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Abstract 
A cointegrated vector autoregressive (CVAR) model is estimated to determine the dynamic 

relationship between Nordic wholesale electricity prices and EU emissions trading scheme (EU-ETS) 
CO2 allowance prices. An impulse response analysis reveals that electricity prices have large short-term 
responses to CO2 price shocks, but that this response dampens over time. Using hourly Nordic electricity 
spot market prices, I find that the value of short-term response of electricity prices to a shock in CO2 
prices in off-peak hours is consistent with expected values for near complete pass-through of CO2 
emission costs when coal-generated power is at the margin. Likewise, the estimates reveal that peak hour 
electricity price responses to CO2 price shocks are as expected for a market that has near complete pass-
through of CO2 emission costs when natural gas-generated power is at the margin. These results further 
suggest the Nordic electricity market is pricing as a competitive market. 
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EU-ETS and Nordic Electricity: A CVAR Analysis 

Harrison Fell∗ 

1. Introduction 

In order to reach the emissions reduction goals set forth in the Kyoto Protocol, the 
European Union implemented a memberwide CO2 emissions trading scheme (EU-ETS). Under 
the EU-ETS, some 11,500 CO2-emitting installations from the energy production industries, 
metal industries, mineral industries, and pulp and paper industries must obtain a sufficient 
number of emissions allowances (EUAs) to cover their individual annual CO2 emissions 
(Ellerman and Buchner 2007). Electricity generators dominated this primarily free initial 
allocation of allowances, garnering roughly 60 percent of the EUAs in Phase 1 and Phase 2 of 
the EU-ETS. The free allocation to electricity was nearly sufficient to cover all electricity 
generation.  

The impact that these freely given allowances have had on electricity prices has been a 
source of controversy and curiosity in political and academic circles alike. From an economic 
theory perspective, the use of allowances to cover emissions places an opportunity cost on the 
installation in question regardless of how the allowance was allocated since that allowance could 
have been sold. Thus one would expect electricity generators to add the cost of emissions to 
other production costs (Burtraw et al. 2002). While generators may fully recognize the 
opportunity costs of CO2 allowances in their marginal production costs, these costs might not be 
fully passed through to wholesale electricity prices. Sijm et al. (2005) give a host of reasons why 
the pass-through of CO2 costs for the firm and for the industry may be less than 100 percent, 
including among other reasons demand responses, market structure, and competition from 
nonfossil fuel generators. Thus, determining the response of electricity prices to CO2 emissions 
costs for a given market appears to require an empirical approach.  

From a policy prospective, some governments are clearly not comfortable with the notion 
that these opportunity costs should be fully reflected in electricity prices. This was evident when 
in December 2006 the Bundeskartellamt (German Federal Cartel Office) issued a warning to 
German electricity generator RWE, claiming RWE was abusing its market position by 
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excessively passing through CO2 emissions costs.1 In addition, many have noted that the pass-
through of these opportunity costs could be generating “windfall profits” for electricity 
generators stemming from a change in revenues that exceeds the change in costs. These claims of 
windfall profits have prompted many policy makers as well as academics to call for a greater 
percentage of electricity generators’ allowances to be auctioned instead of freely allocated. 
Knowing the percentage of allowances that should be auctioned again requires an empirical 
understanding about the relationship between CO2 emissions costs and electricity prices. 

In this paper, I empirically look at the dynamic interaction of the EU-ETS prices and 
wholesale electricity prices for a particular European market, the Nordic region electricity 
market of Denmark, Finland, Norway, and Sweden. The Nordic electricity market presents an 
interesting application for several reasons. First, the Nordic electricity market is a large, well-
established, and transparent deregulated market. Given that deregulation of electricity markets is 
beginning to spread across Europe and elsewhere, understanding how CO2 emission prices affect 
the Nordic electricity market can give insight in to how the liberalization of electricity markets 
will interact with market-based environmental programs in other situations. Second, the Nordic 
electricity market has a wide range of electricity-generating technology, including a substantial 
portion of nonfossil fuel generation capacity. This gives some insight into how the response of 
electricity prices to CO2 emissions costs is affected by the electricity production mix. 

The influence of carbon pricing on electricity markets has been examined in several other 
studies. The bulk of this work has been conducted by using large-scale simulation models (e.g., 
Burtraw and Palmer 2008, Chen et al. 2008; Kara et al. 2008; Linares et al. 2006; Burtraw et al. 
2005; Hauch 2003). With an expanding data set available on EUA prices, empirical studies in 
this area are also becoming more prevalent, although relatively few exist. Sijm et al. (2006) used 
electricity pricing and generation data from Germany and the Netherlands to estimate CO2 cost 
pass-through. They found that, depending on the fuel used by the marginal generators, pass-
through varied between 60 and 100 percent of CO2 costs. Zachman and von Hirschhausen (2007) 
also used data from Germany to find evidence of asymmetric CO2 cost pass-through. In a study 
methodologically similar to the one presented here, Bunn and Fezzi (2007) estimated the 
relationship among electricity, natural gas, and EUA prices in the United Kingdom, finding a 
long-run marginal response of electricity prices to EUA prices of 0.42.    

                                                 
1 Ironically, economic theory predicts that monopolist and oligopolist generators would actually pass through less of 
the CO2 emissions costs than those in competitive markets. See Sijm et al. (2005, 33) for details of this argument. 
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Estimating this interaction presents several challenges. First, even given full pass-through 
of CO2 costs, the level of the electricity response to changes in CO2 may not be constant across 
time. The CO2 emissions associated with electricity generation will be a function of the 
generation fuel used. This in turn makes the increase in marginal cost of electricity generation 
due to the creation of a CO2 market dependent upon the fuel type used in generation. Since 
competitive electricity pricing is based on the cost of the marginal generator, the increase in 
electricity prices due to CO2 emissions prices will depend on the generation technology of the 
marginal producer. If the electricity market in question has generation technologies at the margin 
that vary over time, such as in the Nordic electricity market, then the electricity price response to 
CO2 price changes will be variable. For instance, if at peak electricity demand the marginal 
producer is a natural gas-fired turbine while at off-peak hours the marginal producer is a coal 
powered station, then because coal has greater CO2 emissions intensity than natural gas, it would 
be expected that the response of electricity prices to CO2 allowance prices during the off-peak 
demand periods would be greater than during the peak periods. This complicates the estimation 
of the electricity price responsiveness to CO2 price changes because electricity generation 
profiles are not explicitly observed in most data sets, including the data used here. 

In addition to the possibility of varying responses, one must also consider multiple 
market interactions. That is, changing prices in one market may directly impact pricing in several 
markets, and these impacts can then have further feedback effects into the system of prices. For 
example, say an increase in EUA prices leads to an increase in electricity prices and a concurrent 
increase in natural gas prices because of the increased demand for natural gas-fired electricity 
generation, which gains an economic advantage over coal-fired generation through the change in 
relative production costs. The increased natural gas prices may then lead to a further increase in 
electricity prices, assuming natural gas–fired turbines are at least occasionally price-setting 
marginal generators. Further, the change in relative production costs may change the option 
value of using storable non-emitting generation including hydroelectricity, which is an important 
part of the Nordic power supply. These relationships call for an estimation procedure that 
accounts for interdependencies of the entire system of prices as well as being able to account for 
time-specific marginal impacts. 

In order to address this latter problem, I estimate the relationship among Nordic 
electricity prices, EUA prices, and the prices of various generation fuels through a cointegrated 
vector autoregressive (CVAR) model. The response of electricity prices to CO2 price changes is 
then assessed in an impulse response analysis. This allows us to see how a shock to the EUA 
market propagates through the electricity market in a way that accounts for the interrelated 
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system dynamics. To address the former problem of different fuels being at the margin, we 
generate electricity price series that are sampled from different hours of the day and different 
price levels within a day in an attempt to get price series that are indicative of various electricity 
generation profiles. This procedure allows us to see at least superficially if there is evidence of 
any variation in electricity price response to CO2 price increases. 

The rest of the paper is organized as follows. In the next two sections, I present 
background information on the Nordic electricity market and details of the estimation technique. 
Estimation results and discussion of these results follows. In the final section, concluding 
remarks are given. 

2. Nordic Electricity Market Background 

Beginning in the 1990s, the Nordic-region countries of Denmark, Finland, Norway, and 
Sweden began to deregulate their wholesale electricity markets. As the markets liberalized they 
also integrated. In 1996 Norway and Sweden started Nord Pool, the world’s first multinational 
power exchange. Finland joined Nord Pool in 1998 and Denmark followed in 1999. In 2002, the 
spot market operations were organized as a separate company, Nord Pool Spot. As of 2006, the 
Nord Pool Spot market had more than 300 participants and an annual trading volume of 249.8 
TWh (http://www.nordpoolspot.com/about/).  

The Nord Pool Spot market, Elspot, is the market for trading physical day-ahead 
contracts. The price is formed as follows. In the morning prior to the day of physical delivery, 
electricity generators (consumers) submit capacity bids (asks) for each hour of the day to the 
market coordinator.2 The “system” price is then set at the intersection of the bid and ask curves. 
Transmission capacity permitting, this system price is the hourly day-ahead spot price.3 
Transmission capacity problems are resolved by forming region-specific prices based off the 
system price. 

As one may expect given the relatively large and diverse geographical area represented in 
the Nord Pool market, electricity generation varies considerably across the regions. Table 1 

                                                 
2 Bids can be submitted for time blocks other than just hourly. However, hourly bids are the finest time blocks, and 
data from the hourly day-ahead market are the focus of this study. 
3 The wholesale electricity market among the four countries is near fully liberalized, but transmission remains as 
government-regulated monopolies. 
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shows the electricity generation profiles of the Nordic countries based on 2005 production. As 
Table 1 shows, electricity generation in Norway and Sweden, which rely almost exclusively on 
hydro and nuclear energy, is essentially CO2-emissions free. However, both Denmark and 
Finland have considerable coal and natural gas generation. Generators using these fuels will then 
have a need for EUAs. Thus, when these generators are the marginal producers it is expected that 
the EUA price, along with the price of the fuels, will influence the Elspot price. 

3. Data and Empirical Methodology 

In understanding the interaction of EUA prices and Nordic electricity prices, there are 
many intricate relationships to consider. For instance, given the electricity production profiles of 
Denmark and Finland, it would appear likely that coal and natural gas prices will influence 
electricity prices. Mansanet-Bataller et al. (2007) and Alberola et al. (2008) also find that among 
other variables, EUA prices are influenced by coal and natural gas prices. Reservoir water level 
has also been shown to affect Nordic electricity prices given the region’s use of hydroelectricity 
(Koopman et al. 2007). Conversely, if hydroelectricity is generated strategically, reservoir levels 
will also be a function of electricity prices. Given these various relationships, a systems-based 
approach is used here.  

This study uses weekly data running from the week ending on January 7, 2005, to April 
18, 2008. EUA price series ( ,EUA

tP €/ton emitted) is the weekly average of spot price as quoted by 
Point Carbon. The natural gas price ( ,g

tP €/Btu) is the weekly average of spot prices from the 
Zeebrugge hub. The coal price ( ,c

tP €/ton) used is the weekly average of spot prices for coal 
delivered to the Amsterdam/Rotterdam/Antwerp region. Electricity prices ( ,elec

tP €/MWh) come 

from the hourly day-ahead Elspot system prices for weekdays only.4 Several different averaging 
mechanisms are used to derive price series and will be discussed in more detail below. However, 
for the base case, the electricity price used is the average of all weekday hourly prices. To 
control for reservoir levels, a measure of water scarcity is needed. The series used for this 
measure is 

 ( ) ( ) ( )t t tlevel percent of capacity percent of capacity= −  

                                                 
4 Weekend electricity price data are excluded from this study because demand patterns, and thus price patterns, are 
substantially different from weekdays. 
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where (percent of capacity)t is the percent of the Nordic region’s reservoir capacity that is filled 
for week t and ( percent of capacity )t is the historical average of percent of capacity for week t 

(source: Swedish Environmental Research Institute IVL). Air temperature is also often cited as 
an important determinant of electricity prices as well as fuel and EUA prices (Alberola et al. 
2008). To control for temperature, I first create a weekly average of degree days for four major 
cities in the Nordic region: Copenhagen, Helsinki, Oslo, and Stockholm.5 Then, to create a single 
degree day variable (DDt), I take the population-weighted averages of the four individual degree 
day series. 

Figure 1 provides plots of the prices along with a plot of levelt, and summary statistics for 
all variables are given in Table 2. From the top panel of Figure 1, two features of the EUA price 
series are easily observable. The first is the severe drop in EUA price near April 2006, and the 
other is that the EUA price approaches zero near the end of 2007, then abruptly shifts up to 
around 20€/ton. This pattern is due in part to the implementation design of the EU-ETS.  

The EU-ETS was introduced in phases. Phase I ran from 2005–2007 and is commonly 
referred to as the “warm-up” or “Pilot” phase. Phase II runs from 2008–2012. Phase II has 
stricter emissions reduction targets and covers more installations than Phase I. Within a phase, 
installations may bank any unused annual permits for use in later years of that phase. However, 
banking between Phase I and Phase II was prohibited. The price drop in April 2006 came in 
response to early emissions verifications from several countries that suggested there was an 
overallocation of allowances.6 Since banking was not allowed between phases, prices continued 
to slide as Phase I drew to a close and it became evident that there was a surplus of allowances. 
After Phase I ended, EUA prices immediately jumped up to reflect the stricter emissions 
reduction targets of Phase II. Figure 1 provides several other readily observable aspects. First, it 
is apparent that the electricity price increases in August and September of 2006 coincide with a 
drop in reservoir heights from their historical levels over that time, which lends support to the 
use of the level variable in this study. Also, the rise in electricity prices near the end of 2007 
appears to happen concurrently with rising natural gas and coal prices during that time.  

                                                 
5 Degree day is defined in this study as the absolute value of the difference between observed average daily 
temperature (degrees Fahrenheit) and 65. Temperature data for each of the cities were obtained through the publicly 
available University of Dayton’s Average Daily Temperature Archive (http://www.engr.udayton.edu/weather/). This 
degree day variable is the sum of heating and cooling degree days. 
6 Beginning on April 24, 2006, five E.U. member states (The Netherlands, Czech Republic, France, Sweden, and 
Belgium) revealed that their 2005 emissions were far lower than their granted allowances.  
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While it is informative to visually inspect the data in order to gain intuition about the 
relationships among the various series, much more can be gained from a rigorous statistical 
analysis of the system. There are many different ways the relationships in this system could be 
estimated. Instead of modeling all of the intricate relationships among these price and nonprice 
variables explicitly, however, the data-driven vector autoregressive (VAR) model is used. 
Several features of the VAR model make it appropriate in this context. First, VARs allow for the 
estimation of a reduced-form dynamic relationship among a system of endogenous variables, 
conditional on exogenous variables, with a limited number of user-defined restrictions required. 
As discussed originally in Sims (1980), the lack of user-imposed restrictions is desirable in 
complex systems. Dynamic considerations are also important in explaining the relationship 
among the prices of EUAs, combustion fuels, and electricity, as shown in the related empirical 
work referenced above. Second, price variables often exhibit dynamic behavior consistent with 
nonstationary, I(1) processes. Not accounting for these I(1) variables can lead to spurious 
regression results, and removing the nonstationarity by first differencing the I(1) variables can 
delete informative long-run, cointegrating relationships. VARs can easily be amended to handle 
cointegrated I(1) variables in what is commonly referred to as a cointegrated VAR (CVAR) or as 
a vector error correction model (VECM). CVARs provide a convenient way to parameterize both 
short-run and long-run dynamics of a system [see Johansen (1996) for details]. Finally, from the 
estimation of VARs and/or CVARs, impulse response functions (IRFs) can be estimated. IRFs 
show how a shock to a given endogenous variable impacts the expected future values of the 
variables in the system. In the context of this study, it can be seen through the IRF how a shock 
to EUA prices impacts electricity prices while accounting for the interactions and feedbacks such 
a shock may have on related fuel prices. 

The estimation method proceeds as follows. First, preliminary tests are conducted to test 
for the order of integration in the univariate series. Second, assuming that the tests conclude at 
least some of the series are I(1), the cointegrating rank of the I(1) variables is determined. Once 
the cointegrating rank has been determined, a CVAR model is estimated. After the CVAR model 
is estimated, an impulse response analysis is conducted to determine how innovations to the 
EUA price are propagated through the system, and in particular how they affect electricity prices 
on both the short- and long-term horizons. Results of this procedure are given in the next section. 
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4. Results and Discussion 

4.1 Preliminary Tests 

Testing for the order of integration in individual series has long been standard practice in 
applied time series econometrics, and hence many unit root (UR) tests exist. Traditional 
Augmented Dickey Fuller (ADF) tests and the more efficient Dickey Fuller–Generalized Least 
Squares (DF-GLS) test of Elliott et al. (1996) are computed. These tests are applied to each of 
the price series and to the reservoir level variable.7 From the data plots, it appears Pg has some 
potential temporary outliers and PEUA has an obvious level shift when Phase II begins. Franses 
and Haldrup (1994) have shown that ADF-based UR tests, such as the DF-GLS test, often 
overreject the null in the presence of “temporary change” outliers and level shifts. To account for 
these outliers and the level shift, the UR with breaks test of Lanne et al. (2002) is also used. For 
each of the Pg series the UR with breaks test is conducted with an endogenously chosen impulse 
outlier, and for the PEUA series the test is run with a level shift. Results of the tests are given in 

Table 3.  

For the ADF tests, all series fail to reject the null of a UR for both specifications tested. 
With only a constant included in the auxiliary regression, all price series, except for natural gas, 
fail to reject the null of a UR based on the DF-GLS tests. The level variable does narrowly reject 
the null of a UR at the 10 percent significance level. With a linear trend and a constant included, 
tests for all series fail to reject the null of a UR. However, no linear trend is apparent in any of 
the series. When an endogenously chosen impulse outlier is included in the UR tests for Pg the 
null of a UR is not rejected. The same is true when accounting for the level shift in PEUA. 
Evidence provided in these tests shows clearly that the price series Pelec, Pc, and PEUA are best 
modeled as I(1). The results are mixed for Pg and level. The UR tests corrected for outliers 
indicate that Pg has a UR. Since the natural gas price series has obvious outliers, it seems likely 
that test not accounting for outliers will be biased. Therefore, this study proceeds under the 
assumption that Pg is an I(1) process. The DF-GLS tests narrowly reject the nonstationary null 
for level at the 10 percent significance level, but standard ADF tests indicate a UR. Furthermore, 
the degree of endogeneity for this variable is unclear. If hydroelectricity is used strategically to 

                                                 
7 While levelt is by construction a mean reverting process, for a given historical mean and for a fixed sample the 
series may exhibit properties that suggest nonstationarity. Thus, unit root (UR) tests are conducted for this series. 
UR tests for DDt are excluded here because, as expected, the variable follows an easily discernable seasonal pattern 
and thus does not display any stochastic trending behavior. 
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capture higher electricity prices, level may be endogenous. On the other hand, if the reservoir 
levels are primarily determined by weather conditions, level is best modeled as an exogenous 
variable. For these reasons, this variable is modeled in two separate ways. In Model 1, levelt is 
considered as an endogenous I(1) variable. In Model 2, levelt is considered as a stationary 
exogenous variable.  

  Given the order of integration of the variables used, a general VECM specification can 
be formulated: 
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In (1), β is the (p × r) cointegrating vector that determines the r long-term relationship(s) 
between the p I(1) series, and α is the loading matrix that determines how the endogenous 
variables respond to disequilibrium(ia) in the long-run relationship(s). The rest of the right-hand 
side of (1) describes the short-run dynamics. Because no linear trend in the variables is 
discernable, right-hand side constants are neglected and the exogenous variables in Zt are 
demeaned.8 In addition to the lagged, differenced endogenous variables and the exogenous 

                                                 
8 Constants were also excluded from the cointegrating vector because cointegration vector parameter restriction tests 
described in Johansen (1996) indicate the constant can be excluded from the cointegration space. 
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variable of Zt, the model also includes three impulse dummies.9 The first of these dummies, D1t, 
controls for the April 2006 EUA price drop, and the other two variables, D2t and D3t, control for 
the change from Phase I to Phase II.10 Finally, the vectors εt are the unmodeled innovations to the 
system such that ~ (0, )t Nε Ω and cov( , ) 0for .t s t sε ε = ≠  

To determine the cointegrating rank, r, a Johansen trace test based on the maximum 
likelihood approach of Johansen (1991) is used.11 Test statistics for the trace test, denoted LR, 
are given in                                                 

                                              Table 4. For the Model 2 specification the results clearly 
indicate the existence of a single long-run relationship. The results from the trace statistic that r 
= 1 are not as strong for Model 1, but still show signs of a single long-run relationship. The 
paper proceeds under the result that both model specifications have a single cointegrating vector.  

4.2 VECM Estimation  

With the cointegrating rank determined, the parameters of (1) can be estimated. To do 
this, a maximum likelihood estimation approach is used. For each specification, the lag 
selections [k in (1)] are chosen from Schwarz information criterion (SIC) minimization and the 
cointegrating vector β normalized on 1

elec
tP− . Results from the estimation for Models 1 and 2 are 

given in Tables 5 and 6, respectively.  

The cointegrating vector estimates from both model specifications show that the signs of 
the long-run relationship are economically sensible. From the short-run parameters, it can be 
seen that short-run dynamics of electricity prices are driven primarily by natural gas and EUA 
prices as well as reservoir levels and temperature. The signs of these interactions are consistent 

                                                 
9 Seasonal dummies are excluded from the models because in both cases they were found to be largely insignificant. 
While seasonal variation is likely present in the data, the insignificance of the seasonal dummies is likely due to the 
fact that they are superfluous because most of the seasonality is being picked up by the variable DDt. 
10 The verification date for 2007 emissions occurred midweek for the week ending December 7, 2007. Therefore, 
the EUA price jump from the end of Phase I to the beginning of Phase II actually occurs over two periods given the 
way the data are aggregated for this study. This creates the need for two dummy variables to account for the 
transition from Phase I to Phase II. 
11 Generally the inclusion of exogenous variables Zt creates nuisance parameters in the limiting distribution of the 
trace test. However, as pointed out in Rahbek and Mosconi (1999), when 'α⊥Φ = 0 , where α⊥ is such that ' 0α α⊥ = , 
then no nuisance parameters are present. Based on the estimation results presented below, ' [0.01 0.01]'α⊥Φ = − for 
Model 1 and ' [ 0.08 0.01 0.05 0.01]'α⊥Φ = − − . Given that these vectors are near zero, the critical values presented in 
Johansen (1996) are used without corrections. 
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with economic theory for both specifications. For Model 1, the short-run dynamics of the other 
price series and levelt are determined largely by their own autoregressive components, but some 
interrelationships do exist. First, the short-run dynamics of natural gas prices have significant 
reactions to coal prices, but the coal price series does not react significantly to natural gas price 
fluctuations.  

Second, EUA prices have a significant negative reaction to increasing degree days.12 At 
first, this result may seem counterintuitive since larger degree days are associated with a greater 
demand for energy and, thus, increased CO2 emissions. However, as pointed out in Alberola et 
al. (2008), the sign of temperature-related variables such as degree days depends on deviations 
from the variable’s seasonal means. Therefore, if the DDt variable is representative of a larger 
E.U.-wide degree day variable and on average below the long-run expected degree days value, 
the sign of the DDt parameter in the EUA

tP  equation would be negative. Indeed, by using 

temperature data from 1995 through 2007 to construct the long-run average weekly degree days 
variable as described above, I do find that on average the series DDt is lower than its long-run 
average. Lagged EUA prices also appear to have a significant negative effect on reservoir levels. 
This is as expected since increased EUA prices would create a greater reliance on emission-free 
generation technology such as hydroelectricity. 

 Finally, in contrast to Bunn and Fezzi (2007), the system approach used here finds no 
significant interaction between EUA prices and input fuel prices.13 In addition, it appears from 
the parameter estimates of α and loading parameter restriction tests described in Johansen (1996) 
that levelt and c

tP are weakly exogenous. For levelt this may be expected since there are many 
exogenous forces that determine reservoir height that are not modeled here. In the case of c

tP this 

is also expected since coal is traded globally and thus may be driven more by forces outside of 
this regional model.  

For Model 2, the short-term dynamics results are similar to those in Model 1. The 
cointegrating vector estimate is also similar across specifications, further enforcing the idea of a 

                                                 
12 The fact that the parameter value of DDt-1 is positive and of the same absolute value as the parameter on DDt 
suggests, as expected, that temperature fluctuations have only a temporary effect on EUA and electricity prices.  
13 Input fuels have been found to be price drivers in other studies of EUA price formation [e.g.,  Mansanet-Bataller 
et al. (2007) and Alberola et al. (2008)]. However, the results of these studies are not directly comparable to those 
presented here because those studies do not use system estimation techniques, but rather single-equation estimation 
methods. 
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more exogenously determined levelt variable. One readily apparent difference between the two 
specifications is that, unlike in Model 1, c

tP is not weakly exogenous in Model 2.  

Residual analysis is conducted for model diagnostic testing. Based on the Portmanteua 
test, Model 1 specification fails to reject the null of no autocorrelation in the residuals at the 5 
percent level with 16 lags included, while Model 2 specification fails to reject the null for this 
test at the 10 percent level. Lagrange multiplier tests for autocorrelation, which are more 
appropriate for checking autocorrelation at shorter lags, reveal that Model 1 specification fails to 
reject the null of no autocorrelation at the 5 percent level for up to two lags, while Model 2 
specification fails to reject the null at this significance level for up to six lags. For both 
specifications, residuals show signs of nonnormality and autoregressive conditional 
heteroscedasticity (ARCH). However, as shown in Gonzalo (1994), maximum likelihood 
estimates in a cointegration analysis are still consistent even with these issues. Model selection 
criterion was also conducted to compare the two models. Based on the Akaike information 
criterion (AIC), SIC, and Hannan-Quinn criterion, the Model 2 specification is preferred to 
Model 1.  

4.3 Impulse Response Analysis   

While the parameter estimates of the VECM are informative in terms of deciphering what 
statistically significant relationships exist, interpreting these coefficients can be difficult due to 
the intricate interaction among variables. For example, determining the effect of a 1€ increase in 
EUA price on Elspot electricity price is more complicated than simply calculating the marginal 
response based on the parameter estimates from the first line of Equation (1), because that would 
neglect any further feedback that changes in these variables may have on the system dynamics as 
a whole. To account for these more complicated interactions, impulse response analysis is often 
conducted in conjunction with CVAR models to better understand how the movement in one 
variable affects all endogenous variables in the system. An IRF works by initially imposing a 
one-time innovation to one of the endogenous variables via the error term εt in (1). The effect of 
this shock on all the endogenous variables is then traced out over time based on the system 
dynamics estimated in the CVAR and assuming no other innovations hit the system. It should 
also be noted that since the endogenous variables of a CVAR model are I(1) variables, a one-
time unit innovation in one of these variables would create a permanent one-unit increase, 
assuming no other interaction dynamics and no other innovations. Therefore, the innovation acts 
like a marginal change to the variable in question. 
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   Because the focus of this paper is to determine how Nordic electricity prices react to 
changes in EUA prices, impulse response analysis is conducted with innovations entering 
through EUA

tε . IRFs were constructed for both model specifications. To account for 

contemporaneous correlation in the error terms, the innovations are orthogonalized through the 
generalized IRF (GIRF) procedure of Pesaran and Shin (1998). This orthogonalization procedure 
is used because it has the advantage of being unaffected by the order of endogenous variables in 
Yt. Plots of the GIRFs using the average weekday wholesale electricity price for elec

tP  and scaled 
to a 1€ innovation in EUA

tP are given in Figures 2 and 3 for Models 1 and 2, respectively. As can 

be seen from Figure 2, only electricity prices show any sizeable short-term response to 
innovation, increasing by 0.87€/MWh one period after the initial 1€-EUA price jump. As the 
responses are forecasted farther into the future, the permanent increase in electricity prices 
dampens, while reservoir heights decrease from historic levels and coal prices increase. Natural 
gas prices rise only slightly in response to an increase in EUA prices. Figure 3 displays a similar 
pattern to that in Figure 2, although the response of electricity prices to the EUA price shock 
(0.69€/MWh one period after the shock and 0.32€/MWh 30 periods after the shock) are not as 
great. This is as expected because, as seen in Figure 2, when levelt is modeled as an endogenous 
variable it decreases in response to the EUA price shock, which has a positive feedback into 
electricity prices. When levelt is modeled exogenously, as in Model 2, this positive feedback no 
longer exists, so electricity prices will not increase by as much as in Model 1.  

The shape of the GIRFs for electricity prices displays some intuitive economic 
relationships. Given an inelastic short-term demand for electricity, a shock to an input price such 
as EUAs is likely to be met with a rapid increase in electricity prices. This increase would be 
expected to subside to some degree over time as demand for electricity, as well as demand for 
the fuels used for electricity generation, adapted to the higher prices. The impulse response of 
electricity prices for both models conforms to this line of reasoning.  

The values of the impulse response estimates for electricity prices also appear to be 
sensible. As mentioned above, if electricity generators fully pass through the opportunity cost of 
holding permits and demand elasticity remains constant, then the marginal response of electricity 
price to a 1€/ton increase in CO2 prices should be approximately 0.85€/MWh if a coal-fired 
generator is at the margin and 0.48€/MWh if a natural gas turbine is at the margin. The short-
term electricity price response estimates are 0.87€/MWh and 0.69€/MWh for Models 1 and 2, 
respectively. These estimates are thus in line for a market where coal-fired generators are usually 
on the margin and CO2 costs are fully or near fully passed through. Given the competitive nature 
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of the Nordic electricity market and this market’s electricity generation profile, this description is 
appropriate for the Nordic electricity market. 

For the most part, the shape of impulse responses for the input fuels also appears 
intuitive. The higher price of CO2 emissions should increase the demand for hydroelectricity and 
to some degree the demand for natural gas. Therefore, as shown in Figure 2, it is expected that 
levelt would decrease and g

tP would increase, as shown in Figure 2 andFigure 3, with a positive 

EUA price shock. Since the use of natural gas for electricity generation is relatively low in the 
Nordic region, it is not surprising that this increased demand for this cleaner fuel has only a small 
positive effect on natural gas prices at the Zeebrugge hub. The estimated response of coal prices 
does not appear quite as intuitive. Given the greater CO2 emissions intensity of coal, it is 
expected that coal prices would react negatively to an increase in EUA prices. Initially, the GIRF 
for both models predicts such behavior. However, over a longer period, the effect of the initial 
shock to EUA

tP  leads to slightly positive effects on coal prices in both model specifications. This 

is due to the estimated positive, although small and statistically insignificant, impact of EUA 
prices on coal prices from the CVAR models. Indeed, when bootstrapped confidence intervals 
are calculated for the GIRFs, the long-term response of coal prices to a EUA price shock is not 
statistically different from zero at traditional levels of significance. Furthermore, in conditional 
subset VECM models not shown here, the impulse response of c

tP to a EUA
tP  shock was found to 

be essentially zero at all time periods. These results of limited response of c
tP to EUA

tP shocks are 

as expected given the more global nature of coal trading compared with EUA trading.   

4.4 Varied Response  

 The results presented above are derived from an electricity price that is an average of all 
weekday hourly wholesale prices. However, as shown in Table 1, several different generating 
fuels, with varying associated CO2 emissions, are used in the Nordic region. It would stand to 
reason then that the response of electricity prices to price shocks in EUAs will vary in this region 
as the input fuel used by the marginal, and hence price-setting, generator varies. Unfortunately, 
the data set used in this study does not allow one to observe the generation fuel used by the 
marginal generator. Instead, different electricity price series are created based upon different 
subdivisions of the hourly wholesale electricity price data, which are likely to be representative 
of prices resulting from varying marginal generators. A separate CVAR is then estimated for 
each of these electricity price series such that elec

tP  in Models 1 and 2 is represented by these new 

electricity price series. From the estimated CVARs, separate impulse response analyses are 
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conducted to see how the responses to shocks in the EUA market vary across the different 
electricity price series. 

This study considers two different subdivisions of the electricity price data. In the first 
subdivision, denoted as the “hour average electricity price,” a separate electricity price series is 
made by taking the weekday average of electricity prices for each hour of the day. That is, the 
hour one electricity price series is simply the average price of the first hour’s price from each of 
the five weekdays (Monday through Friday), and this averaging technique is used for each of the 
24 hours. This subdivision strategy was used because for most weekdays the hourly electricity 
load curve, and hence the marginal generator, follows a generally stable pattern. This load curve 
is typified by low electricity demand in the early morning (hours 1–7) and late evenings (hours 
20–24), and higher demand during the hours between these troughs with peaks during 
midmorning hours (hours 8–10) and hours directly at the end of the working day (hours 18–19). 
Thus, it is expected that low-load periods will be supplied by electricity generated from low 
marginal–cost fuels such as hydro, nuclear, and coal, while high-load periods will require 
production from higher marginal–cost fuels such as natural gas. 

Figure 4 gives a plot of the maximum responses of electricity prices to a 1€ price jump in 
EUAs for each of the 24 hour average electricity price series.14 In all cases this maximum 
response was, as expected, a near immediate response, happening one period after the initial 
shock. The top panel gives the responses based on the Model 1 specification, while the bottom 
panel gives the Model 2 responses. The plots are again similar in shape, and again both plots 
have an economically intuitive form. As expected, the price series from off-peak periods, where 
the price-setting generator is likely to be a more carbon-intensive coal-fired plant, show higher 
responses to CO2 price shocks. The price series from peak-demand periods, where the marginal 
generator is more likely to be a less carbon-intensive natural gas turbine, show markedly lower 
responses to EUA price shocks. Furthermore, the estimated responses appear to be economically 
sensible given complete or near-complete pass-through EUA prices. The off-peak responses are 
in the range of approximately 0.80€/MWh–0.95€/MWh for Model 1 and approximately 
0.60€/MWh–0.75€/MWh for Model 2; both responses are near the 100 percent pass-through 

                                                 
14 Confidence intervals shown in Figures 4 and 5 are derived by using the bootstrapping method, with standard 
percentile intervals, described in Lütkepohl (2005). 
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response of 0.85€/MWh expected for coal generators.15 Conversely, peak-period responses are in 
the range of approximately 0.65€/MWh–0.70€/MWh for Model 1 and 0.40€/MWh–0.50€/MWh 
for Model 2, near the 0.48€/MWh response expected if there is 100 percent pass-through of CO2 
costs for markets with natural gas generators at the margin. 

For the Nordic region, the daily load curve may not be stable throughout the year due to 
the region’s long summer days and short winter days. Therefore, the peak periods in a day may 
change throughout the year. This may bias the hour average electricity prices in terms of trying 
to find price series indicative of various marginal producers. The second subdivision of 
electricity prices, denoted as the “sorted hour average electricity prices,” attempts to circumvent 
this varying peak periods problem. For this grouping of electricity prices, in each day the hourly 
electricity prices are first sorted from low to high. Then, a weekday average is constructed for 
each of the 24 “sorted” hours of the day. That is, a given data point for the first sorted hour 
average electricity price is an average of each weekday’s lowest hourly price. The logic behind 
this subdivision is that the hourly prices for any given day should be representative of the hourly 
demand for that day and could therefore more accurately display which hours should be assigned 
as peak and off-peak. 

Figure 5 displays the plots of the maximum responses of electricity prices to a 1€ price 
jump in EUAs for each of the 24 sorted hour average electricity price series. Again, these 
maximum responses all happen near term, occurring in either the same or subsequent period as 
the EUA price innovation. These plots reveal that for approximately 14 of the lowest-priced 
hours of the day, the electricity price response to PEUA price shocks is fairly constant and 
relatively high. These response estimates are near the off-peak response estimates from Figure 4 
for both Models 1 and 2. Beyond the 14 lowest-priced hours, the electricity price response begins 
to taper off, suggesting a change in the marginal producer at these points. Furthermore, the 
responses based on the highest-price hours for both Models 1 and 2 are lower than the response 
estimates presented in Figure 4. This is somewhat expected. However, price response estimates 
for these peak price periods are still sensible given near 100 percent pass-through for natural gas 
turbines at the margin.  

                                                 
15 The Model 1 responses are slightly higher than those of Model 2 because Model 1 incorporates a feedback effect 
of reduced reservoir levels due to the increasing EUA prices. 
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5. Conclusion 

 This study uses a CVAR approach and impulse response analysis to determine the 
relationship between electricity prices and EU-ETS CO2 permit prices for the Nordic electricity 
market. By using weekly average input and electricity prices, the results show that Nordic 
electricity prices react significantly to price shocks in EUAs in the short-term, but that this 
response dampens over time. It is also shown that the relevant fuel prices of natural gas and coal 
react slowly and minimally to EUA price shocks.  

By exploiting the hourly prices given in the data set used here, this study also finds 
evidence of time-varying electricity price responses to EUA price shocks. These results show 
that short-term responses of off-peak electricity prices to EUA price shocks are significantly 
higher than those of peak electricity price periods. Furthermore, short-term electricity price 
responses estimated from the impulse response analysis are in line with expected responses for 
markets where CO2 costs are near fully passed through. This suggests that the Nordic electricity 
market is operating as a competitive market. 

From a policy perspective, the estimated short-term responses of electricity prices to 
EUA price shocks suggest that the CO2 market has created a wealth transfer from electricity 
consumers to electricity producers. This would then appear to support those calling for at least a 
partial auctioning of allowances to the electricity production sector. However, longer-term 
responses indicate that high levels of CO2 emissions cost pass-through cannot be maintained. 
This, as alluded to above, could be the result of a demand response and/or a supply response. 
Acknowledging this difference between short- and long-term responses perhaps calls for a 
second look at the meaning of pass-through and what these dynamic properties of electricity 
price responses to CO2 emissions cost shocks mean in terms of developing allocation 
mechanisms. 
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Table 1. 2005 Electricity Production Profiles 

 

 Denmark Finland Norway Sweden 

Total (TWh) 34.4 67.9 138.0 154.7 

Nuclear 0.0 22.3 0.0 69.9 

Coal 14.5 7.0 0.0 1.1 

Oil 0.3 1.5 0.0 1.4 

Peat 0.0 4.5 0.0 0.1 

Natural gas 8.6 8.9 0.4 0.7 

Other thermal 0.2 0.0 0.0 0.6 

Hydro 0.0 13.6 136.5 72.1 

Wind 6.6 0.2 0.5 0.9 

Bio 2.9 8.9 0.3 7.4 

Waste 1.3 1.0 0.3 0.9 

 

 

 
Table 2. Summary Statistics 
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Variable Mean Min. Max. Stnd. Dev.

Pelec 35.82 77.25 12.88 12.31 

PEUA 13.75 31.22 0.06 9.74 

Pc 57.32 95.31 43.59 13.81 

Pg 5.67 16.15 2.38 2.49 

level 0.57 9.51 –22.73 8.30 

DD 20.90 50.35 0.60 13.05 
Note: Pelec is the price of electricity based on the average price of weekday hourly prices. 

 

 

Table 3. Unit Root Tests 

 

 ADF Tests DF-GLS Tests UR with Breaks Tests

Variable const. const. & trend const. const. & trend const. break location 

Pelec –2.11 –2.07 –0.92 –1.78 – – 

PEUA –1.23 –1.23 –0.92 –1.31 –1.25 12/14/07 

Pc –0.20 –2.10 –0.58 –1.22 – – 

Pg –2.41 –2.41 –2.07** –2.30 –2.24 3/31/06 

level –1.67 –1.93 –1.63* –1.69 – – 
Notes: **Significant at 5% level; *significant at 10% level. Lags chosen by SIC minimization. Critical 
values for UR with breaks tests are given in Lanne et al. (2002). 

 

                                                 

                                              Table 4. Cointegration Rank Test 
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 LR Statistics 

H0: r =  Model 1  Model 2 

0 58.92* 49.36** 

1 27.29 17.94 

2 10.30 1.92 

3 3.85 0.21 

4 0.03 – 
Notes: **Significant at 5% level; *significant at 10% level [from Table 15.1 Johansen (1996)]. 

 

 

 

 

Table 5. Model 1 VECM Parameter Estimates 

 
Cointegrating Relationship    

    levelt  
1 –3.25 –0.30 –0.13 1.13  
 (0.52) (0.04) (0.14) (0.12)  
      

Short Run Parameters    

     Δlevelt 

ECt–1 –0.14** 0.01** 0.01 –0.05** 0.00 

 0.10 0.02 –0.01 0.00 –0.01 

 0.58 1.01** 0.02 –0.02 –0.06 

 0.10 –0.09** 0.67** 0.12 –0.04 

 0.42** 0.00 0.05 0.41** –0.13** 
Δlevelt–1 –0.58** 0.03 –0.12 0.01 0.57** 

 0.02 –0.02* –0.02 0.01 0.01 

 –0.93** –0.53** 0.16 –0.19 0.06 
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 0.06 0.07* –0.10 –0.08 0.05 

 –0.29** 0.01 0.05 –0.31** 0.07 
Δlevelt–2 –0.12** –0.02 0.02 –0.01 0.07 

DDt 0.31** 0.01 0.01 –0.03* –0.07** 
DDt–1 –0.32** –0.01 –0.01 0.03* 0.07** 

D1 0.52 –1.47** 0.07 –9.12** –0.36 
D2 –0.74 –0.56 –0.13 9.43** 0.25 
D3 –1.06 0.12 –0.80 10.42** 0.87 

Notes: Standard errors in parentheses for cointegration vector. **Significant at 5% level; *significant at 10% level. 
ECt–1 refers to 1' tYβ − . 

 

 

Table 6. Model 2 VECM Parameter Estimates 

 
Cointegrating Relationship              

          
1 –3.25 –0.29 –0.11       
 (0.52) (0.04) (0.13)       
          

Short-run Parameters       

               

ECt–1 –0.13** 0.02** 0.01 –0.05** levelt –0.94** 0.01 –0.06 –0.02 

 0.10 0.02 0.01 0.00 DDt 0.24** 0.01 0.01 –0.03* 

 0.49 1.00** 0.01 –0.03 levelt–1 0.80** 0.01 0.08 –0.02 

 0.07 –0.09 0.66** 0.12 DDt–1 –0.26** –0.01 –0.01 0.03 

 0.30** 0.00 0.04 0.40** D1 0.27 –1.45 0.07 –9.12** 

 0.05 –0.02** –0.01 0.01 D2 –0.60 –0.59 –0.18 9.40** 

 –0.88** –0.53** 0.16 –0.19 D3 –0.30 0.08 –0.75 10.40** 
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 0.10 0.07* –0.10 –0.08      

 –0.23** 0.01 0.05 –0.31**      
Notes: Standard errors in parentheses for cointegration vector. **Significant at 5% level; *significant at 10% level. 
ECt–1 refers to 1' tYβ − . 

Figure 1. Data Plots 
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Figure 2. Model 1 GIRF for EUAP  Innovation 
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Figure 3. Model 2 GIRF for EUAP  Innovation 
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Figure 4. Short-Term Hour Average Electricity Price Responses to 1€-EUA Price Shock 
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Figure 5. Short-Term Sorted Hour Average Electricity Price Responses to 1€-EUA Price Shock 
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