 2018,

Brehm, 2019, Coglianese, Gerarden and Stock, 2020). Shale trucks transporting water and waste

far from the well is an instance of a negative externality extending over a larger area. Pennsylvania

collects an impact fee from wells (Black, McCoy and Weber, 2018), which is then distributed back

to communities, with a larger share going back to municipalities in which wells are drilled. This

estimate implies that it is appropriate to spread the impact fees to municipalities without wells but

with truck routes.

Although we are using the count of traversed-road-segments and controlling for wells drilled

nearby, one might be concerned that the increase in premiums is driven by something other than

trucks. Smith and Wright (1992) describe how the presence of uninsured drivers on the road

increases car insurance premiums. However, uninsured drivers are not likely the driving cause

of our finding because we do not find a statistically significant increase in the share of accidents

involving uninsured drivers on the truck routes. Another pathway for increased premiums is if

nearby accidents involve more expensive vehicles and accident damages are therefore larger. To

examine this pathway, we look at the share of accidents involving luxury vehicles, as well as the

average age of the vehicles in collisions, but we do not see a statistically significant difference in

the zip codes with many truck routes.44 Another possible pathway for increased premiums is if

there are more vehicle thefts, and previous literature shows that indeed, vehicle theft in shale-rich

counties is higher during a boom (James and Smith, 2017). Looking at the same two years as the

zip code regressions, we also examine how vehicle thefts in a county are related to the number of

traversed segments in a county and find they are statistically insignificant.45

44Similar to the county regressions on the type of accident (Table A5), near wells (not truck routes) we see fewer
luxury vehicles and also newer vehicles.

45Vehicle theft counts at the county level were obtained from Pennsylvania’s Uniform Crime Reporting System.
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6 Conclusion

We estimate the life of a shale gas well requires 641 to 988 one way truck trips for hauling of water

to and from the well. The shale boom in Pennsylvania experienced a large increase in truck traffic,

when at the height of drilling in 2011, close to 2000 wells drilled were drilled. The truck traffic

associated shale drilling is short lived, unlike other more permanent increases, for example, from

the opening of a warehouse, which is estimated to be on the order of 500 trucks per day (Bluffstone

and Ouderkirk, 2007).

We find that the addition of a single truck to the road not only increases the number of accidents

involving a truck, but also increases the number of accidents between other road users. Although

an insurance system has the potential to internalize accidents in which a truck is directly involved,

there are no mechanisms in place that would internalize the increase in accidents of other road

users. And even when a truck is directly involved in the accident, the current insurance market

does not necessarily internalize the external cost.

For example, if a car has the misfortune to crash into a truck, total damages will be larger than

had the car crashed into an equally sized car. These damages will fall on the negligent party, in

this case the car and not the truck, and therefore would not be internalized into the decision of

how much to truck. In the case that the truck is the negligent party, current liability limits are

low enough to allow for the possibility of a judgment-proof firm. Trucks must carry insurance, or

post a surety bond, to cover accidents costing $750,000, a limit that has not grown with inflation

over the past 30 years. If accident costs are more than a trucking company’s assets, the possibility

of bankruptcy could mean these costs wouldn’t be fully internalized. Accordingly, the accident

externalities associated with trucks on the road appear to be dispersed across other road users

through higher insurance premiums.

We find suggestive evidence that the accident externalities associated with trucking increase

the premiums offered to new insurance enrollees. Internalizing these external costs would require

an ambitious revamping of the current liability regime or implementing a tax on the kilometers

traveled by trucks. Several countries (Germany, Austria, and Poland) and US states (Kentucky,

New Mexico, New York, and Oregon) already levy taxes for the distance traveled by heavy trucks

and the information technology revolution should make it easier for other states to follow suit.
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With advances in GIS navigation, keeping track of the kilometers driven by road-type would not

be arduous, and even a kilometer-by-road-type tax could be feasible. With such a tax, the decision

of how much to truck and on which roads, would then be made in consideration of the external

accident costs. Combining our findings with previous findings that welfare would be improved with

weight-based taxes (He, 2016; Cohen and Roth, 2017; Nehiba, 2020), the first-best solution would

be a tonnage-by-kilometer-by-road-type tax.
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A Boomtown Impacts
In this section, we present our estimates for the county-wide aggregate safety impacts from variation in shale
gas development. These estimates will capture both the effects of a change in truck traffic as well as any
unobserved county-specific shifts from an influx of workers and wealth in the area. Indeed, the local income
and employment shocks from oil and gas booms are sizeable (see for example, Marchand, 2012, Weber, 2012,
Weinstein, Partridge and Tsvetkova, 2018, Jacobsen and Parker, 2016, Maniloff and Mastromonaco, 2017,
Feyrer, Mansur and Sacerdote, 2017, and Allcott and Keniston, 2018).

Strategy to identify boomtown impacts. We compare outcomes in counties before and after wells
are drilled, in relation to changes in the remaining counties. This comparison can be implemented with the
following fixed effects regression:

yct = αWellsct + λc + δt + εct, (2)

where yct is the outcome variable of interest: when examining traffic flows, it is county c’s average-daily-
traffic count in year t (traffic counts are reported by road segment as annual averages, and we take the
average across all roads in the county). When examining accidents, yct is the number of accidents (and
t signifies year-quarter). The main coefficient of interest is α, representing the change in the mean of the
outcome variable from drilling an additional well.

The identifying assumptions are that the locations of the wells are determined independently from
changes in traffic and accidents and that there are no spillover effects from treatment counties to control
counties.1 The first assumption is likely satisfied because well location is primarily based on geology, water
withdrawal points are based on stream management, and waste disposal locations depend on the chemical
concentration of the waste and cost differentials across treatment facilities.2 The second assumption is more
critical because water withdrawal and disposal points are not always located in the same county where the
well is drilled, thus increasing truck traffic in neighboring counties. Such spillover effects into neighboring
counties would lead to a downward bias in our estimates. As described in detail in the next section, spillover
effects should be less of a concern in our second identification strategy, in which the unit of analysis is the
road segment.

Main results. From the county-level analysis we find that drilling a well in the county-year increases
the average daily truck count on the average segment by 0.79 trucks (first column of Table A1). This effect
represents a 0.18 percent increase relative to the baseline truck traffic in counties that ever have a well. Car
traffic also increases, with each additional well the average segment in a county has 7.54 more cars per day,
or 0.16 percent of the average car traffic in treated counties. We can translate the coefficient on truck traffic
into a prediction of the number of trucks associated with a shale gas well. The county-level estimates imply
that in the year-county in which a well is drilled there are an additional 2,798 trucks.3 This county-level
estimate includes all trucks, those transporting sand and equipment, or trucks associated with the broader
economic boom.

The last two columns of Table A1 show the effect of an additional well on the frequency of accidents
in a county-quarter. The water and waste hauling trucks are concentrated in a short period of time (less
than 90 days). When we estimate a per truck impact on accidents, we therefore assume that the annual

1Spillover effects from treatment to control counties is a violation of the so-called stable unit treatment value
assumption (SUTVA; Rubin, 1980).

2Landowners have some leeway on whether wells will be drilled on their property; in Pennsylvania minerals are most
often owned by landowners. We would worry if these owners’ decisions about wells depended on their expectations
of where future accidents might increase, but this is not likely. The location choice is also determined by the drilling
companies; however, these multimillion dollar wells optimize where shale resources are the richest, and “hot spots”
of more valuable natural gas liquids in the Marcellus Shale are not uniformly distributed (e.g., see the clustering of
wells in Figure 2).

3We first multiply the estimated coefficient by the number of segments in a county, which gives us the county-wide
increase in daily truck traffic per well. We then divide this number by the average number of segments a truck
traverses in a county, so as not to double count the same truck traversing more than one segment. Finally, since
the estimated coefficient is a daily increase, we must multiply by 365 days to get an estimate of the total number of
trucks in the year.
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traffic increase happens during the treatment quarter and our analysis on accident counts is presented at
the quarterly level. Each well results in an additional .171 truck accidents in the county-quarter, and an
additional .815 car accidents. The increase in accidents seen at the county level is a combination of all
additional trucks on the road, as well as any county-wide changes in the number and demographics of
drivers.

Table A1: The boomtown impacts on traffic and accidents

Annual-average daily traffic count Quarterly accident count

Truck Car Truck Car

Wells .79*** 7.54*** .171*** .815***
(.27) (2.29) (.023) (.228)

County FE Yes Yes Yes Yes
Year FE Yes Yes No No
Year-quarter FE No No Yes Yes
Mean of dep. var. 440 4,814 17 305
R2 .39 .52 .93 .98
Obs. 663 663 4,824 4,824

Notes: Observations are by county-year in the case of traffic counts (2004-2014) and by county-
quarter in the case of accidents (1997-2014. Dependent variables are annual-average of daily truck
count on segments, annual-average daily car count (i.e., non-truck count), quarterly count of acci-
dents with a truck, and count of accidents between cars only. Wells are the count of wells drilled
in the county-year (or county-year-quarter in the case of accidents).
Robust standard errors are clustered by county, of which Pennsylvania has 67. *** Statistically
significant at the 1% level; ** 5% level; * 10% level.

B Additional Tables
Here we provide information on supplementary regressions referred to in the main text.

B.1 Exploring different control groups
In the paper our regression samples include the trimmed control roads. Here we show that our results are
robust to using the full sample as well as restricting the sample to those segments that are treated at some
point in time. Table A2 shows results do not change across different control groups.

B.2 Exploring spill-over roads
The increased truck traffic on truck routes might mean nearby roads are also affected, violating SUTVA. In
our main specification we deal with this concern by omitting any control roads that are within 1,000 meters
of a truck route. Our results are similar with or without dropping roads within 1,000 meters, though Table
A3 shows some evidence of attenuation bias when we do not exclude roads within 1,000 meters (e.g., our
estimates of truck counts are smaller when we include all control roads).

B.3 Are the accidents on truck routes different? Accident shares by additional
characteristics

In the main part of the paper we examine whether the share of accidents of different types is different on
treatment roads in the quarter used by wells (Table 4). Here we expand that analysis to include different
outcome variables. Table A4) shows regressions using different outcome variables of the share of accidents in a
segment-quarter that have one or more vehicle/driver with certain characteristics. Differences in observable
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characteristics could imply that our county-year-quarter fixed effects are not capturing all changes that
influence the number of accidents on the treatment routes. We show most characteristics are statistically
insignificantly different on the treated truck routes. Two exceptions are that, on highways, vehicles are newer
(but only by less than a month, less than one percent newer) and men aged 25-50 are fewer (two percent
fewer).

Table A5 shows similar regressions at the county-level. With each shale gas well drilled in the county-
quarter, there is a larger share of accidents involving drivers with licenses from shale states and a larger
share of accidents involving vehicles registered in shale states. There are also more males aged 25-50 as
well as unbelted drivers. These characteristics do not show up as significantly different in the road-segment
specification, implying that control and treatment segments in the county are similar. At the county level,
similar to the road-segment regressions, vehicles are newer (but again by less than one percent) and counter-
intuitive to what one might expect from a shale boom, there are fewer luxury vehicles (but only a very small
difference, of less than one percent).
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Table A2: Robustness: Regressions using different control groups, by road
type

Average daily traffic count Quarterly accident count

Truck Car Truck Car
(1) (2) (3) (4)

A. Highways, full sample
Truck routes 17.58** 14.06 -.0018 .0245**

(7.12) (20.59) (.0029) (.0120)
Truck routes*I(Near well) -.05 1.87 .0472** .0996**

(.85) (3.24) (.0199) (.0430)
Mean of dep. var. 774 6,324 .08 .79
R2 .65 .74 .62 .86
Obs. 33,738 33,738 1,493,100 1,493,100
B. Highways, sample of only ever-traversed roads
Truck routes 13.29* 6.49 -.0013 .0235*

(7.39) (21.33) (.0030) (.0127)
Truck routes*I(Near well) .21 2.58 .0467** .1007**

(.86) (3.32) (.0200) (.0430)
Mean dep. var. 775 6,325 .08 .79
R2 .65 .74 .66 .81
Obs. 15,687 15,687 483,733 483,733
C. Local and rural roads, full sample
Truck routes 26.95*** 39.85* .0006** .0075***

(6.57) (21.00) (.0003) (.0025)
Truck routes*I(Near well) 2.73 9.67 .0022*** .0079

(1.84) (6.53) (.0008) (.0048)
Mean of dep. var. 705 5,590 .00 .02
R2 .74 .83 .07 .48
Obs. 86,608 86,608 30,512,233 30,512,233

D. Local and rural roads, sample of only ever-traversed roads
Truck routes 23.08*** 27.85 .0005* .0043*

(7.13) (22.90) (.0003) (.0024)
Truck routes*I(Near well) 2.27 7.07 .0020** .0085*

(1.80) (6.56) (.0008) (.0047)
Mean dep. var. 705 5,592 .00 .02
R2 .78 .82 .10 .51
Obs. 16,836 16,836 2,663,233 2,663,233

Notes: This table shows results with different control roads (in tables in the paper, control roads
are those that are similar to treatment roads based on pre-shale-boom characteristics). All re-
gressions include fixed effects for segment and county-year-quarter. Panels A and C show results
from the full sample of roads: control roads are all other roads. Panels B and D show results
from the subsample of only those roads that, at some point in time, are traversed: control roads
are those that either earlier or later were traversed. Robust standard errors are clustered by
road-segment. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A3: Robustness: Regressions including different nearby roads

Average daily traffic count Quarterly accident count

Truck Car Truck Car
(1) (2) (3) (4)

A. Highways, include spillover roads
Truck routes 14.71* 12.35 -.0008 .0226**

(8.43) (24.20) (.0027) (.0111)
Truck routes*I(Near well) .15 2.27 .0478** .1008**

(1.04) (3.95) (.0197) (.0427)
Mean of dep. var. 754 6,259 .08 .78
R2 .67 .76 .59 .81
Obs. 41,689 41,689 1,525,858 1,525,858
B. Highways, drop roads within 500m
Truck routes 17.93** 14.96 -.0016 .0234**

(8.78) (25.43) (.0029) (.0118)
Truck routes*I(Near well) -.09 1.87 .0472** .1004**

(1.05) (4.00) (.0199) (.0429)
Mean of dep. var. 756 6,248 .08 .79
R2 .67 .76 .60 .81
N 38,153 38,153 1,451,863 1,451,863
C. Local and rural roads, include spillover roads
Truck routes 26.11*** 46.58 .0006** .0066***

(8.96) (28.93) (.0002) (.0024)
Truck routes*I(Near well) 3.28 11.34 .0022*** .0086*

(2.65) (9.28) (.0008) (.0048)
Mean of dep. var. 625.46 5,226 .00 .02
R2 .76 .87 .08 .51
N 118,916 11,8916 24,353,696 24,353,696

D. Local and rural roads, drop roads within 500m
Truck routes 27.67*** 44.78 .0006** .0067***

(9.62) (30.84) (.0003) (.0024)
Truck routes*I(Near well) 2.96 10.86 .0022*** .0084*

(2.75) (9.74) (.0008) (.0048)
Mean of dep. var. 637 5259 .00 .02
R2 .76 .87 .08 .52
N 104,252 104,252 23,000,666 23,000,666

Notes: Table 2 in the main text shows results excluding control roads that are within 1,000 me-
ters of a truck route. Panels A and C show results without excluding any roads near the truck
routes. Panels B and D excludes only roads with 500 meters of the shale routes. Robust stan-
dard errors are clustered by road-segment. *** Statistically significant at the 1% level; ** 5%
level; * 10% level.
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Table A4: Type of accident: Share of accidents in a segment-quarter, by road type

Highways Local or rural roads

A. Driver characteristics
Distracted Fatigue Male 25-50 Male 50+ Distracted Fatigue Male 25-50 Male 50+

Truck routes -.0016 -.0002 -.0085*** .0001 -.0019 .0011 -.0115 -.0058
(.0021) (.0009) (.0032) (.0026) (.0057) (.0024) (.0075) (.0059)

Truck routes*I(Near well) -.0014 .0010 .0051 .0013 -.0034 -.0018 .0215 -.0077
(.0028) (.0014) (.0042) (.0034) (.0083) (.0060) (.0207) (.0106)

Mean of dep. var. .08 .025 .38 .23 .08 .019 .33 .18
R2 .11 .09 .10 .09 .19 .17 .17 .18
Obs. 273,485 273,485 273,485 273,485 208,334 208,334 208,334 208,334

B. Accident characteristics
Reg. Shale Luxury Veh. Age Avoiding Reg. Shale Luxury Veh. Age Avoiding

Truck routes -.0007 .0011 -.0859** -.0005 -.0023* .0058 -.1008 .0041*
(.0009) (.0019) (.0374) (.0007) (.0012) (.0044) (.0894) (.0023)

Truck routes*I(Near well) .0001 .0040 -.0103 .0002 .0017 -.0077 .2282 -.0026
(.0012) (.0028) (.0536) (.0010) (.0043) (.0074) (.2000) (.0048)

Mean of dep. var. .0073 .11 7.4 .026 .003 .1 8 .032
R2 .09 .10 .18 .10 .16 .17 .24 .18
Obs. 273,485 273,485 273,485 273,485 208,334 208,334 208,334 208,334

Notes: This table provides additional outcome variables from those found in Table 4. Dependent variables in each column
are the share of accidents with one or more of the characteristics listed in the column headings, except for Veh. Age which
refers to the average age of the vehicles involved in accidents. Reg. Shale refers to share of accidents in the segment-quarter
that involve a car registered in Arkansas, Louisiana, Oklahoma, or Texas (the states outside of Pennsylvania producing
the most shale gas). Shale Lic. refers to the share of accidents involving drivers with license from one of these states. All
specifications include fixed effects for segment, county-half-year, and year-quarter. Robust standard errors are clustered by
road-segment. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A5: Type of accident: County-level share of accidents

A. Driver characteristics
Shale Lic. Alcohol Unbelted Distracted Fatigue Male<25 Male 25-50 Male 50+

Wells .0003*** -.0001 .0002*** -.0001 .0001** .0001 .0005*** -.0001
(.0001) (.0001) (.0001) (.0001) (.0000) (.0000) (.0001) (.0001)

Mean dep. var. .0046 .12 .18 .078 .029 .24 .34 .21
R2 .19 .37 .56 .54 .31 .38 .55 .24
N 4,824 4,824 4,824 4,824 4,824 4,824 4,824 4,824

B. Accident characteristics
Aggressive Speeding Changing Tailgating Reg. Shale Luxury Veh. Age Avoiding

Wells .0001 .0001 .0000 .0001 .0005*** -.0002*** -.0077*** -.0000
(.0002) (.0002) (.0000) (.0001) (.0001) (.0001) (.0015) (.0001)

Mean dep. var. .55 .31 .02 .039 .007 .088 8.3 .031
R2 .51 .69 .54 .61 .29 .64 .66 .37
N 4,824 4,824 4,824 4,824 4,824 4,824 4,823 4,824

Notes: This table provides county-level regressions of the characteristics found in Tables 4 and A4. Dependent
variables are the share of accidents in the county-year-quarter with one or more of the characteristics listed in the
column headings, except for Veh. Age which refers to the average age of the vehicles involved in accidents. Wells
are the count of wells drilled in the county-year-quarter. Reg. Shale refers to share of accidents in the segment-
quarter that involve a car registered in Arkansas, Louisiana, Oklahoma, or Texas (the states outside of Pennsyl-
vania producing the most shale gas). Shale Lic. refers to the share of accidents involving drivers with license from
one of these states. All regressions include fixed effects for year-quarter and county. Robust standard errors are
clustered by county. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

45


	Background and data
	Description of data sources
	Construction of truck traffic routes 
	Counting road use for water withdrawal and disposal
	Summary statistics

	Identification strategy
	County-level analysis
	Road segment-level analysis

	Results
	Effect on traffic counts 
	Effect on accidents
	Interpreting the estimates as per-truck estimates
	Effect on accidents by road type

	Robustness
	Differing treatment dates
	Placebo regression


	Valuation of the external costs to car insurance customers
	Conclusion
	Appendix (For Online Publication)
	Restricting to only-treated samples
	Treatment effect is time constant 
	Different functional form 
	Including all road types in the sample
	Coefficients on disposal routes
	Accident severity

	RSUE Paper.pdf
	Introduction
	Background and data
	Description of data sources
	Construction of truck traffic routes 
	Estimation sample

	Identification strategy
	Effects on Traffic Counts and Accidents
	Main Results
	Placebo and Robustness Tests

	Valuation of the accident externality of trucking: evidence from car insurance premiums
	Conclusion
	Boomtown Impacts
	Additional Tables
	Exploring different control groups
	Exploring spill-over roads
	Are the accidents on truck routes different? Accident shares by additional characteristics 





