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1 Introduction

Regulatory agencies such as the United States Environmental Protection

Agency (EPA) often face the di¢ cult task of establishing environmental

standards and regulations in contexts where substantial knowledge and/or

data gaps lead to signi�cant uncertainty regarding the right decision. De-

veloping e¤ective strategies for decision-making in such settings has become

a major thrust for the EPA in recent years. Indeed, decision-making in

the face of uncertainty has been the focus of a number of workshops and

national academy reports.
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Recently, Resources for the Future convened a workshop entitled Uncer-

tainty Modeling in Dose Response, with the goal of addressing the speci�c

question of how uncertainty issues can be appropriately re�ected in dose re-

sponse modeling. In preparation for the workshop, invited attendees were

asked to tackle a variety of interrelated uncertainty issues individually, with

the �nal goal of comparing their various approaches to uncertainty analy-

sis at the workshop. To explore di¤erent methodologies for uncertainty

analysis, four bioassay datasets were utilized, each characterizing an unique

uncertainty issue. The �rst dataset was taken from the Benchmark Dose

Software available through the EPA�s website, and this dataset was utilized

for its simplicity of only three dose groups and no extraneous covariates.

Researchers were then left with the task of choosing the appropriate struc-

ture for the model when there are only three groups of subjects, with only

50 animals per group, and a range of 1-20 responses per group. The second

problem set posed to researchers consists of two datasets, one for male and

another for female rats, each exposed to four (di¤ering) dose levels. To

model this dataset, researchers must determine (1) whether separate dose-

response curves are needed for each sex, and (2) to what extent the decision

to combine or report separate estimates a¤ects the overall uncertainty in

risk estimation. Similarly, a third dataset presents results for two separate
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outcomes, two di¤erent types of tumor formation. Researchers must decide

whether to combine these endpoints for dose-response modeling or whether

each possible outcome (i.e. type of tumor formed) should be modeled sepa-

rately. Finally, the last dataset consists of two studies and leaves researchers

to determine whether these studies should be combined for purposes of risk

estimation. These four datasets were designed to demonstrate some of the

recurring dilemmas researchers face, namely what structural forms should be

used to model the data and whether data from di¤erent experiments, animal

types, or outcome types should be combined for purposes of dose-response

modeling and subsequent risk analysis.

Our strategy for tackling the challenges posed by the workshop datasets

was to use Bayesian Model Averaging (BMA). A number of authors have

discussed the use of BMA as an e¤ective strategy for addressing uncertainty

associated with model choice in a variety of practical settings (Viallefont et

al., 2001; Brown et al., 1998; Volinsky et al., 1997; Raftery et al., 1997).

BMA is appealing in the sense that quantities of interest are averaged with

respect to a set of candidate models, with weights proportional to the poste-

rior probability that each model is correct, given the observed data. Conse-

quently, the approach gives more weight to estimates obtained from models

that �t the data fairly well, while estimates corresponding to poorly �tting
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models are downweighted. Because of these appealing properties, Morales

et al. (2006) proposed the use of BMA as an e¤ective tool for quantifying

model uncertainty in a risk assessment setting. Their work was motivated

by an analysis of some epidemiological data from southwestern Taiwan, re-

lated to cancer risks associated with exposure to arsenic in drinking water.

There were a number of problems with the arsenic dataset, including the fact

that it lacked individual-level exposure information and had no information

related to important confounders such as smoking behavior. Morales et al.

(2000) calculated Benchmark Dose (BMD) estimates (the dose that leads to

a speci�ed increase in cancer risk, compared with unexposed subjects) and

reported considerable sensitivity of the results to the choice of underlying

dose-response model. Depending on whether dose was modeled linearly or

on the log scale, as well as whether risk was quanti�ed on an additive or

multiplicative scale, estimated BMDs for male lung cancer ranged from 42

to 70 parts per billion (ppb), with non-overlapping con�dence intervals. In

contrast, the BMD obtained through model averaging lead to an estimate of

60 ppb, with a slightly wider con�dence interval than those obtained from

individual models, re�ecting the additional uncertainty due to model choice

(Table 1) (Morales et al., 2006).

In this paper, we further explore the use of BMA as a tool for quantify-
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ing uncertainty in the contexts of both (1) model structure choice and (2)

model covariate selection for any given, particular model structure. Two

data analyses are used to illustrate these concepts. Dataset I consists of

EPA BMD test data for which researchers must determine an appropriate

model structure choice and possible dose transformations when �tting the

data. Dataset II consists of separate data for male and female subjects and

poses the model covariate selection question of whether sex should be taken

into account when calculating risk due to exposure. We apply multiple

techniques for conducting Bayesian Model Averaging to these two datasets

and subsequently use the BMA method to calculate a measure of excess risk

due to exposure known as the Benchmark Dose (BMD).

1.1 Bayesian Model Averaging for Toxicological Data and

Benchmark Dose Estimation

Although the above example utilized environmental epidemiological data,

the �exible BMA framework can be adapted for quantal response toxicology

data analysis. Using the notation of Clyde et al. (2004) and Hoeting et

al. (1999), let � be the quantity we wish to estimate using Bayesian Model

Averaging. In these analyses, we are interested in estimating a Benchmark

Dose (BMD) estimate which accounts for model selection uncertainty by
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incorporating information from a variety of reasonably �tting dose-response

models. To estimate � = BMD, the excess risk due to exposure, we

utilize the additive risk de�nition of the Benchmark Dose when analyzing

Datasets I and II. Thus, the BMD is de�ned as the dose which increases

the probability of an adverse e¤ect from P0 in an unexposed subject to P0+

BMR where BMR is the benchmark response, a level of response deemed

epidemiologically/biologically relevant (Butz-Jorgensen et al., 2000). For

this analysis, we chose BMR = 0:1, consistent with common EPA practice

(U.S. EPA, 2000). We calculated the lower bound of the BMD, the BMDL,

using bootstrap methods. In particular, to calculate the BMDL for each

of model, we generated 1,000 dataset samples drawn at random under a

given model, calculated the BMD for each sample, and then estimated the

BMDL as the lower 5% cuto¤ value for the BMDs calculated from the 1,000

samples.

To carryout BMA to �nd a model-averaged exposure-response curve and

the resulting, averaged BMD estimate, we �rst specify a set of suitable

models. We consider K total models, which are typically weighted equally

a priori, i.e. p(Mk) = 1=K for k = 1; 2; :::K. Next, we compute posterior

model probabilities, Pr(Mk j Data), which re�ect the likelihood that a model

holds "true" given the observed data. The posterior model probability for
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a given model, k, can be written as:

Pr(M = k j Data) = p(Data jM = k)p(Mk)PK
j=1 p(Data jMj)p(Mj)

(1)

where p(Data j Mk) =

Z
p(Data j �k;Mk)p(�k jMk)d�k,

which follows from Bayes Theorem. In addition to calculating posterior

model probabilities for each model, we use classical estimation methods to

calculate an estimate of excess risk for each model run, b�k.
Finally, we average the results using posterior probabilities as weights,

such that poorly-�tting models get downweighted and better-�tting models

contribute more strongly to the �nal, averaged estimate of risk. After

obtaining posterior model probabilities using Equation (1), Pr(Mk j Data),

and using classical estimation procedures to obtain a quantity of interest

for each model, b�k, we can then use posterior model probabilities as model
weights to obtain the BMA estimates of the unconditional expectation and

variance, i.e. the averaged estimate of risk over all models examined.

The unconditional expected value and variance of � given the posterior

model probabilities, pk = Pr(Mk j Data), are:
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E(� j Data) =
KX
k=1

b�kpk, where b�k = E(� jMk; Data) and (2)

V ar(� j Data) =
KX
k=1

V ar(b�k jMk; Data)pk +

KX
k=1

(b�k � b�)2pk (3)

where K is the total number of models considered. The variance for-

mula above separates out the variance into two components: the variance

due to the estimation procedure for each individual model,
PK
k=1 V ar(

b�k j
Mk; Data)pk, and the uncertainty due to model selection,

PK
k=1(

b�k� b�)2pk
(Hoeting et al., 1997).

To implement Bayesian Model Averaging, one must calculate posterior

model probabilities, pk = Pr(Mk j Data), for each of the k models us-

ing Equation (1). However, this requires solving an an integral that is

di¢ cult to calculate in all but the simplest cases, and many posterior dis-

tributions for models used in environmental epidemiological studies do not

have closed form solutions (Clyde and George, 2004). Both fully Bayesian

methods as well as Frequentist approximations to posterior model probabil-

ities have been utilized to carryout BMA. Fully Bayesian methods include
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closed-form solutions (which rarely exist when modeling toxicology data)

and Markov Chain Monte Carlo Methods such as Reversible Jump MCMC,

Carlin & Chib Method, Stochastic Search Variable Selection, and Gibbs

Variable Selection. The most common Frequentist analytical approxima-

tion used to estimate posterior model probability is the BIC approximation

described below. For Dataset I, the BIC approximation to the posterior

model probability is utilized. For Dataset II, both the BIC approxima-

tion and Gibbs Variable Selection are employed. These methods are not

exhaustive. Researchers must assess the computational feasibility of these

various techniques when determining which model averaging methods are

most appropriate for a given dataset.

1.1.1 The BIC Approximation

Several analytical techniques have been used to approximate the marginal

distribution for Y , p(Data jMk). Raftery (1995) derived the following ap-

proximation using Schwarz�s Bayesian Information Criteria (BIC) (Schwarz,

1978) to approximate model posterior probabilities:
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p(Data j Mk) / e�0:5BIC(Mk) ,

and thus

Pr(Mk j Data)
:
=

p(Mk)exp(�0:5BIC(Mk))PK
k=1 p(Mk)exp(�0:5BIC(Mk))

with BIC de�ned asBIC(Mk) = �2 log(maximized likelihoodjMk)+dim(Mk)log(n),

where dim(Mk) is the number of parameters forMk and n is the sample size.

This approximation tends to work well in settings with independent covari-

ates and moderate to large sample sizes (Wasserman, 2000).

1.1.2 Simulation Techniques

The most common way to calculate posterior model probabilities is to sim-

ulate data from a posterior distribution using Markov Chain Monte Carlo

(MCMC) methods. The simplest simulation techniques, however, are de-

signed for sampling from distributions of parameters with �xed dimensional-

ity. In the model averaging framework we aim to characterize the posterior

distributions of models with di¤erent numbers of parameters. Standard

MCMC theory does not apply when the dimension of the parameter space
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is allowed to vary, and model averaging may violate conditions necessary to

ensure Markov chain convergence (Carlin and Chib, 1995). Gibbs Variable

Selection (GVS) (Dellaportas et al, 2002; George and McCulloch, 1993)

addresses the problem of varying sample space dimension. The Dataset

II analysis utilizes GVS, and its implementation is described below in the

context of covariate selection.

2 Dataset I Analysis: Uncertainty Due to Choice

of Link Function/Dose-Response Model

For the analysis of Dataset I (presented in Table 2), we consider a variety

of models, most of which are included in EPA�s BMD software, BMDS Ver-

sion 1.4.1b. We consider only non-zero background models, both for their

biological plausibility and computational issues with calculating BMD for

zero background dose models when P (response at d = 0) = 0. We �t Logit,

Probit, Multistage, and Weibull models, and consider non-transformed dose

d, log-transformed dose log(d), additive background e¤ects, adding an ef-

fective dose term to the models, and simple empirical models for the data.

For each of these models, we adopted the common constraints on parameter

values suggested by the U.S. EPA Benchmark Dose Software (2007) and
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Gart et al. (1986). In total, ten models are �t to the data (Table 3).

These ten models can be �tted easily using maximum likelihood, which

involves choosing the values of the unknown parameters which maximize

ll =
PJ
j=1frj(log(P (dj))exp + (nj � rj)(log(1 � P (dj))g, where rj is the

number of responses observed among the nj subjects exposed at the jth

dose level, dj . We used the non-linear optimizing function nlminb in R

(Version 2.6.2) to �t all models. Table 4 shows the estimated parameters

for each of the 10 models and Figure 1 depicts these models graphically. We

calculated the posterior probability for each of the 10 models using the BIC

Approximation to posterior model probability, as described above (Table 4).

Both the table and graph demonstrate that similarly well-�tting models have

nearly identical posterior model probabilities. Models 1, 2, 5, and 6 provide

the best �t to the data, are quite similar in structure, and have the highest

shared posterior model probabilities (approximately .18 each, or over 0.70

combined posterior probability). Those models that �t the data poorly,

particularly the simple logistic and probit models, models 9 and 10, have

the lowest posterior probabilities of 0.02 and 0.03, respectively. Figure 1

also reveals that these models �t the data poorly.

For each model, we then calculated the BMD by solving for x, such that

p(dose = x)� p(dose = 0) = BMR, with BMR = 0:1. Lower limits on x,
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the BMDLs, were computed via parametric bootstrapping (Table 4). Fi-

nally, utilizing the posterior model probabilities and individual model BMDs

and BMDLs reported in Table 4, we calculated a model-averaged BMD,

�BMD = 5:3112, and corresponding averaged lower limit, �BMDL = 2:9071,

which we calculated using equation (2). These averaged values capture and

quantify the model selection uncertainty and overall variability observed in

the risk estimates and the graphical depictions of the 10 exposure-response

curves �t above.

3 Dataset II Analysis: Uncertainty Due to Covari-

ate Adjustment

To analyze Dataset II (Table 5), we use Bayesian Model Averaging to address

whether males and females should be combined when estimating risk due to

Frambozadrine exposure, or, rather, whether separate dose/response curves

are necessary. Whereas the Dataset I analysis utilized BMA to examine

model structure uncertainty, the Dataset II analysis uses BMA to address

model covariate selection uncertainty given a particular model structure, lo-

gistic regression. Under a traditional approach to data analysis, researchers
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would (1) consider �tting two separate models versus pooling the data to

form a combined model, (2) examine the model �ts, and then (3) draw in-

ferences from the "�nal" model(s) chosen, ignoring the alternative estimates

and the uncertainty arising from the model-selection process. Past research

has demonstrated that this model selection process can underestimate true

variability and uncertainty and thereby result in over-con�dent decision-

making (Draper, 1995). The goals of the Dataset II analysis are two-fold.

First, we address model uncertainty arising from covariate selection by com-

paring two strategies for implementing model averaging. Second, we use

the averaged model to calculate benchmark doses that account for the un-

certainty involved in modeling Dataset II.

To carryout Bayesian Model Averaging, we approach the dataset as a

covariate selection problem and compare the three (multiple) logistic regres-

sion models:

M1 : p(response) = g(�0 + �1dose)

M2 : p(response) = g(�0 + �1dose+ �2sex)

M3 : p(response) = g(�0 + �1dose+ �2sex+ �3dose � sex)
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As depicted above, Model 1 (M1) combines males and females to calculate a

single dose-response curve and Model 2, M2, assumes a common dose e¤ect,

but also allows for an additive gender e¤ect. Finally, the interaction model,

M3, is the equivalent of �tting two entirely separate dose-response curves

for males and females.

Under a standard, naïve analysis, the three models would be compared

using standard model selection criterion, such as the AIC. The model with

the lowest AIC would be chosen as the �nal model from which all inferences

would be made. In this case, the combined model (M1) would be utilized

with the lowest AIC value of 36.37, with no indication that researchers also

considered separate dose-response curves for males versus females (Table

6). Bayesian Model Averaging can be utilized to combine information

across these three models in lieu of traditional model/covariate selection

methodology.

As with the analysis of Dataset I, the BIC approximation to the posterior

model probability is utilized. In addition to this analytical approximation,

we use a simulation technique, Gibbs Variable Selection, to conduct the

model averaging and compare results. Gibbs Variable Selection proceeds

by noting that regression models with various numbers of included/excluded

covariates can be written as:
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logit(p(y = 1)) =

pX
j=1

g(j)Xj�j + "

where g(j) = 1 if the jth variable is included in the model, g(j) = 0 otherwise(1)

Introducing the variable indicator function g(�) reduces the framework

to one of �xed dimensionality. We can then utilize standard simulation

techniques to estimate g(�) and �k = (�k; �) for all models, Mk, k = 1; 2; 3.

Using the following framework, GVS was implemented for Dataset II analysis

using WinBUGS 14.

Likelihood :

Y [i] � binom(p[i]; n[i])

logit(p[i]) = �0 + g(1) � �1 � dose+ g(2) � �2 � sex+ g(3) � �12 � dose � sex

Priors :

g(j) v Bernoulli(0:5) for j = 1; 2; 3

�j v N(0; �)

� v dgamma(0:1; 0:1)
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Gibbs Sampling �rst samples each variable indicator g(j), then �j , and

�nally, � . Table 6 gives posterior model probabilities for the three models

of interest estimated using the GVS method in WinBUGS. The combined

data model had the highest posterior probability (pk = 0:546). The model

which allowed for an additive sex e¤ect had posterior probability 0.443,

and the model allowing for a sex*dose interaction (i.e. the equivalent of

modeling male and female data via two separate models) only had a posterior

probability of 0.011.

Next, the BIC approximation was used to estimate posterior model prob-

ability. We implemented the BIC approximation method using Chris Volin-

sky�s R BMA Package (function BIC.GLM). The �nal column of Table 6

gives estimated posterior model probabilities for the three models of interest

estimated using the BIC Approximation. As with GVS, the BIC approxi-

mation �nds that the combined model has the highest posterior probability

(0.639). M2 has posterior probability 0.266, and �tting separate models

via M3 is least-supported by the data, with posterior probability 0.095. A

Comparison of the GVS method and the BIC approximation model-averaged

estimates are reported in Table 7. Table 7 gives the estimated posterior

probabilities for inclusion of variables in the true model, the model-averaged

coe¢ cient estimates, and the standard deviations calculated using Equations
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(2) and (3) for both methods. The GVS and BIC results are quite similar

in terms of model-averaged dose estimation and posterior probability of a

dose e¤ect, with probability of dose inclusion in the "true" model of ap-

proximately 1, and model-averaged coe¢ cient values of 0.0317 and 0.0315

for dose, respectively. Nonetheless, these methods deviate with respect to

inclusion of a sex term and dose-sex interaction term.

4 Discussion

We have demonstrated that benchmark dose estimates are highly dependent

upon the particular dose-response curve calculated. By adopting a Bayesian

Model Averaging Framework, we have accounted for the additional variabil-

ity due to choosing a "�nal" dose-response curve, and we have used BMA

to provide benchmark doses that more accurately re�ect uncertainty in our

understanding of the e¤ects of exposure on the occurrence of adverse re-

sponses.

For the Dataset I analysis, model averaging performed well, as the best-

�tting models all had high posterior probabilities and thus larger "weight"

in the �nal, averaged model estimates of risk due to exposure. In addition,

the models with very similar structural forms had nearly the same posterior

probabilities. The top four models accounted for over 70% of the total
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posterior probability and had an average BMD value of 2.673. Nonethe-

less, researchers must be careful in choosing which models to include for

model averaging. The overall model-averaged BMD including ill-�tting,

lower-weighted models was 5.311, revealing the penalty for including mod-

els structures ill-suited to the data. Naively averaging over ill-performing

models may result in biologically implausible model �ts and can lead to

nonmonotonic curves for which risk estimates such as BMDL can not be ob-

tained. In addition, researchers must include plausible restraints for models

to ensure they perform reasonably when �tting the data. Weibull models

were particularly unstable absent suitable constraints.

For the Dataset II analysis, both the BIC approximation method and the

GVS method for carrying out BMA performed similarly in terms of calculat-

ing posterior model probabilities, i.e. the "weight" of the evidence in favor of

modeling male and female rat data separately. In this case, small posterior

probabilities for the full logistic regression model with an interaction term

(0.011 using GVS and 0.095 using BIC) demonstrate that separate estimates

of excess risk due to exposure are probably unnecessary. Nonetheless, the

BMA approach is worthwhile because it accounts for the uncertainty arising

from the decision-making process of �tting multiple models. This contrasts

with the traditional approach, which ignores plausible alternatives when re-
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porting results and thus may result in over-con�dent inferences regarding

risk.

For Dataset II, the resulting model-averaged coe¢ cient estimates and

posterior probability estimates di¤er somewhat for GVS and BIC approxi-

mation methods. One must exercise caution in applying the BIC approx-

imation to smaller datasets where covariates are not independent, such as

in our Dataset II analysis which includes an interaction term. (Wasser-

man, 2000). In addition, the BIC approximation exacts a strong penalty

for model complexity, giving lower posterior probability to models with in-

creasing number of parameters. Accordingly, researchers must consider

which method(s) for implementing BMA are most appropriate for a given

dataset.

This paper addresses uncertainty due to model structure and model co-

variate selection. There are other sources of uncertainty worthy of ex-

ploration for quantal response toxicology data, such as uncertainty due to

dose levels where data are sparse or risk estimate uncertainty that may arise

from the presence of outliers or lack of monotonicity. As always, researchers

must struggle with the question of when a formal uncertainty analysis will

be applicable for a particular dataset. We have demonstrated that Bayesian

Model Averaging can serve as a useful tool for accounting for several sources
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of uncertainty. Ongoing work aims to utilize alternative simulation meth-

ods to calculate BMDs, BMDLs, and resulting variance estimates for both

Datasets I and II. In addition, we plan to utilize Reverse Jump MCMC sim-

ulation method for implementing BMA for Dataset I in order to compare

this method with the BIC Approximation to posterior model probability

calculated above.
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Figure 1. All 10 Models, Predicted Dose-Response Curves for Dataset I
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Table 1. Bayesian Model Averaging of Arsenic Data and Resulting Av-

eraged BMD Estimate

Individual models BMD (95%CI)

Add, linear dose 42 (40,43)

Multi, linear dose 91 (78,107)

Multi, log dose 70 (60,83)

Model averaged 60 (47, 74)
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Table 2. Dataset I: BMD Technical Guidance Data

Dose # of Subjects # of Responses

0 50 1

21 49 15

60 45 20
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Table 3: Ten Models Considered in Dataset I Analysis

p(d) : constraints

1. �3 + (1� �3) e�1+�2 log(d)

1+e�1+�2 log(d)
�2 > 0; 0 < �3 < 1

2. �3 + (1� �3)�(�1 + �2 log(d)) �2 > 0; 0 < �3 < 1

3. �3 + (1� �3)(1� e��1d��2d
2
) �1; �2 > 0; 0 < �3 < 1

4. �3 + (1� �3)(1� e��1d
�2 ) �2 > 1; 0 < �3 < 1

5. e�1+�2 log(d+�3)

1+e�1+�2 log(d+�3)
�3 > 0

6. �(�1 + �2 log(d+ �3)) �3 > 0

7. 1� e��1(d+�3)��2(d+�3)2 �1; �2; �3 > 0

8. 1� e��1(d+�3)�2 �2 > 1;�3 > 0

9. e�1+�2d

1+e�1+�2d
�2 > 0

10. �(�1 + �2d) �2 > 0
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Table 4. For Each of the 10 Models Considered: Estimated Parame-

ters, Estimated Posterior Probabilities Using BIC Approximation, Resulting

Benchmark Dose for 10 Models Considered, and BMDLs Calculated Using

Bootstrap Methods

Model Model Fit (
å
K =

å
K1,

å
K2,

å
K3) Pr ÝMk |DataÞ BMD (

å
Ak ) BMDL

1. K3+Ý1 ? K3Þ
eK1+K2 logÝdÞ

1+eK1+K2 logÝdÞ (0.2692,0.5874,0.0200) 0.1772 2.3406 0.0287

2. K3+Ý1 ? K3Þ®ÝK1+K2 logÝdÞÞ (0.1685,0.3612,0.0200) 0.1772 2.8418 0.0562

3. K3+Ý1 ? K3ÞÝ1 ? e?K1d?K2d2
Þ (0.6805,0.00001,0.0251) 0.0597 9.5423 7.9702

4. K3+Ý1 ? K3ÞÝ1 ? e?K1dK2 Þ (0.6805,1.0000,0.0251) 0.0597 9.5422 8.0666

5. eK1+K2 logÝd+K3Þ

1+eK1+K2 logÝd+K3Þ
(0.2240,0.5685,0.0016) 0.1772 2.5798 0.0064

6. ®ÝK1+K2 logÝd + K3ÞÞ (0.1413,0.3525,0.0044) 0.1772 2.9295 0.0065

7. 1 ? e?K1Ýd+K3Þ?K2Ýd+K3Þ
2

(0.6805,0.00001,0.0374) 0.0597 9.5423 7.9041

8. 1 ? e?K1Ýd+K3Þ
K2 (0.6805,1.0000,0.0374) 0.0597 9.5422 7.9854

9. eK1+K2d

1+eK1+K2d (2.2419,2.2017) 0.0215 22.6390 19.6551

10. ®ÝK1+K2dÞ (1.3587,1.3452) 0.0310 20.9702 18.0580
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Table 5. Dataset II: Frambozadrine Data

Dose (mg/kg-day) # of Rats # of Response, Hyperkeratosis

Male

0 47 2

1.2 45 6

15 44 4

82 47 24

Female

0 48 3

1.8 49 5

21 47 3

109 48 33

31



Table 6. Traditional Approach to Covariate Selection vs. BMA Ap-

proach: (1) Akaike Information Criteria for Model Selection, (2) Estimated

Posterior Model Probabilities, ( bpk = cPr(Mk j Data)), Using Gibbs Variable

Selection, (3) Estimated Posterior Model Probabilities Using BIC Approxi-

mation

Logistic Regression Model - Full Model:

Pr(response) = g(�0 + �1dose+ �2sex+ �12dose � sex)

Model (k) �0 �1 �2 �12 AIC bpk(GV S) bpk(BIC)
1. All Data Combined -2.639 0.0313 0 0 36.37 0.546 0.639

2. Sex E¤ect Only -2.531 0.0315 -0.175 0 38.04 0.443 0.266

3. Separate Models -2.501 0.0309 -0.229 0.001 40.02 0.011 0.095
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Table 7. Comparison of Two BMA Methods: BIC Approximation and

MCMC - GVS Method. EV: E(� j Data) =
PK
k=1

b�kpk, where b�k = E(� j
Mk; Data) and pk is posterior model probability. SD is sqrt(variance) with

variance de�ned as above:
P3
k=1 V ar(

b�k jMk; Data)pk+
P3
k=1(

b�k� b�)2pk.
Variable GVS Method (Fully Bayesian) BIC Approx.

Dose Pr(dose) = 1.0 Pr(dose) = 1.0

EV: 0.0317 EV: 0.03149

SD: 0.00344 SD: 0.00389

Sex Pr(sex) = 0.454 Pr(sex) = 0.292

EV: -0.0311 EV: -0.0552

SD: 0.2249 SD: 0.212

Dose*Sex Pr(Interaction) = 0.011 Pr(Interaction) = 0.27

EV: -0.00249 EV: -0.000218

SD: 0.249 SD: 0.00289
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