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Abstract: 

To identify and prioritize effective food safety interventions, it is critical not only to 
identify the pathogens responsible for illness, but also to attribute cases of foodborne 
disease to the specific food vehicle responsible. A wide variety of such “food 
attribution” approaches and data are used around the world, including the analysis  
of and extrapolation from outbreak and other surveillance data, case-control studies, 
microbial subtyping and source-tracking methods, and expert judgment, among  
others. The Food Safety Research Consortium sponsored the Food Attribution Data 
Workshop in October 2003 to discuss the virtues and limitations of these approaches 
and to identify future options for the collection of food attribution data in the United 
States. This discussion paper summarizes workshop discussions and identifies 
challenges that affect progress in this critical component of a risk-based approach to 
improving food safety.
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 Linking Illness to Foods: Summary of a Workshop on Food Attribution 

Michael B. Batz, Michael P. Doyle, J. Glenn Morris, Jr., John Painter,  
Ruby Singh, Robert V. Tauxe, Michael R. Taylor, and Danilo M.A. Lo Fo Wong  

for the Food Attribution Working Group*

Introduction 

The Food Safety Research Consortium (FSRC) sponsored the Food Attribution 

Data Workshop on October 31, 2003, in Atlanta, Georgia, to discuss the virtues and 

limitations of the many methods used worldwide to attribute cases of foodborne 

disease to causal food vehicles. 

Food safety is a difficult and dynamic issue. With changing demographics and 

eating patterns, microbiological hazards have come to the fore as an important food 

safety challenge, responsible for as many as 76 million foodborne illnesses each year 

(Mead et al. 1999). The federal food safety agencies, the National Academy of Sciences, 

and other expert bodies share the goal of a science- and risk-based food safety system 

(IOM 1998, 2003; GAO 2001). Such a system requires that risk managers prioritize food 

safety hazards and preventive interventions using the best available data on the 

distribution of risk and on how risk can be reduced most effectively and efficiently. This 

includes understanding the many factors that can cause or prevent foodborne illness, 
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from the point of production to the point of consumption, and systematically targeting 

efforts—including research, regulation, education, and private initiatives—in ways that 

contribute most effectively to risk reduction.  

The FoodNet active surveillance system administered by the Centers for Disease 

Control and Prevention (CDC) is producing increasingly robust, quantitative data on 

the incidence of illness due to specific enteric pathogens. However, there is no such 

active surveillance system to categorize these illnesses by pathogen source—whether 

waterborne, environmental, or foodborne—or to identify and distinguish specific food 

vehicles. To design and prioritize interventions, it is essential that we know which foods 

are responsible for specific illnesses (“food attribution”) and how these foods contribute 

to the total disease burden associated with foodborne pathogens.  

This reflects the reality that interventions (and regulations) are almost always 

food specific (or process specific) and involve, for example, procedures to limit 

Escherichia coli O157:H7 in ground beef or Campylobacter in broiler chickens. Although 

we may have increasingly accurate estimates of the total number of patients with 

symptomatic E. coli O157:H7 disease, development of a rational system of interventions 

requires that these estimates be matched with comparably accurate data defining the 

source from which humans are acquiring these pathogens. Such food attribution data 

are of particular importance for U.S. government agencies that regulate food and food 

animals, including the Food Safety Inspection Service (FSIS) of the U.S. Department of 

Agriculture (USDA), the Center for Food Safety and Applied Nutrition (CFSAN), and 

the Center for Veterinary Medicine (CVM) of the Food and Drug Administration (FDA). 

Foodborne illnesses can be attributed to various foods using a variety of data 

sources and analytic approaches. It is important to understand the differences and 

limitations of these approaches and to recognize that different approaches may best 

answer different questions about foodborne illness. Does the question pertain to a 

single pathogen or a single food, or is the question about the range of foodborne 

pathogens? Should we attribute illnesses to broad categories of foods (e.g., “pork”) or is 
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it necessary to identify specific food items responsible (e.g., “ready-to-eat pork 

frankfurters”)? Do we seek to attribute illnesses to the infected foods when they are 

consumed (“point-of-consumption attribution”) or to the on-farm origin or reservoir of 

infection (“reservoir attribution”) before processing, distribution, preparation, and 

possible cross-contamination? Are we interested in identifying illnesses that are not 

directly due to food consumption but may be associated with food production, such as 

transmission from live farm animals to humans or transmission through drinking water 

contaminated by farm animal waste? Do we wish to use collected data to track small 

changes from year to year, or are we primarily concerned with attribution over a longer 

time frame? Is our purpose to identify broad policy needs, or do we seek to use 

collected data to evaluate the success of specific interventions after they are 

implemented? 

The Food Attribution Data Workshop was organized to explore these questions 

and the many approaches of food attribution in detail. Attendees included 

representatives from CDC, FSIS, CFSAN, CVM, the Environmental Protection Agency 

(EPA), consumer advocacy organizations, and member institutions of FSRC, including 

the University of Maryland at Baltimore, University of Georgia, Iowa State University, 

University of California at Davis, and Resources for the Future. The presenters and 

attendees who constitute the Food Attribution Working Group are listed in Appendix 

A, while the workshop agenda is attached as Appendix B. 

Food Categorization 

Before illnesses can be attributed to specific food risks, it must be decided how to 

categorize these pathways.  Seafood, for instance, could be one large category, or it 

could be subdivided in hundreds of species of animals. To consider categories that fit 

with common marketing and consumer expectation and yet are specific enough to 

represent distinct industries, it may be useful to categorize seafood into three groups of 

animals: fish, mollusks, and crustaceans. Using similar logic, a list of major food 
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commodities might be structured to comprise 12 categories in all: poultry, pork, beef, 

meat from other farm mammals (such as lamb and mutton), eggs, dairy, fish, mollusks, 

crustaceans, wild game, row crops (such as lettuce and corn), and tree crops (such as 

apples and oranges). Each of these commodities could be divided further, leading to 

such subcategories as broiler chickens and raw oysters. 

Developing a food categorization scheme is not straightforward, however,  

since foods might be classified in many additional ways, including level of processing 

(raw, fresh-cut, canned, frozen), origin (domestic, imported), and location of 

preparation (home, food processor, food service). These classifications become 

important for identifying possible intervention strategies. For interventions close to 

consumption, it may be useful to distinguish between preparation behaviors (raw eggs 

versus cooked eggs), whereas farm-level interventions may need to distinguish only 

among animal sources. 

Furthermore, illnesses are often linked to foods with multiple ingredients—such 

as soups, salads, and casseroles—in which it is impossible to identify the specific 

ingredient responsible. In such situations, one option might be to restrict analysis to 

single-food vehicles (e.g., ground beef but not meatloaf); another option might be to 

categorize foods by their “essential” ingredients (e.g., egg salad would be categorized as 

egg). One could also partition such foods into all of their ingredients and attempt to 

model the attribution from the frequency of ingredients found in implicated foods. To 

maximize information, it is best to include as many foods as possible. To retain 

accuracy, however, it is best to limit analysis to the contaminated ingredient. 

Development of a common food categorization scheme is essential if different 

sources of data are to be combined or compared. Since different approaches may 

obviously yield different results, it would be useful to compare, for example, the results 

of risk assessments with outbreak data. A barrier to making such comparisons is likely 

to be incompatible food categorization schemes used between studies. Because of this 

lack of agreement in categorization, data from CDC, state health departments, and FDA 
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and USDA and their constituent agencies are often not directly comparable. It may not 

be possible to reconcile all food categories across all approaches, but without 

standardized food categories, comparison between approaches may be difficult, if not 

impossible. As a necessary first step in any approach to food attribution, food categories 

need to be standardized across government agencies, using a scheme acceptable to 

industry, academia, and consumer groups. 

Current Approaches to Food Attribution 

There are numerous approaches and data sources currently utilized by 

researchers and regulators worldwide to attribute foodborne illnesses or risks of 

foodborne illness to specific pathogens in specific foods. These approaches to food 

attribution can generally be grouped into two broad categories, loosely designated as 

“epidemiological” and “microbiological.” Epidemiological information, whether from 

data series of reported foodborne outbreaks or from case-control studies of sporadic 

cases, focuses on the final foods as consumed and may serve to link a broad array of 

pathogens and foods (as in the outbreak series) or a single pathogen with a limited 

array of foods. Microbiological information includes data on microbes collected from 

humans and from animals and foods at various stages in the food production process. 

Microbial fingerprinting techniques, which use markers to group similar pathogen 

subtypes, can be used to compare microbes from different sources and to link pathogen 

sources to contaminated foods or to specific cases of illness.  

These methods provide focused information about single pathogens and about 

the range of reservoirs or foods that are included in comparative samples. In Denmark, 

the Salmonella Account uses this approach successfully to attribute cases of human 

salmonellosis to several animal reservoirs and thus to target and evaluate reservoir-

specific control measures on a year-to-year basis. In addition, risk assessments  

of foodborne illness utilize predictive microbiological models, along with 

microbiological data on pathogen prevalence in sampled foods, to estimate illnesses due 
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to specific pathogen-food pathways. These and other approaches for food attribution 

point to possible future directions of and improvements to the food safety system of the 

United States. 

Danish Experiences  

Denmark is regarded as an international leader in food safety, with 

responsibilities unified in a formal network of agencies and an extensive science-based 

program. In Denmark’s integrated system, all data from public health surveillance and 

from pathogen monitoring on foods and animals are routinely collected, collated, 

analyzed, and reported by a single coordinating body, the Danish Zoonosis Center. 

Cultures collected from infected people, animals, and retail food sources are subtyped, 

allowing for the direct comparison of surveillance and monitoring data and the 

identification of public health outcomes by food source.  

Denmark has three sources of foodborne illness surveillance data: notifications 

by doctors and hospitals for all suspected foodborne infections, reports by clinical 

microbiology laboratories of identified gastrointestinal pathogens, and individual 

accounts and outbreak investigations of persons who report food poisoning to the 

authorities (MFAF 2002). Because health care is free in Denmark, there is no financial 

barrier preventing consumers from seeking medical attention, and reporting of illnesses 

is therefore generally high.  

The regular monitoring of food sources is performed in Denmark along the farm-

to-fork pathway—on farms, at slaughter, and on retail foods—though the emphasis is 

on primary production facilities and on Salmonella (MFAF 2002; Wegener et al. 2003). 

Every flock of egg-laying chickens (layers) is regularly tested for Salmonella by a 

combination of serological and bacteriological methods. Additional testing is performed 

in flocks testing positive for verification of infection. All flocks of broiler chickens, 

turkeys, and ducks are tested by bacteriological examination approximately three 

weeks prior to slaughter. Finishing-pig herds producing more than 200 finishers—pigs 

6 



Food Safety Research Consortium            Batz et al. 

ages 12 to 26 weeks—per year are continuously tested by serology, and herds exceeding 

a predetermined proportion of seroreactors receive a follow-up bacteriologic 

examination. Dairy herds are monitored serologically and categorized according to 

levels of antibodies. Batches of broiler chickens and turkeys, and carcasses of pork and 

beef are examined bacteriologically after slaughter. Imported products of poultry, pork, 

and beef are also monitored. Isolates from wild animals, birds, and pets are also 

monitored and subtyped (MFAF 2002). At the retail level, surveys are performed: raw 

meat, pork, and poultry are monitored, as are fruits, vegetables, and shell eggs. 

The critical linkage between public health surveillance data and animal and  

food monitoring data is achieved through the extensive use of subtyping of isolated 

pathogens. Microbial subtyping, or microbial fingerprinting, is an umbrella term for  

the numerous methods used to distinguish bacterial and viral isolates from one another. 

The subtyping of foodborne pathogens is useful for two reasons. First, it can aid 

epidemiological investigations of outbreaks by identifying and tracking bacterial 

isolates, grouping illnesses by isolate, and thus positively identifying the food 

responsible. Second, certain pathogen subtypes can be associated with particular foods 

or animal sources, thus enabling illnesses from those subtypes to be similarly 

associated. 

Denmark, the United Kingdom, and the United States all use microbial 

subtyping to aid with outbreak investigations, but only Denmark subtypes with enough 

regularity in humans, animals, and food to attribute sporadic pathogen illnesses to 

specific food and animal sources. The subtyping methods used in Denmark include 

serotyping, phage typing, and pulsed-field gel electrophoresis. 

When Salmonella sero- and phage types isolated from animals and food with 

isolates from humans are compared in a quantitative manner, the attribution (impact) of 

the major animal reservoirs to human disease incidence can be assessed indirectly. A 

prerequisite of the model is predominance of at least one Salmonella subtype in each of 

the main reservoirs. It is assumed that all human infections with these “distinctive” 
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types originate only from that particular source. Human infections caused by Salmonella 

types found in multiple reservoirs are then distributed proportionally to the occurrence 

of the distinctive types. The application of this rather simple model for more than a 

decade has allowed for the evaluation of trends and dynamics in the major sources of 

human salmonellosis and provided decision-support for risk managers by documenting 

either the need for or the effect of surveillance programs. During this time, dramatic 

changes in the prevalence of specific subtypes associated with major food sources were 

reflected in similar changes in the number of human cases with these types. 

The principle of Salmonella case attribution has generated annual estimates for 

the impact of major animal-food sources in Denmark from 1988 to 2002 (MFAF 2002, 

2003). During this period, several independent observations have supported the 

outcome of the case attribution model. These include results from case-control studies, 

outbreak reports, time-series analysis, and risk assessments (Mølbak 2003; Mølbak and 

Neimann 2002). The observation that changes in prevalence in both animals and food 

are reflected in similar changes in (the nonprevalence-based) food attribution estimates 

strengthens confidence in the method.  

It should be noted that although Denmark’s method of attributing cases of 

salmonellosis to animal sources provides an excellent general assessment of reservoirs 

of infection, it does not necessarily identify the causal vehicles implicated in individual 

cases of illness. The method relies on matching subtyped isolates from illnesses to 

monitored animal sources, but many such subtypes are not unique to a particular 

animal, and illnesses are therefore attributed proportionally. Other sources capable of 

causing human illness (e.g., vegetables, fish, pets, water) are not represented directly by 

the extensive subtyping of isolates. Some human cases associated with these sources 

may be allotted to the “unknown” category of the assessment, whereas others may be 

referred to one of the major sources. In some cases, this approach may be acceptable, 

since contamination at some point in time originates from an animal reservoir.  
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Danish food attribution modeling is currently focused solely on Salmonella. 

Though extensive subtyping also is performed on Campylobacter isolates from a variety 

of sources, the homogeneous distribution of subtypes across reservoirs does not allow 

similar food attribution modeling. The application of the Danish food attribution 

method is limited to those pathogens that fulfill the prerequisites of the model (i.e., 

heterogeneous distribution of subtypes across reservoirs, the availability of 

representative distributions, and if need be, the ability to discard outbreak- and travel-

associated cases). Consequently, it cannot be used in its present form for a great number 

of foodborne pathogens. 

If the purpose of a food attribution assessment is to identify various critical 

control points along the farm-to-fork continuum, and to simulate the effect of control 

strategies at these points, the Danish model does not suffice. Nor does the model suffice 

to identify responsible foods at the point of consumption. Nonetheless, if the purpose of 

performing food attribution is to identify reservoirs of infection in animal populations, 

the Danish approach is appropriate, comprehensive, and scientifically rigorous.  

United Kingdom Experiences 

The United Kingdom has long been an active leader in food safety, a role 

furthered in 2000 with the creation of the Food Standards Agency (FSA). As one of only 

a handful of countries to have consolidated responsibilities into a single government 

office, the United Kingdom utilizes an integrated systems approach to food safety that 

includes both epidemiological and microbiological methods.  

In recent years, the U.K. public health and food safety agencies, headed by the 

Department for Environment, Food, and Rural Affairs, have produced annual reports 

on zoonoses (MAFF 2000, 2001; DEFRA 2002, 2003). These integrated reports combine 

the reporting and interpretation of public health surveillance data with monitoring for 

pathogens in live animals, carcasses at slaughter, and retail foods.  
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The United Kingdom has three surveillance systems in place for foodborne 

illness: statutory reporting by doctors of suspected cases of food poisoning, national 

surveillance of laboratory-confirmed infections, and national surveillance of general 

outbreaks of infectious intestinal disease (Wall et al. 1996). Outbreak surveillance data 

have been used in etiological analyses of such outbreaks associated with specific foods, 

such as fish and shellfish, poultry, and red meat (Gillespie et al. 2001; Kessel et al. 2001; 

Smerdon et al. 2001). These analyses detail illnesses by pathogen and food source, 

seasonality, severity of illness, and additional factors, such as where the food was 

prepared (home, catering service, restaurant). 

U.K. agencies also perform regular monitoring of animals and retail food, though 

the program is not as comprehensive or consistent as that of Denmark. Salmonella is 

given the most attention, with regular testing of poultry in breeder, boiler, and laying 

hen flocks. Reported incidences from cattle, sheep, and pigs are also collected for 

Salmonella, and the pathogen strains from animal infections are subtyped and analyzed 

(DEFRA 2003). Shellfish are also monitored quite heavily (FSA 2003). In addition to 

such monitoring, FSA performs prevalence studies on various animals and food 

products to determine contamination levels. Two such studies on animals include a 

two-year survey for E. coli O157:H7 in cattle, sheep, and pigs and a survey of cows’ milk 

for Mycobacterium bovis (DEFRA 2002). Studies are also performed on retail food 

products, including fresh and frozen whole and portioned chicken (DEFRA 2003); salad 

vegetables (DEFRA 2003); halal butchery products (Little et al. 1999); and various ready-

to-eat products, such as hamburgers, sliced deli meats, and quiche (Little et al. 2001; 

Gillespie et al. 2000, 2001). These monitoring data are useful for isolating and 

quantifying known risks, for identifying emerging risks, and for discerning trends over 

time. They are not enough, however, to adequately attribute illnesses to foods. Unlike 

Denmark, the United Kingdom does not regularly subtype isolates taken from infected 

humans, so the critical link between illnesses and foods is unknown. 
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The food safety agencies of the United Kingdom have also performed some risk 

assessments, including those for Listeria, E. coli O157:H7, fluoroquinalone-resistant 

Campylobacter, and Norovirus, though these studies have not been used explicitly for 

food attribution (O’Brien 2003). 

U.S. Outbreak Data 

Of the numerous foodborne illness surveillance systems in place at CDC, of 

particular interest for food attribution are data on outbreaks. CDC conducts ongoing 

surveillance for the entire United States and territories, and foodborne outbreaks are 

investigated by every health department. For many outbreaks, the likely food vehicle 

responsible for infection has been identified through epidemiological investigations 

and, when possible, verified through laboratory testing. As such, the outbreak data 

constitute the only national surveillance system that explicitly links cases of foodborne 

illness with food vehicles and therefore the only source of information readily available 

for point-of-consumption food attribution.  

Outbreak data are observed at the public health endpoint and are therefore a 

direct measure of attribution. For many pathogens, outbreak data provide the only 

conclusive indication of which foods cause specific cases of illness. Outbreaks have been 

caused, to varying degrees, by nearly all important foodborne pathogens, including 

some that remain undiagnosed. In addition, outbreaks have implicated a wide range of 

food vehicles, including those not originally expected to be the source of illness (e.g., E. 

coli O157 in sprouts, Salmonella Newport in tomatoes, Cyclospora in raspberries). When 

collected routinely and consistently, outbreak data can be systematically analyzed for 

temporal and geographic changes.  

These data are limited, however, in that outbreaks generally reflect unusual 

occurrences and breakdowns of standard control practices, as well as standard 

transmission patterns, and therefore may misrepresent sporadic incidence. 

Additionally, some pathogens have sparse coverage, and inference from too few cases 
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may be misleading. Responsibility for investigating foodborne disease outbreaks 

resides with local and state health departments, which then report these data to CDC. 

Because of differences in local capabilities and reporting, regional and temporal 

coverage is uneven and could therefore provide a biased estimate of the proportion of 

outbreaks due to specific food vehicles. The magnitude of this bias could be assessed 

with appropriate epidemiologic analyses. 

CDC has estimated food attribution from outbreak data (Bean et al. 1996) and is 

currently working toward a more comprehensive estimate. Challenges faced in 

completing the estimate include the need to merge data from three outbreak reporting 

systems. The foodborne outbreak reporting system from 1973 to 1997 was limited to 38 

food vehicles. A revised system, beginning in 1998, included more than 1,300 vehicles. 

In 2002, Internet reporting was introduced to reduce delays caused by entering paper-

based reports, but resulted in a different coding and database structure.  

Attempts to model attribution from outbreak data need to consider several 

issues. One of the central problems with using outbreak data to estimate the attribution 

of foodborne illness is that the number of outbreaks due to a given etiology is typically 

not proportional to the percentage of sporadic illnesses caused by the same etiology. A 

dramatic example comes from the disproportional number of outbreaks due to 

ciguatera poisoning (typically caused by consumption of contaminated sport-caught 

reef fish) that are reported to CDC. There are almost as many reported ciguatera 

outbreaks as shiga toxin–producing E. coli (STEC) outbreaks, but there may be 100 cases 

of STEC in the United States for every case of ciguatera. Even among common bacterial 

causes of foodborne illness, outbreak reports are not proportional to the estimated 

number of illnesses per year. It is estimated that STEC and Shigella spp. each cause 

approximately 90,000 foodborne illnesses per year, and yet twice as many reported 

foodborne outbreaks are due to STEC compared with Shigella spp. As a result, a ranking 

of the food vehicles associated with foodborne outbreaks is likely to overrepresent 

foods associated with commonly reported pathogens.  
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One method to adjust for the unrepresentative nature of outbreaks would be to 

stratify the data by etiology and weight the strata by the incidence of that etiology (i.e., 

the burden of illness). As an example, outbreaks of ciguatera poisonings would first be 

used to estimate the attribution for ciguatera poisoning, presumably 100% finfish. Then, 

the result would be weighted by the contribution of ciguatera to all foodborne illness. 

Assuming that finfish were not involved in other causes of foodborne illnesses, the 

overall attribution due to finfish would be small, even though it is large for ciguatera, 

because ciguatera illnesses are a small proportion of foodborne illness. This approach is 

analogous to other study designs that control for confounding factors; in this case it is 

necessary to control for etiology. 

To create an unbiased estimate of the vehicles of foodborne illness, a reliable 

model for foodborne attribution could be constructed using outbreaks to define the 

proportion of illness attributable to a food commodity for each etiology. In practice, this 

means stratifying outbreak data by etiology and then creating a weighted average, 

weighting by the estimated burden of foodborne illness caused by each pathogen. The 

output could be displayed in a pie chart to represent the proportion of foodborne illness 

caused by each food commodity. Other weights could be employed, such as the number 

of hospitalizations or deaths for each etiology. Using this model, one could estimate not 

only the foods responsible for foodborne illness but also the foods responsible for 

severe illness.  

Another issue with analyzing outbreak data is whether to count outbreaks or 

individual cases of illness to determine the attribution of each food commodity. An 

advantage to using the number of ill people is that vehicles implicated in large 

outbreaks may be commonly consumed and therefore a more frequent cause of illness 

than a vehicle that causes only a few cases. A disadvantage to this approach is that one 

large outbreak may be due to a vehicle that rarely causes sporadic illness but just 

happened to cause a very large outbreak. For example, a single Salmonella 

Typhimurium outbreak due to milk that sickened 17,000 people (or 90% of all outbreak 
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cases) would skew the analysis. One remedy would be to reduce the influence of 

extreme numbers through a statistical procedure. For etiologies that rarely cause 

outbreaks, detecting more outbreaks would be critical. Approximately a dozen 

Campylobacter outbreaks are reported each year, and about half have been due to 

unpasteurized milk, but this vehicle is probably much less important in sporadic cases. 

Increasing the sensitivity of outbreak detection may change the spectrum of identified 

vehicles and perhaps improve the correlation between vehicles of outbreaks and 

vehicles of sporadic illness. Prior to the development of PulseNet, a molecular 

subtyping network used by CDC for early detection and timely investigation of 

outbreaks, most recognized outbreaks of listeriosis were caused by unpasteurized milk 

and milk products; PulseNet has since detected a series of multistate outbreaks that 

indicate the importance of ready-to-eat meats. 

Improvements in modeling attribution will come with improved accuracy of 

outbreak investigations. It is important to use standardized definitions for confirming 

the microbial etiology of an outbreak, such as those used in the CDC outbreak 

surveillance system. Interpretation of outbreak investigations depends on the ability of 

state, local, and regulatory investigators to conduct a thorough “traceback.” It would be 

extremely beneficial to strengthen the capacity to conduct analytic investigations and 

conduct complete source tracing. Through improved coding of source of contamination 

(farm, factory, kitchen) and thorough investigations, outbreak data could estimate the 

attribution of illness resulting from contamination at each stage of food production 

(farm, factory, kitchen). Restricting analyses to multistate and multilocation outbreaks, 

for example, would remove from the data those illnesses caused by improper 

preparation in the kitchen, thus focusing on those illnesses due to upstream 

contamination.  

National outbreak data have been collected and analyzed by the Center for 

Science in the Public Interest (CSPI). These data are based primarily on unpublished 

CDC data obtained through Freedom of Information Act requests but also include 
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additional outbreaks investigated by CSPI. Of the 2,472 outbreaks listed in the 

September 2002 Outbreak Alert, 300 (12.1%) were not from CDC sources (DeWaal and 

Barlow 2002). In this report, for each of 13 broad food categories (e.g., seafood) and 38 

subcategories (e.g., finfish), outbreaks are listed by pathogen etiology, state, date, 

number of cases, and specific food vehicle (e.g., salmon). CSPI’s summary of these data 

presents the number of outbreaks and cases by food subcategory and shows, for 

example, that 21% (539 of 2,472) of outbreaks and 8% (6,781 of 90,355) of cases in the 

outbreak data are due to consumption of seafood, and that of these, 65% (351 of 539) of 

outbreaks and 30% (2,035 of 6,781) of cases are due to finfish. These numbers are not 

reported by pathogen, however. 

FSRC relies on the CSPI data in the draft version of the Foodborne Illness Risk 

Ranking Model (FIRRM), an analytic tool that allows for the comparison of the public 

health burden of various pathogen-food combinations (Batz et al. 2004; FSRC 2003, 

2004). After pathogens not incorporated into FIRRM were excluded, the data set 

contained entries for 1,977 outbreaks, representing 83,619 individual cases of foodborne 

illness. Coverage was not adequate across all pathogens; the data included zero 

outbreaks for two pathogens (Astrovirus and Brucella) and included fewer than five 

outbreaks for six pathogens (Crytposporidium, Giardia lamblia, Rotavirus, Streptococcus, 

Toxoplasma, and Vibrio vulnificus). FSRC widened the CSPI food categorization scheme 

to include 47 subcategories within the same 13 major categories. The food vehicles 

associated with each outbreak were then reclassified into the FSRC food categorization 

scheme. For each pathogen, the FSRC counted the total number of illnesses, and of 

these, the number of illnesses due to each food category, to compute the number of 

illnesses due to each pathogen-food combination. From these, FSRC computed the 

percentage attribution of illnesses for each pathogen.  

Estimates of national annual incidence of each pathogen, computed separately 

and based on different data, were multiplied by the food attribution percentages to 

obtain estimates of national annual incidence by pathogen-food combination. That is, 

15 



Food Safety Research Consortium            Batz et al. 

for some hypothetical Pathogen A, there may have been 1,000 cases of illness in the 

CSPI outbreak data, of which 600, or 60%, were traced to produce and the remaining 

400, or 40%, were traced to chicken. If the model assumes a national annual incidence of 

Pathogen A to be 15,000 cases, it would then estimate that 60% of these cases, or 9,000, 

were due to produce and the remaining 6,000 were due to chicken. Food attribution 

percentages are also applied to estimates of the number of hospitalizations and deaths 

due to each pathogen, to obtain estimates for each pathogen-food combination. 

Approximations of the annual number of cases, hospitalizations, and deaths are 

estimated for each food category by summing pathogen-food combinations over all 

pathogens. Thus, FIRRM produces estimates of incidence by pathogen, by pathogen-

food combination, and by food.  

Although this model provides useful information, it also highlights some of the 

problems that arise when using outbreak data as the sole source for food attribution. As 

one example, in the model “produce” emerges as the most common vehicle for 

Campylobacter infections, yet community-based studies suggest that poultry is the most 

common source of sporadic campylobacteriosis (Friedman et al. 2004). 

FoodNet Sporadic Case-Control Studies1

The Foodborne Diseases Active Surveillance Network, or FoodNet, is an active 

surveillance program centered at CDC that tracks foodborne illnesses from nine 

pathogens in 10 well-defined target populations. It is a collaborative program with the 

Department of Agriculture, the Food and Drug Administration, and 10 state and local 

health departments. Although follow-up investigations for food sources are not 

included in regular FoodNet surveillance, CDC has investigated food attribution of 

FoodNet illnesses through numerous case-control and epidemiological studies. In these 

                                                 
1 This section is drawn largely from Hardnett et al. (2004). 
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studies, patients reporting through FoodNet are contacted for follow-up interviews and 

administered questionnaires to ascertain the proportion of illnesses associated with 

specific foods, food preparation and handling practices, and other behavior, such as pet 

ownership, farm visits, or international travel. Thus far, CDC has performed case-

control studies on Salmonella (Kimura et al. 2004; Hennessy et al. 2004; Glynn et al. 1998; 

Moore 2004; Mermin 2004), E. coli O157:H7 (Kassenborg et al. 2004a; Kennedy et al. 

2002), Campylobacter (Friedman et al. 2004; Kassenborg et al. 2004b), Cryptosporidium 

(CDC 2003), and Listeria monocytogenes (Varma 2004). 

FoodNet case-control studies have a particular advantage for determining food 

attribution of sporadic illness because they are population based; they involve the 

administration of follow-up surveys to all patients with laboratory-confirmed infections 

occurring within the active surveillance area during the study period. In population-

based case-control studies, the impacts of selection bias are easier to predict because the 

base population (the population from which cases are drawn) is well defined. 

Furthermore, FoodNet case-control studies use incidence sampling design rather than 

cumulative incidence sampling, so direct estimates of disease rate ratios are obtained 

for the measured exposures. Furthermore, Hardnett et al. (2004) note, 

Because the diseases under investigation in the FoodNet population-based case-control 

studies are rare in all population subgroups, rate ratios closely approximate risk ratios. 

Along with case exposure percentages, these risk ratio estimates are used to calculate the 

population-attributable fraction. The population-attributable fraction is defined as the 

proportion of new cases occurring during a given period in a particular population at 

risk that was attributable to the effect of one or more exposures. In other words, the 

population-attributable fraction is the proportion of cases that might not have occurred 

during the study period if everyone in the population had been unexposed (or had been 

exposed at reference levels). Because FoodNet case-control studies are population-based, 

these studies directly estimate the relative risk and population-attributable fraction. An 

additional important advance in the FoodNet case-control studies is the calculation of 

precise confidence intervals around the population-attributable fraction. In the 6 
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FoodNet case-control studies included in this supplement, we computed confidence 

interval around the point estimates using a “jackknife” procedure to estimate variance. 

The jackknifing procedure estimates the variance of the estimated population-

attributable fraction by using the observed data (rather than statistical assumptions) to 

approximate the population-attributable fraction distribution.  

Case-control studies can also identify risk factors, such as diet, that may be 

associated with a lower risk. In one study, eating a diverse diet (i.e., consuming more 

than the median number of different food items during the exposure period) was found 

to be protective against infection with sporadic Salmonella enteriditis (Kimura et al. 2004). 

Also, in several FoodNet case-control studies, there was higher consumption of fruits 

and vegetables in controls than in case patients. Further research is needed to determine 

whether diverse diets or the consumption of fruits and vegetables are protective against 

infection, or whether there is another explanation. 

Nonetheless, FoodNet case controls do have some shortcomings, namely recall 

bias, long exposure windows, and durable population immunity. Recall biases arise 

because there are natural limits on what patients and controls can remember and report 

and because of limitations of the interview format itself. In FoodNet case-control 

studies, the time period during which exposures are established for patients and 

controls tend to be long. The exposure windows were predominantly seven days in the 

Campylobacter case study and mostly five days in Salmonella case-control studies 

(Hardnett et al. 2004). Such long exposure periods are problematic when inspecting 

common exposures, since high exposure frequencies make it difficult to detect 

differences in exposures between patients and controls. A recent Danish study found, 

for example, that reducing the exposure window from five days to one day for a 

casestudy on Salmonella enteritidis resulted in identifying an increased risk from eating 

eggs, a common exposure among patients and controls (Molbak and Neimann 2002). 

Furthermore, if a relatively common infection conveys durable and protective 

immunity in the population, such as may be the case for Campylobacter (Scott and 

18 



Food Safety Research Consortium            Batz et al. 

Tribble 2000), a significant component of the population may not be susceptible to 

infection. If this occurs, it can be difficult to demonstrate an association between 

exposure and an increased risk of infection, since some immune controls may have high 

exposures to a risky food. Further research is necessary to further understand the 

impacts of exposure window duration and population immunity to the findings of 

FoodNet case-control studies. 

Microbial Subtyping and Microbial Source Tracking 

Numerous U.S. food safety and public health agencies have been involved with 

microbial subtyping. As discussed above in the section on Denmark, microbial 

subtyping is an overall approach to identify specific bacterial and viral isolates and 

distinguish them from one another. In Denmark, isolates taken from human, animal, 

and food sources are subtyped and compared; illnesses are attributed by subtype to 

matching animal sources. In the United States, subtyping is used primarily to aid 

outbreak investigations through PulseNet, though research is under way to investigate 

the use of subtyping for microbial source tracking (MST).  

CDC’s PulseNet program, which developed concurrently with FoodNet in the 

1990s, is a network of public health laboratories that subtype bacteria using DNA 

fingerprinting and submit the results to an electronic database (Swaminathan et al. 

2001). Bacterial strains can be compared quickly in the PulseNet database, which thus 

provides an early warning system of emerging outbreaks when related strains emerge. 

The method of DNA fingerprinting used by PulseNet is pulsed-field gel electrophoresis 

(PFGE), and all participating labs follow standardized protocol and use the same 

equipment. PulseNet currently includes five bacteria: Escherichia coli, Salmonella, Shigella, 

Listeria, and Campylobacter. 

PulseNet is used primarily to aid epidemiological investigations of foodborne 

outbreaks. It cannot be relied on for food attribution, and it does not include active 

surveillance of sporadic cases or isolates routinely drawn from food or animal sources. 
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Questions may also be raised about the relative discriminatory power of the PFGE 

technique used by PulseNet. For example, what does it mean if two isolates (from, say, 

California and Maryland) have an identical pattern, in the absence of any 

epidemiological linkage?  

Microbial source tracking refers to a specific application of microbial subtyping, 

in which markers from an isolate can be used to trace that isolate back to a specific 

animal source. The basic idea is that even though the same pathogen might be found  

in different animal species, these species might be host to unique populations of 

subtypes of these pathogens. An isolate drawn from an infected person, for example, 

could be subtyped, and the results might indicate that the isolate originated in  

chicken as opposed to cows or some other animal. MST research, however, is in 

relatively early stages. 

Though discussed here in regard to foodborne illness, MST methods were 

originally developed specifically for identifying and tracking sources of microbial 

pollution in natural waters—such as lakes, rivers, and streams—failing to meet 

regulatory standards. The U.S. Environmental Protection Agency has therefore had 

extensive experience with MST even though EPA is not directly involved with food 

safety. In February 2002, EPA held a workshop on MST methods, at which the major 

approaches were discussed and compared (EPA 2002). 

Because microbial pollution in natural waters is generally due to human or 

animal waste, nearly all MST methods strive to distinguish sources by subtyping fecal 

bacteria. Most MST subtyping methods are based on genetic or phenotypic 

fingerprinting methods, though some approaches use chemical markers, biomarkers, 

viruses, and bacteriophages as indicators of animal source (Simpson et al. 2002). 

Though their titles may be cryptic to nonbiologists, some of the major approaches of 

subtyping include serotyping, pulsed-field gel electrophoresis, antimicrobial resistance 

analysis, ribotyping, species-specific genetic biomarkers, terminal restriction fragment 
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length polymorphisms, repetitive polymerase chain reaction, amplified fragment length 

polymorphism, and multilocus sequence typing.  

The sheer number of microbial subtyping methods indicates both the breadth of 

possible approaches and the lack of one clear strategy that meets all needs. Some 

approaches require libraries of fingerprints, some do not; some are expensive but  

highly reproducible, others are cheaper but less robust. Some are better for larger- 

scale surveys than others. It is unclear which subtyping methods hold the most promise 

for MST or, more specifically, for food attribution, though data that can be compared 

across geographic and temporal boundaries are likely to be the most useful for large-

scale attribution. The use of antimicrobial resistance analysis, for example, may not be 

ideal for cumulative or comparative analyses over time, since antimicrobial traits 

change rapidly.  

Though MST has been researched extensively for microbial pollution in water, 

studies into its efficacy for sourcing foodborne illnesses to specific foods are less 

common. The Center for Veterinary Medicine (CVM) within FDA has undertaken some 

research on a multitude of genotypic and phenotypic methodologies to determine the 

food animal origins of Salmonella and Campylobacter. CVM has investigated the 

capabilities of serotyping, fatty acid profiling, PFGE, repetitive polymerase chain 

reaction, protein profiling, antimicrobial susceptibility profiling, and multilocus 

sequence typing to distinguish isolates from pigs, cattle, turkeys, and chickens (Singh 

2003). These studies have thus far concluded that MST methods hold promise for 

isolating sources of foodborne illness but are only initial steps toward conclusively 

attributing illnesses to food animals.  

The Agricultural Research Service (ARS), within USDA, has also undertaken 

research into microbial subtyping techniques, though not specifically for MST purposes. 

ARS has researched comparative genomics, ribotyping, and serotyping and has started 

to develop databases and libraries of the results of their microbial fingerprinting 

studies. These types of research into subtyping methods complement CVM research 
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and are likewise a long way off from being useful for widespread food attribution of 

illnesses. 

Risk Assessments 

Risk assessments utilize food contamination data, food storage and consumption 

patterns, risk behavior, and dose-response functions to predict risks of illness from 

specific pathogens found in specific foods. Risk assessments are complex and resource-

intensive and require knowledgeable modelers to estimate population or per capita 

risks of illness, which may differ by age, gender, or other variables. Because risk 

assessments are so time-consuming and complicated, they have only been undertaken 

for a limited number of pathogen-food combinations.  

The only pathogen for which risk assessments have been performed on a 

reasonably comprehensive set of food vehicles is Listeria monocytogenes, undertaken 

through the combined resources of the FDA Center for Food Safety and Applied 

Nutrition (CFSAN), the USDA Food Safety and Inspection Service (FSIS), and CDC. In a 

project initiated in 1999 and completed in 2003, the agencies performed individual risk 

assessments on 23 ready-to-eat foods, including seafood, produce, dairy, and deli 

meats, to compare their relative risks (CFSAN 2003). Excluded were foods generally 

cooked before consumption, such as most seafood and meats, and low-risk foods for 

Listeria, such as grains, eggs, and soft drinks. 

In addition, FSIS has published its own risk assessment results from this study 

(Gallagher 2003). FSIS has also performed two other major risk assessments, on E. coli 

O157:H7 in ground beef (FSIS 2001) and on Salmonella enteritidis in shell eggs and egg 

products (FSIS 1998). Although these are of limited benefit for food attribution without 

comparable risk assessments of other foods for both pathogens, they can be used to 

estimate the rough percentage of total E. coli O157:H7 foodborne illnesses due to 

ground beef and total Salmonella foodborne illnesses caused by eggs. Also of note is a 
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CFSAN risk assessment on Vibrio parahaemolyticus in molluscan shellfish, currently in 

draft form (CFSAN 2000).  

For risk assessments to be useful for estimating the percentage of total illnesses 

of a particular pathogen due to specific foods, risk assessments must be performed on 

all relevant food items. Considering the duration and complication of the Listeria risk 

assessment project, even though it was limited to a subset of food items associated with 

Listeria, performing full risk assessments on all relevant pathogen-food combinations 

would be a colossal if not impossible task.  

Aside from the large resource requirements, the major limitation of using risk 

assessments to measure the relative burden of illnesses due to particular foods is that 

they are inherently predictive. They do not measure the actual public health impacts of 

illness, as do surveillance data, but rather estimate illnesses given assumptions of risk 

factors, dose-response functions, food storage and consumption patterns, and consumer 

behavior. These assumptions, though derived from scientific research, are difficult to 

validate, especially in a dynamic and changing system. In particular, dose-response 

functions, which estimate the quantitative impacts on human health due to increasing 

doses of pathogens, are often defined with large uncertainties that necessarily 

propagate through the entirety of the risk assessment. Dose-response functions are 

occasionally determined through expert opinion, an inherently uncertain and less 

scientific approach than laboratory testing. Also, risk assessments are ill-suited for 

temporal analyses, since most are not regularly or routinely updated with new 

information about pathogen behavior, food consumption patterns, or food 

contamination levels.  

Because of these limitations, it is likely that risk assessments are most useful in 

conjunction with other estimates, such as those based on outbreak data or case-control 

studies. Estimates based on public health surveillance data are often hampered by 

cross-contamination, recall bias, long exposure windows, and other limitations that do 

23 



Food Safety Research Consortium            Batz et al. 

not affect risk assessments. Likewise, risk assessments may predict sporadic cases not 

captured through outbreak or passive reporting systems. 

U.S. Food Monitoring  

The testing of food and animal sources for prevalence of pathogens is performed 

by various U.S. food safety agencies, both through routine monitoring and through case 

studies of specific food items. The Food Safety and Inspection Service (FSIS), within 

USDA, routinely tests raw meat and poultry products for Salmonella contamination 

(FSIS 2003), ground beef for E. coli O157:H7 (FSIS 2004a), and multiple ready-to-eat 

meat and poultry products for multiple pathogens (FSIS 2004b). The Animal and Plant 

Health Inspection Service (APHIS), also within USDA, performs bacterial testing on live 

animals. FSIS also performs national prevalence studies on the bacterial contamination 

of meat and poultry products. In addition, ARS has examined pathogen prevalence in 

commercial food products, as described in a recently published study on the prevalence 

of Listeria in frankfurters (Wallace 2003). These data are useful for quantifying known 

risks and for discerning trends over time but are insufficient for food attribution of 

illnesses. To best most useful for food attribution, monitoring data must be harmonized 

with public health surveillance data. 

Expert Elicitation 

When scientific or epidemiological data are lacking or sparse, or when there is 

significant uncertainty associated with interpreting such data, expert judgment may be 

a powerful means to fill gaps or combine conflicting estimates into a meaningful 

solution. Because proper handling and presentation of uncertainty are an important 

aspect of risk-based decisionmaking, expert judgments have been increasingly used and 

recommended for use in assessments of risk and health impacts of regulations (NRC 

2002; OMB 2003, EPA 2004). Formal methodologies have been developed for eliciting 

expert judgments and for using them in analyses (Morgan et al. 1990; Cooke 1991). 
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Through surveys, experts may be asked to estimate a value for an unknown variable, or 

they may be given numerous values stemming from different data sources or studies 

and asked to estimate probabilities of plausibility for these values.  

As noted previously, the FSRC Foodborne Illness Risk Ranking Model 

incorporates outbreak data for the purposes of food attribution (FSRC 2003). Because of 

the limitations of these data, however, FSRC administered an expert elicitation of 

researchers, public health scientists, and authorities with extensive food safety 

experience. Produced specifically for FIRRM using a standardized, vetted methodology, 

the survey had respondents give their best, low, and high estimates for the percentage 

of 11 pathogens caused by each listed food category. The survey included measures of 

respondent uncertainty, as well as additional variables to capture respondent biases 

and the sources of data upon which they relied. Although full analyses have yet to be 

completed, FIRRM incorporated the average of expert best estimates. Although for 

many pathogens, expert judgments closely match percentages calculated from outbreak 

data, there are significant differences. For example, outbreak data suggests that only 

16% of foodborne Campylobacter illnesses are due to poultry, but experts estimated this 

number to be closer to 70%, a result much more in line with previously described 

FoodNet case-control studies. 

Expert elicitations are not without limitations: they are based on perception, not 

on observable data. Results may be circular if experts rely on the same sources or 

deceptive if experts are similarly misinformed or biased. For these reasons, expert 

judgments are not an ideal source of food attribution data, but they likely hold great 

utility when data are few or inconsistent and uncertainty is substantial. 

Additional Relevant Studies 

Although the USDA Economic Research Service (ERS) has not explicitly done 

any research on food attribution, they have used data from other sources in their 

studies of the economic costs of foodborne illness. In one such study, ERS researchers 
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estimated the percentage of foodborne Salmonella due to eggs by dividing the estimated 

annual salmonellosis cases from the FSIS risk assessment by the estimated total annual 

foodborne salmonellosis cases estimated by Mead et al. (1999) using FoodNet data 

(Frenzen et al. 1999). In the same study, to estimate the percentage of illnesses due to 

pork, ERS utilized outbreak data from CDC studies and from CSPI. The study is 

significant because it uses a combination of approaches—risk assessment results and 

outbreak data. This combination of approaches shows that novel ways of food 

attribution can be performed by making use of the best available data, but it raises 

methodological questions about combining incompatible datasets. For its final 

regulatory impact assessment for the hazard analysis and critical control point 

(HACCP) final rule, FSIS estimated the percentage of foodborne illnesses from 

Campylobacter, Salmonella, E. coli O157:H7, and Listeria due to meat and poultry (FSIS 

1996). In this analysis, FSIS relied on CDC outbreak data, epidemiological and 

community-based studies, and expert opinion. In a subsequent study, ERS estimated 

the cost of foodborne illnesses due to meat and poultry by multiplying these FSIS 

attribution percentages by their total cost-of-illness estimates (Crutchfield et al. 1997). 

Research and data on antimicrobial resistance may yield data useful for food 

attribution. Three agencies—CVM, ARS, and CDC—are involved with the National 

Antibiotic Resistance Monitoring System, which regularly tests bacteria from animals, 

food, and human sources for susceptibility to 17 antimicrobial drugs. CVM has also 

performed risk assessments on the human health impacts of the antimicrobial resistance 

of bacteria, specifically for Campylobacter in chicken (CVM 2001). 

Future Options 

Table 1 summarizes the primary methods of food attribution: none of the current 

data sources for food attribution are sufficient on its own because of methodological 

limitations or gaps in available information. Furthermore, in the United States, activities 

and data sources are spread over a wide range of agencies and researchers, resulting in 
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a myriad of individual studies covering different aspects of the food attribution 

problem without any comprehensive plan or way to unify them. These issues with 

current approaches make it impossible to accurately and dependably attribute national 

public health measures of foodborne illness, such as annual number of cases or deaths, 

to the foods that are the vehicles for these pathogens. 

It is critical, therefore, to step back and approach the problem of food attribution 

under a unified framework that combines and enhances current science-based 

approaches in an effective and efficient manner and that will ultimately reveal the 

causal links between the consumption of contaminated foods and public health 

outcomes. There are many directions for such a plan to take, and this section is included 

to foster discussion and engender comparisons among possible approaches. 

To start, we might consider the issue of food attribution in the context of the 

recent National Academies of Science report, Scientific Criteria to Ensure Safe Food, which 

argues first and foremost for “the development of a comprehensive national plan to 

harmonize the foodborne disease surveillance that is conducted by public health 

agencies with the monitoring of pathogens across the food production, processing, and 

distribution continuum that is conducted by food safety regulatory agencies” (IOM 

2003, 2). The report calls for enhancing FoodNet and PulseNet and increasing data 

sharing between agencies. The report suggests that both pathogen monitoring and 

foodborne illness surveillance be reevaluated and retooled so that more explicit links 

between public health outcomes and food safety objectives can be met. Such an 

approach would take advantage of the existing infrastructure of food safety and public 

health data collection and concentrate efforts on the efficacy of these programs. 

The report calls for connecting food monitoring to the surveillance of foodborne 

illnesses, but another approach might be to explicitly add a food attribution surveillance 

component to FoodNet itself, in which individual illnesses would be investigated and 

sourced to the foods responsible. No small feat, such an approach would entail an 

extremely large number of time- and resource-intensive epidemiological investigations 
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into individual cases of illness. The results of this labor would be very rich, however, 

since the best aggregate data on foodborne illness and public health outcomes would be 

directly and explicitly connected to active surveillance of food attribution of those 

illnesses. Over the past few years, FoodNet has begun adding new sites to increase its 

coverage of the U.S. population. If ongoing collection of food attribution data is to be 

included in FoodNet tasks, it may be necessary to focus data collection on a smaller 

number of sites—moving back to the original concept of getting in-depth, high-quality 

data from a small number of representative sites.  

Similarly, PulseNet might be expanded beyond its role as an early warning 

system for outbreaks, to become the foundation for a national microbial source tracking 

network that would use microbial fingerprinting to source and track bacterial subtypes 

by food. Such a network could serve as a national electronic library of reference 

fingerprints and incorporate data on pathogens collected during microbial monitoring 

of food, cultures collected through FoodNet and other surveillance systems, and 

additional sources. 

A different route toward aggregating food attribution data would be to expand 

the array of risk assessments from Listeria in ready-to-eat foods to include additional 

pathogens and food pathways. An extensive library of comparable risk assessments 

would increase the utility of individual risk assessments by making aggregation 

possible across food categories. Risk assessments have been performed by the food 

safety agencies on E. coli O157:H7, Salmonella, and Campylobacter and could be 

incorporated into a comprehensive array of risk assessments for four of the most 

important foodborne pathogens. 

Several characteristics should be considered in the evaluation and comparison of 

food attribution methodologies, with their relative importance depending on the 

purpose for which the attribution data are sought. These include scientific accuracy and 

uncertainty, quality and breadth of data, computational consistency, practical 

feasibility, cost of implementation, flexibility and scalability, utility for targeting 
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interventions, and congruency with other relevant data sources, such as surveillance of 

public health outcomes. This last point is arguably the most critical. As stated by the 

2003 National Academy of Sciences report, it is absolutely necessary that data from food 

attribution methods be congruent with data from the surveillance of public health 

outcomes of foodborne illness (IOM 2003). Among the critical unresolved issues is how 

to balance such factors as scientific accuracy and practical feasibility to produce 

attribution data that will be both useful and affordable.  

With so many institutions responsible for various aspects of the food safety 

system, collaboration is paramount, as is the explicit delineation of responsibilities and 

powers. One agency needs to assume the lead in building an appropriate system for the 

collection of food attribution data, but access to these data is a critical issue. Such data 

must be openly shared among agencies and with industry and academia, and privacy 

issues with individuals and industry participants have to be addressed. 

On the grounds of strengths and weaknesses, the major sources of food 

attribution data described in this paper may again be briefly evaluated. Outbreak  

data are, by far, the most robust and useful data series in the United States for the 

attribution of a large number of pathogens to specific foods, but they are very limited 

for attributing sporadic illnesses. They are also inconsistent because of geographic 

reporting differences, changes in reporting procedures over time, and the lack of 

standardized categories of food vehicles. Limitations to the investigations required  

for such food sourcing include cross-contamination among foods and water sources,  

the contribution of person-to-person transmission, recall bias (particularly when there 

are delays in contacting persons after occurrence of illness), and disposal of origin  

food sources.  

Incorporating the sourcing of food items into public-health, active-surveillance 

systems such as FoodNet is appealing because active-surveillance data on food 

attribution would then be directly connected to data on illness surveillance, but 

performing food sourcing investigations on every case of illness would be very costly. 
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And although it would capture sporadic cases not captured through outbreak data, it 

would be limited by the same issues that confront food-sourcing investigations. 

Although FoodNet active surveillance does not include routine food sourcing, 

FoodNet has produced case-control studies to quantify risks, such as foods or 

behaviors, associated with laboratory-confirmed illnesses. These population-based 

studies are powerful but limited by recall biases, long exposure windows, and the fact 

that food vehicles identified as likely to be responsible cannot be verified through 

laboratory testing. Also, case-control studies are time-limited, as opposed to ongoing, 

and therefore provide snapshot, as opposed to dynamic, estimates of attribution. 

The monitoring and prevalence testing of food items are useful for tracking food 

contamination along the farm-to-fork pathway and for identifying trends over time, but 

they are limited for the purposes of food attribution because they are disconnected from 

public health outcomes. To be useful for food attribution, food monitoring data must be 

combined with public health surveillance data, as called for in the National Academy of 

Sciences report (IOM 2003). To make food monitoring data congruent with surveillance 

data, it is likely that isolates from both sources would need to be comprehensively and 

regularly subtyped. 

Although microbial subtyping methods hold great promise, they do not provide 

food attribution answers on their own, and there is no consensus on which methods are 

the most applicable. To be useful for food attribution, subtyping must be performed 

systematically on both food monitoring and public-health surveillance data, as is done 

in Denmark for Salmonella. In the United States, a far larger country, this effort would be 

particularly resource intensive and confront large institutional obstacles, since data 

collection activities are currently spread across multiple agencies within USDA, FDA, 

and CDC. Data ownership, management, and sharing are likely to be serious issues.  

Risk assessments are very useful tools for risk management and science-based 

decisionmaking but are limited for the purposes of food attribution because they are 

inherently predictive of public health outcomes, rather than observational. Risk 
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assessments are implicitly removed from surveillance of public health outcomes. They 

are built upon microbial science methods that have their own issues, limitations, and 

uncertainties. They are also resource intensive and time consuming, and therefore ill 

suited to emerging pathogens and fast-changing food production systems. 

Expert elicitation methods are useful for drawing inferences and quantifying 

uncertainty, especially for a field with so many different approaches and data sources, 

but rely on the least scientific of data—perceptions. Expert surveys may be most useful 

for identifying areas in which data-driven food attribution approaches deviate from 

expert opinion, because of either human bias in judgments or limitations and failures of 

data. The differences between these methods, and others not identified or yet 

conceived, need to be defined more clearly. It is likely, however, that none of these 

approaches will be sufficient on its own for the accurate attribution of foodborne 

illnesses to pathogens in specific food vehicles. The implicit conclusion, therefore, is that 

to attribute foodborne illnesses to specific foods scientifically and accurately, we must 

develop a comprehensive program that combines some or many of the discussed 

methods and data. It will not come about without significant resources and cooperation 

between food safety institutions. 
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Table 1: Current approaches to food attribution 
(continues next page) 

 
Approach Primary Virtues Primary Limitations 
Denmark 
Salmonella 
Accounts 

- microbial subtyping provides direct link 
between public health endpoint and animal  
- high reporting of illnesses (social health care) 
- national, temporal coverage for both illnesses 
and animal/product monitoring 

- difficult to expand to other pathogens; requires 
distinctive sub-types across reservoirs 
- focus on animals ignores non-animal sources 
- focus on reservoirs, not food products at point of 
consumption 

U.K. 
outbreak 
data 

- large dataset: national, temporal coverage 
- results correlate with local epidemiological 
findings 

- misrepresents sporadic cases 
- not all pathogens well represented 
- dependence on general practitioners 

U.S. 
outbreak 
data 

- national and temporal coverage 
- large common dataset 
- straightforward, uses existing data 
- outbreaks and outbreak cases can be aggregated 
into food categories 

- misrepresents sporadic cases  
- geographic and temporal inconsistencies (local 
reporting), and biases towards certain foods 
- environmental and cross-contamination 
- not all pathogens well represented 
- under-reporting; must use multipliers 

FoodNet 
case-control 
studies 

- population-based studies (ratios in samples 
closely approximate ratios in population) 
- captures risk factors not included in most 
surveillance data (travel, food preparation 
questions) 
- can implicate risks missed by laboratory testing 

- survey format has recall bias and other limits 
- long exposure windows (problems with common 
exposures) 
- durable immunity in population can impede 
associating exposures with illnesses 
- no laboratory verification 

Microbial 
subtyping 

- subtyping of illnesses and foods can provide 
direct link between public health endpoint and 
source of infection 
- can be used to identify specific foods 
responsible (outbreak investigations) or animal 
reservoirs (source tracking by species) 
- many different techniques, growing fast 

- for animal sourcing, sub-types must be distinctive 
across species (see Danish Salmonella Accounts) 
- may only be effective for limited pathogens 
- resource intensive; requires human surveillance, 
extensive monitoring of food and animals, plus 
laboratory testing, data storage, analysis 
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Risk 
assessments 

- can estimate cases not captured by surveillance 
methods (not limited by under-reporting or 
biases in epidemiological methods) 
- utilizes consumption and contamination data 
ignored by surveillance-based approaches 

- predictive; can’t be verified 
- large uncertainties in dose-response models and 
exposure estimates 
- resource and time-intensive (each pathogen-food 
combination requires its own exhaustive study) 

Food 
monitoring 
data 

- captures upstream contamination (avoids 
environmental- and cross-contamination after 
purchase) 

- not usable for food attribution unless made 
compatible (through subtyping or other means) with 
public health data 

Expert 
elicitation/ 
judgment 

- useful when data is sparse or conflicting 
- formal methodologies increase utility 

- respondents can be similarly biased 
- requires some level of consensus for reasonable 
error-bounds 
- based on perception, not data 
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Appendix A: The Food Attribution Working Group 
 

Fred Angulo Centers for Disease Control and Prevention, Atlanta, 
Georgia, USA 

Michael Batz Resources for the Future, Washington, DC, USA 
Robert Buchanan Food and Drug Administration, Center for Food 

Safety and Applied Nutrition, College Park, Maryland, 
USA 

H. Gregg Claycamp Food and Drug Administration, Center for Veterinary 
Medicine, Rockville, Maryland, USA 

Caroline Smith DeWaal Center for Science in the Public Interest, Washington, 
DC, USA 

Jorge Santo Domingo Environmental Protection Agency, Cincinnati, Ohio, 
USA 

Michael Doyle University of Georgia, Center for Food Safety, Griffin, 
Georgia, USA 

Katherine Field Oregon State University, Department of Microbiology, 
Corvallis, Oregon, USA 

David Goldman U.S. Department of Agriculture, Food Safety and 
Inspection Service, Washington, DC, USA 

J. Glenn Morris, Jr. University of Maryland School of Medicine, 
Department of Epidemiology and Preventive 
Medicine, Baltimore, Maryland, USA 

Michael Taylor Resources for the Future, Washington, DC, USA 
Sarah O’Brien Health Protection Agency, Communicable Disease 

Surveillance Centre, London, England 
Matthew Moore Centers for Disease Control and Prevention, Atlanta, 

Georgia, USA 
John Painter Centers for Disease Control and Prevention, Atlanta, 

Georgia, USA 
Efrain Ribot Centers for Disease Control and Prevention, Atlanta, 

Georgia, USA 
Ruby Singh Food and Drug Administration, Center for Veterinary 

Medicine, Laurel, Maryland, USA 
Stephen Sundlof Food and Drug Administration, Center for Veterinary 

Medicine, Rockville, Maryland, USA 
Robert V. Tauxe Centers for Disease Control and Prevention, Atlanta, 

Georgia, USA 
Danilo Lo Fo Wong Danish Institute for Food and Veterinary Research, 

Copenhagen, Denmark 
Catherine Woteki Iowa State University, College of Agriculture, Ames, 

Iowa, USA 
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Appendix B: Agenda of the Food Attribution Data Workshop 

 
Food Safety Research Consortium 

Food Attribution Data Workshop 

 

October 31, 2003 
Holiday Inn Select 

Atlanta, GA 

 

AGENDA 

 

 

 

 

8:00–8:20 a.m.    Continental Breakfast  

  

8:20-8:40 a.m      Introductions and Goals of the Workshop - Mike Doyle 

 

8:40–9:10 a.m Defining the Importance of Associating Food Groups with Cases of                  
Foodborne Illnesses - Glenn Morris, Bob Buchanan, and David Goldman 

 

9:10-10:30 a.m Current Approaches for Associating Food Groups with Cases of 
Foodborne Illnesses:  Strengths and Weaknesses  

•Danish experiences (30 minutes) 
Danilo Lo Fo Wong, Danish Veterinary Institute  

      Techniques used to associate food groups 
                with cases of foodborne illness  
      Reporting procedures 
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•United Kingdom experiences (15 minutes) 

                                  Sarah O’Brien, Health Protection Agency  

•CDC experiences (75 minutes) 

                                    Overview - Rob Tauxe 
                                    Individual case data – John Painter/Rob Tauxe 
                                    Expert opinion (Delphi approach) – Rob Tauxe 

       Outbreak data – John Painter 
       FoodNet case-control studies – Matt Moore 
       Molecular epidemiology; genetic fingerprinting  
                 of pathogens isolated from humans and foods  
                 – Efrain Ribot/ Fred Angulo  
 
•Public Interest experiences (15 minutes) 

 
       CSPI outbreak database - Caroline Smith DeWaal,  
                  Center for Science in the Public Interest 

 

•FDA-CVM experiences (40 minutes) 
 

                         Overview - Steve Sundlof 
         Microbial source tracking of foodborne Salmonella and  
                     Campylobacter– Ruby Singh 
         Classification and Regression Trees (CART) for  
         Predictive Modeling of Food Animal Sources  
                     of Specific Bacteria – Gregg Claycamp  

 

•FDA-CFSAN experiences (20 minutes) 

          Risk assessment methods - Bob Buchanan 

 

•EPA experiences (30 minutes) 
 

           Overview– Jorge Santo Domingo 
           Molecular tracking (rRNA); Bacterial source tracking  
                         to identify animal source of bacteria contaminating  
                         water/environment – Katherine Field 
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10:30–10:45 a.m.   Break 
 
10:45–12:15 p.m.  Continue Current Approaches Discussion 
 
12:15–1:00 p.m.    Lunch 
 
1:00–2:30 p.m.     Continue Current Approaches Discussion/ Begin to Identify Best 

                Approaches for a Food Attribution System 
 
2:30–2:45 p.m.     Break 
 
2:45–4:00 p.m.     Continue to Identify Best Approaches for a Food  
                                              Attribution System 
 

•Technical aspects 

•Institutional roles 

•Obstacles 

 
4:00–4:30 p.m.     Wrap Up and Conclusions - Mike Doyle  
 
 
 

46 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MEMBER INSTITUTIONS 

 
Center for Food Safety  
at the University of Georgia 

 
Department of Epidemiology  
and Preventive Medicine, 
University of Maryland School of Medicine 

 
Food Marketing Policy Center  
at the University of Massachusetts 

 
Institute for Food Safety and Security  
at Iowa State University 

 
The National Food Safety and Toxicology 
Center at Michigan State University 

 
Resources for the Future 

 
Western Institute for Food Safety and 
Security at University of California, Davis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FSRC ADDRESS 
 
Food Safety Research Consortium 
Mailstop RFF 
1616 P Street NW 
Washington, DC 20036 
202-939-3420  
www.rff.org/fsrc 
 
PUBLISHED BY  

 
Editorial Services 
Resources for the Future 
1616 P Street NW 
Washington, DC 20036 
 
 
© 2004 Food Safety Research Consortium 
 

http://www.rff.org/fsrc

	Abstract:
	Contents
	Introduction
	Food Categorization
	Current Approaches to Food Attribution
	Danish Experiences
	United Kingdom Experiences
	U.S. Outbreak Data
	FoodNet Sporadic Case-Control Studies
	Microbial Subtyping and Microbial Source Tracking
	Risk Assessments
	U.S. Food Monitoring
	Expert Elicitation
	Additional Relevant Studies

	Future Options
	Acknowledgements
	References
	Appendix A: The Food Attribution Working Group
	Appendix B: Agenda of the Food Attribution Data Workshop
	front cover FSRC DP 02 FINAL.pdf
	Food Safety Research Consortium
	DISCUSSION PAPER SERIES                                     

	Food Safety Research Consortium back cover.pdf
	MEMBER INSTITUTIONS


