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Environmental policies and programs are guided by health effect estimates from modeling dose-response data, typically based on animal bioassays.  The sources of uncertainty in these predictions are many – ranging from inherent biological processes to the specific calculation approaches and models applied.  To address the latter, Resources for the Future organized a workshop on Uncertainty Modeling in Dose Response:  Dealing with Simple Bioassay Data and Where Do We Go from Here?  The workshop was held 22‑23 October 2007 in Washington, DC.  

Notice the title is not simply “Dose-Response Modeling” but rather emphasizes the central role of uncertainty, reflecting a shift in focus that is taking place across a wide spectrum of national and international programs.  In the context of pervasive uncertainty, getting the uncertainty right is as important as finding a best estimate. 

The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) National Center of Environmental Assessment (NCEA) has made improved uncertainty characterization one of the priorities of its integrated risk assessment program.  Traditionally EPA programs have made more use of  reasonably protective values (deemed unlikely to under-predict risk) than other estimates such as those derived from maximum likelihood estimates. Some EPA statutes call for protection with a margin of safety, and a few statutes require explicit balancing of estimated magnitude of risk against estimated cost of reducing that risk.  Many regulatory authorities, including EPA,  have a tradition of  seeking to protect the  public through procedures which are grounded in data and reflect some of the uncertainties.  

The EPA is sometimes asked to capture and quantify more types of uncertainty in estimates of dose-response.   The U.S. Congress in the 1994 amendments to the Safe Drinking Water Act, have also asked EPA to answer different questions and to produce “best estimates”, with text suggesting that, if possible, these should be “expected value” estimates, of risk along with lower confidence interval estimates of risk (in addition to upper confidence interval estimates). 

Getting the uncertainty right means quantifying the uncertainty and subjecting the quantification method to scientific review. Why is this important? Several reports of the National Academy of Science expand on this (NRC 1983, 1989, 1994, 1996), but a shortlist of reasons might be:

· Scientific integrity demands that we not claim to know more than we know.

· The natural language is a poor vessel for communicating uncertainty;  a 1 in 100 chance of winning an office lottery might be called 'very slight' but a 1 in 100  chance of serious birth defects for an approved diet supplement would be considered unacceptable large. 

· Uncertainty quantification enables tracking the accumulation of conservative assumptions and prioritizing uncertainty reduction measures.

· Optimal decision making under uncertainty requires uncertainty quantification.

· Without quantification, stakeholders may be left with very different perceptions of the uncertainties, leading to different perceptions of whose interests are being hedged by rule making under uncertainty.

An EPA review on 2002 underscored the importance of uncertainty quantification in dose response: “When the available data are sufficient to meaningfully characterize the distributions of interest, a probabilistic approach would provide results as a distribution rather than as a single measure for the dose/concentration-response.” (EPA 2002, p. 4-48)
The workshop was developed to address this critical need to understand dose-response uncertainty for practical risk applications.  The objective was to demonstrate some new methods for quantifying uncertainty in the dose-response relationship via a systematic process, with an emphasis on environmental relevance.  The workshop focused on a single part of the larger dose-response uncertainty problem:  fitting modeling curves to animal data and using them to make judgments in the range of the observable response (i.e., not extrapolating far below the observable data).  It is important to note that questions such as extrapolating to doses outside the range of the tests, to humans from animals, and to chronic from shorter-duration doses were explicitly excluded from the workshop.  Those more complicated extrapolations can be better addressed after the first step – uncertainty in fitting dose-response curves for simple bioassay experiments – is more fully understood.   

1.1  Workshop Format

The workshop format was designed to engage experts in interdisciplinary discussions of approaches for quantifying uncertainty in fitting models to animal toxicity data within the observed range.  The aim was to review the state of the art for this first step and promote better quantification for use in integrated uncertainty analysis.  
Toward this end, a number of experts were invited to ply their craft by testing an uncertainty characterization method of choice with example dose-response data.  Results of each modeling bench test were then documented in a technical paper and presented at the workshop, with highlights of the strengths and limitations offered for dose-response and risk assessments. 

Each set of results were then reviewed by additional experts who were asked to represent three different perspectives:

· Epidemiologist/toxicologist,

· Statistician/mathematician, and 

· Risk analyst/regulator. 

Comments were also invited from other workshop participants, and the modelers were then invited to respond to the critiques.  Subjecting the bench test results to critical review not only helped strengthen the explanation of the models, it also provided excellent practical context regarding their uses and limitations. 

Having different modelers focus on the same data sets led to lively and sharply focused discussions, quite different from abstract deliberations of pros and cons of various methods.  The interactive format helped address two common complaints of dose-response modelers:  that statisticians do not understand what their models don’t do well, and that they are not sufficiently mindful of biological problems inherent in data analyses.  The contrast presented in the approaches of statisticians versus those who model dose-response data for risk applications served to heighten joint awareness of the scientific issues.  The format also illustrated that advances in dose-response modeling may come from statisticians who have taken part in interdisciplinary exchanges and are cognizant of the importance of physiological parameters underlying dose-response relatiohnships.   

It is hoped that the methods applied and attendant discussions will prompt other modelers to ply their wares on the bench test cases, as well as to their own data sets being evaluated for ongoing projects.  By summarizing the presentations, critiques, and other discussions within this book, the authors aim to provide a technical resource with the goal of advancing the state of the art for dose-response uncertainty quantification, leading to better-informed decision making.

1.2  Models Tested

Four modelers rose to the challenge of quantifying uncertainty in the bench test exercises, with each applying a specific method to the problems described in Section 1.3.  

· Jeff Swartout (EPA ORD) conducted analyses with the EPA benchmark dose (BMD) approach using the Benchmark Dose Software (BMDS) and using a bootstrapping approach that as fairly similar goals but a different technical approach. 

· Roger Cooke (RFF/TU Delft) deployed a method of probabilistic inversion and isotonic regression (PI-IR), based on methods from the joint U.S. Nuclear Regulatory Commission and European Union uncertainty analyses of accident consequence models for nuclear power plants. 

· Thomas Mazzuchi (George Washington University) and Lidia Burzala (TU Delft) used non-parametric Bayesian (NPB) methods from biostatistics and accelerated life testing. 

· Louise Ryan and Melissa Whitney (Harvard University) used Bayesian model averaging (BMA).  

The “storylines” for each approach are summarized below.  Details are provided in the subsequent chapters of this book.

Benchmark Dose (BMD): The Benchmark Dose approach uses the Akaike Information Criterion (AIC), in some cases with other considerations such as whether any of the models provide an adequate fit, to choose a “best” model.   The software then uses likelihood profile methods to calculate confidence intervals, particularly to derive a confidence limit around the dose that yields a target, typically low, response rate.   Similar to the likelihood profile method, the related bootstrapping approach  also assumes the best fit model with its maximum likelihood estimates of its parameters, is true. It then simulates repetitions of the bioassay experiments by sampling from independent binomial distributions for responses at each dose, based on the maximum likelihood parameter estimates of the best model.  On each repetition, the bootstrapping approach re-estimates the parameters, thus obtaining a distribution over model parameter values
. By sampling this parameter distribution, obtain a distribution on predicted probabilities at measured and unmeasured doses.  

Probabilistic Inversion with Isotonic Regression (PI-IR):  Assume repeated experiments give results from independent binomials, with probabilities estimated directly from the data (not from a model). Derive a distribution of estimated response probabilities at each dose by applying the constraint that probabilities are non-decreasing in dose (isotonic regression). Find a model with the distribution over its parameters that recovers the isotonicized distributions of response probabilities (probabilistic inversion). By sampling this parameter distribution, obtain a distribution on predicted probabilities at measured and unmeasured doses.

Non-Parametric Bayes (NPB): Choose a prior mean response (potency) curve and precision parameters. These define a “Dirichlet process prior” giving a prior distribution over all non-decreasing functions of probability as function of dose. Update this prior distribution with the observed data at measured doses. The posterior distribution at measured and unmeasured doses is gotten by Gibbs sampling.

Bayesian Model Averaging (BMA) (as applied here, Hybrid BMA):  Choose an initial set of models and estimate the parameters of each model with maximum likelihood. Conditional on each model estimate the variance in parameter estimates with classical methods.  Determine a probability weight for each model using the Bayes Information Criterion (BIC).  Use these weights to average model results.

These four models and results of the test applications are described in Chapters 2 through 5.  Each chapter also contains multi-perspective comments from the critiquing experts and responses from the testing experts.

Two additional contributions were solicited for the workshop that involved characterizing uncertainty from other dose-response applications, to help illuminate issues being evaluated for the chemical test cases.  First, Peter Teunis (RIVM and Emory University) explored the concept of dose-response in microbial risk.  He illustrated that in microbial risk, the pathogens are often highly infective, and the probability of response can be bounded by the probability of exposure.  For example, if someone ingests 10 milliliters of a suspension of 1 organism per liter, the probability of infection cannot exceed 1%. This additional constraint can facilitate dose-response modeling. However, host-dependent heterogeneity (and other issues such as secondary infections) introduces new complications.  

Second, Leonid Kopylev, John Fox, and Chao Chen (EPA NCEA) developed the mathematics for assessing the composite risk of multiple tumors at multiple sites. They provided a method for combining risk of different cancers at different sites using the multistage model.  That model is particularly compliant in this regard, and the method might be extended to combining other effects. 

These two additional contributions expand our awareness of dose-response modeling issues and are summarized in Chapter 6.  Because they were not aimed at solving the four bench test exercises, they were not subject to the interactive review process. Thus, no associated critiques are included in that chapter.

The current approach to modeling uncertainty in dose response is well illustrated by the EPA BMD method (Crump 1984; US EPA 2002, 2004, 2008); for a review of regulatory history see Dourson and Stara (1983) and others.  This approach uses classical statistical methods of uncertainty representation to find a “point of departure” (or POD) for determining a “reference value” that is ultimately used to guide health-based exposure limits for hazardous substances.  The POD takes the uncertainty in dose-response modeling into account, while deriving a reference value from this point takes other sources of uncertainty into account, applying standard uncertainty factors that are rooted in approaches of Lehman and Fitzhugh (1954) and other early risk analysts.  These other sources of uncertainty include extrapolation from animals to humans, extrapolation from subchronic to chronic doses, and extrapolation to sensitive subpopulations. 

We note that much effort has been put into developing and critiquing uncertainty factors.  Evaluations include those by Abdel-Rahman and Kadry (1995), Baird et al. (1996), Calabrese and Baldwin (1995), Dourson and Stara (1983), Dourson et al. (1992, 1996), Evans and Baird (1998), Gaylor and Kodell (2000), Hattis et al. (1999, 2002), Kodell and Gaylor (1999), Kalberlah et al. (2003), Nessel et al. (1995), Pelekis et al. (2003), Pieters et al. (1998), Renwick and Lazarus (1998), Rhomberg and Wolff (1998), Slob and Pieters (1998), Swartout et al. (1998), and Vermeire et al. (1999).  Although these extrapolations and uncertainty factor issues were not the focus of the workshop, they certainly came up in the discussions.    

1.3  Model Critiques

The discussants who agreed to present critiques of the models are summarized in Table 1.  The specific comments offered and the responses of the testing experts are included in the individual chapters for each of the four models tested (Chapters 2 through 5).

TABLE 1  Discussants of the Four Modeling Approaches Applied to Test Data

	Modeling Approach 

and

Testing Expert
	Benchmark 

Dose

(BMD)
	Probabilistic Inversion-Isotonic Regression (PI-IR)
	Non-Parametric Bayes 

(NPB)
	Bayesian 

Model Averaging 

(BMA)

	
	Jeff Swartout

(EPA NCEA)
	Roger Cooke

(RFF/TU Delft)
	Tom Mazzuchi 
(George Washington) 
and Lidia Burzala

(TU Delft)
	Louise Ryan and Melissa Whitney (Harvard)

	Critiquing Expert and Perspective Offered

	Epidemiologist/
Toxicologist
	Jouni Tuomisto

(National Public 
Health Institute, KTL)
	Lorenz Rhomberg

(Gradient)
	Chao Chen

(EPA NCEA)
	Margaret Chu

(EPA NCEA)

	Statistician/
Mathematician
	Allan Marcus

(EPA NCEA)
	Tom Louis

(Johns Hopkins)
	Roger Cooke

(RFF/TU Delft)
	Michael Messner

(EPA Office of Ground Water and Drinking Water)

	Risk Analyst/
Regulator
	Weisueh Chiu

(EPA NCEA)
	Rob Goble

(Clark University)
	Dale Hattis

(Clark University)
	Adam Finkel

(University of Medicine and Dentistry of NJ)

	Additional Commenters
	David Bussard

(EPA NCEA)
	Jouni Tuomisto

(KTL)
	
	

	
	Roger Cooke

(RFF/TU Delft)
	
	
	


1.4  Test Data Sets

Four sets of bioassay data excerpted from EPA sources provided the common basis for bench testing the models.  Each data set identifies the number of animals exposed and the number responding at each of several dose levels for various experiments.  The reporting formats differ somewhat across the four data sets, reflective of common variability in how actual data are provided to statisticians, dose-response modelers, and other risk practitioners. 

The first data set was taken from BMDS materials available via the EPA website when the exercises were distributed to workshop participants in May 2007
. Because the BMD approach represents current practice, the following discussion includes a brief illustration of this “baseline” process using these example data.

The other three data sets are actual bioassay results of selected chemicals of current interest.  These are important to include in the practical bench testing of models for this workshop because very often, real data are less compliant than demonstration data.  Their names were fictionalized – frambozadrine, nectorine, and persimonate – to ensure that active policy concerns did not impinge on the scientific discussion.  The four test data sets are described below. 

Data Set 1:  Example Data from the BMD Technical Guidance Document

The first data set involves three sets of test subjects. The example dose levels, number of subjects and number of responses are shown in Table 2.

TABLE 2  Data Set 1:  BMD Technical Guidance Example

	Dose
	Number of Subjects
	Number of Responses

	0
	50
	1

	21
	49
	15

	60
	45
	20


Confronted with these data, the analyst can use any number of statistical packages to select and evaluate a statistical model. The Benchmark Dose Software (BMDS) (see US EPA 2008) is specifically designed for this purpose. 

We may choose a log-logistic model with slope parameter constrained to be greater or equal to 1. The BMD output reports this choice as:

The form of the probability function is: 
P[response] = background+1-background)/[1+EXP(-intercept-slope*Log(dose))]

Slope parameter is restricted as slope >= 1.

A model is fit using the method of maximum likelihood:  parameter values are sought which make the data look “as likely as possible.” If our model predicts a response probability of 50% at dose 21, then the observation of 15 responses out of 49 exposed subjects (30.6%) is quite unlikely. Indeed, the probability of seeing 15 or fewer responses if the true response probability were 0.5 and the subjects were randomly sampled is 0.0047.  

Note that the log-logistic model has three parameters:  background, intercept, and slope.  If we fit this model without the slope constraint, the fitted “P(response)” would exactly match the observed response relative frequencies, and the maximum likelihood parameter estimates would be:

Background = 0.02

Intercept = -2.67429

Slope = 0.587422

Since this model with these parameter values exactly hits the observed frequencies, the residuals are zero. A simple chi square test gives the probability (p-value) of falsely rejecting the model based on the size of the residuals. Such a test does not make sense if the residuals are actually zero, the p-value is 1.  However, the Akaike Information Criterion (AIC) does make sense. The AIC is defined as -2L + 2k where L is the log likelihood of the model, using the maximum likelihood estimates of the parameters, and k is the number of parameters. The log likelihood in this case is -65.9974, hence the AIC = 137.995. Low values are better; the AIC punishes models with more parameters. 

If we restrict the slope to be greater than or equal to one, then the maximum likelihood parameter estimates are:

Background = 0.02

Intercept = -4.07755

Slope = 1

The slope is constrained to be (1, and the maximum likelihood estimate of the slope is the boundary value 1. The BMDS interprets this to mean that the slope-constrained model has only two parameters, background and intercept.  Note that if the data had been different (e.g., if there had been 13 responses at dose 21 and 23 responses at dose 60), then the slope would be estimated at 1.04921 and we would have again a three-parameter model; the number of parameters is actually a random variable under this interpretation. 

Be that as it may, on the unaltered dataset, the AIC for the constrained model is 136.907, which is less than the AIC of the unconstrained model (137.995). In fact, the constrained log-logistic model has the lowest AIC of all the standard models in the selection list in this case, and thus it emerges as the “best” model.  The goodness of fit data for the constrained model is shown in Table 3.

	TABLE 3 Goodness of Fit for the BMD Slope-Constrained Log-Logistic Model 

	Dose
	Estimated Probability
	Expected

Response
	Observed

Response
	Sample Size
	Scaled Residual

	0
	0.0218
	1.091
	 1
	50
	-0.088

	21
	0.2609
	12.784
	15
	49
	  0.721

	60
	0.4917
	22.125
	20
	45
	-0.634

	Chi square = 0.93,      degrees of freedom = 1,        p-value = 0.3352


The p-value for obtaining residuals at least as large as those found by this model is 0.3352, if the model were actually correct.  Hence the probability of falsely rejecting this model is higher than the traditional rejection level (0.05).  Note that the predicted number of responses at dose 21 and 60 are 12.784 and 22.125 respectively, not so different from the altered dataset, leading to the three-parameter model. 

To compute the benchmark dose, we first choose a benchmark response (BMR) as “excess over background.”  Two formulations for computing the excess over background are used.  In the extra risk model,

BMR = (P(BMD) – P(0) ) / (1-P(0))            
(1) 

while in the additional risk model,

BMR = P(0) + P(BMD).

The extra risk model is used in these exercises. Using the maximum likelihood estimates for the parameters of the best model, (1) is solved to find the BMD. Typical choices for the BMR (the response level of interest for a given assessment) are 10%, 5%, and sometimes 1%.
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To find a point of departure, uncertainty is factored in. From the storylines, we see that each uncertainty modeler obtains a distribution over response probabilities for any dose. Equivalently, this can be expressed as a distribution over the doses which realize any given response probability. Figure 1 shows this relationship. Given an uncertainty distribution over dose-response relationships, we can fix a given probability of response and consider the distribution of doses which realize that response.

FIGURE 1  Distribution over Response Probabilities: Constrained Log-Logistic Model 

(Note: 5% of doses realizing the BMR are equal to or below the BMDL; equivalently, 5% of curves at the BMDL are greater than or equal to the BMR.)

The lower 5 percentile of the distribution for dose realizing the BMR is called the BMDL, and this is used as a point of departure.  Details for calculating the distribution over dose-response relationships and the BMDL differ for each model and are explained in the succeeding chapters.

Returning to our slope-constrained log-logistic model, the BMDS finds that BMD = 7.21305 and BMDL = 4.93064.  Had we used the unconstrained log-logistic model, we would find BMD = 2.25273, and the software would give us the message “Benchmark dose computation failed.  Lower limit includes zero.”  This would correspond to a situation like that shown in Figure 2, in which 5% of the dose-response curves at dose zero are above the BMR.
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FIGURE 2  Distribution over Response Probabilities:  Unconstrained Log-Logistic Model 

(Note: More than 5% of curves at zero are greater than or equal to the BMR.)
On the altered dataset, with responses (1,13, 23),  both the constrained and the unconstrained log-logistic models have an AIC of 134.861; however, the BMDL of the constrained model is 4.67469, whereas that of the unconstrained model is 0.25667. The difference reflects the fact the uncertainty distribution for the slope factor in the unconstrained case has substantial probability for values below 1, whereas the constrained model must pile up mass at 1. For models with the same AIC, the difference in BMDL is a bit unsettling.

Among the BMD model selection suite, another popular form is the Weibull model:

P[response] = background+(1-background)/[1+EXP(-slope*(dose)^power)]

   
Slope parameter is restricted as slope >= 1.

With this slope-constrained model, we find an AIC of 138.17. The p-value based on residuals is 0.1322, again too high for rejection. The BMD = 9.28942, and the BMDL= 6.92055.

Beyond these “example data” that support BMDS training, the other three sets used for bench testing the modeling approaches are excerpted from actual data for chemicals of interest to current environmental programs.  These three data sets are presented below in various formats (see Tables 4‑6).  Also included are the key uncertainty characterization questions posed.

Data Set 2:  Frambozadrine – Combine Males and Females?

TABLE 4  Data Set 2:  Rat Oral Exposure to Frambozadrine 

	 Gender
	Dose 
(mg/kg-day)
	Number in Trial
	Number Expressing Hyperkeratosis

	 Male
	0
	47
	2

	 
	1.2
	45
	6

	 
	15
	44
	4

	 
	82
	47
	24

	 Female
	0
	48
	3

	 
	1.8
	49
	5

	 
	21
	47
	3

	 
	109
	48
	33


Uncertainty questions:  

Do we need separate dose-response relations for males and females? 

Does combining genders alter the uncertainty in response?

Data Set 3:  Nectorine – Combine Endpoints?

TABLE 5  Data Set 3:  Rat Inhalation Exposure to Nectorine 

	 Observed Lesion 
	Exposure Level (ppm)

	
	0
	10
	30
	60

	
	Number Responding  /  Number in Trial

	Respiratory epithelial adenoma  
	0 / 49
	6 / 49
	 8 / 48
	15/48

	Olfactory epithelial neuroblastoma 
	0 / 49
	0 / 49
	4 / 48
	3 / 48


The rats in each study were different, and only the indicated endpoint was sought in each study.  The summation of risks from multiple tumor sites when tumor formation occurs independently in different organs or cell types is considered superior to calculations based on individual tumor sites alone. 

Uncertainty question:  

What is the uncertainty in response as a function of dose for either respiratory epithelial adenoma or olfactory epithelial neuroblastoma?

Data Set 4:  Persimonate – Combine Studies?

TABLE 6  Data Set 4:  Mouse Inhalation Exposure to Persimonate

	Test Subject
	Continuous Equivalent Exposure Level (ppm)
	Total Metabolism

(mg/kg-day)
	Survival-Adjusted

Tumor Incidence

	B6C3F1 male mice 
	0
	0
	17 / 49

	
	18
	27
	31 / 47

	
	36
	41
	41 / 50

	Crj:BDF1 male mice 
	0
	0
	13 / 46

	
	1.8
	3.4
	21 / 49

	
	9.0
	14
	19 / 48

	
	45
	36
	40 / 49


Uncertainty questions:  

Can we combine these studies?   

Does it affect our uncertainty?

The applications and discussions are presented in Chapters 2‑5, and highlights of the results are given in Chapter 7.
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Chapter 1
Analysis of Dose-Response Uncertainty using Benchmark Dose Modeling

Jeff Swartout

U.S. Environmental Protection Agency

Office of Research and Development

National Center for Environmental Assessment

I.  Introduction and Methods

I have assessed the uncertainty in modeling the test data sets using the U.S. EPA BMDS (Ver. 1.4.1) software (U.S. EPA, 2007), with a secondary verification using a parametric bootstrap algorithm in S-PLUS® (Ver. 6.2 for Windows®).  I present only the analyses of the (mythical) frambozadrine, nectorine and persimonate data sets, as they offer the most interesting issues for combining results. 
The issue of combining response data is first addressed by determining if the individual data sets are similar conceptually. That is, can they be considered to belong to the same population?  The statistical aspect of pooling the data is addressed by assessing the net deviance (-2 x optimized log-likelihood ratio) between the dose-response model fits to the pooled data set and the individual data sets, assuming a specific dose-response family (Stiteler et al., 1993). The test statistic is Dpool – (Di, where Dpool is the deviance of the pooled data model fit and (Di is the sum of the individual model fit deviances from the same fitted model. Data are pooled by combining all dose groups into one data set, keeping each group intact, including controls (i.e., not by summing animals and responders into single groups for the same dose). The test statistic is compared to a Chi-squared distribution  with degrees of freedom equal to the difference between the sum of the number of individual model parameters minus the number of parameters in the pooled-data model. As a convention, the probability is reported as 1 – pchisq, where pchisq is the cumulative probability of the Chi-squared distribution, with  values greater than 0.05 accepted as adequate for pooling the data.

Uncertainty analysis for the Benchmark Dose procedure was accomplished by obtaining lower 95% confidence bounds for selected Benchmark Response (BMR) levels, corresponding to the BMDLX, where X is the percent response in the tested animals. BMRs ranging from 1% to 99% were evaluated. Confidence bounds in BMDS are determined by the profile likelihood method, assuming an asymptotic relationship of the log-likelihood ratio to the Chi-square distribution.

The parametric bootstrap procedure consists of fitting the selected dose-response model to the raw data by maximum likelihood and treating the fitted response at each dose as the “true” response in the tested animals. Then, with an assumption that the observed response in each dose group can be represented by simple binomial uncertainty
, a new set of responses is generated based on the fitted probability and sample size (simulating a repeat of the experiment). The selected dose-response model is fit to 1,000 bootstrap samples and the fitted parameters are saved. From the resulting parameter distribution, point-wise confidence bounds can be calculated for the entire dose-response curve. Upper and lower bootstrap confidence bounds can then be compared with the corresponding profile likelihood confidence bounds computed in BMDS. Constraints on the parameter space are an issue for use of either of these methods. Standard likelihood-based methods are sometimes found to perform poorly when there are parameter constraints. The most general results assume no constraints (i.e., an "open parameter space").
II.  Frambozadrine Data Analysis

The frambozadrine data are reproduced in Table II-1.

Table II-1.  Frambozadrine dose-response data

	Dose
(mg/kg-day)
	Total no rats
	Incidence

(hyperkeratosis)
	Percent

response

	Male

	0
	47
	2
	4.3

	1.2
	45
	6
	13

	15
	44
	4
	9.1

	82
	47
	24
	51

	Female

	0
	48
	3
	6.3

	1.8
	49
	5
	10

	21
	47
	3
	6.4

	109
	48
	33
	69


The questions to be answered are:

1)  Do we need separate dose-response relations for males and females? 

2)  Does combination alter the uncertainty in response?

Frambozadrine BMDS model-fitting results

Table II-2 shows the results of the model fitting from BMDS. Any model fit with a p-value greater than 0.1 was considered adequate. Goodness-of-fit was evaluated on the basis of the Akaike Information Criterion (AIC) value, with lower values indicating better fit. The deviance statistic is given for determination of the statistical propriety of combining the data. BMD and BMDL values are in units of mg/kg-day.

Table II-2.  BMDS results for frambozadrine 
	Model
	AIC
	p-value
	Deviance
	BMD10
	BMDL10

	Male

	Multistage (2N)
	150.4
	0.28
	2.551
	33.7
	12.0

	gamma
	152.3
	0.12
	2.478
	40.8
	10.3

	log-logistic
	152.3
	0.12
	2.478
	42.3
	12.0

	log-probit
	152.3
	0.12
	2.478
	36.9
	13.6

	Weibull
	152.3
	0.12
	2.478
	44.5
	10.8

	Female

	Multistage (2N)
	142.4
	0.43
	1.742
	34.4
	21.2

	gamma
	143.3
	0.41
	0.667
	71.2
	25.0

	log-logistic
	143.3
	0.41
	0.667
	82.4
	24.7

	log-probit
	143.3
	0.41
	0.667
	66.7
	24.3

	Weibull
	143.3
	0.41
	0.667
	86.4
	25.2

	Pooled data

	Multistage (2N)
	289.0
	0.60
	4.498
	34.1
	22.9

	gamma
	290.1
	0.60
	3.603
	43.5
	25.7

	log-logistic
	290.1
	0.48
	3.380
	44.3
	26.0

	log-probit
	289.9
	0.51
	3.192
	44.3
	25.9

	Weibull
	290.5
	0.54
	4.036
	41.2
	24.6


On the basis of the AIC values, the best fitting model for all three data sets is the 2nd order multistage. The multistage model fits are shown in Figure II-1. Given the small differences in the AIC values, however, all of the models are virtually equivalent for goodness-of-fit. BMDL10 values are similar for all models. The multistage (best-fitting), and Weibull (most flexible) models were chosen for uncertainty analysis. Pooling the data across gender for the same species and strain is reasonable conceptually, and is done commonly. The pooled-data test statistics are 0.205 and 0.891 for the multistage and Weibull models, respectively. The Chi-squared p-values for the test statistics, given 3 degrees of freedom, are 0.98 and 0.83 for the multistage and Weibull models, respectively, indicating that pooling the data is reasonable. Note, in particular that the BMDL10 values for the pooled data are higher than those for either of the individual-gender response data sets – almost twice the male response BMDL10. This behavior is of particular significance in defining the point-of-departure (POD) for deriving a Reference Dose (RfD). 
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Figure II-1.  Multistage (2nd order) model fits to the frambozadrine data
Frambozadrine uncertainty analysis results

The results of the Benchmark Dose and bootstrap uncertainty analyses of the frambozadrine data for the 2nd order multistage model is shown in Table II-3. The BMD, BMDL and ratio (BMDLr) of the BMD to the BMDL are given for selected BMRs. The analogous values (ED, EDL, EDLr) for the bootstrap simulation are shown for comparison. The BMDLr and EDLr values provide a quick measure of the relative statistical uncertainty for any given combination of model and response level (BMR). The 5% and 10% BMRs are generally applied in the derivation of RfDs. The 1% BMR results are included to show the behavior of the models at response levels farther away from the data. BMD, BMDL, ED and EDL values are in units of mg/kg-day.

Table II-3.  BMD and bootstrap results for frambozadrine  (2nd order multistage)

	BMR1
	BMDL2
	BMD3
	BMDLr4
	EDL5
	ED6
	EDLr7

	Male

	0.01
	1.15
	10.4
	9.0
	1.35
	8.90
	6.6

	0.05
	5.86
	23.5
	4.0
	6.85
	20.7
	3.0

	0.10
	12.0
	33.7
	2.8
	13.8
	30.3
	2.2

	Female

	0.01
	2.55
	10.6
	4.2
	1.59
	9.05
	5.7

	0.05
	11.6
	24.0
	2.1
	7.77
	21.2
	2.7

	0.10
	21.2
	34.4
	1.6
	15.6
	30.9
	2.0

	Pooled data

	0.01
	2.92
	10.5
	3.6
	1.75
	9.37
	5.4

	0.05
	12.8
	23.8
	1.9
	8.67
	21.9
	2.5

	0.10
	22.9
	34.1
	1.5
	16.9
	32.0
	1.9


1 Benchmark Response level (fraction responding)

2 lower 95% confidence bound on the BMD (from BMDS)

3 maximum likelihood estimate (from BMDS)

4 ratio of BMD to BMDL

5 lower 95% bootstrap confidence bound (bootstrap analog of BMDL)

6 median bootstrap ED estimate (bootstrap analog of BMD)

7 ratio of ED to EDL

As would be expected, Table II-3 shows that the uncertainty increases with decreasing BMR, that is, as the prediction moves farther away from the data. The BMDLr values for the male response data are about twice as large as for the female and pooled response data. The bootstrap EDLr values are much closer together than the corresponding BMDLr values. The EDLr values are somewhat larger than the corresponding ones for the BMDLr, except for the male response data. In  particular for the BMDLr0.01. is  Pooling the data reduces the uncertainty at all BMR levels, particularly with respect to the male response data. The 90% bootstrap confidence bounds for the multistage model fit to the pooled frambozadrine data are shown in Figure II-2. 
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Figure II-2.  90% bootstrap confidence bounds on the multistage model fit to the pooled frambozadrine data
The results of the Benchmark Dose and bootstrap uncertainty analyses of the frambozadrine data for the Weibull model are shown in Table II-4. 

Table II-4.  BMD and bootstrap results for frambozadrine  (Weibull model)

	BMR
	BMDL
	BMD
	BMDLr
	EDL
	ED
	EDLr

	Male

	0.01
	0.678
	19.8
	29.2
	1.13
	20.7
	18.3

	0.05
	4.61
	34.7
	7.5
	6.19
	36.0
	5.8

	0.10
	10.7
	44.5
	4.2
	13.4
	45.3
	3.4

	Female

	0.01
	5.76
	68.3
	11.9
	4.34
	27.8
	6.4

	0.05
	16.1
	80.4
	5.5
	12.2
	43.7
	3.6

	0.10
	25.2
	86.4
	3.4
	19.8
	53.2
	2.7

	Pooled data

	0.01
	5.34
	15.8
	3.0
	4.85
	15.9
	3.3

	0.05
	15.4
	30.7
	2.0
	14.2
	31.1
	2.2

	0.10
	24.6
	41.2
	1.7
	22.9
	41.7
	1.8


Except for the pooled data, the BMDLr values for the Weibull model are larger and more variable than those for the 2nd order multistage model (compare to Table II-3). In addition, the BMD uncertainty is greater than the bootstrap uncertainty for the individual data sets, with the greatest difference at the lowest BMRs. Another significant difference between the two models is in the central-tendency estimate (BMD or ED) for any given BMR, with Weibull BMD values 1.5 to 3 times greater than multistage BMDs. As for the multistage model, the bootstrap uncertainty is somewhat less than the BMD uncertainty in most cases. BMDL and EDL values are similar, but there is a large disparity between the BMDs and EDs for the female response data not seen for either the male response data (Weibull fit) or the multistage model fits to the female data. Figure II-3 shows the BMDS plots (BMR = 0.05) for these three model fits. The Weibull fit for the female data (Fig. 3.c) is much shallower at the low end than either of the other two fits. The corresponding likelihood profile will also be flat in that dose region, resulting in a large difference between the BMD and BMDL. The primary problem here is the wide gap in female response between the last two doses, rising from essentially background level to over 50%. Large model-specific differences can arise, depending on the relative shape flexibility of the model. Ideally, observed responses in the vicinity of the BMR are needed to “anchor” the model fit appropriately (U.S. EPA, 2000). The pooled-data Weibull fit reduces the uncertainty significantly when compared to either of the individual data set fits.


Conclusions for frambozadrine uncertainty analysis

1.  We do not need separate dose-response relations for males and females. 

2.  Combining the response data decreases dose-response uncertainty somewhat for the multistage model and significantly for the Weibull model. Given the lack of response near the BMR for the female response data, however, a BMD analysis might not be appropriate. At the least, highly flexible models, such as the Weibull, probably should not be used.

a.  Male response data, Weibull model
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b.  Female response data,  2nd-order multistage model
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c.  Female response data, Weibull model
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Figure II-3.  Frambozadrine BMD05 / BMDL05 plots 
III.  Nectorine Data Analysis
The nectorine data are reproduced in Table III-1. The animals in each study were different and only the indicated endpoint was evaluated in each study (i.e., the tumors are independent).

Table III-1.  Nectorine inhalation dose-response data
	 
	Concentration (ppm)

	
	0
	10
	30
	60

	Lesion 
	# response  /  # in trial

	Respiratory epithelial adenoma in rats

 
	0/49
	6/49
	 8/48
	15/48

	Olfactory epithelial neuroblastoma in rats

 
	0/49
	0/49
	4/48
	3/48


The question to be answered is:

What is the uncertainty in response as function of dose for either respiratory epithelial adenoma OR olfactory epithelial neuroblastoma?

Nectorine BMDS model-fitting results


Table III-2 shows the results of the model fitting from BMDS. Human-equivalent exposures are not evaluated. As uncertainty in animal-to-human scaling is not evaluated, the uncertainty in the human-equivalent inhalation unit risks (IUR) will be identical to that for the rats. Model acceptability and goodness-of-fit criteria are the same as for the frambozadrine analysis. The BMDS output files for selected model fits are provided in Appendix B. The multistage and Weibull models were fit to the data. The multistage model is the standard default cancer model (U.S. EPA, 2005). As for frambozadrine, the Weibull model was used to show the effect of a more shape-flexible model.
Table III-2.  BMDS results for nectorine 
	Model
	AIC
	p-value
	BMD10
	BMDL10
	Multistage

IUR 1

	Respiratory epithelial adenoma in rats

	Multistage (1N)
	143.6
	0.44
	15.2
	11.3
	0.00883

	Weibull
	143.9
	0.75
	8.71
	0.259
	

	Olfactory epithelial neuroblastoma in rats

	Multistage (1N)
	55.2
	0.42
	70.1
	39.9
	0.00251

	Weibull
	57.2
	0.24
	70.4
	39.9
	


1 0.1/BMDL10 for the multistage model fit in units of (mg/kg-day)-1
The 1st order multistage model provides an adequate fit (p > 0.10) to both data sets and is selected as the primary model. Under the EPA guidelines, if a p-value of at least 0.10 is obtained by the 1st order fit, higher order models are not used even if the p-values are higher. The Weibull model provides a much better fit for the adenoma endpoint. While the Weibull would not be used for derivation of an IUR, it is useful for uncertainty analysis. The Weibull fit to the neuroblastoma data is essentially identical to the 1st order multistage, with a Weibull exponent parameter value of 0.99 (virtually exponential). Assuming independence of the two tumor types, the combined risk of either tumor can be calculated exactly from the binomial risk formula:  

IUR1 + [1 – IUR1] x IUR2, 

where IUR1 and IUR2 are the two independent IURs. A close approximation can be obtained by simply adding the IURs if the sum is less than 0.1. In this case, the combined risk of either tumor is 0.011 by either method. BMDS, however, does not estimate confidence limits for the IUR, as it is only an approximation of a 95% upper confidence bound. In addition, the probability of the sum of multiple IURs cannot be estimated from the BMDS output. The U.S. EPA cancer guidelines (U.S. EPA, 2005) do not address this issue, which is an active area of investigation. An attempt to address the uncertainty distribution of the combined IURs is attempted in the following uncertainty analysis.  
Nectorine  uncertainty analysis results

The results of the Benchmark Dose and bootstrap uncertainty analyses of the nectorine data for the multistage model is shown in Table III-3. A 2nd order parameter was fit in the bootstrap simulation to account for bootstrapped responses that could not be fit adequately by the 1st order model. The BMD results are strictly 1st order. The 2nd order parameter was zero when the 2nd order model was fit to the raw data.

Table III-3.  BMD and bootstrap results for nectorine  (multistage model) 

	BMR
	BMDL
	BMD
	BMDLr
	EDL
	ED
	EDLr

	Respiratory epithelial adenoma

	0.01
	1.08
	1.45
	1.3
	1.15
	1.73
	1.5

	0.05
	5.51
	7.39
	1.3
	5.86
	8.72
	1.5

	0.10
	11.3
	15.2
	1.3
	12.0
	17.3
	1.4

	Olfactory epithelial neuroblastoma

	0.01
	3.81
	6.69
	1.8
	4.60
	9.76
	2.1

	0.05
	19.4
	34.1
	1.8
	22.9
	39.3
	1.7

	0.10
	39.9
	70.1
	1.8
	43.8
	63.0
	1.4


Because the 1st order multistage model has only one parameter, the BMDLr values are constant for any given data set and relatively small, indicating low uncertainty. The 2nd order multistage bootstrap results represent a slight increase in uncertainty at the lower BMR values. Otherwise, The BMDS and bootstrap results are similar.

Table III-4 shows the results of the Weibull model uncertainty analysis. 

Table III-4.  BMD and bootstrap results for nectorine  (Weibull model)
	BMR
	BMDL
	BMD
	BMDLr
	EDL
	ED
	EDLr

	Respiratory epithelial adenoma

	0.01
	2.3 x 10-7
	0.191
	8.4 x 105
	4.8 x 10-5
	0.222
	4600

	0.05
	0.0037
	2.70
	730
	0.043
	2.92
	68

	0.10
	0.259
	8.71
	34
	1.05
	44.9
	8.9

	Olfactory epithelial neuroblastoma

	0.01
	3.1 x 10-28
	6.60
	2.1 x 1028
	0.094
	8.43
	89

	0.05
	2.79
	34.1
	12
	16.3
	39.9
	2.4

	0.10
	39.9
	70.4
	1.8
	43.2
	64.4
	1.5


The BMDS results show extreme uncertainty, particularly for low BMRs and the adenoma endpoint. The bootstrap results are characterized by large variability also, but are much more stable. The Weibull exponent for the fit to the adenoma response data is 0.67, indicating a supralinear response. High BMDLr values are usually associated with supralinear fits. Most 2-parameter models that have real support only above zero will exhibit this behavior, as the variance increases without bound as supralinearity increases (i.e., as the exponent, or shape parameter, approaches zero). For this reason, the U.S. EPA recommends constraining the models to avoid sublinearity (U.S. EPA, 2000). However, a large number of dose-response data sets exhibit supralinear behavior when unconstrained models are fit. Thus, although the extreme uncertainty shown for the Weibull analysis of these data is not to be considered too seriously, the results serve as a caution when interpreting confidence bounds based on constrained model fits.


IUR distributions for each individual tumor type are approximated from the bootstrapped-response model fits by dividing the BMR (0.1) by the ED10 at each iteration. The combined risk is determined by summing the (MLE) IURs for randomly paired iterations for each tumor type. The results are shown in Table III-5, which lists the empirical quantiles for each distribution. The values in Table III-5 are approximate, as only 500 paired bootstrap samples were used in the calculation. Probability density plots of the distributions are shown in Figure III-1.

Table III-5.  Bootstrap Inahlation Unit Risk distributions for nectorine ([mg/kg-day]-1)
	Fractile

	0.01
	0.05
	0.10
	0.25
	0.50
	0.75
	0.90
	0.95
	0.99

	Respiratory epithelial adenoma

	0.0033
	0.0039
	0.0042
	0.0049
	0.0059
	0.0069
	0.0079
	0.0084
	0.095

	Olfactory epithelial neuroblastoma

	0.00027
	0.00059
	0.00080
	0.0012
	0.0016
	0.0019
	0.0021
	0.0023
	0.0027

	Combined tumors

	0.0045
	0.0052
	0.0056
	0.0064
	0.0074
	0.0085
	0.0095
	0.0010
	0.011


Note that summing the quantiles directly does not yield the same answer, such that summing the 95% upper-bound multistage cancer IURs as calculated by BMDS will not give a 95% upper bound, but something farther out in the tail of the distribution. In this case, the direct sum of the BMDS IURs of 0.011 is equivalent to a 99th percentile in the bootstrap distribution. The 90% bootstrap confidence interval for the adenoma IUR is 0.0039 to 0.0084 (mg/kg-day)-1, spanning a 2.2-fold risk interval. The 90% bootstrap confidence interval for the neuroblastoma IUR is 0.00059 to 0.0023 (mg/kg-day)-1, spanning a 3.9-fold range. The 90% bootstrap confidence interval for the combined IUR is 0.0052 to 0.0010 (mg/kg-day)-1, spanning a 1.9-fold interval. 

Conclusions for nectorine uncertainty analysis

1.  The constant-shape 1st order multistage model indicates low uncertainty compared to the shape-flexible Weibull model. Assuming, however, that a mutagenic (i.e., one-hit) mode of action would apply, the Weibull model would not be considered for deriving an inhalation unit risk. 

1.  Based on the 90% bootstrap confidence intervals, the uncertainty in the combined response is less than that for either of the individual tumor responses.  

a.  Respiratory epithelial adenoma
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b.  Olfactory epithelial neuroblastoma


[image: image7.wmf]-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

0

1

2

3

Log10 IUR

Probabiity density


c.  Combined tumors (either or)
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Figure III-1.  Bootstrap Inhalation Unit Risk distributions for nectorine

IV.  Persimonate Data Analysis

The persimonate data are reproduced in Table IV-1. 

Table IV-1.  Persimonate inhalation dose-response data
	 

 
	Exposure

level

(ppm)
	Metabolized

dose

(mg/kg-day) 
	Survival-adjusted

tumor incidence
	Percent

response

	B6C3F1

male mice 
	0
	0
	17/49
	34.7

	
	18 
	27
	31/47
	66.0

	
	36 
	41
	41/50
	82

	Crj:BDF1
male mice 
	0
	0
	13/46
	28.3

	
	1.8 
	3.4
	21/49
	42.9

	
	9.0 
	14
	19/48
	39.6

	
	45 
	36
	40/49
	81.6


The questions to be answered are:

1)  Can we combine these studies? 

2)  Does it affect our uncertainty?

Persimonate BMDS model-fitting results

Table IV-2 shows the results of the model fitting from BMDS. The analysis is based on the metabolized dose rather than the external exposure levels. Human-equivalent exposures are not evaluated.  Model acceptability and goodness-of-fit criteria are the same as for the frambozadrine analysis. The BMDS output files for selected model fits are provided in Appendix C. 

Table IV-2.  BMDS results for persimonate 
	Model
	AIC
	p-value
	Deviance
	BMD10
	BMDL10

	BC63F1 male mice

	Multistage (1N)
	175.2
	0.49
	0.4714
	3.70
	2.71

	Crj:BDF1 male mice

	Multistage (1N)
	242.5
	0.06
	5.616
	3.54
	2.53

	Multistage (2N)
	241.6
	0.10
	2.673
	12.2
	3.45

	gamma
	241.1
	0.14
	2.215
	16.1
	5.06

	log-logistic
	241.1
	0.14
	2.211
	16.1
	6.82

	log-probit
	241.1
	0.14
	2.216
	15.9
	7.93

	Weibull
	241.1
	0.14
	2.201
	16.2
	4.60

	Pooled data

	Multistage (1N)
	414.1
	0.26
	6.499
	3.60
	2.86

	Multistage (2N)
	412.7
	0.54
	3.110
	10.7
	3.82

	gamma
	412.5
	0.57
	2.915
	13.3
	4.80

	log-logistic
	412.3
	0.61
	2.706
	13.8
	6.80

	log-probit
	412.3
	0.61
	2.707
	14.3
	7.79

	Weibull
	412.7
	0.54
	3.103
	11.5
	4.27


Only the 1st order (one-parameter) multistage model can be fit to the BC63F1 data, as there are not enough degrees of freedom to fit any of the other models and still allow for statistical comparison. This model is essentially a quantal-linear, or exponential, model. On the basis of the AIC values, the best fitting models for the Crj:BDF1 data set are the gamma, log-logistic, log-probit and Weibull, all with identical fits. The log-logistic and log-probit fit the pooled data best. The multistage model fits are shown in Figure IV-1. Given the small differences in the AIC values, however, all of the 2-parameter models are virtually equivalent for goodness-of-fit. BMDL10 values vary, however, by about a factor of two among the better-fitting models for each data set. Pooling the data across strains within a species is reasonable conceptually. The only common model across the data sets is the 1st order multistage, so the pooling test is based on the deviance for that model fit even though the fit is marginal for the Crj:BDF1 data (p = 0.06; the U.S. EPA BMD guidance [U.S. EPA, 2000] suggests rejecting fits with a p-value less than 0.1). The pooled-data test statistic is 0.4116. The Chi-squared p-value for the test statistic, given 2 degrees of freedom, is 0.81, indicating that pooling the data is reasonable. For conducting the uncertainty analysis on the Crj:BDF1 and pooled data sets, the 1st order multistage and Weibull models are chosen. The Weibull, as for the frambozadrine and nectorine analyses, is selected for shape flexibility. The 1st order multistage, although not the best fitting model, would be the preferred model under the U.S. EPA cancer risk assessment guidelines (U.S. EPA, 2005) for modeling the pooled response data (if not for the Crj:BDF1 data). 
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Figure IV-1.  Multistage (1st order) model fits to the persimonate data
Persimonate uncertainty analysis results


The results of the Benchmark Dose and bootstrap uncertainty analyses of the persimonate data for the 1st order multistage model is shown in Table IV-3 and Figure IV-2 (pooled data).

Table IV-3.  BMD and bootstrap results for persimonate  (1st order multistage)

	BMR
	BMDL
	BMD
	BMDLr
	EDL
	ED
	EDLr

	BC63F1 male mice

	0.01
	0.259
	0.353
	1.4
	0.249
	0.348
	1.4

	0.05
	1.32
	1.80
	1.4
	1.27
	1.78
	1.4

	0.10
	2.71
	3.70
	1.4
	2.61
	3.65
	1.4

	Crj:BDF1 male mice

	0.01
	0.242
	0.338
	1.4
	0.237
	0.336
	1.4

	0.05
	1.23
	1.73
	1.4
	1.21
	1.72
	1.4

	0.10
	2.53
	3.54
	1.4
	2.49
	3.52
	1.4

	Pooled data

	0.01
	0.273
	0.343
	1.3
	0.270
	0.344
	1.3

	0.05
	1.39
	1.75
	1.3
	1.38
	1.76
	1.3

	0.10
	2.86
	3.60
	1.3
	2.83
	3.61
	1.3
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Figure IV-2.  90% bootstrap confidence bounds on the multistage model fit to the pooled persimonate data
The BMD and BMDL values are similar across the data sets for any given BMR. The same holds for the ED and EDL values. Because the dose-response model has only one parameter, the BMDLr and EDLr values are constant for any given data set and relatively small, indicating low uncertainty.


The results of the Benchmark Dose and bootstrap uncertainty analysis of the persimonate data for the Weibull model are shown in Table IV-4. 

Table IV-4.  BMD and bootstrap results for persimonate (Weibull model)

	BMR
	BMDL
	BMD
	BMDLr
	EDL
	ED
	EDLr

	Crj:BDF1 male mice 1 

	0.01
	0.609
	7.57
	12.4
	1.25
	7.02
	5.6

	0.05
	2.48
	12.8
	5.2
	3.84
	12.2
	3.2

	0.10
	4.60
	16.2
	3.5
	6.37
	15.7
	2.5

	Pooled data 2 

	0.01
	0.503
	3.70
	7.4
	0.600
	3.73
	6.2

	0.05
	2.22
	8.15
	3.7
	2.51
	8.17
	3.3

	0.10
	4.27
	11.5
	2.7
	4.68
	11.5
	2.5


The most notable difference from the multistage model results is the increase in BMDLr and EDLr values, substantially increasing the uncertainty estimate. This result is expected, given the greater flexibility of the Weibull model. All of the BMDs and EDs are increased compared to the multistage model, as well, but consistent with each other (i.e., within the Weibull model results). The BMDLr values are larger than the EDLr values, particularly for the BMR0.01 results for the Crj:BDF1 response data, similar to the results for the frambozadrine Weibull analysis.

Conclusions for persimonate uncertainty analysis

1.  The two studies can be combined. 

2.  Combining the response data does not affect the uncertainty for the 1st order multistage model, but reduces uncertainty slightly for the Weibull model based on the BMD analysis. The uncertainty is not affected for the Weibull model, however, if based on the bootstrap analysis.

IV.  General Conclusions
The BMD approach tends to overestimate, with respect to the bootstrap method, the dose-response uncertainty at low BMR values for these particular data sets, primarily for responses relatively far from the lowest observed non-background response and for smaller sample sizes. Overall, however, there is not too much of a difference between BMD and bootstrap results for these data. Most of these sample data sets, however, are relatively well behaved, in that the most of the model fits are very good and all are linear (exponential) or sublinear. For supralinear data sets (e.g., Weibull exponents < 1), such as the nectorine respiratory epithelial adenoma response data, BMDLr values tend to increase without bound as the supralinearity increases (results not shown). A useful follow-on exercise would be to evaluate different uncertainty analysis techniques on more supralinear response data.
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Comment: the Math/Stats perspective on

Swartout Paper 
Hard Problems Remain
Allan H. Marcus

Office of Research and development

Integrated Risk Information System

National Center for Environmental Assessment

IntroductionB

It is a pleasure to respond to the request for a math/stat perspective on J. Swartout’s model application of the current BMD methodology. In spite of the wide popularity which the BMD method currently enjoys, its application in dose-response modeling may pose non-routine issues. Typical “Hard” problems include
· How do we deal with steep changes between adjacent data points (“climbing up” or “falling off a cliff”) with insufficient data between adjacent data values?

· How do we deal with Weibull quantal endpoint models or power function continuous models and supra-linear dose-response ?

· How to acquire informative estimates of BMD,  BMDL in cases where supra-linearity induces  uninformative or  near-zero BMDLs?
Our models must sometimes address diverse and opposing needs. This will be illustrated below.

Specific Modeling Issues for “Nectorine”
The dose-response data for respiratory epithelial adenomas appear to be somewhat supra-linear and may be consistent with several BMDS models. In particular, should we prefer a better-fitting Weibull model to a more plausible biologically based multistage model?

This illustrates the sort of trade-offs which an analyst frequently confronts. On the one hand, we need models that connect with biologically-based,l or at least biologically-inspired, dose-response models (e.g. multi-stage and Moolgavkar, Venzon and Knudson (MVK) models). On the other hand we need smooth interpolation formulations to simplify BMD/BMDL estimation.   On the one hand we need a large universe of plausible models for sensitivity analyses of methods; on the other hand we need a large universe of implausible models as well, because data sometimes are contrary to our expectations, e.g. profoundly non-monotonic models.

Table IV-2 (Swartout, p. 15) for persimonate shows a common situation where many models have AIC within 1.4 units (most with 0.1) yet BMDL10s differ two-fold, and will differ even more with smaller BMRs.

The nectorine example is interesting because it raises questions about a common hard problem, namely supra-linearity.  The analogous problem occurs for continuous endpoints analyzed using BMDS power function and Hill function models: 

When the power exponent is less than 1, the BMDLs can be forced toward 0 – BUT THEY DON’T HAVE TO BE.

Table 1 presents an illustrative calculation. The Weibull dose response model is

Prob(response at dose d) = Background probability + (1-background probability) ( exp(slope(dose^exponent).

The maximum likelihood estimate (MLE) of the exponent, and the associated AIC, BMD with BMR = 0.1, and the BMDL are shown below. If we specify the exponent to be equal to its MLE, then we reduce the number of parameters to be estimated, and the AIC goes down, as expected. Put differently, adding parameters to a model incurs an AIC penalty. We then look at the likelihood profile, by varying the fixed value of the exponent.  Between 0.55 and 0.65 the AIC does not change, however the BMDL10 changes from 4.37 to 5.98.  If we allow the AIC to vary from 142 to 142.1 - still a negligible variation, then the BMDL varies from 2.80 to 7.58. This illustrates the instability of the BMDL10 under the Weibull model.  
Table 1Respiratory epithelial adenoma – Weibull model
Likelihood Profile Approach 
Exponent

AIC

BMD10
BMDL10

0.25


143.7



0.417

0.35


142.8



1.41

0.45


142



2.80    
0.55


141.9



4.37

0.615


141.9

8.7

5.42

0.65


141.9



5.98

0.75


142.1



7.58

0.85


142.5



9.13

1.0


143.6



11.34

MLE    
0.615


143.9

8.7

0.26


Conclusion
The choice of model is affected by diverse and sometimes opposing demands. On the one hand we want models to be biologically plausible, on the other hand we want them to have nice mathematical properties. We want them to be smooth, have a low number of parameters which can be easily estimated, and we want the quantities of interest, in particular the BMDL, to be stable.  Mathematical models may have features for which we could, or should, seek physiological justification. Among these one might list:

· Monotonicity versus non-monotonicity: Is the choice for a monotonic model really driven by data, or by convention and convenience?

· Points of inflection: do these have a biological meaning?

· Rates of change of curvature 
· Uni- versus multi modal behavior. Are there biological arguments underlying these choices?

Comment: EPI/TOX perspective  on Swartout Paper
Re-Formulating the Issues

Jouni T. Tuomisto

National Public Health Institute (KTL)

Kuopio, Finland
Introduction
I am grateful for the opportunity to offer some epidemiological / toxicological perspectives on Jeff Swartout’s paper. Swartout is to be applauded for his very clear exposition of the ‘standard approach’ to uncertainty quantification and its role in defining a “BMDL”. The BMDL is a regulatory reference value which incorporates uncertainty in a transparent  statistical manner, and thus constitutes a significant improvement  over the older Allowable Daily Intake or Reference Dose.

I offer a few general remarks, and use these to re-formulate some issues regarding the Frambozadrine and Persominate data sets.

What is the research question?

The first question is, what is the question.  Whatever the question, it should pass the so-called clairvoyant test: An entity possessing all possible knowledge should be able to answer this question. We may surmise that the research question is:

What is the probability of having a response R in an individual of a large population Pop at time t after an exposure pattern Exp?

Before a clairvoyant can answer this question, we should specify:

· What is the outcome measured? What is the magnitude for a positive response?

· What is the target population?

· What is the time of observation?

· What is the exposure pattern?

Probability of response R

The probability of response  will be a function of exposure and will, ideally, be based on data such as that shown in figure 1 below.
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Figure 1:  Ideal data for assessing probability of response as function of exposure

Figure 1 shows that we have a cloud of percentage response points from a very large number of studies (each with a given large number of experimental animals). Of course we seldom if ever have such data at our disposal, but this is the sort of information that a clairvoyant would call up to answer the above research question. The expected response for each exposure is given as the ’regression curve’ E(R|exp)

Benchmark dose for R
Current regulatory practice involves computing the ”BMDL”. As shown in Figure 2, this is the 5% lower bound of the estimated exposure leading to a ”benchmark response (BMR) in a specified population. This exposure is estimated from the dose response curve E(R|Exp). 
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Figure 2:  BMDL for data in Figure 1.

Critical assumptions

The calculation of the BMDL in a real situation, with limited data, evidently depends on the following critical assumptions.
· The dose response function E(R|Exp) reflects reality.

· The number of parameters in the function used to characterize E(R|EXP) allows for enough but not too much flexibility.

The conclusion from the EPI/TOX viewpoint is fairly straightforward: There is very limited toxicological or epidemiological support for these assumptions. This does NOT mean that these assumptions are unreasonable. It reflects the fact that these assumptions are based on conventions and convenience rather than epidemiological or toxicological science. 
The way forward from conventions towards scientifically based functions and parameterisations is difficult but not impossible. First, mechanistic understanding of the causal chain from exposure to response helps to develop plausible functions for describing the causal chain. The chain is usually long and complex, and therefore the evidence for rejecting or accepting a particular function is always limited. However, it can be very useful if even one basic question about e.g. linearity/non-linearity can be resolved using mechanistic arguments.

Second, more work could be done using large datasets of dose-responses. Different functions and parameterisations can be tested using these datasets to see, whether one function performs better than another one on average. Even if we cannot know whether a particular function and parameterisation is a good one for a particular chemical, we can apply functions that perform well in general. This approach must include the definitions of what we mean by performance. It can be statistical performance such as informativeness or calibration, but it can also be the value of information produced for decision-making. Understanding and operationalising the assessment of performance is actually a research branch of its own. Resources for performance research would be wisely invested, because the results could direct the whole realm of dose-response assessment to a useful direction.
Frambozadrine

 The data for Frambozadrine is reproduced in figure 3.
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Figure 3 Fambozadrine data with BMR and BMDL.

The specific question to be addressed is: "Do we need separate DR relationships for males and females?" Swartout argues that we do not need to separate the responses of Male and Female rats. However, the question answers itself if we first impose the clairvoyant test as described above. If the target population Pop is "rats", then we MUST pool the Male and Female rats. This is not a statistical question,  but a question of the study goals.
The ultimate objective is to understand human dose-responses. Therefore, the question about pooling or not pooling female and male data is only one step in the chain of reasoning. The possible heterogeneity should not be seen as a hindrance to pool data but rather as information about the heterogeneity in the human population. Small variation between female and male rats gives us some confidence that this might be the case also in humans.

Parsimonate: mice data sets
The same comment about the ultimate objective applies to Parsimonate mice data sets. Two strains have been used, and they show slightly different results related to the shape at low doses. The question we should as is: "Given these mice data sets, what do we learn more about the human dose-response for Parsimonate?" As an example, the statistical uncertainty about BMD is very small for B6C3F1 strain, shown as a small difference between BMD and BMDL. However, the different picture from Crj:BDF1 mice reminds us that we should not think that the uncertainty about human BMD is reflected in the statistical uncertainty in one or even two studes. The mice studies are able to reduce only a small part of the total uncertainty about the human dose-response of Parsimonate. 
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Conclusions

Three conclusions emerge from this discussion:
· Statistical methods  should serve to clarify our understanding of physiological reality

· We should be very concerned if conventions or statistical expediencies  start to replace physiological  understanding. 
· Research on the performance of dose-response assessment should be done more systematically.
Comments: Regulatory/Risk Perspective

On

Swartout Paper

A Good Baseline

Weihsueh Chiu

US Environmental Protection Agency

Disclaimer: These comments are those of the author, and do no necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

This approach is probably the most straight forward “extension” of what is currently standard practice from the current guidelines.  It basically proposes two steps:

(1) Comparison of the pooled model and summed individual model deviances to assess whether pooling is statistically justified.

(2) Using a parametric bootstrap to calculate confidence bounds, for comparison with the profile likelihood method. 

From a regulatory point of view, these practices would probably be relatively easily justified.  In addition, (1) is readily implementable with current software, and (2) does not seem like a substantial additional computational burden.  Thus, this seems like a good “baseline approach” with which the compare to the others.  

I have six comments/questions:

1. The analysis with different empirical dose-response models seems to affirm the efforts and reasoning of the EPA Cancer Guidelines to make the dose-response analysis (in the range of observation) relatively model-independent.  In particular, the empirical models are most robust in the range of observation – as the BMR declines below that range, the uncertainty goes up, particularly with flexible models such as the Weibull.  Moreover, statistical tests are poor at distinguishing between models.  This is the justification for the separation of dose-response analysis in the range of observation from extrapolation to low doses.

2. Interestingly, the fairly common practice of taking the geometric mean of different slope factors (e.g., males and females for frambozadrine) is clearly does not yield the same results as calculating a slope factor after pooling the data.  This is true whether one uses the BMD or BMDL.  For the BMDLs, this is not surprising, since you are combining two tail estimates, and would expect the combination to be further out into the tail.  However, it is also true with the BMD, which seems important.  Thus it matters which “pooling” you do first -- the data or the slope factors.  Interestingly, in epidemiological meta-analysis, one often tries to pool as many studies as possible, separating out only if there is heterogeneity (either statistical or due to a strong a priori information)

3. In the frambozadrine and persimonate examples, it was concluded that the studies could be combined.  It would be interesting to see visually “how much” deviation is necessary to conclude that study cannot be pooled.

4. In the examples here of combining datasets, the dose-response shapes were similar even by “eyeball.”  It is not clear to me how to test for and implement BMD models in which some component of the dose-responses were similar and some were not.  As an example, what if the background rates were different, but the additive (or relative) treatment effects were the same.  Alternatively, what background rates were the same, but the treatment effects were different.  

5. How would this compare with a non-linear mixed effects -- i.e., using tests of heterogeneity to determine whether the treatment effect is fixed or needs additional random component (related to previous comment, perhaps).

6. My final question is more of a technical one, regarding the AIC/Deviance measures.  Clearly small differences are of no consequence, but large differences are important.  However, how does one determine how “small is small?”  Does an “uncertainty analysis” on AIC/deviance need to be performed?  How would one do it?  While the use of a BMR in the range of the data should minimize the impact of “errors” in model choice due to “variance in the AIC/deviance,” if the AIC/deviance is to be used to decide whether to pool or not to pool data, it could have a greater impact.  A characterization of the “frequentist” properties of using the test statistic for “to pool or not to pool” may be useful -- i.e., what are the type I and type II error rates?

Roger Cooke posed a question (after Jeff Swartout’s presentation of  bootstrapping results) – “Did it trouble people to see the observed datapoints outside the confidence intervals on the model fit to the data?”

I think many users of our standard risk values assume that  uncertainty in modeling the data is captured in using the confidence limit on the BMD (the BMDL).  While I have heard statisticians say “the confidence interval reflects the sampling error”,  I don’t    recall them noting that the confidence interval does not reflect consistency between the model chosen and the data. If there are circumstances where the chosen model does not fit the data well or one otherwise thinks the confidence limit on the BMD does not capture the uncertainty, I think it is important to explain that in a useful and clear way to the non-statistician user.

 Comment on Swartout Paper

A Question Dangles
David Brussard

US Environmental Protection Agency
Roger Cooke posed a question (after Jeff Swartout’s presentation of  bootstrapping results) – “Did it trouble people to see the observed datapoints outside the confidence intervals on the model fit to the data?” (See also Cooke’s comment)
I think many users of our standard risk values assume that  uncertainty in modeling the data is captured in using the confidence limit on the BMD (the BMDL).  While I have heard statisticians say “the confidence interval reflects the sampling error”,  I don’t    recall them noting that the confidence interval does not reflect consistency between the model chosen and the data. If there are circumstances where the chosen model does not fit the data well or one otherwise thinks the confidence limit on the BMD does not capture the uncertainty, I think it is important to explain that in a useful and clear way to the non-statistician user.

Comment on Swartout Paper

Statistical Test for Statistics-As-Usual Confidence Bands

Roger Cooke

Resources for the Future and
Dept. Mathematics, Delft University of Technology

Jeff Swartout's admirably clear paper helps focus a key issue in what I call the Statistics as Usual (SAU) approach. Two graphs show 90% confidence bands. In the Frambozadrene plot (Fig. II-2), 3 of the six observed percentage responses fall outside their respective 90% confidence band. For  Persimonate (Fig IV-2) this is 2 of the 5. In all, 5 of the 11 observations fall outside their 90% bands, 6 fall inside. Calling 'success' the event that the observed percentage falls within its 90% confidence band, and assuming the trials are independent with probability 0.9 of success,  the probability of seeing 6 or fewer success on 11 trials is 0.0028.  The normal interpretation of these bands is roughly this: if the model were true, then if we repeat the bioassay experiments, 90% of the estimates would fall within these bands. Perhaps it would be good to have an interpretation which is not framed in terms of a conditional statement with a false antecedent.  Of course, a conditional with a false antecedent is always true, but it would be helpful if someone could say what these bounds mean without conditionalizing on the truth of the model? 
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Figure II-2.  90% bootstrap confidence bounds on the multistage model fit to the pooled frambozadrine data
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Figure IV-2.  90% bootstrap confidence bounds on the multistage model fit to the pooled persimonate data
Response to Comments

Jeff Swartout

All three reviewers raised issues that are of particular interest to me. Many of them are of importance in the context of the underlying methodology and are under active investigation.

Alan Marcus questioned whether we should stick to a rigid policy of restricting the shape parameters in the models (essentially precluding supralinearity) or allow the models to achieve full flexibility. A few years ago I was strongly in favor of the latter but came to appreciate, with experience, the often unrealistic conclusions (excessive population variability and false high risk) one can reach allowing such fits. This was particularly evident for pathogen dose-response data, even though supralinearity is not an issue (low-dose linearity strictly enforced).  Noise, perhaps systematic, could be having an undue influence on the implied population response variance.  The curve is flattened and low-dose risk is high. Also, for the Weibull, both the mean and variance of the distribution rise rapidly without bound for low shape parameter values (starting about 1.5), so restricting the parameter to be greater than 1 is probably reasonable on that basis. For the Weibull and gamma models that means the form reduces to an exponential one. Furthermore, although supralinearity can be apparent in high-dose response data, linearity may still be the case at low dose exposure (depletion of susceptibles, saturation of metabolic activation).  Perhaps we could apply a model used for (discrete particle) pathogen dose response, such as the beta-exponential, to (mass-based) chemical dose-response data. Supralinearity would be excluded and BMDLs probably would be more stable, but with some loss of biological relevance. 

Juoni Tuomisto commented that, from an epidemiological perspective, if the target population is "rats", then me must pool the data across all subsets that form the "rat" population and it's not a matter of statistical plausibility. I have found, with other data sets, that pooling the data sometimes gives dramatically higher risks at low doses (i.e., low response region) than treating the components as separate populations. I think the problem in these cases is that our standard dose-response models can't handle well a mixture of two or more distinct sub-populations if they are truly different, as males and females frequently are. Pooling the data violates the assumption of a continuous underlying distribution. Pooling the data prior to fitting in these cases, results in the same problem as with supralinearity; the curve gets stretched out and the low-dose risk is high, perhaps artificially. I have addressed this problem by combining the output (usually by resampling methods) after fitting the data sets individually. I am, however, continuing to investigate the phenomenon, primarily in the context of pathogen dose-response data.

Weishei Chiu asked about evaluating AIC differences in a more objective fashion. In fact, there is a method that has very intuitive properties, which is the evidence ratio. It gives the relative probability that one model or the other is favored based on the AIC. For example an AIC difference of 1 favors the model with the lower AIC only by about a factor of 1.6, while an AIC difference of 4 is a relative factor of 7.

Comments on other issues that were raised during the workshop

Dave Bussard pointed out that many of the observations for some data sets are outside the bootstrap confidence bounds and asked what that might mean. This is a common phenomenon in dose-response modeling. It could be an indication of extra-binomial variability in the response data, dosing errors (which are not considered in the models), improper model specification, a fundamental limitation of the parametric bootstrap procedure or just something that is expected with small samples. I will leave that for the theoretical statisticians to resolve. The Benchmark Dose guidance says to reject the fit if any of the standardized residuals are greater than 2, which is not the case only for any of the data sets in question. For the purposes of risk assessment, the overall fit of the model and, perhaps, the fit in the range of the BMR are the most important criteria. 

Dave Bussard also questioned why the fitted responses, rather than the observed responses, were bootstrapped and whether the data might then fall within the confidence bounds. The point of fitting the model is that we don't believe the data absolutely. The observed proportions are random realizations from an underlying true response probability, which we model. Furthermore, the observed responses are often non-monotone, while we assume monotonicity in our dose-response models. A parametric bootstrap is one method for enforcing monotonicity. Bootstrapping the fitted response probabilities simulates repeating the experiment (many times) with the original “true” population. As a follow-up to this issue, I did a preliminary analysis and found that bootstrapping the observations really did not affect the bootstrap bounds much unless the model fit was poor.  I would expect that a non-parametric bootstrap, in which the observed responses are resampled with replacement, would yield broader confidence bounds. The concept is not very realistic, however, so I did not attempt then analysis  

Chapter 2  
Uncertainty Quantification for Dose-Response Models Using Probabilistic Inversion with Isotonic Regression:  Bench Test Results

Roger Cooke

Resources for the Future

Dept. Mathematics Delft University of Technology

1. Introduction
This technical paper describes an approach for quantifying uncertainty in the dose-response relationship
 to support health risk analyses.  This paper demonstrates uncertainty quantification for bioassay data using the mathematical technique of probabilistic inversion (PI) with isotonic regression (IR). 

The basic PI technique applied here was developed in a series of European uncertainty analyses. (Illustrative studies from the EU-USNRC uncertainty analysis of accident consequence models are available on line at http://cordis.europa.eu/fp5-euratom/src/lib_docs.htm; the main report is ftp://ftp.cordis.europa.eu/pub/fp5-euratom/docs/eur18826_en.pdf.) Previous applications concerned atmospheric dispersion, environmental transport, and transport of radionuclides in the body, and were based on structured expert judgment. This report transfers these techniques to bioassay data. The focus of this evaluation is on mathematical techniques, the experimental data are not analyzed from a toxicological viewpoint. The analyses should be seen as illustrative rather than definitive.  Background on isotonic regression (IR), iterative proportional fitting (IPF) and probabilistic inversion (PI) aimed at the uninitiated is provided. 

In this report, observational uncertainty is discussed first, followed by a brief introduction to PI, iterative proportional fitting (IPF) and IR. Four cases of simple data are then analyzed to demonstrate how uncertainty in the DR modeling could be done in such simple cases. In reality, many more factors will contribute to the uncertainty, but we must first get such simple cases right, before attacking more difficult issues.

For two cases, benchmark dose (BMD) and the example chemical Nectorine, standard dose-response (DR) models proved suitable. For two other cases, example chemicals Frambozadrine and Persimonate, the data suggest a threshold model and a barrier model, respectively, for recovering observational uncertainty. Appendix 1 provides some results with alternative models and alternative optimization strategies. Complete specification of starting distributions and calculation scripts are provided in Appendix 2.

2. Tent Poles

Tent poles for this approach are:

1. Observational Uncertainty: There must be some antecedent uncertainty over observable phenomena which we try to capture via distributions on parameters of DR models. This is the target we are trying to hit. When the target is defined, we can discuss (i) whether this is the right target, and (ii) whether we got close enough. Without such a target, the debate over how best to quantify uncertainty in DR models is under-constrained.

2. Integrated Uncertainty Analysis: The goal is to support integrated uncertainty analysis, in which potentially large numbers of individuals receive different doses.  For this to be feasible, the uncertainty in DR must be captured via a joint distribution over parameters which does not depend on dose.

3. Monotonicity: Barring toxicological insights to the contrary, we assume that the probability of response cannot decrease as dose increases.  It is not uncommon that data at increasing doses show a decreasing response rate, simply as a result of statistical fluctuations. A key feature in this approach is to remove this source of noise with techniques from isotonic regression. 

3. Observational Uncertainty

Suppose we give 49 mice a dose of 21 [units] of some toxic substance. We observe a response in 15 of the 49 mice. Now suppose we randomly select 49 new mice from the same population and give them dose 21. What is our uncertainty in the number of mice responding in this new experiment?

Without making some assumptions, there is no “right” answer to this question, but the customary answer would be: “our uncertainty in the number of responses in the second experiment is binomially distributed with parameters (49,15/49)”.  Thus, there is a probability of 0.898 of seeing between 9 and 19 responses in the second experiment. A Bayesian with no prior knowledge (all probabilities are equally likely) would update a uniform [0, 1] prior for the probability of response to obtain a Beta(16, 35)
 posterior for the probability p of response, with expectation 16/51 = 0.314, and variance 0.0038.  His “predictive distribution” on the number of responses is obtained as a   p ~Beta(16, 35) mixture of binomial distributions Bin(49, p.)   He would have approximately a 76% chance of seeing the result of the second experiment between 9 and 19.  The two distributions are shown in Figure 1. 

Since 

(i) These two distributions tend to be close, relative to the other differences encountered further on, 

(ii) The distribution Bin(49, 15/49) is much easier to work with, and 

(iii) The assumption that before the first experiment, all probability values are equally likely, regardless of dose, is rather implausible,
we will take the binomial distribution to represent the observable uncertainty in this simple case.
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Figure 1: Binomial and Bayes Non-Informative Predictive Distributions.
3.1 Binomial Uncertainty
In the example from the Benchmark Dose (BMD) Technical Guidance document (EPA 2000), shown in Table 1, the different doses are far apart, and the respective binomial distributions have little overlap. 

Table 1: BMD Technical Guidance Example

	Dose
	Number of Subjects
	Number of Responses

	0
	50
	1

	21
	49
	15

	60
	45
	20


In such cases, we interpret the observable uncertainty as “binomial uncertainty.” For the above example, the observable uncertainty is three binomial distributions Bin(50, 1/50), Bin(49, 15/49) Bin(45, 20/45).  If we take this to represent our uncertainty for the results of repetitions of the above three experiments, then our uncertainty modeling should re-capture, or recover this uncertainty.
3.2 Isotonic Uncertainty

It may happen that the doses in two experiments are close together, and that the observed percentage response for the lower dose is actually higher than the observed percentage response at the higher dose. Table 2 gives an example from the combined Frambozadrine data. The percentage response at dose 21 is lower than that at doses 1.2, 1.8, and 15.

Table 2: Combined Male-Female Data for Frambozadrine

	Dose
	0
	1.2
	1.8
	15
	21
	82
	109

	Number exposed
	95
	45
	49
	44
	47
	47
	48

	Number of responses
	5
	6
	5
	4
	3
	24
	33

	%  of responses
	5.26
	13.3
	10.20
	9.09
	6.38
	51.06
	68.75


According to tent pole 3, we know that this decreasing relation is merely due to noise and does not reflect the relation between dose and response. We should therefore adapt our observational uncertainty to reflect the fact that probability of response is a non-decreasing function of dose. The method for doing this is called isotonic regression, and the maximum likely probabilities are found by the Pooling Adjacent Violators (PAV) algorithm (Barlow et al. 1972). We illustrate its use for the above data..

Suppose we draw five samples from the binomial distributions based on the data in Table 2, for the lower five doses. For each sample value we estimate the binomial probability (with three responses in 95 trials, the estimated probability is 3/95 = 0.0316).  The results are shown in Table 3:

Table 3: Binomial Samples for Frambozadrine

	Dose:
	0
	1.2
	1.8
	15
	21
	0
	1.2
	1.8
	15
	21

	Number exposed
	95
	45
	49
	44
	47
	Estimated Binomial Probabilities

	Number of responses
	5
	6
	5
	4
	3
	

	Samples
	5
	5
	6
	5
	6
	0.0526
	0.1111
	0.1224
	0.1136
	0.1277

	
	3
	4
	5
	4
	3
	0.0316
	0.0889
	0.102
	0.0909
	0.0638

	
	5
	7
	5
	3
	3
	0.0526
	0.1556
	0.102
	0.0682
	0.0638

	
	5
	4
	4
	4
	2
	0.0526
	0.0889
	0.0816
	0.0909
	0.0426

	
	6
	4
	7
	6
	3
	0.0632
	0.0889
	0.1429
	0.1364
	0.0638


For each row of probabilities the PAV algorithm changes the probabilities to the most likely non-decreasing probabilities in the following way. In Table 3, move through each row of the estimated binomial probability matrix from left to right. At  cell i, if its right neighbor is smaller, average these numbers and replace cells i  and i+1 with this average. Now move from i to the left; if you find a cell j which is bigger than the current cell i, average all cells from j to i+1.  Table 4 shows the successive PAV adjustments (in bold) to the binomial probabilities in the third row of Table 3.
Table 4: PAV Algorithm for First Row Probabilities of Table 3

	 
	i=
	1
	2
	3
	4
	5

	 
	Dose
	0
	1.2
	1.8
	15
	21

	 
	Starting Probability
	0.0526
	0.1556
	0.102
	0.0682
	0.0638

	PAV
	i=2
	0.0526
	0.1288
	0.1288
	0.0682
	0.0638

	PAV
	I=3
	0.0526
	0.1086
	0.1086
	0.1086
	0.0638

	PAV
	I=4
	0.0526
	0.0974
	0.0974
	0.0974
	0.0974


3. Statistics as Usual (BMD)

Usual statistical methods aim at estimating the parameters of a best fitting model, where goodness of fit is judged with a criterion like the Akaike Information Criterion (AIC).  A joint distribution on the parameters reflects the sampling fluctuations of the maximum likelihood estimates (MLEs), assuming the model is true. 

Suppose we sample parameter values from their joint distribution (assume this distribution is joint normal with means and covariance obtained in the usual way). For each sample vector of parameters, we sample binomial distributions
 with probabilities computed from the sampled parameters with doses and with a number of subjects as given in the bioassay data (e.g., Table 1). Repeating this procedure we obtain a mixture of binomial distributions for each bioassay experiment. The statistics as usual (SAU) approach would regard these mixture binomial distributions as representing our uncertainty on the numbers of responses in each experiment. We take the best fitting model, assume it is true, consider the distribution of the maximum likelihood parameter estimates we would obtain if the experiments were repeated many times, and plug these into the appropriate binomial distributions. In the sequel, the distributions obtained in this way are called BMD distributions, as this approach is compatible with the Benchmark Dose Technical Guidance Document (EPA 2000); and the best fitting models and their MLE parameter distributions are obtained with the BMD software.

Do these mixture binomial distributions bear any resemblance to the binomial uncertainty distributions? We illustrate with the BMD data from the bench test. The preferred model in this case is the log logistic model with β ( 1: 

Prob(dose) = ( + (1-()/(1+e(-( –( ln(dose)))

Figure 2 shows the BMD cumulative distributions on the number of responses for the three dose levels (0, 21, 60) with number of experimental subjects as (50, 49, 45). Bd* denotes the binomial uncertainty and id* the isotonic uncertainty at dose level “*”. Since the doses are widely spread, bd and id are nearly identical.


[image: image18]
Figure 2: Binomial (bd), Isotonic (id) and BMD Uncertainty Distributions; on the horizontal axis is number of animals responding, on the vertical axis is cumulative probability.

The BMD uncertainty for 22 or fewer responses in the experiment at dose 60 is about 0.45, and the binomial and isotonic uncertainties are about 0.79. Apparently, the SAU approach does not recover the binomial or isotonic observational uncertainty.

The BMD distributions are mixtures of binomials, so are the Bayesian predictive distributions. It may therefore be possible for a Bayesian to make a teleological choice of prior distributions which, after updating, would agree with the BMD distributions. Of course this choice would depend on the dose (contra tent pole 2) and on the preferred model. The practice of retro-choosing one’s prior is not unknown in Bayesian statistics, but is frowned upon. Indeed, it comes down to defining the target distribution as whatever it was we hit.  We shall see that these BMD distributions may differ greatly from the isotonic distributions when the doses are close together. The isotonic distributions are not generally binomial.

The SAU approach is not wrong; it is simply solving a different problem, namely estimating parameters in a preferred model. That is not the same as quantifying observational uncertainty. The latter is the goal of uncertainty analysis, according to tent pole 1. 

Overall, the best fitting model was the logistic, and we will concentrate on BMD results with this model. Alternatives for Frambozadrine and Nectorine are presented in Appendix 1.  

4. Probabilistic Inversion
We know what it means to invert a function at a point or point set. Probabilistic inversion denotes the operation of inverting a function at a distribution or set of distributions. Given a distribution on the range of a function, we seek a distribution over the domain such that pushing this distribution through the function returns the target distribution on the range. In dose-response uncertainty quantification, we seek a distribution over the parameters of a dose-response model which, when pushed through the DR model, recovers the observational uncertainty. The conclusion from Figure 2 is that the BMD distributions in Figure 2 are not the inverse of the observational distributions, for the log logistic model with β ( 1.

Applicable tools for PI derive from the Iterative Proportional Fitting (IPF) algorithm (Kruithof 1937, Deming and Stephan 1940).  A brief description is given below, for details see, e.g., Du et al. (2006), Kurowicka and Cooke (2006).  In the present context, we start with a DR model and with a large sample distribution over the model’s parameters. This distribution should be wide enough that its push-forward distribution covers the support of the observable uncertainty distributions
.  If there are N samples of parameter vectors, each vector has probability 1/N in the sample distribution.  We then re-weight the samples such that if we re-sample the N vector samples with these weights, we recover the observational distributions. In practice, the observational distributions are specified by specifying a number of quantiles or percentiles. In all the cases reported here, three quantiles of the observational distributions are specified, as close as possible to (5%, 50%, 95%). Technically speaking, we are thus inverting the DR model at a set of distributions, namely those satisfying the specified quantiles. Of course, specifying more quantiles would yield better fits in most cases, at the expense of larger sample distributions and longer run times. 

The method for finding the weights for weighted resampling is IPF. IPF starts with a distribution over cells in a contingency table and finds the maximum likelihood estimate of the distribution satisfying a number of marginal constraints. Equivalently, it finds the distribution satisfying the constraints which is minimally informative relative to the starting distribution. It does this by iteratively adjusting the joint distribution. 

The procedure is best explained with a simple example. Table 5a shows a starting distribution in a 2 × 2 contingency table. The “constraints” are marginal probabilities which the joint distribution should satisfy. The “results” are the actual marginal distributions. Thus, 0.011+0.022 + 0.32 = 0.065; and we want the sum of the probabilities in these cells to equal 0.5. In this example, the constraints (0.5, 0.3, 0.2) would correspond to the 50th and 80th percentiles; there is a 50% chance of falling beneath the median, a 30% chance of falling between the median and the 80th percentile, and a 20% chance of exceeding the 80th percentile.  In the first step (Table 5b), each row is multiplied by a constant so that the row constraints are satisfied. In the second step (Table 5c), the columns of Table 5b are multiplied by a constant such that the column constraints are satisfied; the row constraints are now violated. The next step (not shown) would re-satisfy the row constraints.  After 200 such steps we find the distribution in Table 5d.  The zero cells are shaded; each iteration has the same zero cells as the starting distribution, but the limiting distribution may have more zeros.  

Table 5a: Starting Distribution for IPF

	Result
	Constraint
	
	
	

	0.065
	0.500
	0.011
	0.022
	0.032

	0.097
	0.300
	0.054
	0.043
	0.000

	0.838
	0.200
	0.000
	0.000
	0.838

	
	Constraint
	0.100
	0.200
	0.700

	
	Result
	0.065
	0.065
	0.870


Table 5b: First Iteration, Row Projection

	Result
	Constraint
	
	
	

	0.500
	0.500
	0.083
	0.167
	0.250

	0.300
	0.300
	0.167
	0.133
	0.000

	0.200
	0.200
	0.000
	0.000
	0.200

	
	Constraint
	0.100
	0.200
	0.700

	
	Result
	0.250
	0.300
	0.450


Table 5c: Second Iteration, Column Projection

	Result
	Constraint
	
	
	

	0.533
	0.500
	0.033
	0.111
	0.389

	0.156
	0.300
	0.067
	0.089
	0.000

	0.311
	0.200
	0.000
	0.000
	0.311

	
	Constraint
	0.100
	0.200
	0.700

	
	Result
	0.100
	0.200
	0.700


Table 5d: Result after 200 Iterations

	Result
	Constraint
	
	
	

	0.501
	0.500
	0.000
	0.002
	0.499

	0.298
	0.300
	0.100
	0.198
	0.000

	0.201
	0.200
	0.000
	0.000
	0.201

	
	Constraint
	0.100
	0.200
	0.700

	
	Result
	0.100
	0.200
	0.700


To apply this algorithm to the problem at hand, we convert the N samples of parameter vectors and the specified quantiles of the observational distributions into a large contingency table. With 3 specified quantiles, there are 4 inter-quantile intervals, for each observational distribution. If there are 3 doses, there are 43 = 64 cells in the contingency table. Let NRi be the number of animals exposed to dose di , and let  P((, (, (,.., di) be the probability of response if the parameter values are ((, (, (,…) and the dose is di. The initial probability in each cell is proportional to the number of  sample parameter vectors ((, (, (,…)  for which NRi ( P((, (, (,.., di); i  = 1,2,3 lands in that cell.   IPF is now applied and the final cell probabilities are proportional to the weights for the sample vectors in that cell.

 Csiszar (1975) (finally
) proved that if there is a distribution satisfying the constraints whose zero cells include the zero cells of the starting measure, then IPF converges, and it converges to the minimal information (or maximum likelihood) distribution relative to the starting measure which satisfies the constraints.  If the starting distribution is not feasible in this sense, then IPF does not converge. Much work has been devoted to variations of the IPF algorithm with better convergence behavior. An early attempt, termed PARFUM (PARameter Fitting for Uncertain Models, Cooke 1994), involved simultaneously projecting onto rows and columns, averaging the result. It has recently been shown (Matus 2007, Vomlel 1999) that this and similar adaptations always converge, and that PARFUM converges to a solution if the problem is feasible (Du et al 2006). In fact, geometric averaging seems to have some advantages over arithmetic averaging; but PARFUM is used in this report, in case of infeasibility. In case of infeasibility PARFUM is largely – though not completely – determined by the support of the starting measure. 
The best fitting distribution in the sense of AIC is not always the best distribution to use for probabilistic inversion. Figure 3 illustrates this for the BMD bioassay data. At each dose level *, it shows the binomial observational uncertainty (bd*) the isotonic observational uncertainty (id*), the BMD distributions from Figure 2, and also the result of PI on the log logistic model with β = 1 (corresponding to the best fitting model) and PI on the log logistic model with β > 0. We can see that for PI in the case ( = 1, the CDF’s fit at the 5, 50 and 95 percentiles but not over the rest of the distributions’ ranges. 

For the figures throughout this report, binomial distributions (bd*) are black step functions, and isotonic distributions (id*) are grey step functions with smaller steps. Other distributions are indicated with pointers. (Note that while parameters are usually given in Greek letters, the graphics software used does not support this. Therefore common letters are used, e.g., the background response parameter ( is rendered as g, and the intercept parameter ( is rendered as a.) 


[image: image19]
Figure 3: PI Distributions for the BMD Bench Test, with Log Logistic Model and β=1 (orange) and β>0 (black). Number of responses are on the horizontal axis, cumulative probability on the vertical.
Benchmark Dose
Computing the Benchmark dose for the extra risk model is easy in this case.  We solve the equation

BMR = (Prob(BMD) -  Prob(0) ) / (1 – Prob(0))

for values BMR = 0.1, 0.05, 0.01. Prob(BMD) is  probability of response at dose BMD, and it depends on the parameters of the DR model, in this case the log logistic model. Prob(0) is the background probability, and is taken to be the observed percentage response at zero dose. In this case, the log logistic model can be inverted and we may write

BMR = (1 + e-( - ( ln(BMD)) -1.

Sampling values from ((,() after PI, we arrive at the following values:

Table 6: BMD Tech. Guidance;  Benchmark dose calculations

	 
	BMD
	 

	BMR
	Mean
	Variance
	5% Perc
	50% Perc
	95% Perc
	BMD50/BMDL

	0.1
	3.12E+00
	4.52E+00
	8.49E-01
	2.53E+00
	7.54E+00
	2.98E+00

	0.05
	9.31E-01
	4.85E-01
	2.10E-01
	7.19E-01
	2.38E+00
	3.42E+00

	0.01
	6.70E-02
	3.78E-03
	9.34E-03
	4.64E-02
	1.91E-01
	4.97E+00


5. Frambozadrine: Threshold Model
The data for this case is reproduced below as Table 7.

Table 7: Frambozadrine Data

	 
	Dose (mg/kg-day)
	Total Number of Rats
	Hyperkeratosis

	Male

	 
	0
	47
	2

	 
	1.2
	45
	6

	 
	15
	44
	4

	 
	82
	47
	24

	Female

	 
	0
	48
	3

	 
	1.8
	49
	5

	 
	21
	47
	3

	 
	109
	48
	33


We see strong non-monotonicities for male and female rats.  A higher percentage of male rats respond at dose 1.2 than at dose 15, and similarly for female rats at doses 1.8 and 21 [mg/kg-day]. The logistic model fit best according to the AIC.

For the male and female tests, analyzed individually, a standard multistage model with linear parameters gave best results for PI, among the standard models (adding quadratic and cubic terms did not improve the results). This model is:

Nr*(gamma+(1-gamma)*(1-exp(-b1*dose)))

The results for these two cases are shown below.


[image: image20]
Figure 4: Fitting Results for Frambozadrine Data for Males 

Note the differences between the binomial observational uncertainties (bd) and isotonic observational uncertainties (id) for doses 1.2 and 15. The PI distributions are fit to the id distributions, and are closer than the BMD distributions, but the fit is bad for the lower doses. A similar picture emerges for female rats.
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Figure 5: Fitting Results for Frambozadrine Data for Females 

If dose really does scale as [mg/kg-day], and barring countervailing toxicological evidence, we should be able to pool these data. However, the problems of fitting a multistage model, or any other models in the BMD library, became more severe. The pooled data seems to indicate a response plateau.  Beneath a certain threshold s the background probability g applies.  Above another threshold t, the dose follows a multistage model. The threshold model is:
Nr*(g+(1-g)*i1{s,dose,∞}*(1-exp(-b1*max{t,dose}-b2*max{t,dose}2-b3*max{t,dose}3)))

Here i1{X<Y<Z} is a random indicator function which returns 1 if X  ( Y ( Z, and 0 otherwise.  The starting distributions for the parameters in this model were:

g ~ uniform[0.005, 0.1]

s ~  uniform [0,21]

t ~ (21 – s)

b1 ~ uniform [0. 0.01]

b2 ~ uniform [0, 0.0001]

b3 ~ loguniform[10-13, 5 ( 10-6]

These distributions were conditionalized on values falling within a box around the observable uncertainty distributions.  The results shown in Figure 6 indicate a decent fit.


[image: image22]
Figure 6: Results for Fitting Frambozadrine, Pooled Data

Note the strong differences between the bd and id distributions, and note that the BMD distributions are close to neither, except for the higher dose levels.  The parameter distributions after PI are shown in Figure 7. The lower threshold s concentrates on values near 0, while the higher threshold t concentrates on values near 21.  The distributions of b1 and b2 are strongly affected by the PI; the distribution of b3 is less affected, indicating that this parameter is less important to the fitting.  

[image: image23]
Figure 7: Parameter Densities for Frambozadrine MF after PI

Figure 8 shows the parameter distributions before PI. The thresholds s and t are most affected by the fitting, b3 is changed very little.

[image: image24]
Figure 8: Parameter Densities for Frambozadrine MF, before PI
The joint distribution of all parameters in the threshold model, after PI, is shown in Figure 9 as a cobweb plot. On each sample  there is a value for each of the parameters; a jagged line connecting these values thus represents one sample. 172 such samples results in the picture in Figure 8. We see strong negative correlations between b1,b2,b3, as well as the concentration of t toward values near 21.

[image: image25.png]Samples selected: 172





Figure 9: Cobweb Plot for Parameters for Frambozadine, Male and Female Data

Once we have a joint distribution over the model parameters, we can easily compute the uncertainty distributions (smoothed) for probabilities at arbitrary doses, see Figure 10. The distributions tend to get wider as dose increases up to 100.

These results show that a good fit to isotonic observational uncertainty is possible with a threshold model. The same may hold for other more exotic models. Of course, the toxicological plausibility of such models must be judged by toxicologists, not by mathematicians.

[image: image26]
Figure 10: Uncertainty Distributions for Probability of Response as Function of Dose; p* is the Probability of Response at Dose *.  Probability of response is on the horizontal axis.

Benchmark Dose

Computing the Benchmark dose was complicated in this case by the fact that the DR model could not be analytically inverted, in contrast to the previous example. We therefore proceed as follows. For any value of the parameters, we can compute the dose d* which satisfies

BMR = (Prob(d*) -  Prob(0) ) / (1 – Prob(0))

where  again Prob(0) is taken to be the observed background rate, 0.0526. Consider the cumulative distribution function of d*;  if a number dL is the 5%-tile of this distribution, this means that with probability 0.95 
Prob(dL) <  BMR(1-Prob(0)) + Prob(0).

Hence, to find the 5% value of d*, we must find the value dL for which BMR(1-Prob(0)) + Prob(0) is the 95%-tile. This is BMDL, and we compare it to the value, denoted BMD50, for which BMR(1-Prob(0)) + Prob(0) is the median. The results are shown in Table 8. Values for BMR=0.01 were not obtainable, as the 95% of the background parameter g was already larger than 0.01 ( (1 – 0.0526) + 0.0526 = 0.062.
Table 8: Frambozadrine, Benchmark Dose Calculations

	Frambozadrine

	BMR
	BMDL
	BMD50
	BMDL/BMD50

	0.1
	1.68E+01
	2.35E+01
	1.40E+00

	0.05
	1.30E+00
	1.53E+01
	1.18E+01

	0.01
	-------
	-------
	-------


6. Nectorine

The data for this case is shown in Table 9 below.
Table 9: Nectorine Data

	 
	Concentration (ppm)

	
	0
	10
	30
	60

	Lesion 
	# response  /  # in trial

	Respiratory epithelial adenoma in rats 
	0/49
	6/49
	 8/48
	15/48

	Olfactory epithelial neuroblastoma in rats 
	0/49
	0/49
	4/48
	3/48


As we are unable at present to analyze zero response data, the data do not support an analysis of the neuroblastoma lesions, and we consider only pooling. The text accompanying these data indicates that these two lesions occur independently. Therefore, the probability of showing either lesion is given by P​a or n​ = Pa + Pn – PaPn; where a and n denote adenoma and neuroblastoma respectively.  These two endpoints are taken to be distinct (with summation of risks from multiple tumor sites when tumor formation occurs independently in different organs or cell types considered superior to the calculation of  risk from individual tumor sites alone). 

Under these assumptions, the bioassay for either lesion is shown in Table 10.

Table 10,  Combined Nectorine data

	Dose
	10
	30
	60

	Number of rats
	49
	48
	48

	Number responding
	6
	12
	18


The model used for PI was multistage with 2 parameters:

NR*(g+(1-g)*(1-exp(-b1*dose)))

The results are shown in Figure 12. In this case both PI and BMD yield decent fits.


[image: image27]
Figure 11: Results for Fitting Nectorine

Benchmark Dose
The calculation of the Benchmark dose and the ratio BMD / BMDL proceeded as in the case of the BMD Technical Guidance example. The results are shown in Table 11 below:

Table 11: Nectorine: Benchmark Dose Calculation

	Nectorine, Adenoma or Neuroblastoma

	 
	BMD
	 

	BMR
	Mean
	Variance
	5% Perc
	50% Perc
	95% Perc
	BMDL/BMD50

	0.1
	1.72E+01
	3.44E+01
	1.02E+01
	1.58E+01
	2.94E+01
	1.55E+00

	0.05
	8.43E+00
	8.21E+00
	4.98E+00
	7.74E+00
	1.44E+01
	1.55E+00

	0.01
	1.64E+00
	3.12E-01
	9.70E-01
	1.51E+00
	2.80E+00
	1.56E+00


7. Persimonate: Barrier Model

The data are shown in Table 12.
Table 12: Persimonate Data

	 
	Continuous
	Total Metabolism 
	Survival-Adjusted

	 
	Equivalent Dose
	 (mg/kg-day)
	Tumor Incidence

	B6C3F1 male mice inhalation
	0
	0
	17/49

	
	18ppm
	27
	31/47

	
	36ppm
	41
	41/50

	Crj:BDF1 male mice inhalation
	0
	0
	13/46

	
	1.8ppm
	3.4
	21/49

	
	9.0ppm
	14
	19/48

	
	45 ppm
	36
	40/49


Here again there is non-monotonicity. The issues that arise here are similar to those with Frambozadrine, and the analysis will be confined to the pooled data, assuming that the two types of mice can be pooled. The doses used are in units of ppm. The PI with the standard DR models from the BMD library was unsuccessful in this case. The data suggests that there may be 2 or 3 plateaus of response. This might arise if there were successive biological barriers which, when breached, cause increasing probabilities of response. After reaching the first barrier, additional dose has no effect until the second barrier is breached, etc. A barrier model was explored, using 2 barriers:

NR*(g+(1-g)*(1-exp(-b1*i1{0,dose,t}-b2*i1{t,dose,s}-b3*i1{s,dose,∞ })))

Here, t and s are random barriers with t < s, and i1{X,Y,Z} is a random indicator function returning 1 if X ≤ Y ≤ Z and 0 otherwise. The parameters b1,b2 and b3 are random but increasing: b1 < b2 < b3.  Thus, doses less or equal to t have coefficient b1, those between t and s have b2, and those greater or equal to s have b3.

In fitting this barrier model, the PI chooses maximum likely weights for resampling the starting distribution, and thus chooses a maximum likely distribution for the barriers and their associated coefficients, based on the starting sample distribution. The results are shown in Figure 12. 

Here again, we see pronounced differences between the binomial observational uncertainty and the isotonic observational uncertainty. Again, we see decent agreement between the id and pi distributions, while the BMD distributions don’t agree with either bd or id, except at the highest dose (45).

The parameter distributions for the barrier model, after PI, are shown in Figure 13. Graph (ii) shows the graphs for the thresholds t and s. The starting distributions were uniform on [0, 21] and [21,45] respectively. The distribution of t concentrates near 21 and that of s concentrates between 21 and 36 (there is no dose between 21 and 36). The cobweb plot, graph (i) shows less interaction between b1,b2,b3 than in  Figure 8 for Frambozadrine. Figure 14 shows the starting densities for b1,b2,b3; comparing these with Figure 13 (iii) shows the action of the PI.

[image: image28]
Figure 12: Results for Fitting Persimonate, Pooled Data


[image: image29]
Figure 13:  Persimonate parameter distributions after PI from upper left to bottom right:  (i) all parameters, (ii) t and s, (iii) b1, b2, b3, and (iv) g.

[image: image30]
Figure 14: Starting Distributions for b1, b2, b3

[image: image31]
Figure 15: Persimonate (smoothed) Probability as Function of Dose; p* is the Probability of Response a Dose*. Probabilities of response are on the horizontal axis.
The difference between the barrier model for Persimonate and the threshold model for Frambozadrine can be appreciated by comparing the graphs for uncertainty in probability as a function of dose (Figures 10 and 15). Whereas Figure 10 showed a smooth shift of the probability distributions as dose increased, Figure 15 reflects the uncertainty of the positions of the barriers. Doses 0,5, and 10 fall beneath the first barrier with high probability and their probabilities of response are similar. The same holds for doses 35,40,45 with high probability they fall above the upper barrier. For intermediate doses, the uncertainty in the probability of response reflects the uncertainty in the positions of s and t.
As in the case of Frambozadrine, this exercise shows that a good fit to isotonic observable uncertainty is possible. The toxicological plausibility of such models is a matter for toxicologists.

The Benchmark dose was not stable in this case, owing to the form of the DR model.  In the region of interest, the 95%-tile of the probability of response exhibited discontinuities making it impossible to find a dose whose 95%-tile was equal to BMR((1-Prob(0)) + Prob(0).
8. Concluding Remarks
The quantification of uncertainty in DR models can only be judged if there is some external, observable uncertainty which this quantification should recover. We have used the isotonic uncertainty distributions for this purpose. With PI it is possible to find distributions over model parameters which recover these observable distributions. For the example from the BMD technical guidance document and for Nectorine, PI was successful with standard DR models. For Frambozadrine and Persimonate it was necessary to introduce threshold and barrier models. With these models, decent fits with PI were obtained.  Better fits could be obtained by stipulating more than 3 quantiles in the observable distributions, and perhaps by exploring different models. The point of this analysis is to show that good fits to observable uncertainty distributions are achievable. 

The SAU approach, as reflected in the BMD distributions does not recover observable uncertainty as reflected either in binomial uncertainty distributions or isotonic uncertainty distributions. This is not surprising, as the SAU approach aims at quantifying uncertainty in the parameters of a model assumed to be true, it is not aimed at capturing observable uncertainty.

The number of parameters in the threshold and barrier models for Frambozadrine and Persimonate is larger than the corresponding BMD logistic distributions. Is this not “stacking the deck”?  A number of remarks address this question. 

(i) Indeed, the AIC criterion for goodness of fit punishes rather severely for additional parameters, and this is partly responsible for the discrepancy between the BMD and the observable uncertainties (esp. in Figure 2).  

(ii) Simply adding more parameters to a monotonic model, like the logistic, probit or multistage, will not produce better fits for the Frambozadrine and Persimonate data; it seems more important to get a right model type than to add parameters to a wrong model. We are fitting 3 quantiles per dose, thus for Persimonate there are 3 ( 6 = 18 quantiles to be fit, whereas the barrier model has 6 parameters. Bayesian models, by comparison, have many more parameters.

(iii) The fits are judged – by occulation – with respect to the whole distributions, not just the 3 fitted quantiles. 

(iv) The question of judging unimportant parameters and finding a parsimonious model within the PI approach is a subject which needs more attention.

Having addressed the problem of capturing observational uncertainty, we can move on to more difficult problems such as extrapolation of animal data to humans, allometric scaling, sensitive subgroups, the use of incomplete data including human data from accidental releases, and extrapolation to low dose. Approaches to these more difficult problems should be grounded in methods that are able to deal with the relatively “clean” problems typified by these bench test exercises.

The PI approach is based on antecedently defined observable uncertainty distributions. These may be based on isotonic regression, as was done here, but they may also incorporate distributions from structured expert judgment or from anecdotal incident data. This may provide a method for attacking the more difficult extrapolation issues identified above. 

The calculations and simulations displayed here are based on 500 samples for the isotonic uncertainty distributions, and 10,000 to 20,000 samples for the probabilistic inversion. The processing was done with the uncertainty analysis package UNICORN available free from http://dutiosc.twi.tudelft.nl/~risk/. The probabilistic inversion software used here is a significant improvement over the version currently available at this website, but is not yet ready for distribution. After initial set-up, processing time per case is in the order of a few minutes. More time is involved in exploring different models and different starting distributions.
APPENDIX 1: Alternative models and optimization strategies

Frambozadrine log probit

For Frambozadrine, pooled data, the logistic model had an AIC of 290.561. The log probit model was slightly better at 290.396. The multistage model with 2end degree polynomial was better still with AIC 289.594, but the standard deviations of the parameters were not calculated with the BMD software.  The log probit model is:

Prob(dose) = ( + (1-()Φ(( + ( ( ln(dose))

Where Φ is the cdf of the standard normal distribution.

Figure 16 compares the observable uncertainty distributions for the log probit (lprob) and logistic model (BMD) models, together with the binomial and isotonic uncertainties. The (log) probit models tend to be wider, a feature noted on many exercises (not reported here).


[image: image32]
Figure 16:  Logistic (BMD), log probit (lprob), binomial (bd) and isotonic (id) uncertainties for Frambozadrine, male and female,
Nectorine Probit
For the Nectorine example, the logistic model had an AIC of 158.354, whereas the probit model had 158.286. Log logistic and log probit models were slightly worse. The probit model is:

Prob(dose) = Φ(( + ((dose);   Φ the standard normal CDF.

Figure 17 compares the previously obtained results with those of the probit model. As in Figure 16, we see that the probit model tends to have higher variance than the others.


[image: image33]
Figure 17: Nectorine, pooled, binomial (bd) isotonic (id) BMD,  probabilistic inversion (pi) and probit (probit)

Optimization Strategies 

Probabilistic inversion is an optimization strategy applied to quantiles of the observable uncertainties. As with all optimization strategies in multi-extremal problems, its solution may depend on the starting point. Compared to other strategies, it is more labor intensive. 

A standard optimization routine might work as follows. 

1. Choose a preferred, smooth model. 

2. Sample from the binomial uncertainty distributions and isotonicize this sample (as in Table 4).  

3. Find values of the parameters for the preferred model which minimize 

(i ( NR​i(Pm(di) – NRi(Pis(di))2, 

where NRi is the number of animals given dose di; Pm(di) is the probability of response given by the model at dose di, and P​is(di) is the isotonic probability of response at dose di.

4. Store these parameters, and repeat steps 2 and 3.

Figure 18 compares the results of optimizing
 the log logistic model (lglgopt), ((1 with the BMD distributions - which are also based on the log logistic model, but use the MLE parameter distributions given by the BMD software. The binomial and isotonic uncertainties are also shown.  The optimization results in a somewhat different, but not overwhelmingly better fit to the isotonic uncertainties.


[image: image34]
Figure 18: BMD example with binomial (bd) isotonic (is) bmd, and log logistic with optimization (lglgopt) with ((1
Whereas the previous example concerned a case where a smooth model (log logistic) yielded a good fit with PI, the Persimonate case did not yield a good fit with any smooth model. The Barrier model used in Figure 12 is not differentiable. This means that the regularity conditions for the asymptotic normality, and even for the strong consistency of the maximum likelihood estimators do not hold (Cox and Hinkley, p.281, 288) 

In Figure 19 we show optimization applied to the logistic and the log logistic models with the binomial and isotonic uncertainties. This table should be compared with Figure 12. The log logistic (( ( 0) model has three parameters, whereas the logistic model has two. Figure 19 shows that this extra parameter does not significantly improve the fits, and that the attempt to minimize square difference to the isotonic uncertainty does not produce better results than simply using the logistic model with MLE parameter distributions (BMD). 


[image: image35]
Figure 19: Persimonate results of Figure 12 compared with optimization of logistic (lgstop) and log logistic (llgstop)
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tlouis@jhsph.edu
I would first like to recall Cooke’s starting points, or “tentpoles” and position my remarks relative to them:

1. Tent Poles

1. Observational Uncertainty: There must be some antecedent uncertainty over observable phenomena which we try to capture via distributions on parameters of Dose Response  (DR) models. With this I agree.

2. Integrated Uncertainty Analysis: The uncertainty in DR must be captured via a joint distribution over parameters which does not depend on dose. I am in partial agreement; there is an important caveat that no model can be completely global. 
3. Monotonicity: Barring toxicological insights to the contrary, we assume that the probability of response cannot decrease as dose increases. Here again, agreement is partial.  There may well be toxicological insights to the contrary, such as doses beyond the MTD. In the light of such evidence, would you really want absolutely strict enforcement of monotonicity (see below)?
Before going into details, it is useful to gather points of agreement and disagreement regarding generic issues.

2. Points of Agreement

1. One needs to compute and report all relevant uncertainties. This includes a priori, a posteriori, along with sampling and non-sampling uncertainties.
2. In general, the Bayesian formalism does this best. One needs to use models with sufficient flexibility to honor the data and sufficient constraints to honor biology (or physics or sociology, as the case may be).

3. If you really (really) believe in monotonicity, then enforce it. 

4. One needs to be vigorous in model criticism

3. Points of Disagreement

1. Cooke's “Statistics As Usual (SAU)” is/are not my SAU and is not SAU at least not for WEES (well-educated and experienced statisticians)!   For the situations considered, WEESs would use isotonic regression with an appropriate Bayesian or frequentist uncertainty analysis. 

2. Cooke's Bayes is one example of Bayes, but not my Bayes. 

3. I have issues with some “tent poles" in particular regarding rigid monotonicity and global uncertainty analysis.
4. Probabilistic Inversion may have a role in approximating a fully Bayesian approach in problems that need it, but should serve only that role. 

5. Cooke’s approach works with discretized or quantal response, how would it work with a continuous response variable? 

6. How would Cooke’s approach handle null or complete responses (i.e., no animals or all animals exhibit the response)? 

4. Model-based Uncertainty and Model Uncertainty

It is important to distinguish model-based uncertainty and model uncertainty. Model based uncertainty assessment is “easy;"  that is, if we know a particular model is true, then there are more or less accepted methods for quantifying uncertainty on the model parameters. However, if there are little or no data to inform about models (the likelihood is not informative about model choice),  prior uncertainties over the correct model will  migrate directly to the posterior distribution.   A priori model uncertainty is not substantially changed by updating and so one can inflate uncertainty with little or no empirical control.  This uncertainty propagation operates in “what if" analyses or in Bayesian Model Averaging.
5. A low-dose extrapolation example

Examples of the preponderance of model over sampling are notorious in the area of low dose extrapolation.  The shape (linear, sub-/super- linear) depends on how the dose is represented in the model (e.g., dose, log(dose)). The shape also depends on the fundamental relation between exposure and dose.  It may happen that many models fit the observed data well, but give radically different estimated safe doses.  An example is given below.
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Faced with such under-determination by the data, ad hoc approaches are often used.

6. Enforcing Monotonicity: Binomial Example

If one really believes in monotonicity, or places great weight on it, then the standard binomial estimates aren't appropriate.  Isotonic regression or a Bayesian version thereof would be appropriate.
Pd = pr(response | dose = d)

P = (P0,…, Pk) ~ G

G(P0, (…, ( Pk) = 1.

This can be done with an ordered Dirichlet process or a Gamma process (see Mazzuchi and Burzala, this volume)

As a simple example with k = 1, we might put 
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and require that PG(( > 0) = 1.

What would you do if you had very large sample sizes and still saw non-monotonicity?  How are you going to make the decision to switch gears? Wouldn't it be better to build in a priori a (small) possibility of non-monotonicity?  For example, you could use the following prior.  For  ( >0 and small, let
        (  -|(1|; with probability (
( =  (
        (   |(2| with probability 1 - (
where (j  is normally distributed with mean (j and standard deviation (j.

7. Probabilistic Inversion

This can be a useful technique in many contexts, see: Poole D., Raftery A.E. (2000)
;  Yin Y, Louis TA (2007) “Optimal  Constrained Bayesian Updating to Match a Target Output Distribution and Retain Stochastic Model Structure” (submitted). However, it is difficult to get it right for the goals Cooke has in mind, especially in complex situations. 

To see this, consider a basic situation wherein the “obvious” simulation is incorrect and you need a two-stage simulation.  For the Gaussian prior and likelihood, under a flat prior, [( | Y] ~ N(Y, (2).  Simulating from this distribution under-states variation in the probabilistic inversion.  You need to,

1. Sample (  from N(Y, (2)

2. Generate a Y*

3. Repeat 1 and 2.
8. Try for Bayes

My overall advice is to use the Bayesian formalism to structure inferences, even if you then have to approximate.  However, beware of statistical mischief. The perils of Bayesian Model Averaging were the subject of a recent discussion over air pollution and health. Koop, and Tole
 show that using Bayesian Model Averaging and a broad range of candidate models, there is a great deal of uncertainty about the magnitude of the air pollution effect.  Thomas, Jerrett, Kuenzli, Louis, Dominici, Zeger, Schwartz, Burnett, Krewski, Bates  
  rebut Koop and Tole by showing that the data provide very little information on model choice and that you need to be careful in selecting candidate models and priors. The same caution about focus holds for any frequentist approach to model selection. Statistical “wrappers" can be used to package mischief.

There are limits to what we can do.  For example, model choice will always have unquantifiable aspects.  We can bring in expert opinion/ knowledge on mechanism, genomics, discount rates, etc., but how do we rate the “credibility" of an expert?  There are limits to all formalisms. 

9. Summary

Cooke provokes us to do better, and many of his themes are right on the mark.  I disagree with others and with some of his proposals.  We do concur that we need to take BMD “to the next level.”
Comment: EPI/TOX Perspective on

Cooke’s Paper
What Data Sets Per Se Say
Lorenz Rhomberg, PhD

Gradient Corporation

Cambridge, MA  USA

Roger Cooke has presented some ideas about the application of a probabilistic inversion method toward characterizing uncertainty in dose-response analysis.  His viewpoint is that, once model-fitting has been done, the error structure in the fitted model ought to reproduce the sampling uncertainty ("observational uncertainty") at each of the original data points.  Most conventional modeling does not do this – the fitted model's characterization of the uncertainty in predicted response at a tested dose generally does not match the original binomial sampling uncertainty.  

Professor Cooke proposes an approach that first uses isotonic regression to "clean up" the sampling distribution on the assumption that any apparent deviations from monotonicity are due to sampling error, and then uses probabilistic inversion to constrain the model fitting such that the fitted model's uncertainties in predicted response at the tested doses matches the observational uncertainty for the original data points.  He shows that such constrained models produce different fits – and different estimates of uncertainty in predictions for untested doses – than do unconstrained models.  Moreover, certain model forms labor so much under these constraints (when applied to particular datasets) that satisfactory fits reproducing the sampling error structure cannot be found, an outcome that should serve as evidence that the model form in question is ill suited to describing the data (even if the unconstrained fit is satisfactory by goodness-of-fit tests).

The notion is that this observational uncertainty – the uncertainty about the true value of the dose-specific probability of response that arises owing to the limited sample of animals – is really the fundamental (and only) expression of uncertainty about responses that comes from the data themselves.  How, then, can an uncertainty analysis about dose-response – one that purports to inform us about the uncertainty in model predictions for responses at untested doses – claim to be basing its findings on the information in the dataset if its characterization of uncertainty in response at the tested doses does not even match the original sampling uncertainty?

Even if one does not entirely subscribe to this point of view, the ideas are very thought provoking, and they prompt an interesting exploration of the implicit meaning of fitted models vis-à-vis the data to which they are applied, as well as of the epistemic status of the fitted models as hypotheses about true underlying dose-response relationships.

My charge as a commentator on Professor Cooke's paper was to examine the "toxicology and epidemiology" aspect in understanding the uncertainty in dose-response analysis as explored in his presentation.  In the context of the workshop, however, we are analyzing hypothetical datasets on hypothetical chemicals.  (The toxicity datasets on the hypothetical chemicals "Frambozadrine," "Nectorine," and "Persimonate" are real enough, but the names have been changed to protect the innocent.)  As a consequence, if one abides by the rules of the workshop, the data themselves are just numbers – they have no toxicological or epidemiological context upon which I could comment.

I have chosen to address this quandary in two ways: (1) for illustrative purposes, I imagine a set of further toxicological and epidemiological findings on Nectorine – findings that (like the Nectorine data themselves) bear some resemblance to those for an actual chemical – and then comment on how this hypothetical context can be brought to bear on dose-response uncertainty characterization; and then (2) I examine the question of what a dataset per se (stripped of this or any such context) has to say about the uncertainty in dose-response modeling.  This second approach is apropos in view of Dr. Cooke's thesis that the modeling results should reflect and express the uncertainty inherent in the experimental response data themselves.

Beginning with the first approach – imagining a set of toxicological and epidemiological findings in addition to the raw dataset of doses and response numbers that was provided for the workshop – suppose that, in addition to the proffered data on nasal tumors in rats, we also know that Nectorine:

· did not cause these nasal tumors in mice (but caused lung tumors);
· gives rats (but not mice) marked target-tissue cytotoxicity at the higher bioassay doses;
· is locally metabolized to a reactive compound by a cytochrome that is very active in these nasal tissues, but less so in other rat strains or in mice or in humans;
· is not genotoxic in standard studies, but a reactive metabolite is formed;
· produces oxidative stress and depletes glutathione.

What do such results say about the dose-response analysis of the dataset on nasal tumors in rats at different air concentrations of Nectorine as it was provided to workshop attendees?  More specifically, what does the external knowledge say about what dose-response shapes, or models, or fitted outcomes are more or less plausible and apparently valid?  What do they say about applying any particular dose-response analysis on the tumor data to project potential human risks at low doses?

The additional knowledge raises a number of questions about dosimetry – especially about tissue-specific doses in the nasal tissues and possible nonlinearity of such effective doses vis-à-vis the air concentration – and about the mode of carcinogenic action that led to the nasal lesions.  If there are indeed nonlinear pharmacokinetics, would this not affect the shape of the dose-response curve plotted against an external measure of exposure?  Would the curvature in such a graph reflect the pharmacokinetic nonlinearity, or is the shape of the curve expected to result only from pharmacodynamic considerations?  How do these considerations affect the relative plausibility of different curve shapes and different mathematical models that generate them?  How is the mathematical rationale for the dose-response equation that is being fit to the data to be reconciled with different and unknown mixes of contributions – each with its own actual biological dose-response pattern – of contributing factors to the measured outcomes?  Is the carcinogenic process for which the dose-response pattern is being evaluated expected to be nonlinear for biological reasons?  Perhaps having a threshold based on the carcinogenic response being secondary to local cytotoxicity?  In some contexts, non-monotonic dose-response curves are expected, as when there is a hormetic effect; are such possibilities to be considered for these data?

There are two endpoints for Nectorine, and they constitute similar but distinct tumors in neighboring but distinct tissues.  Are these to be considered independent responses in different endpoints or as related manifestations of a single process?  Do they thereby inform one another regarding the dose-response pattern?  Could they be pooled into a single measure of nasal tumor response, or would doing so conflate two distinct processes – potentially different in their dose-response patterns?  Are the tumors as reported already overly lumped (i.e., combining distinct subtypes that might better have been separated)?

Carcinogenicity data come from chronic bioassays, typically lasting two years, and tumor incidences go up with age.  In many cases there are animals lost to chemical-related and/or to chemical-independent causes before their lifetime ability to produce a tumor has been fully tested.  How much such intercurrent mortality happened in the Nectorine dataset, and how were the animals at risk counted?  How would different survival adjustment approaches alter the apparent dose-response?  Could there have been regressing lesions or stages of carcinogenesis?

My aim is not to try to answer these questions, even hypothetically, and indeed even in real cases, most of the questions admit to no definitive answer.  But the points to be drawn by asking the questions are:

1. Datasets on doses and responses cannot be taken at face value, stripped of their context.  They result from a number of consequential decisions about how to measure doses, how to define and measure responses, what to combine and what to separate, what to report and what to consider as inconsequential detail.  A dataset is not the beginning point of a dose-response analysis, but an intermediate point.  Once tabulated, however, data tend to take on a conventionalized reality, and properties that are really assumptions about the data being made (or asserted) by the quantitative analysis that is applied to the numbers can get mistakenly attributed to the data themselves;

2. The way to address the issues in the point number 1 is to keep in mind the context and the broader scientific understanding of the processes the data are meant to measure.  Alternative ways of casting the results and of interpreting the meaning of the numbers need to be considered, and the sensitivity of the analysis to alternative answers considered;

3. Uncertainty in the dose-response description obtained by modeling data, then, is much more than the statistical uncertainty of curve-fitting.  Which models make plausible and informative descriptors, which curves generated by those models make plausible and informative interpolations and extrapolations from the data point anchors, and which consequential phenomena might be utterly missed by reference to the test data alone are all informed by considering the larger toxicological and scientific context and all the background knowledge that can be brought to bear;

4. As a consequence, separating the "statistical" issues of dose-response curve fitting uncertainty from all the other contributors to uncertainty in risk assessment is really artificial.  (I say this realizing that in doing so I am undermining the premise of this workshop.)  I am not simply saying that a full uncertainty analysis has to consider issues beyond the simple uncertainty entailed in statistical curve-fitting – of course it does – but even the "pure" statistical uncertainty is actually bound up with the larger context via the dependence on the underlying biology of the validity of statistical assumptions and the presumed meaning of the measurements.

Can we not acknowledge all of this and nonetheless find it useful to examine just the statistical curve-fitting issues in characterizing the uncertainty of fitted dose-response curves?  More specifically, what does all the foregoing have to do with the evaluation of Professor Cooke's approach using isotonic regression and probabilistic inversion?  This brings me to the second of my two approaches to my charge – to examine what the dataset per se has to say about the evaluation of dose-response uncertainty.

The impetus for the probabilistic inversion approach is the feeling that the fitted model's uncertainty distribution for its prediction of the response at a given dose should – for the particular cases of the experimental data points – match the experimental uncertainty in measuring those responses.  If one wants to accomplish this, then the probabilistic inversion approach is a good way to go about it, and Professor Cooke has demonstrated how to do so.  But it is worth exploring whether one should indeed want to have this property, as well as what forcing it entails in terms of constraining the model fit.

Consider first the observational uncertainty associated with each of the data points.  For each dose group, we have one outcome (the rate of positives) that actually happened, but we realize that if the experiment were to be repeated many times, there would be variation in the outcome reflecting the limited number of animals tested each time.  As noted by Cooke, we generally describe this as binomial variation around the sample mean outcome.  (It is noteworthy that we are already adding external information; the data themselves offer no evidence that variation would indeed be binomial, and some circumstances such as heterogeneity among animals can lead to extrabinomial variation in practice.)  

We should attend to how we have transformed the question about observational uncertainty – in a sense, inverting it.  Our one observed outcome constitutes a deviation (large or small we don't know, but we hope to characterize the probability distribution) away from a true population mean, the value of which we don't know.  Our one observation could have resulted from a small upward deviation from a true mean just below the observed outcome or from a big downward deviation from a true mean well above the observed outcome, or any number of alternatives.  

Our observational uncertainty question of interest, what we could call Question 1, is: In view of our one sample outcome, how likely is it that the unknown true mean probability of response lies at any one of its various possible values? We characterize this uncertainty by asking a related but different Question 2: If the sample mean of our one observation were the true mean, how much variation around it would we get, were we to test many more sets of the same number of animals?  That is, we treat the likelihood of various deviations from the sample mean as indicative of the likelihood that the true mean lies in each of these spots (and has produced our one sample result as a statistical deviation from this truth).  As Professor Cooke shows, as long as the prior is uninformed, a Bayesian approach using the beta binomial reveals that these two questions have nearly the same answer.

The distinction is important, however, because when we are curve-fitting, we definitely examine the data points as deviations from the (hypothesized) true mean generated by the model (Question 1) and not the model as a deviation from the sample mean (Question 2).  In maximum likelihood fitting, we choose the model that, among all those under consideration (i.e., of the same form but with different parameters), would be the most likely to produce the observed data as a set of deviations from it.

An infinitely flexible model would maximize the likelihood by going exactly through all the data points, since this would make the observed outcomes the most likely of all possible outcomes.  Why do actual maximum likelihood fits not produce fitted curves that exactly hit all the data points?  Because the curves are not infinitely flexible.  The chosen equation establishes some constraints on the shape and curvature of the model such that, if it is tweaked to be closer to this data point it must necessarily be farther from that one, and the maximum likelihood fit represents the optimal compromise.  Whether, for this best-fitting model, it is plausible that the observed deviations constitute variations from the modeled means can be tested with goodness-of-fit tests, and inadequately fitting models can be rejected.  Such a rejection would be evidence that the observed data reflect some underlying dose-response pattern that has features that cannot be captured by the fitted equation; that is, that the sources of the model's constraints on flexibility conflict with the actual processes dictating the shape of the curve.

Of course, different equations produce different curve shapes that miss the data points in different ways, resulting in different maximum likelihoods; that is, they find a different compromise (and a different degree of satisfactoriness of the compromise) in minimizing their failures to hit all the observed dose points.  These differences arise as a consequence of the different constraints on shape and curvature entailed in each fitted equation.

The important point is that, in choosing a model to fit, we are in fact adding constraints onto the possible interpretation of the dose-response data, and the particular constraints we add vary with the model we choose.  Fitting a log-probit model imposes the constraint that the curve must adhere to the possible shapes for cumulative lognormal distributions, fitting a multistage model of degree n constrains the curvature to be no more than the nth power of dose, and so on.  Even the monotonicity expectation of Dr. Cooke's method, and the use of isotonic regression to impose it, affects the way in which permitted patterns of true group means are viewed.  

These added constraints are a kind of added information, not present in the dose-response data themselves. Even empirical "curve-fitting" models adds information about expectations regarding shape – none is purely empirical in the sense of deriving all of its information from the data alone, since the decision to use one empirical model over another is the decision to impose the constraints of one over the other, and the justification for this choice is informed not only by fit to data, but also by reference to expectations regarding the general form the dose-response curve ought to have, in view of our larger biological knowledge of the processes being modeled and our experience in modeling other compounds and datasets.

In fitting a model, we are hypothesizing a partitioning of the variance among outcomes into an "explained" component, embodied in the model's functional form of response at different doses, and a residual "error" component, embodied in the deviations of particular observations around the curve that are presumed to arise because of sampling error.  Because of the constraints on curve shape dictated by the model's equations, data points "borrow" information from one another in the sense that a poorer fit here can be traded for a better fit there, all in service of finding an optimal hypothesis for partitioning overall variance into explained and residual components.

In contrast, the original observational uncertainty comprises the raw, unpartitioned variation.  None of the variation is "explained" and the different dose levels associated with each group's response plays no role.  

Seen in this way, why shouldn't the uncertainties around a model's predictions of the responses at tested doses differ from the unmodified original observational uncertainty?  Is this indeed a problem in need of correction by probabilistic inversion?  The observational uncertainty – measured in the "Question 2" sense but of interest in the "Question 1" sense – represents data cut loose from their context.  They don't have meaning or implications beyond their role as measurements of phenomena as they happened in the experiment.  As soon as we want to apply these data to some larger question – including using them to characterize a dose-response curve that will apply to other, untested doses – then we have changed the nature of the uncertainty around data points.  First, we impose the constraints inherent in the models we choose to fit (justified by knowledge that includes information outside the data set itself), and second, we hypothesize a partition of variance into that explained by our proposed dose-response equation and that part that is relegated to statistical error.  There is different information in the dose-response model than there is in the data alone, and so the uncertainties really ought to be different.

Where does this added information come from?  Some comes from goodness of fit of one model form versus another, in that marked differences in success at explaining variation in outcomes using the fitted models would appear to say something about whether the constraints on dose-response shape actually operating match up with those imposed by each of the alternative models.  But this distinction is most telling for discriminating between models that are acceptable and those that are not.  Within the realm of adequately fitting models, the information comes from the plausibility of the shapes they hypothesize in view of other scientific information we have about the responses and the potential means by which they might depend on dose.  Some of this is general: the expectations about smoothness of the curve, its monotonicity, the plausible degree of abruptness of change with dose, and the expectations about how inflection points might occur.  Other parts of the externally motivated expectations are more specific to the chemical and the responses, such as thoughts about mode of action, the possibility of thresholds, and the properties that low-dose extrapolations ought to be supposed to have.

In sum, I am not really convinced that we should expect the uncertainty in model predictions about observed dose points to match the observational uncertainty in the outcomes at those points.  

Having said this, I think that Professor Cooke's paper raises an important point about the uncertainty characterization of fitted models that bears some thinking about.  As he notes, the uncertainty around a fitted model is generally approached by assuming that the fitted model is true.  Setting aside the question of reconstructing the observational uncertainty, is this a good way to go about characterizing the uncertainty in the dose-response relationship?

The question depends on how the uncertainty in the dose-response is characterized.  For any particular dose level, the uncertainty really is about the still unknown, but now perhaps better estimated, true population mean response probability.  (That is, it is a "Question 1" type of question.)  Again for a particular dose, a profile likelihood approach is often used.  For instance, to get an "upper bound" for the curve at some dose level the model's equation is assumed to apply, but one allows alternative less-than-optimal parameters chosen so that (1) the overall likelihood is sufficiently close to the maximum that the model's fit to all the data is not significantly worse, and (2) among all sets of alternative parameters satisfying (1), the particular set producing a curve deviating most from the best-fitting curve at the dose in question is chosen.  Generally, this curve achieves its deviation above the best-fitting curve at the dose level in question by being below it elsewhere, at other dose levels.  (This is best for preserving as much likelihood as possible while deviating as much as possible at the dose level of interest.)  That is, the upper bound curve is not general across all dose levels; other dose levels will have upper bounds given by different sets of alternative parameters.  In the particular case of low-dose extrapolation, for models in which the shape of the curve at low doses becomes dominated by a single parameter, it is fortunately so that the upper bound curve defined with respect to one low dose will also apply to other low doses (but not to higher doses).

That is, uncertainties in the whole dose-response relationship are not fully addressed by such a procedure in two important ways.  First, as just argued, they do not apply to the whole curve, just to particular doses, and just stringing together the results of upper (or lower) bounds at different dose levels produces a net result that mischaracterizes the overall dose-response, since all the upper bound values cannot be simultaneously true.  Second, they are contingent on the model equation chosen, and as we have seen, different models impose different constraints on the allowable shapes of fitted curves.  That is to say, the statistical uncertainty analysis for a given model does not address "model uncertainty." 

In my oral comments at the workshop, I presented some ideas about how to deal with more qualitative uncertainties, including model uncertainty, that do not lend themselves to statistical description but are often the major sources of uncertainty in a quantitative risk analysis.  These comments are best incorporated here through reference to another written treatment of the same ideas (Rhomberg, 2007).  Briefly, though, in that piece I advocate an approach that brings information on the uncertainties in hazard identification into the dose-response characterization.  For each endpoint that one is proposing as a source of human risk, and for each dataset that one puts forward as a risk analyst to be used in estimating such a human risk, it is important to articulate the hypothesized rationale for how and why the observed responses (usually in an animal experiment) are expected to generalize to other settings, including the human exposure context of interest.  The expected consequences of this hypothesized basis for applying the results to human risk estimation can then be noted and compared against all of the available data, taking note not only of things that are "consistent with" the hypothesis, but also outcomes that are not consistent, at least on their face (e.g., the failure of another rodent species to respond to the same doses).  This approach gives a structure to weighing the evidence regarding how compelling any one basis for human risk estimation should be deemed to be, and each alternative model that can be applied to those data can be weighed by how well its fit and its restrictions on allowable shape (which should be articulated to the degree they can be) comport with the evidence at hand.

Thinking about the problem of characterizing dose-response uncertainty in this way emphasizes that, in choosing a model, finding its optimal parameter values, accepting its constraints on the possible curve shapes, and invoking the fitted shapes as a basis for projecting expected responses to untested doses, one is in fact making a hypothesis about how to generalize the modeled bioassay results to other settings.  The soundness of this generalization – that is, the uncertainty entailed in applying it – must be evaluated in view of the evidence that suggests it, that supports it, or that tends to cast doubt on it.  Some of that evidence comes from model fit, but a lot comes from sources external to the dataset per se, and indeed from sources external to the toxicology of the particular compound in question.  The assertion of a hypothesized model divides the overall variation in outcomes into an "explained" portion and an "unexplained" or "error" portion, and the particular partitioning (and its consequences for descriptions of uncertainty around the fitted curve) inevitably reflect the hypothesis, and not just the original data.

In my view, then, it is difficult cleanly to separate the "purely statistical" issue of parameter uncertainty in a fitted model from this larger context.  It is not simply that the overall uncertainty needs to be considered as well in a comprehensive evaluation of risk assessment uncertainty, but that the evidence being brought to bear on even the assessment of parameter uncertainty inevitably includes this external context.  The means by which this external context looms over the immediate question about curve fits is via the assumptions and constraints imposed by the chosen equation.  Some of these restrictions have consequences for the distribution of uncertainties around the fitted model at particular dose levels, and they reflect themselves in how the model choice alters the distribution of uncertainty at tested doses, away from the original "observational uncertainty" that does not seek to explain, but only to describe, the  experimental variation.  

In sum, perhaps we ought to expect that the uncertainty around a model's predictions for the outcome at doses that were tested (and to which the model was fitted) differs from the original observational uncertainty.  We should ask, Is this difference something that is problematic and in need of fixing by probabilistic inversion?
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 on Cooke’s Paper
Substantial Advances Nourish Hope for Clarity?
Rob Goble, 
Clark University,

“Uncertainty” as a freely floating term can mean many things to many different people.  It can represent a general state of mind, or, in a particular context, with a considerable degree of specification, it can have a reasonably precisely defined meaning.  A particularly useful aspect and the intellectual challenge of this workshop is reflected in the structure of the agenda.  The organizers have created a forum in which relatively high-powered statistical tools with promise for the assessment of uncertainties in dose response relationships are examined in three contexts.  Quantitative presentations, such as dose response graphs, can be used to address different issues that represent the concerns in different areas of specialty.  Thus

· Biologists, whether they are toxicologists or molecular biologists, will view dose response graphs as illustrations of the action of biological mechanisms

· For statisticians, the graphs illustrate quality of fit and the determination of parameters

· For risk analysts and regulators, the graphs illustrate the bases for extrapolations to situations of regulatory concern

These are different, but overlapping, spheres of meaning. Effective analytic approaches will offer insight to all three.  My charge, in this forum, is to consider Roger Cooke’s presentation of probabilistic inversion methods from a risk analytic/regulatory perspective.  It may be helpful to begin by describing key concerns that can be expected within such a perspective.  From the point of view of a regulator, the primary uncertainty of interest is uncertainty in the (extrapolated) risks at the relevant (low) doses for which regulations are supposed to have an effect.  In dealing with such uncertainties, the regulators require clarity and transparency in risk and uncertainty estimates and the estimates they use must be defendable as “good and appropriate science”.  Furthermore, whatever the explicit and implicit values embedded in their regulatory authority, the regulators will need to be responsible; they must balance, appropriately, between being too fearful and too complacent.  The risk analysts’ perspective is partly defined by their duty to the regulatory process: their job is to assist regulators, clients who must cope with regulation, and intervenors who urge changes in regulation.  The concerns are with

· Good methods which are transparent and address relevant (low dose) risks

· Vigilance concerning new phenomena, potential problems, and misconceptions

In addition, risk analysts must be concerned with the foundations of their work.  They are interested in the generation of new and relevant knowledge and that includes moderating between toxicologists and statisticians. 

The primary premise of risk assessment is the use of available science – the assumption of continuity in nature, so that knowledge gained in one setting can be extended to other settings.  In the case at hand, where the risks to be assessed are the risks from an exposure to a toxic chemical, there are very few situations in which reliable observational data are available for the incremental health effects of human exposures of concern; in such situations, a risk assessment that interpolates between data points can be used to draw inferences, and one could have quite high confidence in such interpolations.  Almost always, however, it will be necessary to project from data obtained under quite different conditions; the kinds of extrapolation that are often needed include a) projecting probabilities of cancer occurrence from relatively high exposures to levels of exposure too low for there to be reliable direct data; b) projecting across species, when there are data from animals, but limited or no data for humans; c) and making inferences about mechanisms/modes of action when there are data that relate to biological mechanisms (in animals and humans) relevant to the induction of cancer.  A fourth kind of projection is closely related to the third: d) projecting across members of groups of chemicals where there are data from some (putatively related) chemicals; even when we don’t have detailed information about mechanisms, we can still draw inferences based on the assumption that there is some similarity in the action of those mechanisms for different chemicals in a putatively related groups (Hattis and Goble 2007).

Figure 1, taken from (Hattis and Goble 2007) illustrates typical projections made in a risk analytic construction of a dose/probability-of-response curve for cancer.  It provides a context for reviewing Roger Cooke’s paper.  The figure distinguishes several regions that have significance.  The level of response for which there may be risk and regulatory concerns will, in general be different and much lower in incidence than the level at which there may be data about induced cancers that can be distinguished from the statistical noise in feasible measurements. The “response level of concern” is a risk management judgment and may be made differently in different settings by different managers—depending among other things on the difficulty and competing risks of feasible risk abatement options, and the transparency and degree of voluntary choice involved on the part of the people who bear the risk.  The challenge of assessment is to make projections from regions (shown in pink) where empirical data can be obtained to regions of potential concern.  There may be human data, but where these are weak or non-existent, it may be necessary to project animal data – shown in the pink region in the back of the Figure 1 to a region of human dose response (also shown in gray).  Such a projection is illustrated by green dotted lines.  A projection from the pink region where there may be data to the level of concern is shown as a brown dotted line.  The particular projection illustrated is a linear projection assuming no threshold; other choices are, of course, possible.  Dose/probability-of-response projections in this figure should be understood to lie in the human plane.  Also indicated in the figure is the fact that the human dose response data are often complicated by much more uncertainty in the dose dimension, whereas there is uncertainty in the response dimension for both animal and human information. 

Figure 1:  Illustration of typical dose response projections made in a risk analysis.  Pink clouds show regions where there may be data, animal or human; extrapolations may be required from animals to humans and from high doses where there are data to low doses where effects may still be of concern.  The illustrated projections are straight lines.
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The challenge examples for the workshop, as discussed in Cooke’s paper, all require projecting from animal data; the uncertainties to be discussed are the uncertainties in interpreting such data. As such they offer a good opportunity to confront directly the question of what uncertainties are of concern.  The statistical approaches presented in the conference provide a characterization of dose response relations in the study animals that can be inferred from the example data, including a characterization of the uncertainty in such inferences. This uncertainty is, presumably, an important ingredient in assessing the uncertainty in the risk analyst’s real concern, low dose risks to humans; but, as illustrated in the figure, two further, and very substantial inferential steps are required, the extrapolation to humans and the extrapolation from high to low doses.   Cooke in his paper, and the workshop papers generally, do not provide much guidance as to how the analysis of uncertainty in describing the animal data is to be carried forward in these further inferences.  To my mind this is the major issue raised by the workshop and I will come back to it.    

Cooke begins with three “tent poles” that he uses to define his objectives and constrain the mathematical path he follows.  His first “tent pole” is to define the “observational uncertainty” attributable to a data set and to identify the “observational uncertainty” as the “target” for uncertainty analysis.  We will come back to the question of whether this is the most useful target; but for now I want to stress that Cooke’s definition and identification of a target are an important contribution to the discussion.  As he makes clear in his comparison with uncertainty characterizations typical of “statistics as usual”, the usual operational characterization of uncertainties is contingent on the choice of dose response function to be fitted and on the quality of the fit to the data; without further specification, the target is thus not well-defined.  Whatever choice one ultimately decides to make for a target, such ambiguity cannot be desirable and will limit the capability for drawing useful inferences.   

Cooke’s second “tent pole” is to assume that uncertainty characterizations should not be explicitly dose dependent.  This assumption appears appropriate (except for unlikely cases where there happen to be dose specific information with direct implications for uncertainty).  Not to make the assumption opens up a box full of potential new ambiguities.

Cooke’s third “tent pole” is to assume that dose response is non-decreasing, and to implement that assumption using isotonic regression techniques.  This assumption is questionable in that there are circumstances when one can anticipate non-monotonic dose response; however such situations may not have serious practical import, and could be addressed if needed.  More serious is that isotonic regression techniques can introduce biases that may create more difficulties than the problems they are supposed to alleviate.  I will come back to these possibilities in discussing the frambozadrine example.

After creating a clearly defined target, Cooke’s next major accomplishment in his paper, is to present an analytic approach, probability inversion, that enables hitting the target (at least approximately and in most cases).  These are two substantial advances and offer the hope of bringing some clarity to a discussion that has been marred by lack of definition.  Louise Ryan, for instance, urges that we distinguish between  “confusion” and “uncertainty”; the latter is the subject of our workshop, and Cooke provides real help in reducing the former.   However, in the limited time I have available, I want to focus instead on concerns particularly germane to risk analysis.  The Frambozadrine case makes a good starting point.  It is interesting to consider the data from different perspectives.  Figure 2 shows the data putting together the two experiments for male and female rats.  

Figure 2:  Fraction of animals responding compared to dose from the “Frambozadrine” example.  The data come from experiments with male and female rats in groups of approximately 50.  The response observed is hyperkeratosis. 
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From my rather crude risk analytic perspective, this looks like a situation where there is a background effect of the order of 10%, and toxicity can only be distinguished from background at doses substantially greater than 20.  The data themselves do not provide strong guidance for choosing the shape of a dose response curve; even without noting that the two points with high responses come from tests with male rats in one and female rats in the other, the data are consistent with a linear fit through the origin plus background.  A toxicologist, however, might well expect that hyperkeratosis is more likely to have a threshold dose response relationship.  Before considering the implications of interpreting the data from this perspective, I want to consider Cooke’s third tent pole – monotonicity.  The issue is whether the ratcheting that is the pooling of adjacent violators (PAV) tool in isotonic regression could introduce a significant bias in the final determinations of probability distributions.  My conjecture is that it can – based in part on the strong differences that Cooke shows between his “bd” and “id” distributions.  This conjecture is testable (including testing the “significance” aspect of the conjecture).  The approach, a Monte Carlo endeavor, would be to generate hypothetical data using a two parameter fit (background plus linear) to the data.  For these hypothetical data, “statistics as usual” do represent the “observational uncertainty”. The test would be whether “probabilistic inversion” based on the “id” determined “observational uncertainty” would provide an unbiased estimator of the probability distributions that generated the data.    

Now lets consider the possibility of a threshold for the non-background dose response relationship.  With this assumption, the data tell us something, but not too much.  The threshold lies somewhere between a dose of 20 and 80.  Other questions arise.  If the threshold is toward the lower end of the range, that implies that there is considerable inter-animal variability and that should be explored; if the threshold is near the upper end of the range, the modest difference between the response fraction at 80 and at 120 requires explanation, perhaps a difference between the sexes or some sort of saturation mechanism.  

Notice that I have brought in several additional (toxicological rather than statistical) concepts: 

· Toxicological reasons for expecting a threshold

· Inter-animal variability

· Saturation

· An independent background

These all have implications for choosing models to fit.

Once again, I want to remind us that a dose response fit for animal data is only one of the projections needed for a risk estimate expressed as a human dose/probability of response.  Figure 3 is an illustration modeled after Figure 1; it shows typical projections made in a risk analytic construction of a dose/probability-of-response curve for a toxic effect with a threshold.  As with Figure 1, it provides context for this review by distinguishing regions of regulatory significance and regions with data.  The challenge of assessment is to make projections from regions (shown in pink) where empirical data can be obtained to regions of potential concern.  There may be human data, but where these are weak or non-existent, it may be necessary to project animal data – shown in the pink region in the back of the Figure 1 to a region of human dose response (also shown in pink).  Here the projection from the (human) pink region where there may be data to the level of concern is shown as an aqua dotted line (with a brown dotted linear line also shown as a reminder).  The other critical projections are the fit to the animal data (the subject of this workshop) shown as the curvy (threshold) black line in the animal data and the projections from the animal to human regions.  Here three projections are shown: a high response and a low response  projection shown as two doubled green lines, and a central response projection shown as a solid red line.  We believe the latter is the least ambiguous and most stable of such projections and is the one we recommend. 

Figure 3:  Illustration of typical dose response projections made in a risk analysis involving a threshold for response.  Pink clouds show regions where there may be data, animal or human; extrapolations may be required from animals to humans and from high doses where there are data to low doses where effects may still be of concern.  The illustrated projections in this case require additional information: information about human inter-individual variability for human low dose projections and scaling assumptions for animal to human extrapolation.  We recommend use of the central animal response point for animal to human extrapolation shown as a solid red line. 

[image: image274.png]P
ss

\s\





The principal lesson illustrated in the three figures is that developing a dose response relationship suitable for use in a risk assessment makes use of a considerable amount of toxicological information beyond a set of experimental data points.  Additional information is used in extrapolating from animals to humans and in extrapolating to low doses for human exposure.  Some critical elements for human dose/probability of response can’t be derived at all from animal experiments: background incidence of health effects is one such element; human inter-individual variability is another.  In contrast, there are good toxicological reasons to believe that other critical elements can be extrapolated from animal experiments, the slope of a dose/cancer probability of response, for instance, or the threshold for a dose that overwhelms homeostatic protective measures.  Thus toxicology provides an essential context for making the interpretations that go into developing a risk assessment; statisticians and statistical methods also play an essential role, but it is a role that must be specified by that context and by the needs of the risk analyst/regulator.  

We can summarize those needs as a series of questions.  Each has unanswered uncertainty that statisticians can help clarify and each goes beyond the matters examined in this workshop:

· Is there an effect?

· What is a favored D/R model

· How good is the evidence for it?

· What are plausible alternative choices? And their relationship to the evidence

· What are human risks at relevant (low dose) exposures?

· What is the role of background?

· What is the full package of information that we bring to bear on these questions?

And there is a final question:

· Can toxicologists and statisticians communicate better?

Improving communication is not easy; but one of the real contributions of this workshop has been to encourage improvement.  And as Weisueh Chiu pointed out, the issues here represent a relatively safe area for communication; we now need to move to the more difficult areas suggested by the questions above. 

Reference

Hattis, D, and R. Goble. 2007. Uncertainties in Risk Assessment for Carcinogenesis: A Road Map Toward Practical Improvements; White Paper, Clark University, Worcester, MA April 2007.   

Comment on Cooke’s Paper
A Weakness in the Approach?

Jouni T. Tuomisto

National Public Health Institute (KTL)

Kuopio, Finland
This is a brief comment on Cooke’s idea that a distribution over model parameters should capture the observable uncertainty in the bio assay data.  While the exposition of this idea seems to flow smoothly toward the intended conclusion, I can imagine situations in which this approach would seem to run into trouble.

Imagine we had bio assay data like that of the BMD technical guidance document, except that the number of exposed animals at dose 21 was not 49 but 49,000, with 15,000 showing the response. The percentage responses are the same, but the very large number of animals in the dose group 21 means that the uncertainty in the percentage response will be very small.  

Indeed, for dose group 21 we can be 90% certain that the number of animals responding on an independent iteration would be between 14,832 and 15,167. That translates to a percentage response between 30.3% and 31%. By contrast, dose group 60 with 45 animals, 20 of which showing the response, leads to 90% confidence that the percentage response on iteration of this experiment lies between 31% and 56% . Since dose response models predict percentage response, or equivalently, probability of response, it is difficult to see how a distribution over model parameters could ever capture the “observational uncertainty” created by this lopsided bio-assay experiment.  

It seems that the observational uncertainty as defined by Cooke is limited to situations where the original bio assay design is repeated. Then, the probability distribution of a particular dose group is interpreted as the distribution of outcomes that will be observed when the original design is  repeated over and over again. It is clearly good to have such an interpretation for the distribution that can be tested and observed.

However, the problem is that we should be interested in the physiological and toxicological mechanisms and their realization as a dose-response curve, which can be observed in bioassays. The mechanisms are obviously not dependent on particular dose group sizes, so the uncertainties about the dose-response curve reflecting the mechanisms should not either. The tricky question is how to define the uncertainty in a way that is independent of group size but still can be observed with a particular group size in a bio assay.

This numbers of animals in this example are not meant to be realistic, but are meant to draw attention to a weakness in the method Cooke proposes.  

Response to Comments
Roger Cooke, Resources for the Future

Dept. Mathematics Delft University of Technology
Nothing is more rewarding to a scientist than having his/her views seriously studied by highly esteemed colleagues. The reward lies not in seeing one’s views prevail, but in seeing Reason prevail - a bit purple perhaps, but this is after all our common purpose.  As such I feel very richly rewarded with the comments of these reviewers. Dr. Rhomberg’s first three paragraphs summarized my proposed approach so perfectly that I feared he would agree with me completely - a fear that proved unfounded. Dr. Tuomisto’s pesky little example proved even more fearsome.  All reviewers accept the value of having a model independent characterization of observational uncertainty – Dr. Rhomberg is a little circumspect in this regard, the others are more emphatic. That is a very significant shift relative to current practice, in which uncertainty characterization is model dependent. I’m taking that to the bank.  The issues the reviewers raise are addressed in order of appearance. 

Tom Louis

The tent pole discussion needs a little clarification. Tent poles 2 and 3 (integrated uncertainty analysis and monotonicity) are points of departure not rigid principles. They serve to circumscribe the cases for which the Isotonic Regression - Probabilistic Inversion (IR-PI) approach should make sense. Monotonicity, for example, is not a physical or biological law. Paracelsus - the father of toxicology - said ‘the poison is the dose’
.  Ingested to excess, any food will kill, but the dose response relation is surely not monotonic! If one had biological reasons for doubting monotonicity in the relevant dose regime, then one should not erect this tent pole - but then one should also not restrict attention to monotonic dose response models. Restricting oneself to monotonic models is implicitly assuming monotonicity. In this case the standard product form of the likelihood function would not reflect our beliefs. Isotonic regression is the appropriate way to impose the monotonicity assumption.

I think the second tent pole is a bit under appreciated. Imagine that we had to do an integrated uncertainty analysis, like those referenced in the introduction of my article. Such studies take account of the uncertainty of a source term, the uncertainty in airborne dispersion models, uncertainty in deposition models, uncertainty in transport through the food chain, uncertainty in exposure, uncertainty in dose response - lets stop there. Suppose our uncertainty in dose response is captured by an uncertainty distribution that depends on dose. It might be a mixture of models where the mixing coefficients depend on dose, or a distribution over model parameters that varies with dose, or some combination of these. On each Monte Carlo sample we would sample a source term, a set of dispersion coefficients, a set of coefficients for deposition modeling, a set of transfer coefficients for the transport models, sample a distribution of exposed people, and for each person compute the dose received on that sample. Tent people 2 assures that we can factor in dose-response uncertainty by sampling a set of parameters from the appropriate distribution of a dose response model and apply this model, with sampled parameters, to each individual. Hence, on each sample, we apply a monotonic dose response function. If we sample ‘favorable parameters’ then these should apply to every exposed individual in the sample, and similarly for ‘unfavorable parameters’. If we do not capture dose response uncertainty via a distribution on model parameters (contra tent pole 2)  then we could seriously under estimate the overall uncertainty. Suppose we had a distribution for response probability at each possible dose, but did not have these in the form required by tent pole 2. We should have no alternative but to sample a response probability separately for each exposed individual. Not only would this by much more burdensome, it would also be wrong. If the dose response relation is unfavorable, then it is unfavorable for everyone. Moreover, it could easily happen that the dose response probabilities on a given sample would not be monotonic in dose.

A few points must be conceded.  How would this approach work with continuous, as opposed to quantal, response? I don’t see a problem with probabilistic inversion, but characterizing the observational uncertainty might be problematic. How would it handle null or complete responses? Not very well. Again, the problem would lie in characterizing the observational uncertainty in such experiments. This is similar to estimating a binomial probability in such cases, the MLE would be 0 or 1.

As for low dose extrapolation, I believe that statistical analysis of bio assay data sets should be confined to the range of measured doses. In going outside this range, the statistical problem changes into an expert judgment problem. 

Lorenz Rhomberg

Dr. Rhomberg eloquently describes the toxicologist’s frustration with an analysis in which the data is shorn of all toxicological information - this is his second way. In the first way he offers abundant contextual information that could alter or disable a purely statistical analysis. My interpretation of the four conclusions drawn from the first way is that quantifying uncertainty in dose response is really an expert judgment problem, not a statistics problem. I agree; in the EU-USNRC joint uncertainty studies, quantifying uncertainty in dose response relations for ionizing radiation was treated as an expert judgment problem.  However, - as he points out - this does undermine the whole point of the workshop. Indeed, Resources For the Future hosted a workshop on expert judgment in 2006 (see http://www.rff.org/rff/Events/Expert-Judgment-Workshop.cfm ). 

With regard to observational uncertainty, Dr. Rhomberg remarks that we are really interested in Question 1:  “In view of our one sample outcome, how likely is it that the unknown true mean probability of response lies at any one of its various possible values?” However, we characterize our uncertainty by asking a different Question 2: “If the sample mean of our one observation were the true mean, how much variation around it would we get, were we to test many more sets of the same number of animals?”  This is spot on.  I would say it a bit differently: If we want to treat the quantification of uncertainty in dose response as a statistical problem (the point of the workshop!) then we must make an assumption to characterize observational uncertainty. The assumption I propose is that the answer to Question 2 is also the answer to Question 1. The questions are different but the answers (by assumption) are the same.  Other postures are also possible. The Bayesian posture depicted in Figure 1 of my article gives different answers to the two questions, but the differences are not great. The important thing is that we characterize observational uncertainty is some model independent fashion, in order to see how well models can capture this uncertainty. 

Dr. Rhomberg then asks “why shouldn’t the uncertainties around a model’s predictions of the responses at tested doses differ from the unmodified original observational uncertainty?”  They should indeed - if we are certain that the model is true, which we generally are not.

One reason for demanding that our dose response models recover the observational uncertainty, is that this gives us more leverage in assessing model adequacy. The degree to which “certain model forms labor under these constraints” might tell us something. In particular, I would like to know if the threshold and barrier models to which I had to resort have any biological plausibility. Might this not help data sets per se say something?

Rob Goble

Prof. Goble does an admirable job in characterizing the concerns of the risk analyst / regulator. These concerns kick in at low dose exposures of humans, very much not the subject of statistical analysis of bio assay data. The extrapolations to low doses and to humans certainly involves different and larger uncertainties than those involved in the analysis of bio assay data. The point I take away from the papers in this workshop, however, is that we as a community haven’t yet sorted out how to do the bio assay uncertainty characterization.  

I am pleased that the goal of a model independent characterization of observational uncertainty is generally accepted. There may be better ways of characterizing this, different targets if you will. Prof Goble for example questions whether monotonicity and isotonic regression are always appropriate.  I don’t see the potential for bias in the example he sketches.  I could imagine a follow-up workshop in which the test data are not taken from real studies, as was he case here, but are concocted to stress the modelers in specific ways. It would be a move from bench testing to stress testing.  

Prof. Goble’s role as risk analyst makes him particularly sensitive to the demand for clarity and transparency. Uncertainty estimates must be defendable. That is exactly why we need a model independent characterization of uncertainty.  I’m hearing agreement that this is “good and appropriate science”.

Jouni Tuomisto

Dr. Tuomisto seems to have found a real weakness in the approach – one that I had not anticipated before hand. In the situation he describes, the PI-IR approach would not work. I don’t know how other approaches would fare, but I suspect that we would all have trouble.  This is a good example for the stress testing workshop.

What does this mean? For one thing, it means that our observational uncertainty is a influenced by how we design our bio assay experiments. With bizarre designs we might get bizarre results. Once we are aware of this, we shouldn’t be surprised, but should figure this into the experimental design.

Dr. Tuomisto’s “the tricky question is how to define the [observational] uncertainty in a way that is independent of group size but still can be observed with a particular group size in a bio assay”. I fear that that just isn’t possible. Our uncertainty is inherently bound up with sample size. 

Chapter 3
Uncertainty Modeling in Dose Response

Using Non-Parametric Bayes:

Bench Test Results

Lidia Burzala

Delft University of Technology,
The Netherlands

Thomas A. Mazzuchi

George Washington University,

Washington DC
We illustrate the analysis of uncertainty in dose response using the nonparametric Bayesian model developed by Gelfand and Kuo [1991]
. This model has been used in accelerated life testing, where the probability of failure is assumed to be an increasing function of physical stress. Very roughly, the model starts with a prior distribution over all non-decreasing functions expressing probability of response as a function of dose. The prior is specified by choosing (i) a prior mean response function P0(d) giving the mean probability of response as increasing function of dose d, and (ii) a parameter α controlling the spread of the prior around the mean. α is similar to the ‘equivalent observation’ parameter used in standard binomial-beta updating. We find that setting α equal to the number of experiments in each bioassay, plus one, gives best results.  This prior distribution over all non-decreasing dose response functions is then updated with the results of the bioassay experimental data. The updating is done with Gibbs sampling, and we obtain, for each dose level, a distribution over the probability of response at that level. This can be used to generate a distribution over the number of responses in each experiment, and this distribution may be compared with the binomial distribution with parameters n*, p* where n is the number of subjects given dose d, and p* is the observed percentage responding to dose d. The agreement varies from good to poor. The Gibbs sampling must be done at each dose level to obtain the uncertainty distribution at that dose. 
The report breaks into two main parts: the first part presents short description of the nonparametric Bayesian approach, the second part illustrates the analysis of data sets.
1. Nonparametric Bayesian approach
We present here the nonparametric Bayesian approach to uncertainty modeling in dose response. The Bayesian approach provides the mechanism to combine data with the prior information to produce updated results in the form of posterior distributions, a combination of the prior distribution (derived using prior information) and the likelihood function derived from the data. 

In our analysis, we assume that the number of responses, 
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The prior is a distribution over the class of right continuous, non-decreasing functions taking values in 
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, then the posterior approaches the Maximum Likelihood Estimate (MLE). 

Unfortunately the joint posterior distribution, obtained from (1.1) and (1.2), is too complicated to allow an analytical solution, especially for obtaining the marginals. Therefore, we introduce one of the most commonly used Markov Chain Monte Carlo methods - the Gibbs sampler, which can be used to generate the marginal posterior densities. We follow investigation of Gelfand and Kuo (1991). The Gibbs Sampler requires successively resampling the following conditional distributions:
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where: 
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The second conditional distribution is defined as follows:
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Given the aforementioned conditional distributions we can perform the Gibbs sampling as follows:

· specify the initial value 
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Then we sample again from Multinomials (using
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. This schema is repeated r times; as a result we obtain
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The posterior mean of 
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As we have mentioned, our sampling procedure is conducted with v parallel replications each taken to r iterations. Note that the choice of v determines how close our density estimates is to the exact density at the r-th iteration, whereas the choice of r determines how close the density estimate at r-th iteration is to the actual marginal posterior density. Therefore, values for r and v to obtain smooth convergent estimates are strictly dependent on the application and the prior information about the problem studied. If we are interested in other dose levels than those in our bioassay experiments, we will have to run the Gibbs sampler for each new dose level.
Computations of Benchmark dose (BMD), the dose for which 
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, is not easy in case of nonparametric Bayesian model. We propose some approximation procedure in order to find BMD.
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According to Gelfand and Kuo, the conditional density estimate for p* (the potency curve at the non - observed dose 
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where 
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The procedure below can be executed to find an approximation of BMD.
· Find i s.t. 
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· Calculate 
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· Repeat the previous step until you will get ‘enough close’ approximation of 
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2. Analysis of the data sets 

Below, we present four data sets obtained from different experiments on rats and mice. Each of them is analyzed using the nonparametric Bayesian approach with base distribution 
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 (where M is the number of experiments) and precision parameter
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. In order to compare how far the prior information is from the data, we present a table which supplies the maximum likelihood estimate 
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The posterior mean and variance for the pi for 
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, are summarized in the tables. In order to examine the impact of precision parameter on the results, we present the figures with prior means together with posterior means. Notice that the plots are made by linear interpolations based on the means at each dose level. 

The main purpose of this report is to quantify uncertainty in our dose response model. The aim is to analyze the model’s suitability to recover the observational probabilities. We would like to answer the question: what is the uncertainty on the number of experimental subjects responding in each experiment. We assume that the uncertainty on the number of responses in a random repetition of each experiment follows a binomial distribution with the numbers of experimental subjects and the probability of response which is given by the percentage observed on the experiment. This uncertainty represents the observational uncertainty, which we further call binomial uncertainty. In order to check how the nonparametric Bayesian model recovers this uncertainty, we sample the probabilities of responses at each observational dose level from our model and generate the number of responses from the binomial distribution with the appropriate number of experimental subjects. The results of these calculations can be used to compute the cumulative distribution function on the number of responses (nonparametric Bayesian cdf on the number of responses) as a mixture of binomials.

However, it sometimes happens that the percentage of responses at lower dose level is higher than the percentage of response at higher dose level. In such situations we apply the so called Pooling Adjacent Violators (PAV) algorithm
 in order to create the increasing values of probabilities of response. The results obtained from this algorithm are then used to generate binomial cdf in order to represent the uncertainty on the number of responses (we further call it isotonic uncertainty). 

The aforementioned distributions on the number of responses are presented in the figures with the following notation: green lines (stairs) indicate the binomial uncertainty, blue lines (stairs) represent the isotonic uncertainty. The nonparametric Bayesian cumulative distributions on the number of responses are plotted by solid, red lines. 

2.1 Data set from the BMD Technical Guidance document 

     (\http://www.epa.gov/ncea/pdfs/bmds/BMD-External_10_13_2000.pdf) 
	Dose
	Number of Subjects
	Number of Responses

	0
	50
	1

	21
	49
	15

	60
	45
	20


Table 2.1.1. Data set 1 (BMD).
Description of data set: 

The first data set consists only three dose levels at which 50, 49 and 45 experimental subjects were observed. At zero dose, one of the 50 experimental subject responded. However the probability of response at this level is not so high (0.02), therefore it should not cause additional problems. Notice also that at the last dose level we can observe 20 responses from among of 45 experimental subjects. This suggests that data set 1 does not provide information about the whole potency curve. We do not know for example what dose is enough to induce the response of 80% of the experimental subjects.
Convergence:
The Gibbs sampling procedure was implemented for an extensive experimental range of iteration-replication combinations. It was found that stable estimates could be obtained using 1500 replications and 100 iterations of the Gibbs sampling.
Results: 
	
	Dose levels

	MLE
	      0.0200           0.3060           0.4440
         0.2500           0.5000           0.7500
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Table 2.1.2. MLE and prior
	
	Dose levels

	Posterior mean
	
	0.0389
	0.3056
	0.4567

	variance
	1.0e-003 *
	0.2144
	0.5805
	0.7457


Table 2.1.3. Posterior mean and variance
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Figure 2.1.1. Prior and posterior mean.
The above figure presents the results from Bayesian model with three values of precision parameter: 
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. Recall that this parameter controls the strength of belief in the prior guess for 
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. The above figure confirms this role. It can be observed that the results for 
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, whereas, the posterior obtained from model with 
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Uncertainty distributions:
The figures below present the cumulative distributions on the number of responses for dose levels 0, 21 and 60 with the number of experimental subjects as in table 2.1.1. We follow the notation as it was described in the introduction to section 2. Note that the calculations for nonparametric Bayesian were performed with different values of precision parameter, namely:
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	Figure 2.1.2 Nonparametric Bayesian with 
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	Figure 2.1.3 Nonparametric Bayesian with 
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	Figure 2.1.4 Nonparametric Bayesian with 
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Conclusions: 

An obvious conclusion follows from the figures above. Bayesian model with 
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 recovers the uncertainty on the number of responses the best. It should not surprise us, since for this parameter the posterior mean approaches the MLE. Recall that for this value of precision parameter the posterior is based only on the data. However, the fit at dose zero is worrisome; it seems, that the best fit at dose zero is obtained from model with 
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Table below presents the results for BMD.
	BMR
	BMD

	0.1
	6.234

	0.05
	2.460

	0.01
	-


Table 2.1.4. BMD

The BMD for 
[image: image159.wmf]01

.

0

=

BMR

 cannot be computed, since 
[image: image160.wmf])

0

(

))

0

(

1

(

)

(

P

P

BMR

BMD

P

+

-

=

 is lower than the posterior mean at zero dose. 

2.2 Frambozadrine 
	 
	Dose(mg/kg-day)
	Total no rats
	Hyperkeratosis

	Male

	 
	0
	47
	2

	 
	1.2
	45
	6

	 
	15
	44
	4

	 
	82
	47
	24

	Female

	 
	0
	48
	3

	 
	1.8
	49
	5

	 
	21
	47
	3

	 
	109
	48
	33


Table 2.2.1 Data set 2 (Frambozadrine).
Description of data set: 

Table 2.2.1 presents the data set obtained from the experiments on male and female rats. The main purpose of these experiments was to examine the effect of Frambozadrine. As we can observe, this data set supplies only partial information about the potency curve (at the higher dose level we observe around 50% responses in case of males and around 70% responses in case of females). Similar to the previous data set, responses at dose level zero are observed in both groups. This suggests that there are some other factors which are responsible for occurrence of hyperkeratosis. In these studies we assume that as the dose level increases, the probability of response increases as well. Unfortunately the data are not always monotonic in dose. In the experiments on male rats, we can observe that at dose level 1.2, the percentage of response (0.133) is bigger than at the higher dose 15 (0.091). A similar situation occurs with females, where at dose 1.8 the probability of response (0.102) is bigger than the probability of response (0.064) at dose equal to 21. Note that although males are exposed to lower dose levels than females, they react stronger than females. As an example: the probability of response at dose level 1.2 is 0.133 in case of males, whereas in case of females the probability at dose level 1.8 is only equal to 0.102. Similar conclusions follow from the experiments at the next dose levels. 
Convergence:

In order to find suitable parameters for analysis of data set 2, we perform Gibbs sampling for an extensive experimental range of the iteration-replication combinations. We found that stable estimates could be obtained by using 1500 replications and 100 iterations of the Gibbs sampling in case of the data obtained from the experiments on males. Whereas, in case of experiments on females, the estimates become stable with 1000 replications and 100 iterations of Gibbs sampler. The same parameters are recommended during analysis of combination of both data sets.
Results: 

The analysis of data set 2 is presented in the following way: we first analyze the data obtained from experiments on males, then we analyze the data from experiments on females, finally we analyze them jointly, without distinguishing gender.

· Males
	
	Dose levels

	MLE
	  0.0430          0.1330        0.0910       0.5110
  0.2000          0.4000        0.6000        0.8000
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Table.2.2.2. MLE and prior
	
	Dose levels

	Posterior mean
	0.0536
1.23x10-4
	0.1135
1.02x10-4
	0. 1554
1.84x10-4
	0.5108
1.06x10-3

	variance
	
	
	
	


Table.2.2.3. Posterior mean and variance
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Figure 2.2.1. Prior and posterior mean.
In the above figure, problems with monotonicity are visible. Recall however, the posterior based on an increasing prior, necessarily increases as the doses increase. Observe that the results for 
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 are closest to the prior, whereas in case of 
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, the results approach MLE. Note that at the dose levels where the violation of monotonicity occurred, we have the worst fit of data. 

Uncertainty distributions:

Since the posterior satisfies the assumption of monotonicity we would like to check how our model recovers the isotonic uncertainty. The Figures below present the cumulative distributions on the number of responses for each dose level with the number of experimental subjects as in table 2.2.1. ‘NPB’ denotes the CDF obtained from the nonparametric Bayesian model (red lines), ‘binun’ indicates the binomial uncertainty (green stairs) and ‘isoun’ the isotonic uncertainty (blue stairs). Since the results for 
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 approach the MLE the best, we perform experiments with this parameter.
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	Figure 2.2.2 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 0.
	Figure 2.2.3 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 1.2.
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	Figure 2.2.4 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 15.
	Figure 2.2.5 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 82.


Conclusions:
Since in male data set, violation of monotonicity occurs, the Pooling Adjacent Violators algorithm was applied. The differences between binomial and isotonic uncertainty can be observed at the doses where the problems with monotonicity occur. Note that the fit for dose level 1.2 approaches better the binomial uncertainty, whereas the fit for the next dose (15) approaches better the isotonic uncertainty. Since the posterior mean for these doses are not sufficiently close to the MLE (especially at dose level 15), the binomial fits are not satisfactory. Moreover, our model does not recover the binomial uncertainty at dose level zero very well. At the last dose, red lines track the blue lines very closely, which can be confirmed by the small difference between posterior mean and the MLE (compare results from tables: 2.2.2 and 2.2.3). 

Table below presents the results for BMD.
	BMR
	BMD

	0.1
	9.29

	0.05
	0.71

	0.01
	0.019


Table.2.2.4. BMD

· Females

	
	Dose levels

	MLE
	0.0625         0.1020           0.0640         0.6880
  0.2000         0.4000           0.6000         0.8000
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Table.2.2.5. MLE and prior
	
	Dose levels

	Posterior mean
	
	0 0590
	0.0949
	0.1272
	0.6780

	variance
	1.0e-003 *
	0.0941
	0.0742
	0.1560
	0.9965


Table. 2.2.6. Posterior mean and variance
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Figure 2.2.6. Prior and posterior mean.
For the female data, the violation of monotonicity also occurred. However, as in the previous case, the results (posterior means) increase as the dose levels increase. 

Uncertainty distributions:
The figures below present the cumulative distribution functions on the number of responses for each dose level with the number of experimental subjects as in table 2.2.1. We perform the calculations with 
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	Figure 2.2.7 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 0.
	Figure 2.2.8 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 1.8.
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	Figure 2.2.9 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 21.
	Figure 2.2.10 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 109


Conclusions: 
The uncertainty analysis for the female data is quite similar to the analysis of the male data. From the figures above we observe almost the same problems as in case of male data: bad fits for the first dose, violation of monotonicity impairs the ability to recover the uncertainty. Since the model approaches the MLE the best at the last dose level, we observe a very good fit at this dose (see figure 2.2.10). 

Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	25.57

	0.05
	10.35

	0.01
	0.67


Table.2.2.7. BMD

· Males and Females

	
	Dose levels

	MLE
	0.0530      0.1330      0.1020      0.0910      0.0640      0.5110     0.6870
0.1250      0.2500      0.3750      0.5000      0.6250      0.7500     0.8750
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Table.2.2.8. MLE and prior
	
	Dose levels

	Posterior mean
	
	0.0571
	0.1052
	0.1300
	0.1540
	0.1799
	0.4969
	0.6870

	variance
	1.0e-003 *
	0.0634
	0.0348
	0.0241
	0.0210
	0.0551
	0.2762
	0.2778


Table.2.2.9. Posterior mean and variance
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Figure 2.2.11. Prior and posterior mean.
Although the impact of gender on the results is visible, we would like to perform the nonparametric Bayesian approach for both data sets without distinguishing gender. The analysis of such a data set can be difficult since the problems with monotonicity occurred for almost all doses (see table 2.2.8). As we can observe from the above figure, the posterior mean obtained from model with 
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 approaches MLE the best. The question which we would like to answer is whether the combination of data sets from experiments on males and females alters the uncertainty on the number of responses.

Uncertainty distributions:
The figures below present the cumulative distributions on the number of responses for each dose level with number of experimental subjects for combined data sets. The experiments were performed with 
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	Figure 2.2.12 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 0.
	Figure 2.2.13 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun)uncertainty distributions for dose level 1.2.
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	Figure 2.2.14 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 1.8.
	Figure 2.2.15 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 15.
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	Figure 2.2.16 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 21.
	Figure 2.2.17 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 82.
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	Figure 2.2.18 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 109.
	


Conclusions:

Analogous to the previous analysis, the best fits are obtained for the doses where we do not have problems with monotonicity. The exception is zero dose level. Again, we cannot say that the PAV algorithm helps our model to recover the uncertainty. Moreover, the analysis above confirms our conjecture that this data should be considered separately. This can be confirmed by comparing i.e. results for dose 1.2 (male data) – see figures 2.2.3 and 2.2.13, or results for dose 21 (female data) – see figures 2.2.9 and 2.2.16. 
The Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	10.20

	0.05
	1.05

	0.01
	0.15


Table.2.2.10. BMD

2.3 Nectorine

	
	concentration (ppm)

	
	0
	10
	30
	60

	Lesion 
	# response  /  # in trial

	Respiratory epithelial adenoma in rats
	0/49
	6/49
	8/48
	15/48

	Olfactory epithelial neuroblastoma in rats
	0/49
	0/49
	4/48
	3/48


Table 2.3.1a. Data set 3 (Nectorine)

Description of data set: 

Data set 3 presented above, was obtained from experiments on rats. The purpose of this experiment was to check the activity of Nectorine on rats’ lesion: respiratory epithelial adenoma and olfactory epithelial neuroblastoma. The following dose levels were examined: 0, 10, 30 and 60 (ppm). Table 2.3.1a presents the results of these experiments. As we can observe, it supplies only limited information about the potency curve. At the highest dose level we observe only 15 responses from among of 48 experimental subjects (which gives the probability of response 0.3125) in case of the first type of lesion, whereas in the second type, only 3 responses from among of 48 rats (which gives the probability of response 0.0625). Moreover the second data set suggests that the Nectorine is less potent for the second type of lesion. Indeed, we did not observe any responses at the first two doses, whereas at the next two dose levels only few responses from among of 48 were noted. The worrisome situation in this data occurs at the last two doses. It shows that the percentage response at smaller dose level (30) is bigger than at the higher dose (60). To sum up: this data set does not give much information about behavior of rats on the examined substance, and moreover the data do not satisfy the assumption of monotonicity. Therefore we consider the analysis of both this data under the assumptions that the lesions occur independently and the rats in the adenoma experiment were not analyzed for neuroblastomas, and conversely. The bioassay for either lesion is presented below.

	
	concentration (ppm)

	
	0
	10
	30
	60

	Lesion 
	# response  /  # in trial

	Respiratory epithelial adenoma and Olfactory epithelial neuroblastoma in rats 
	0/49
	6/49
	12/48
	18/48


Table 2.3.1b. Data set 3 (Nectorine)

Convergence:

The numerous experiments, with different values of parameters which are required to perform Gibbs sampling, confirm that stable estimates could be obtained using 1000 replications and 100 iterations.
Results: 
 
· Olfactory epithelial neuroblastoma and Respiratory epithelial adenoma:

	
	Dose levels

	MLE
	0.0000           0.1220         0.2500           0.3750

  0.2000           0.4000         0.6000           0.8000
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Table. 2.3.2. MLE and prior
	
	Dose levels

	posterior mean
	
	0.0191
	0.1323
	0.2557
	0.3850

	variance
	1.0e-003*
	0.0700
	0.2520
	0.2530
	0.5063


Table. 2.3.3. Posterior mean and variance.
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Figure 2.3.1. Prior and posterior mean

As we can observe from the above figure, the dose – response curve increases as the dose levels increases. The model approaches the MLE very well for precision parameter 
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. Therefore, we should expect good results in the uncertainty analysis.  

Uncertainty analysis:

Since a positive number of responses is observed only at the last three dose levels we plot the cumulative distributions on the number of responses only for them. We present the results from model with 
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	Figure 2.3.2 Nonparametric Bayesian with 
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(NPB), and binomial (binun) uncertainty distributions


Conclusions: 

After pooling data (2.3.1a), we do not have problems with monotonicity. Recall also that the posterior mean obtained from model with 
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 approaches MLE very well. Therefore, the fits which based on this model are very good example of recovering uncertainty on the number of responses. 

The Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	7.03

	0.05
	2.81

	0.01
	-


Table. 2.3.4. BMD

The BMD for 
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 is lower than the posterior mean at zero dose. 

2.4 Persimonate

	 
	continuous
	total metabolism
	survival adjusted

	 
	equivalent
	 (mg/kg-day)
	tumor incidence

	B6C3F1 male mice inhalation
	0
	0
	17/49

	
	18ppm
	27
	31/47

	
	36ppm
	41
	41/50

	Crj:BDF1 male mice inhalation
	0
	0
	13/46

	
	1.8ppm
	3.4
	21/49

	
	9.0ppm
	14
	19/48

	
	45 ppm
	36
	40/49


Table 2.4.1. Data set 4 (Persimonate)
Description of data set: 

Table 2.4.1 presents the data set from the experiments on two types of male mice. Both of these data sets provide extensive information about the potency curve. A worrisome situation can be notice at zero dose level, where a large number of responses occurred. In case of the second type of mice we observe 13 responses out of 46, whereas in case of the first type of mice, 17 responses out of 49. Problems of monotonicity occur also. The percentage  response at dose level 3.4 (in mg/kg per day) is higher than at dose level 14. (precisely: 0.429 at dose 3.4, whereas at dose 14, 0.396). As in the second data set (Frambozadrine), we would like to check whether the combination of data affects the uncertainty.

Convergence:

We perform the Gibbs sampler with 1500 replications and 100 iterations in case of the first data set.  For the second data set and combined data, 2000 replications together with 100 iterations is used, since for these values the stable estimates are obtained.

Results:

We first analyze the data obtained from the experiments on the first type of mice, then data from the second type of mice, finally we analyze both of them, without distinguish differences between types of mice.

· B6C3F1 male mice inhalation

	
	Dose levels

	MLE
	 0.3470           0.6600            0.8200
 0.2500           0.5000            0.7500           
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Table 2.4.2. MLE and prior
	
	Dose levels

	posterior mean
	0.3531
	0.6489
	0.8132

	variance
	0.0010
	0.0007
	0.0006


Table 2.4.3. Posterior mean and variance
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Figure 2.4.1. Prior and posterior mean.
From the above figure, it follows that the posterior means obtained from model with 
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, approach the MLE the best. 
Uncertainty analysis:
The figure below presents the results for uncertainty on the number of responses from model with precision parameter 
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 , at dose levels 0, 27 and 41 mg/kg per day (starting from the left).
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	Figure 2.4.2 Nonparametric Bayesian with 
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(NPB), and binomial (binun) uncertainty distributions.
 


Conclusions:

Although we do not have problems with monotonicity, and the posterior obtained from model with 
[image: image203.wmf]4
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 approaches the MLE very well, the uncertainty analysis for zero dose does not look so promising. However, model recovers the binomial uncertainty very well at the rest dose levels.
The Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	5.48

	0.05 
	2.32

	0.01
	0.105


Table. 2.4.4.. BMD
· Crj:BDF1 male mice inhalation

	
	Dose levels

	MLE
	 0.2830           0.4290         0.3960        0.8160
   0.2000           0.4000          0.6000       0.8000   
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Table 2.4.5. MLE and prior
	
	Dose levels

	Posterior mean 
	
	0.2788
	0.3884
	0.4519
	0.8045

	variance
	1.0e-003 *
	0.3562
	0.1576
	0.2482
	0.6116


Table 2.4.6. Posterior mean and variance
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Figure 2.4.3. Prior and posterior mean
The above figure shows the violation of monotonicity. The problem appears at dose 3.4. As we can observe, the results from model with 
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, posterior approaches the MLE the best at the first and the last dose level, whereas at the other two doses the problem with monotonicity occurred.

Uncertainty analysis:

We consider our model with precision parameters: 
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. The results are presented below.
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	Figure 2.4.4 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 0.
	Figure 2.4.5 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 3.4.
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	Figure 2.4.6 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 14.
	Figure 2.4.7 Nonparametric Bayesian (NPB), isotonic (isoun) 
and binomial (binun) uncertainty distributions for dose level 36.


Conclusions:

From the analysis above, it follows that model with 
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 recovers the binomial uncertainty only at the last dose levels. Analogous to the previous data sets, problems with fit at zero dose occurred as well. 

The Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	2.34

	0.05
	1.17

	0.01
	0.32


Table. 2.4.7.. BMD

· Crj:BDF1 male mice inhalation and B6C3F1 male mice inhalation:

	
	Dose levels

	MLE
	0.3160        0.4290        0.3960       0.6600        0.8160     0.8200
0.0000        0.2000        0.4000       0.6000        0.8000     1.0000   
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Table 2.4.8. MLE and prior

	
	Dose levels

	posterior mean 
	
	0.3065
	0.3946
	0.4528
	0.6467
	0.7803
	0.8389

	variance
	1.0e-003 *
	0.1815
	0.0751
	0.1070
	0.1909
	0.0930
	0.1092


Table 2.4.9 Posterior mean and variance
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Figure 2.4.8. Prior and posterior mean.

Here is a worrisome situation. According to experience with other datasets, the best fit to data (MLE) should be obtained from model with 
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. However, it follows from the picture above, that the posterior obtained from model with 
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 for dose levels 3.4, 14 and 36 approaches the MLE better.

Uncertainty analysis:
The analysis below was done in order to check whether the combination of data from different type of mice affects the uncertainty on the number of responses. We perform the analysis for for a ‘compromise value’  
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	Figure 2.4.9 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 0.
	Figure 2.4.10 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 3.4.

	[image: image220.emf]10 12 14 16 18 20 22 24 26 28 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of responses

CDF

 

 

NPB

binun

isoun


	[image: image221.emf]20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of responses

CDF

 

 

NPB

binun

isoun



	Figure 2.4.11 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 14.
	Figure 2.4.12 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 27.
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	Figure 2.4.13 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 36.
	Figure 2.4.14 Nonparametric Bayesian (NPB), isotonic (isoun) and binomial (binun) uncertainty distributions for dose level 41.


Conclusions:
According to the results from figure 2.4.8, good fits are obtained only for doses 27 and 41. Problems with recovering uncertainty at dose levels 3.4 and 14 can be explained by the violation of monotonicity at these doses. Note that MLE for dose levels 36 and 41 are very close to each other, which can induce such bad fits. If we compare separate analyses for mice of different types with the one presented above, the better fits are obtained for separate data sets. Compare i.e. the uncertainty analysis for dose level 36 (second type of mice) – see figures: 2.4.7 and 2.4.13 or in case of the first type of mice, analysis for the last dose 41 – see figures: 2.4.2 and 2.4.14.

The Table below presents the results for BMD. 
	BMR
	BMD

	0.1
	2.92

	0.05
	1.59

	0.01
	0.53


Table. 2.4.10.. BMD
3. Final conclusions

From the analysis above, it follows that the nonparametric Bayesian model recovers the observational uncertainty very well in cases where the precision parameter takes the value 
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 (where M is the number of experiments). With this choice of 
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, Bayesian model is  fully specified and is not ‘tweaked’ to the data. The posterior mean generally, though not always, agrees with the MLE. If there is no violation of monotonicity in the data, this value of the  precision parameter recovers the uncertainty on the number of responses almost perfectly. The exceptions are the fits for zero dose. Moreover, due to violation of monotonicity at some dose levels produces unsatisfactory fits. This is anticipated already by the results of posterior means. Unfortunately, the PAV algorithm does not improve the model’s ability to recover the uncertainty. Perhaps, some stronger methods to “repair” our data are needed. In this report we combined data sets in order to check whether pooling of data alters the uncertainty. In case of data sets: 2 and 4 we concluded that better fits are obtained from the separate analysis. However in case of data set 3, the situation changed, since pooling data recovers the monotonicity in the data. 
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Comment: Math/Stats perspective on

Burzala and Mazzuchi’s Paper
Non-Parametric Bayes
Roger M. Cooke

Resources for the Future

Dept. Math. Delft Univ. of Technology

The authors are applauded for bringing  the non-parametric Bayesian (NPB) methods to bear on the dose-response uncertainty modeling problem. They develop a practical heuristic for choosing the precision parameter (, and show that good results are obtained, at least in cases where the percentage responses are monotone in the dose. 

Like all Bayesian methods, this approach has the virtue of resting on a solid mathematical foundation, in which the assumptions are clearly visible. The prior distribution is a distribution over all increasing potency curves. Normally, the choice of prior has to be defended and subjected to a sensitivity analysis, showing the final results’ sensitivity to the choice of prior. While choosing and defending a distribution over all increasing potency curves might appear to be a daunting task, the use of the Dirichlet process prior reduces this task to choosing an initial potency curve P0(x) and choosing the precision parameter (. Their choice of P0(x) has nothing particular to recommend it, but the authors are able to show that, with a suitable choice of (, the prior’s influence in the final results is not great.  The ability to draw these conclusions with simple and transparent arguments is a major strength of this method. The comparisons with observable uncertainties as a way of assessing performance of the NPB model demonstrates that Bayesian methods are amenable to external validation. 

Mathematical issues
However, there are some downsides to this method, from a mathematical point of view.  

(i) The first is simply the complexity of the model. The exposition in section 1 is very clear, but the material itself is complex and will tax the patience of non-mathematical readers. The Gibbs sampler relies on numerical experimentation to get stable results. Practicing toxicologists and risk analysts will shy away from methods they cannot easily understand and explain to stakeholders and decision makers. Note that the updating formula (1.3) is like the standard Dirichlet updating of the ‘equivalent observations’ expressed by (, but increased with a term 
[image: image226.wmf]J

i reflecting the number of animals which would not have died at any dose lower than di, but died at di. The terms 
[image: image227.wmf]J

i are not observed but are ‘forecast’ within the updating process.   Developing a simple version of this story, which is mathematically correct and at the same time suitable for general audiences is a challenge for the future. 

(ii) A second issue concerns the posterior mean potency curve at doses other than those in the bio assay data. According to equation (1.8) this posterior potency curve is a piece-wise linear function between the mean potencies at the observed doses. This would seem to lock us into a linear extrapolation between observed doses. 

(iii) Under current practice, the main regulatory instrument is the BMDL, that is, the 5%-tile of the dose which realizes the Benchmark Response BMR. It should be possible to give BMDL results, in addition to the BMD results reported in the paper. Also, it would be helpful to have a picture of the computational burden. 
Comparison with BMA
Two Bayesian models were deployed in the Bench Test exercise, Bayesian Model Averaging (BMA, Whitney and Ryan, this volume) and NPB. Test driving the two Bayesian models on common problems affords some interesting comparisons. I focus on three:  

Choice of Prior:  Choice of prior for the NPB, as discussed above, comes down to choosing a prior potency curve P0(x) and a precision parameter (. The choice is clear and can be easily subjected to sensitivity analysis. Choosing a prior in BMA involves first selecting a set of models and then choosing a prior distribution over these models. The first of these choices is probably more critical. Assessing sensitivity to the choice of prior would seem to be less straightforward than for NPB; the space of potential models is large.  In addition, some models may have common elements. An example arises in the case of models 3 and 4 in Whitney and Ryan’s Table 4, the model fitted values for the parameters (1, (2,  and (3 are shown in parentheses: 
Model 3:  
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Model 4: 
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Evidently, for these parameter values models 3 and 4 are effectively identical to     

Model(3=4):  
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By giving models 3 and 4 equal prior weight, we effectively double the weight which Model(3=4) would have had it been used instead of Models 3 and 4. Alternatively, if  we expanded the initial set of models to include Model(3=4), then this model would get triple weight. Given the small number of models, the decision to retain both models 3 and 4 when they collapse to the same model, and not  to include Model(3=4) ab initio, requires some defense. It seems to me that NPB dodges his particular bullet.

Calculation of BMDL: It was noted above that the NPB did not produce values for BMDL, whereas BMA does.  Is this caused by the difficulty the posterior density for unmeasured doses? Since the current regulatory context requires BMDL’s . NPB has some work outstanding in this regard.

Extrapolation to low dose: It is my belief that extrapolation outside the range of observed data requires non-statistical input; either in the form of expert judgment, or prior constraints motivated from physical models. Strictly speaking, extrapolation to low dose is outside the charge of this Bench Test exercise, and all of the approaches will have to accommodate extra-statistical information for such extrapolation. I find it easier to imagine how BMA might deal with this, than NPB, but this my simply reflect my lack of imagination.  

Conclusion
NPB is certainly a contender. Its advantages include transparent choice of priors, easy sensitivity analysis with respect to choice of prior, and solid mathematical foundation. Its main disadvantages are complexity, need for numerical routines, and inability – at least for the time being – to calculate BMDL’s.
Comment: EPI/TOX View on Non Parametric Bayes

Dosing Precision

Chao W Chen

National Center of Environmental Assessment

U.S. Environmental Protection Agency 

Washington, D.C.

Introduction

I appreciate the opportunity to review this thought-provoking paper by Burzala and Mazzuchi from the TOX-EPI viewpoint. The paper proposes to analyze uncertainty in dose response relationship using non-parametric Bayes over the class of all non-decreasing dose-response functions. The key feature of their approach is that a parameter ( controlling the spread of prior around the mean dose-response is defined. The authors found that setting ( equal to (M + 1) produces the best results, where M is the number of dose levels in a bioassay. Uncertainty on dose-response is defined as model’s suitability to recover the observational probability, or equivalently, the uncertainty about the number of experimental subjects responding in each experiment. This paper evokes both general comments on uncertainty in dose response modeling, and specific comments on the approach proposed to characterize uncertainty about dose-response relationship.
 Biological and statistical uncertainties


Both biological and statistical uncertainties are important in risk assessments. This paper concerns mainly statistical uncertainty at high doses. Since the major uncertainty in risk assessment is the shape of the dose-response curve at low doses, not at doses where bioassays are conducted, it is relevant to ask the question: Is it possible to extend the approach to incorporate biological uncertainties? The challenge is how the usually incomplete biological information can be incorporated into does-response modeling, and how the uncertainty is characterized. For instance, it is often argued that a threshold effect exists when a U-shape dose-response curve is observed. However, observing a U-shape dose response curve does not automatically lead to a threshold effect because the chemically-induced effect at low doses could be easily lost in the background noise by statistical and/or biological uncertainties. Assuming that observed response at dose d is given by f(d) = background rate + P(d), it can be shown that, by randomness alone, there is a significant probability of observing a “dip” below the background rate when the p(d) is small. Biological uncertainty may also impinge on the analysis of a dose-response model at low doses. As an example, suppose that the background rate of tumor incidence is 5%, and further assume that exposure to a small amount of an agent at dose d prevents 40% of “initiated” cells from progressing to become background tumors by some biological reasons such as inhibition, or competition. This implies that the background contributes only 60% of its tumor incidence when exposed. Thus, at low doses, the observed tumor incidence is f(d)=0.05*0.6+P(d) which can be less than the background rate of 5% when p(d) is small relative  to the background rate. This leads to a U-shape dose-response curve, as often observed in bioassays. However, we can still have P(d)>0 for all dose d; that is, there is no threshold for the excess dose-response function, P(d). In this case, the compound would have a therapeutic benefit below certain doses, but only for a population with high background tumor rate. Confronted with an observed non-monotonicity in response at low dose, how can we determine whether this is attributed to a biological mechanism, or to mere statistical fluctuations? This also raises an issue about the reasonableness of using isometric uncertainty (PAV) algorithm when the observed non-monotonicity is real.

Frequentist versus subjectivist interpretation of uncertainty about risk prediction at low doses


It is timely for risk assessors to consider Bayesian framework and to take advantage of its flexibility in incorporating biological information as well as its interpretation of probability as degree of belief or state of knowledge, rather than as a relative frequency. It may not always be easy to interpret a risk number using a frequentist interpretation. What does a “lifetime risk of 10-7” mean? Should this be interpreted as a limiting relative frequency of occurrence of a specified cause of death in a suitable population? Is this population statistically homogeneous, that is, does any subsample chosen before observing cause of death have the same statistical properties? This of course is quite unlikely. If the population is not homogeneous, then the lifetime risk must be interpreted as limiting relative frequency under ‘random sampling’.  What arguments would compel us to regard any given individual as a “random” sample from this population? Assigning such a limiting frequency to any given individual involves subjective degree of belief. These questions become more insistent when risk estimate of p = 10-7 is derived from a model with low-dose linearity; a default assumption that is presumed to be conservative (health protective), and thus, a subjective judgment.

Specific Remarks


Regarding the non-parametric Bayesian model by Burzala and Mazzuchi, it might make sense from a toxicological viewpoint to allow the precision parameter α to depend on dose. For example, we might contemplate using α1 and α2 respectively for low and high doses. This would allow us flexibility in capturing the low dose uncertainty. This differentiation is desirable because there is increasing evidence showing that mode of action observed at high doses may not apply at low doses. If this is not feasible, then “model averaging” would seem to have more practical utility. By considering a class of dose-response functions (such as function with low-dose linearity) to support our prior distribution, we could capture our low dose uncertainty more transparently.

Research needs


In conclusion, it is useful to underscore topics for future research that emerge from discussion of uncertainty in dose response.

1. The major uncertainty concerns low dose response. The challenge is to incorporate incomplete biological information in estimating risk and characterizing the uncertainty of risk estimates. 

2. Comparison of Non-Parametric Bayes with other methods such as isotonic regression method (Cooke), Bayesian procedure (Leonid et al, 2007), model averaging (Ryan and Whitney) etc. would be most useful.

3. Develop models that can incorporate biological information.

Comment: Regulator/Risk perspective  on
Burzala and Mazzuchi’s Paper
Failure to Communicate

Dale Hattis

George Perkins Marsh Institute, 

Clark University, 950 Main Street, 
Worcester, MA 01610

My title, of course comes from the classic film “Cool Hand Luke”.  In the course of administering a series of terribly brutal beatings, the prison warden advises the prisoner, “I’m afraid what we have here is a failure to communicate.”  I of course will be significantly gentler than the prison warden, but the point should be taken that if elaborate Bayesian mathematical/statistical modeling analysis is to successfully inform health risk assessments, then the modelers must take considerable pains to relate their mathematical formulations to recognizable causal properties of the toxicological processes being represented.  

Why is this important?

· Past experience and theories of the causal mechanisms of harm are important components of our “prior” information.  In contrast to positivist-oriented “frequentist” school statisticians, who want to draw all information for analysis from “the data” in a particular data set, I would think that Bayesians should be especially mindful that causal mechanism information be incorporated into the mathematical structures used for analysis. 

· Only by incorporating a few discrete and identifiable possibilities related to causal mechanism theories can a quantitative analysis shed even meager light on which mechanisms are made more vs less likely by the always-limited available data. If there are multiple plausible causal theories for a particular relationship between a toxicant and a toxic outcome, then there should be some meta-theory incorporating variants structured to represent this mechanistic uncertainty.  

· Risk projections for doses outside the range of observations critically depend on mechanistic theories and their quantitative implications.

In this regard I have a particular problem with the “prior” used in the subject paper.  The only constraint placed on the mathematical functions considered for prediction of the incidence of effects is that the functions must be non-decreasing with increasing dose.  Paradoxically this has problems in imposing too little and to much restriction on the functions used, relative to a reasonable set of mechanistically driven hypotheses.  There is in a sense too much restriction because there are in fact some respectable mechanistic theories that can produce non-monotonic dose response behavior over some ranges of dose (Andersen and Conolly, 1998; Bogen, 1998; Slikker et al. 2004a and 2004b).  These include:  

· Induction of repair processes that can do more good than harm over a specific dose range of the inducing chemical by reducing or counteracting “background” damage processes caused by other agents and/or general oxidative metabolism,

· Toxicants that mimic signaling molecules (e.g. hormones) often bind to some related receptors with greater affinity than others.  Sometimes binding to one receptor induces an opposite response than binding to another, leading to a switch in the direction of parameter changes affected by the signaling when a higher affinity receptor approaches saturation and increases in binding with increasing dose predominantly involve binding to the lower affinity type of receptor molecule, resulting in signal induced changes in the opposite direction at some moderate dose (high enough to saturate many of the high-affinity but less of the low affinity receptors) than at lower doses. 

This of course raises the question, “How would your mechanistic perspective help you to a different analysis of the specific data sets provided for this workshop?  

For the first data set I would initially note that the presentation of the problem is rather unrealistic:  We are given no information about either the chemical (e.g. structure; toxic properties of related chemicals) or about the endpoint (which could allow us to draw inferences from toxic mechanisms associated with that endpoint for other chemicals).  Even without this routinely available information, what is apparent is that the dose response relationship is convex upward—the effect flattens out toward a plateau as dose increases to higher levels.  The most common mechanism for this kind of flattening is an approach to saturation either of a metabolic activation process, or of binding to a receptor.  This is usually described by Michaelis-Menten enzyme kinetics:
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Strictly, this type of equation applies to cases where a single molecule of substrate or signaling molecule binds to the active site of the enzyme/receptor.  It produces a linear dose response at the limit of low dosage (“where ‘Dose’ is small relative to Km), but an approach to a maximum (Vmax)  at the limit of high doses, where “Km” is small relative to ‘Dose’.  There is a generalization, called the “Hill equation” that approximates a case where more than one binding molecule of a polymeric enzyme or receptor is needed to cause effects:
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While saturating at high doses, this generalization of the equation allows for some upward turning nonlinearity at lower doses.  I would use the former equation (with n implicitly set to 1 unless there were good reason to suspect the upward turning low dose nonlinearity reflected in the second equation.

For the second data set, we at least have some good information about the nature of the response.  “Hyperkeratosis” is a thickening of the skin, most famously associated with exposure to inorganic arsenic at very high levels.  The dose response data in this case show little or no response over a modest background until very high dose levels are reached.  From this I would draw the mechanistic inference that we are most likely dealing with an effect that takes place by overwhelming some set of homeostatic controls.  I would therefore adopt a log probit mathematical form, based on the idea that the individuals in a population are likely to have a lognormal distribution of individual thresholds for manifesting this response, as has been the case for many other examples of classical toxicity (Hattis et al. 1999; Hattis 2008).  If the data were to require a generalization of this basic model to achieve a reasonable fit, I would usually postulate a mixture of two or more lognormal distributions, on the theory that there might be subgroups (either because of genetic differences, past exposures to interacting substances or pathologies) each of whose population response functions might be described by its own separate lognormal component. The basic reason why lognormals are assumed is derived from the likely possibility that the factors that cause individuals to differ tend be numerous and to exert multiplicative effects on individual susceptibility.  Multiplying random variables means that the logarithms of the variable influences on susceptibility add, and the variability distribution for the overall sum of the logs is expected to approach a normal distribution.  To model the human risk distribution in this type of case I would use the animal data only to estimate and uncertainty distribution for the animal ED50.  This is in part because the data from genetically uniform animals, raised under tightly restricted environmental conditions and dosed at very close to the same age, are expected to reflect a considerably smaller amount of variability than the out bred human population.  As previously described (Hattis et al. 2002) I would use empirically derived uncertainty distributions for human variability and other considerations now treated as single-point “uncertainty factors” in the standard type of EPA analysis.

For both the third and the fourth data sets it is clear that we are dealing with tumor responses, but with apparent saturation at high doses.  The most likely general form is therefore a one- or multi-stage model (in the usual polynomial form) with a Michaelis-Menten transformation of dose.  I recently had occasion to apply just this model to the analysis of tumor data for a chemical with activating metabolism (trichloropropane) in the course of a review of the proposed IRIS analysis for that chemical.  In that case I found that Michaelis-Menten parameters for metabolic activation in different organs could be estimated from existing DNA adduct data (La et al. 1995) at two doses (Tables 1 and 2).  This allowed me to transform the administered doses to “low dose equivalent” doses (the doses that would have been sufficient to induce the observed DNA adducts if there had been no approach to Michaelis-Menten saturation of the internal doses as indicated by the DNA adducts).  The result was a great improvement of the fit of a one-stage model to the data and a 2-3 fold upward revision in the tumor risk expected at low doses (Tables 3 and 4).

In conclusion, mechanistic perspectives can often shed light on appropriate “priors” for model forms.  Such “priors” are particularly needed and helpful for analyses of data sets with limited numbers of data points, and where projections of risks are needed outside the range of the direct observations.

Table 1

DNA Adduct Levels in Relation to Dose for Different Rat Organs, And Estimated Local Km’s for Saturable Metabolism

	Organ
	Dose (mg/kg)
	Adducts (µmole/mole guanine)
	Std deviation
	Std error
	30/3 Adduct Ratio b
	Suggested Km (local) (units of external mg/kg)

	Forestomach
	3
	3.7
	a
	0.92a
	
	

	
	30
	14.6
	
	3.62
	3.9
	14.6

	
	
	
	
	
	
	

	Glandular stomach
	3
	3.8
	
	0.94
	
	

	
	30
	20.4
	
	5.06
	5.4
	28.3

	
	
	
	
	
	
	

	Kidney
	3
	6.6
	1.4
	0.7
	
	

	
	30
	38.9
	5
	2.5
	5.9
	35.8

	
	
	
	
	
	
	

	Liver
	3
	5.4
	0.7
	0.35
	
	

	
	30
	47.6
	21
	10.5
	8.8
	198

	
	
	
	
	
	
	

	Pancreas
	3
	5.3
	1
	0.5
	
	

	
	30
	37.8
	12.8
	6.4
	7.1
	64.1

	
	
	
	
	
	
	

	Spleen
	3
	0.8
	0.06
	0.03
	
	

	
	30
	7.1
	1.8
	0.9
	8.9
	210

	
	
	
	
	
	
	

	Tongue
	3
	4
	
	0.99
	
	

	
	30
	20.4
	
	5.06
	5.1
	25


aCases where no standard deviation is given represent the results of measurements on pooled samples from different animals.  Their standard error is estimated from the square root of the average sum of squares of the coefficients of variation (standard deviation divided by the mean) for organs where there were separate measurements on 4 animals.

bThis should be 10 if there were no saturation.  The fact that it is less than 10 in all 7 cases for this table is very unlikely to have occurred unless there was some saturation of a process in the pathway on the way to the formation of the adducts.
Table 2

DNA Adduct Levels in Relation to Dose for Different Mouse Organs, And Estimated Local Km’s for Saturable Metabolism

	Organ
	Dose (mg/kg)
	Adducts (µmole/mole guanine)
	Std deviation
	Std error
	60/6 Adduct Ratio b
	Suggested Km (local) (units of external mg/kg)

	Forestomach
	6
	19.8
	
	7.38
	
	

	
	60
	41
	
	15.28
	2.1
	8.1

	Glandular stomach
	6
	28.1
	
	10.48
	
	

	
	60
	208.1
	
	77.57
	7.4
	148.1

	Kidney
	6
	4.4
	2.9
	1.45
	
	

	
	60
	32.5
	11.3
	5.65
	7.4
	146.6

	Liver
	6
	12.1
	4.6
	2.3
	
	

	
	60
	59.3
	21.7
	10.85
	4.9
	45.9

	Brain
	6
	0.43
	0.11
	0.055
	
	

	
	60
	3
	0.2
	0.1
	7.0
	118.6

	Spleen
	6
	0.61
	
	0.23
	
	

	
	60
	7.8
	
	2.91
	12.8
	Not meaningful

	Heart
	6
	0.38
	
	0.14
	
	

	
	60
	2.4
	
	0.89
	6.3
	86.6

	Lung
	6
	0.77
	0.16
	0.08
	
	

	
	60
	5.3
	0.2
	0.1
	6.9
	113.3

	Testes
	6
	0.32
	0.14
	0.07
	
	

	
	60
	1.2
	0.6
	0.3
	3.8
	26.4


aCases where no standard deviation is given represent the results of measurements on pooled sample from different animals.  Their standard error is estimated from the square root of the average sum of squares of the coefficients of variation (standard deviation divided by the mean) for organs where there were separate measurements on 4 animals.
bThis should be 10 if there were no saturation.  The fact that it is less than 8 of 9 cases for this table is very unlikely to have occurred unless there was some saturation of a process in the pathway on the way to the formation of the adducts.
Table 3

Results of Fitting a One-Stage Carcinogenesis Model to the Alimentary System Tumor Data for Rats Using Administered Dose vs Two Measures of “Low Dose Equivalent” Estimates of Delivered DNA-Adduct Doses

	Data Set and Dosimeter
	P for Fit
	MLE q1
	UCL q1
	BMD10
	BMDLo

	Full data set, nominal doses
	4E-04
	0.199
	Not done
	0.529
	Not done

	Full data set, systemic Km low dose equiv doses
	0.054
	0.262
	0.314
	0.402
	0.336

	Full data set, forestomach only Km low dose equiv doses
	0.46
	0.351
	0.417
	0.300
	0.253

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	3 lower dose points nominal doses
	0.009
	0.240
	0.294
	0.438
	0.358


Table 4

Results of Fitting a One-Stage Carcinogenesis Model to the Alimentary System Tumor Data for Mice Using Administered Dose vs Two Measures of “Low Dose Equivalent” Estimates of Delivered DNA-Adduct Doses

	Data Set and Dosimeter
	P for Fit
	MLE q1
	UCL q1
	BMD10
	BMDLo

	Full data set, nominal doses
	8E-10
	0.216
	Not done
	0.489
	Not done

	Full data set, systemic Km low dose equiv doses
	3E-07
	0.262
	Not done
	0.401
	Not done

	Full data set, forestomach Km low dose equiv doses
	0.059
	0.664
	0.823
	0.159
	0.128

	
	
	
	
	
	

	
	
	
	
	
	

	3 lower dose points nominal doses
	3E-06
	0.288
	0.294
	0.365
	0.358

	3 point systemic Km low dose equiv doses
	2E-05
	0.324
	Not done
	0.325
	Not done
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Response to Reviewers

Lidia Burzala

Response to Reviewers

Lidia Burzala

We are very grateful for the reviewers’ thoughtful comments. They are addressed in order of appearance.
Roger Cooke’s comments
Ad. (i)

We agree that the NPB model itself is complex and could tax the patience of nonmathematical readers. Friendly software enabling the nonmathematical user to get results by only specifying the inputs would help. A good non-technical narrative would also help;  non-technical users don’t need to understand the details, but they do need to understand the “storyline”. 

Ad. (ii)

Formula (1.8) is indeed a linear extrapolation between 
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, and this is a result of the form of the piecewise prior potency function P0(x).  Burzala (2007) reviews the work of authors who have proposed convex, concave and ogive prior potency curves, and these could be employed as well.
Ad. (iii)

The BMDL, that is, the 5% - tile of the dose which realizes the Benchmark Response BMR, can be obtained in some cases, but at considerable computational cost.  Observe that the posterior mean of 
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 (1.6), is the average of the potency curves at dose x, determined by the MCMC runs. Therefore, the BMDL – the dose which realizes the 5% tile of the distribution of P(BMD), can be approximated  in an MCMC sample by a dose at which 5% of the sample potency curves is above P(BMD) (see Figure 1).
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Figure 1: BMR, BMD and BMDL for a set of sample dose response curves
The procedure to derive BMDL is presented below.

1. Find i such that 
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 are defined in the report by (1.6).

2. Count how many potency curves at dose 
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are above P(BMD). Note that the potency curve based on the s - th  MCMC run at dose 
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3. If a percent of curves at dose
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, which are above P(BMD) is less than 5%, then choose
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which are above P(BMD). Repeat this step until you will find the dose 
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 for which 5 % of the potency curves from MCMC runs are above P(BMD) (
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 is then BMDL).
If a percent of curves at dose
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, which are above P(BMD) is bigger than 5%, then find the biggest 
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above P(BMD) is smaller than 5%. Then, choose
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which are above P(BMD). Repeat this step similar to the previous case.

The Results for the BMDL are given in Table 1. The time required for the computations (in MATLAB) is given in Table 2

Table 1: BMDL results for data sets. 
	Data set
	BMR
	BMD
	BMDL

	1st data set
	BMR = 0.1          
	6.23
	2.601

	
	BMR = 0.05
	2.46
	    - (*)

	
	BMR = 0.01
	     - (**)
	-

	2nd data set –male
	BMR = 0.1          
	9.29
	0.816

	
	BMR = 0.05
	0.71
	-

	
	BMR = 0.01
	0.019
	-

	2nd data set –female
	BMR = 0.1          
	25.57
	8.600

	
	BMR = 0.05
	10.35
	0.554

	
	BMR = 0.01
	0.67
	-

	2nd data set –all
	BMR = 0.1          
	10.20
	1.08

	
	BMR = 0.05
	1.05
	0.279

	
	BMR = 0.01
	0.15
	-

	3rd data set
	BMR = 0.1          
	7.03
	4.061

	
	BMR = 0.05
	2.81
	-

	
	BMR = 0.01
	-
	-

	4th data set - I type
	BMR = 0.1          
	5.48
	-

	
	BMR = 0.05
	2.32
	-

	
	BMR = 0.01
	0.105
	-

	4th data set - II type
	BMR = 0.1          
	2.34
	-

	
	BMR = 0.05
	1.17
	-

	
	BMR = 0.01
	0.32
	-

	4th data set - all
	BMR = 0.1          
	2.92
	0.32

	
	BMR = 0.05
	1.59
	-

	
	BMR = 0.01
	0.53
	-


(*) BMDL is not possible to calculate, since the percent of the potency curves at dose 
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 is bigger than 0.05. 

(**)  BMD is not possible to calculate, since
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Table 2: Computational burden of DR and BMD, BMDL calculations. 

	Data set
	Time of DR calculations
	Time of BMD and BMDL calculations

	1st data set
	1.54 min
	BMR = 0.1          
	0.005 sec

	
	
	BMR = 0.05
	      - (***)

	
	
	BMR = 0.01
	-

	2nd data set –male
	2.14 min
	BMR = 0.1          
	0.003 sec

	
	
	BMR = 0.05
	-

	
	
	BMR = 0.01
	-

	2nd data set –female
	1.35 min
	BMR = 0.1          
	0.002 sec

	
	
	BMR = 0.05
	0.002 sec

	
	
	BMR = 0.01
	-

	2nd data set –all
	2.61 min
	BMR = 0.1          
	0.002 sec

	
	
	BMR = 0.05
	0.0023 sec

	
	
	BMR = 0.01
	-

	3rd data set
	2.84 min
	BMR = 0.1          
	0.002 sec

	
	
	BMR = 0.05
	-

	
	
	BMR = 0.01
	-

	4th data set - I type
	1.47 min
	BMR = 0.1          
	-

	
	
	BMR = 0.05
	-

	
	
	BMR = 0.01
	-

	4th data set - II type


	2.71 min
	BMR = 0.1          
	-

	
	
	BMR = 0.05
	-

	
	
	BMR = 0.01
	-

	4th data set - all
	4.61 min
	BMR = 0.1          
	0.0034 sec

	
	
	BMR = 0.05
	-

	
	
	BMR = 0.01
	-


(***) Not possible to calculate BMDL
Chao Chen‘s comment

Chao Chen suggested that it might make sense from toxicological viewpoint to allow the precision parameter 
[image: image255.wmf]a

 to depend on dose. For example, two different parameters; 
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 and 
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 could be used respectively for low and high doses. Although this idea is intuitively appealing, it may cause mathematical difficulties. If we consider concatenating two Dirichlet processes for high and low dose, with precision parameters (1 and (2, then we must ensure that no discontinuities in potency curves arise at the boundary between these two regimes. It is not clear how, or indeed whether, this can be arranged.
Dale Hattis‘s comment

Dale Hattis indicated some problems with the constraints on the prior, namely the non – decreasing behavior of prior functions with increasing dose. As he suggested, there are in fact some respectable mechanistic theories that can produce non – monotonic dose response behavior over some range of dose. The NPB model does not take into account additional information such as chemical structure or toxic properties of chemical.  It is appropriate for the simple cases where only bio assay data are available without any other information.  

Quantifying Dose-Response Uncertainty Using

Bayesian Model Averaging

Melissa Whitney and Louise Ryan

Department of Biostatistics

Harvard School of Public Health

Comment: Math/Stats Perspective 
On Whitney and Ryan’s paper

Bayesian Model Averaging
Michael Messner

USEPA

Office of Ground Water and Drinking Water
Introduction

The views expressed here are my own, and not those of EPA.  My job title is Mathematical Statistician, so the “Math/Stats View” seems fitting. T hat said, my perspective is that of statistical decision analysis.  My experience is that data are usually dirtier (more complex) than the examples studied in this workshop. There are typically more explanatory variables and confounders.  Moreover, the usual errors (precision, bias) are also accompanied by blunders, so we always need to look for and deal with outliers.  My own blunders have been due to not considering a sufficiently full set of models in analyzing dose-response data.  My expectation is that model averaging with sufficient set of competing models will suggest a good plan for obtaining new data (value-of-information analysis).
Background
Anticipating the paper by Whitney and Ryan, I prepared by gathering some general information about Bayesian Model Averaging (BMA).  BMA has a home page:


http://www.research.att.com/~volinsky/bma.html
an R package: 


http://cran.r-project.org/src/contrib/Descriptions/BMA.html
and a tutorial: 


http://www.stat.colostate.edu/~jah/papers/statsci.pdf 

A nice, clear paper on BMA is “Variable selection and Bayesian model averaging in case-control studies,” by Valerie Viallefont; Adrian E. Raftery, and Sylvia Richardson, in Statistics in Medicine (20:3215-3230), 2001.

I found no guidance for constructing priors to inform BMA.  Although some of the software allows prior weights to be entered for the competing models, how does one select the prior weights?

Some Review Comments
The paper by Whitney and Ryan provides a nice overview of their approach and findings when applying BMA to two of the workshop’s datasets.  Not included in the paper, however, are the interesting details that Dr. Ryan so often described as “weird” in her workshop presentation.  Each of those weird behaviors may have been an opportunity to learn something and I have to wonder what was learned, but not described in the paper.  

For one, didn’t the bootstrap sampling (for the first problem) sometimes generate odd-looking (weird) MLE dose-response functions?  Did that happen whenever the bootstrap sample failed to include healthy subjects at the very lowest dose or diseased subjects at the highest dose?  Something may have been learned here about the bootstrap when applied to small binary datasets.  When is the bootstrap appropriate?  What advantages or disadvantages does the bootstrap offer, when compared to Markov Chain Monte Carlo sampling?

An Idea / Proposal 

Rather than challenge BMA and other methods with real data (where we don’t know the “correct” model or parameter values), why don’t we generate some artificial data using at least 3 different model forms (where we select the model and the parameters). We can create data sets of any size, but most interesting or challenging would be sets large enough to be somewhat informative regarding parameter values, but no so large as to give high confidence about the model. We might use six dose levels, 40 subjects each.  Without revealing the models, we ask our analysts to analyze the data using different methods (classic, simple Bayes, model averaging, reverse-jump MCMC, other).  Ask the analysts to provide estimates of benchmark dose in the form of central estimates and 95% confidence or credible intervals.  Ask the analysts to also estimate the probability of illness at one or two particular dose levels, again reporting central estimates and 95% intervals.  We could then see which methods do best.  
One can imagine variations on this theme. Under the usual reading, model uncertainty is epistemic rather than aleatoric; that is one model generates all the data, but we don’t know which.  However, model uncertainty could also be aleatoric, that is subjects could randomly be assigned different D-R models.  Could BMA detect or “fit” this aleatoric model uncertainty (or should we call this “variability”)?  In the limit, every individual may have his/her own dose-response function, and perhaps none of these is in our limited family of functions.  Is our family large enough to approximate any reasonable aggregate dose-response function?  With excellent information (data from a huge dose-response study), might we learn that all our models are wrong, but that a mixture or model-average characterization is excellent?

Is BMA superior to other methods when “fitting” a case where truth is a mixture of highly-variable subject-specific models?  

Comment: EPI/TOX Perspective on

Whitney and Ryan’s paper

Use of bayesian model averaging for addressing uncertainties in cancer dose-response modeling
Margaret Chu
Modeling to quantitatively assess human cancer risks from exposures to environmental agents has many uncertainties.  What’s the prospect of Bayesian model averaging for reducing or better describing the uncertainties in assessing environmental carcinogenic risks.

Cancer is a multitude of diseases.  The dominant and most flexible theory is that cancer development is multistage and many factors contribute to its progression.  

The number of chemicals in commerce is large.  Only a small number of these have been tested for their carcinogenic potential.  By and large, the 2-year bioassay is still the gold standard for identifying carcinogens.  But the bioassay is maximized for the detection of the agent’s potential for inducing cancer (hazard identification) not for quantitative determination of the magnitude of carcinogenic risk in humans.  A fewer number of chemicals have human data, and  those are mainly from occupational epidemiology studies.

To a large extent the approach for estimating human carcinogenic risks is to relate the dose of a suspected carcinogen to tumor incidence on the basis of animal bioassay results.  

In its 1983 book, Risk Assessment in the Federal Government: Managing the Process, the NRC talks of pervasive uncertainty in risk assessments, that there is no easy solution, and that more, and better, knowledge of the health impact assessed is needed.

The conceptualization of how an agent affects cancer development underpins the modeling.  There’s uncertainty in species differences such as physiology, metabolism, pharmacokinetics, tissue and target organ susceptibilities.  Extrapolations using high dose animal testing to project human cancer risks vary as the biological concept of carcinogenesis varies.  

My opinion is that Bayesian Model Averaging when used appropriately is one of many statistical tools that can help to illuminate uncertainties in cancer dose response analysis.  It has been applied to teasing out critical factors in estimating the risks of patients for cardiovascular diseases-a multifactorial and multistage chronic disease.  

With new experimental tools there’s an explosion of molecular, cellular and pathological information regarding cancer development in humans and animals.  Data and information on carcinogenesis are also more complex.  Bayesian Model Averaging could potentially be used to tease out the contributions of biological parameters in estimating cancer risks for data rich situations.  Bayesian Model Averaging could also be used to analyze Model uncertainties when more then one model is supported by the data.   I think this is an area worth exploring to support the development of a framework for when and how it should be used.

Comment: Regulatorary/Risk Perspective on

Whitney and Ryan’s Paper

Model Averages, Model Amalgams, and Model Choice

Adam M. Finkel

School of Public Health Environmental and Occupational Health
University of Medicine and dentistry of New Jersey
Piscataway/New Brunswick

The question “What must I do about uncertainty?” should prompt not a quick answer, but this return question: “Are you treating this as an estimation problem or as a decision problem?”  Estimators (the people who estimate, that is, not the statistical constructs) see the world differently than “deciders” do, and that is all well and good.  Treat an estimation problem as a decider would, and no harm may befall – but treat a decision problem as if it was an estimation problem, and human, environmental, and financial resources may be squandered or worse.

The estimator’s goal is akin to that of the counterfeiter’s—to produce something that will resemble the original so closely that no one will notice the difference, or perhaps in such a way that glaring differences will occur only rarely.  Failing to achieve such a goal can lead to embarrassment, but could just as well lead to knowledge.  The decision-maker’s goal, on the other hand, is exogenous to the problem itself, and can’t be grafted onto the situation from any generic principles.  An accurate (in the sense of minimizing root-mean-square divergence from the true value) estimator may be a terrible guide to an optimal decision, depending entirely on some raw materials that estimators are trained to ignore – the properties of the available choices and the loss functions associated with any mismatch between the actual consequences of making a choice and the best consequences possible.

The paper by Whitney and Ryan demonstrates elegantly how Bayesian Model Averaging (BMA) could lead to improved estimates, but it does not explore the relationship, if any, between BMA and improved decisions.  In part this reflects the different ways of looking at the world, but in part arises from the narrow estimation problems the workshop attendees were all asked to consider.

In this response, I will explore the disconnect between estimation and decision for the two problems Whitney and Ryan consider (accounting for multiple plausible functional forms of the dose-response relationship, and accounting for a possible systematic difference between the susceptibility of male and female rodents), and then extend my comments to evaluate a more vexing but arguably more common type of estimation problem (amenable to BMA, but with many pitfalls) that the workshop did not present.

1.   Multiple benchmark dose estimates – be careful how you average.

Whitney and Ryan’s analysis of “Dataset 1” using 10 different dose-response models shows clearly that there exists an “objective” alternative to the expert-driven selection of model weights.  Weighting each model by the Bayesian posterior probability that the model is correct given the observed data takes the non-statistical information out of the process, which of course can be seen either as the fundamental strength or the fundamental weakness of the procedure.  To the extent that sound expert judgment gauges which model(s) fit the observed data more or less well because they accurately reflect underlying biological theory, the autonomic nature of the procedure Whitney and Ryan used could be a major disadvantage.  Perhaps one priority for future methods development could be the exploration of hybrid processes that integrate statistical fit and biological insights.

Irrespective of how the weights are derived, however, the results Whitney and Ryan present reveal what to me is a problematic implicit choice about how to average model predictions together, one that underscores the disparity between estimation and decision.  Some estimators are simply ill-suited to being summarized by their arithmetic average.  For example, the ratio of two uncertain quantities is itself uncertain, but if one feels compelled to summarize the resulting pdf via a single statistic, the arithmetic mean of the ratio is a particularly unfortunate choice.  Consider two quantities (they could be risks, in units of statistical fatalities per year, or any other quantity) – A is distributed lognormally with median 8 and logarithmic standard deviation 1.732 (the square root of 3), and B is also lognormal, with a median of 10 and logarithmic standard deviation of 1.  Which risk is larger?  Does it help to know that the arithmetic mean of the quantity [B(A] is approximately 9?  But then does it trouble you to learn that the arithmetic mean of [A(B] is approximately 6?  Is B both nine times larger than A and one-sixth as large as A?
  No: “on average” (in a sense of the typical case), B is slightly larger than A (and there is about a 55% chance B>A), but large possible values of [B(A] and of [A(B] dominate their respective arithmetic means and make it appear that both ratios are greater than 1.

The same pitfall plagues Whitney and Ryan’s calculation of the model-averaged BMDL, which is a summary statistic for a collection of fifth-percentile values taken from 10 different pdfs.  Their “model-averaged BMDL” of 2.9071 is the weighted (arithmetic) sum of the 10 values in the rightmost column of their Table 4.  To a decision-maker, this would imply that human exposure to 2.9071 units of the chemical tested in Dataset 1 is “safe” to a high level of assurance—but only by viewing Table 4 in its entirety can s/he see that there is a 71 percent probability (4 times 0.1772) that the actual lower bound on the BMD is between 0.0064 and 0.0562, a factor of 52 to 454 more protective of human health than the weighted arithmetic mean.  How can the “best estimate of the lower 5th percentile” be a value 50 to 500 times higher than values that have a 71 percent chance of being correct?  The models with large arithmetic values of the BMDL are squelching the signal from the much more plausible models that say the BMDL needs to be set much lower to protect the population.

There is insufficient information in Whitney and Ryan’s paper to calculate an averaged BMDL in what I would argue is the more appropriate fashion – by choosing through nested Monte Carlo simulation a BMD value from each model (the choice of which model to use at each iteration arising out of a random draw determined by the model probabilities, and the choice of BMD conditional on this choice arising from a bootstrap procedure), and then reporting the 5th percentile value from a large number of iterations.
  But an approximate analog to this procedure is simply to compute the (weighted) geometric mean
 of the 10 BMDL values in their Table 4, which equals 0.103 – 30-fold lower than the weighted arithmetic mean, and only 2 to 16 times higher than the BMDLs associated with the four models that actually dominate the probability space.

I still believe, however, that the decision-maker would be best served by a slightly more complete summary rather than by any single average: “we are unsure which model is correct, but four closely-related models that together have about a 70 percent chance of being correct all suggest that a BMDL of roughly 0.01 is necessary to protect the public, while six less-plausible models all suggest the BMDL could be set at either 8 or 20.”

2. Male/Female “differences”—be careful whether you average.


I think Whitney and Ryan would probably agree that this particular hypothetical data set is ill-suited to exploring sex effects in dose-response, as the male and female rodents respond so similarly (the observed response in males at a dose of 82 mg/kg-day was 51 percent, whereas the interpolated response in females at that dose is approximately 50 percent; both data sets show the same “dip” in response probability between approximately 2 mg/kg-day and 20).  I assume that the very low (0.01) posterior probability for model M2 under the BIC approach is another way of stating the more intuitive finding that any differences between the two dose-response curves are difficult to attribute to anything other than random fluctuations in the observed response (the hypothesis that the two sexes are equally susceptible cannot be rejected).  I think it’s also important to note that even if male and female rodents appeared to be systematically different, there is no guarantee that male and female humans will exhibit the same (or any such) difference.  Like the analysis of Dataset I, the purging away of biological insight comes at a cost here as well.

If the “frambozadrine” data set did show a significant sex effect, however, and if we had reason to believe this effect was relevant to humans, the contrast between estimation and decision would be particularly stark and instructive here.  Suppose M2 was highly probable, and implied that males are much more susceptible than females to frambozadrine, such that BMDF =5 while BMDM = 1 (and the BMD for the pooled data would be approximately 3); what decision would make sense here?As always, the only way to think about this sensibly is to consider the loss functions, the consequences of the decision.  If this was only a thought experiment (with multiple opportunities to run this experiment over many substances), and the estimator was rewarded for accurate prediction rather than optimal decision, then it might well make sense to pool or average the data and act as if the BMD was 3.  If there was some fortuitous way to differentially control the exposures of men versus women (perhaps issuing every man a respirator to wear 24/7 that blocked 80 percent of the ambient frambozadrine from being inhaled?), then setting an exposure limit based on BMD = 5 might make some sense.  But in the real world, basing the exposure limit on BMD = 5 would presumably be less expensive – but would result in adverse health effects among males – compared to basing the limit on BMD = 1 and protecting both sexes.  Without some understanding of the marginal costs and marginal benefits of the more health-protective decision, there is no basis for acting on the additional information gained from decoupling the dose-response curves.  Moreover, a decision-maker who anticipated difficulty in explaining what s/he would do if the “for women only” exposure standard was optimal on cost-benefit grounds might well wonder why the analyst is providing information that could not realistically be acted upon.

3. When models really diverge—be careful what you average.
This workshop tackled an important, interesting, but ultimately not very vexing question.  Fitting variants on the same basic models to the data they are supposed to explain is “model uncertainty lite” compared to another kind of model uncertainty in dose-response: what to do when a model (including its closely-related kin) fits the data adequately, but is based on a questionable biological assumption, not resolvable via any analysis of these data?  There are many variations of such “fundamental causal uncertainty” in human health risk assessment, but for simplicity, let’s consider a paradigm case: a dose-response model explains the animal response data well and yields a significant risk estimate associated with an exposure of regulatory interest, but there is a nagging concern, whose probability could be a few percent or far more than 50 percent, that the human risk at this exposure to level would be zero because the interspecies analogy is qualitatively or quantitatively erroneous.  The simplest version of this uncertainty problem (but one the regulatory agencies see all the time in no more complex a form than this) is a “face value” risk estimate of X, but with a probability q that the true human risk is exactly zero (a limiting case of the risk being of magnitude Y (0 < Y < X) with probability q).  Putting aside the problems of subjectivity in assessing q (for the statistical techniques explored in this volume don’t really apply here), the model-averaging dilemma is whether we should think of this risk as having an expected value of pX (where p = [1-q]), and/or act based on this expected value.

My “hurricane parable”
 David Bussard refers to in his comments has been an attempt to show what I’ve always thought was uncontroversial – that the decision one would make if the unknown quantity was exactly (pX +qY) can be very different than (and grossly inferior to) the decision that has the highest value averaged over p and q.

I think Bussard misunderstands my concern: it’s not the act of averaging that troubles me (although my comments up to this point do include concern about how the averaging occurs), but the act of averaging the model predictions rather than averaging the pros and cons of different decisions in light of the model uncertainty.  It should be obvious, I hope, that (assuming the resources needed to evacuate either city are identical) the decision to evacuate New Orleans will incur costs A with probability q, with A proportional to the number of lives lost if the hurricane hits Tampa, and the decision to evacuate Tampa will incur costs B with probability p proportional to the damage to New Orleans.  If the expected marginal benefit of evacuating New Orleans rather then Tampa, which equals [pB - qA], is greater than zero, then that choice is preferable.  Either choice, of course, is preferable to evacuating Mobile, with its expected cost of [pB plus qA].  The point is that the real decision problem involves averaging the consequences, not averaging the model predictions.

Perhaps this analogy suffers from the far-fetched nature of what would or wouldn’t be averaged.  To illustrate the general point that the expected value is meaningful but not necessarily a sensible guide to decision-making, consider instead the decision to invade Iraq.  Assume that 10,000 troops were deemed necessary to find and secure any WMD Iraq may have possessed.  If the probability that there were such weapons at all was assessed at p = 0.01 (the famous “one percent doctrine” that is the title of a 2006 book by Ron Suskind), would we have been tempted to send a force of 100 (the “expected number needed”) soldiers?  Again, the decision problem is to minimize the probability-weighted cost of sending an adequate force for no reason plus the probability-weighted cost of sending no soldiers if the “one percent” assumption was in fact correct.

Now it is certainly possible for the decision corresponding to the expected value of the risk to be sensible, or even no worse than the decision with the highest expected value – but this is only a special case where there is a continuous gradation of possible decisions and when all the relevant loss functions are linear.  If the cost of sending a particular number of soldiers went down in lockstep with the ability of the reduced force to find WMD, then sending one percent of the troops might be the right response to a one percent chance of finding weapons – but you would still get the same answer here in a more defensible way by averaging the costs and benefits rather than by averaging the risk.

Postscript—another way to resolve model uncertainty.
There is another unspoken but very important tension between estimation and decision when it comes to model uncertainty, one that many other fields of analysis have resolved differently from what the thrust of this volume and most of the scholarly writing about model uncertainty in risk assessment recommends.  Every field relies on some fundamental assumptions that are not certain to be correct, and to the extent that analyses use these assumptions or models to make predictions or estimates, they are guilty of “censoring some model uncertainty.”  Certainly the reliance on core beliefs can become slavish, but is it per se wrong to relegate alternative assumptions to explicit or implicit “footnotes” in the analysis?  As a corollary to this question, why does human health risk assessment seem to agonize more than most fields about the alternative predictions that would arise if it turned out that a model not included in the analysis was in some sense correct?

To answer these questions, we have to acknowledge that in theory, “leaving out” any plausible model at any step in an analysis does lead to overconfidence and does open the door to possible misestimation—but we also must acknowledge that in practice, including all plausible models comes with a pricetag.  Expanding the analysis to admit more models means delaying the estimation and any decision that can follow from it, and one danger is that because there can always be “one more model” with non-zero weight to consider, the finish line of the analysis can recede faster than our progress towards it.

Therefore, the pioneers of risk assessment recommended a sensible middle ground—a system that takes more interest in alternative models than do many other fields of analysis, but one that tries to open some escape hatches to avoid “paralysis by analysis.”  Beginning with the landmark “Red Book” in 1983, the National Academy of Science has encouraged EPA and the other agencies that use risk assessment to identify “default” inferences, supported by theory and evidence, that can be presumed reasonable in the absence of information to the contrary.  A system based on defaults could resolve difficult choices about fundamental causal and other model uncertainty in any of three ways, depending on the strength of evidence (biological, statistical, or otherwise) supporting one or more alternatives to each default: (1) reaffirm the Agency’s confidence in the default for a given risk assessment (when no credible evidence supports an alternative); (2) “depart” from the default in favor of a different model, when credible or compelling evidence supports this choice (see below); or (3) present results from more than one model, as an input to sensible decision-making in light of model uncertainty (see above).

Two subsequent NAS committees (Science and Judgment in Risk Assessment (1994) and Science and Decisions: Advancing Risk Assessment (2008)) have tried with limited success to convince EPA to refine its treatment of defaults and departures.  The two key recommendations in Science and Judgment were: (1) that EPA should articulate a philosophy of defaults that would explain how high the evidentiary bar would be before abandoning one—although the members were divided (see Appendices N-1 and N-2 of the report) as to whether the standard should be relatively permissive (eager to accept alternative models when some evidence supports them) or relatively reluctant to abandon a default unless the evidence supporting an alternative was compelling, the Committee was unified in cautioning that EPA not continue to adjudicate these controversies in an ad hoc fashion; and (2) that EPA should further explain, for each specific recurring choice it will face between default and alternative models (e.g., the perennial dilemmas about whether in a given case a positive tumor response in rodents is irrelevant to human risk, or whether allometric interspecies scaling is inferior to a pharmacokinetic model), what specific scientific questions need to be answered in order for an alternative model to meet the hurdle it defined earlier.  The recent Science and Decisions committee reaffirmed these two cornerstones of a sound system for model choice, and was able to agree where the previous group could not on the “height of the bar”—the 2008 report recommended that an alternative supplant a default when evidence showed it to be “clearly superior” (in legal terms, somewhere between a 51/49 “preponderance of the evidence” standard and a “beyond a reasonable doubt” standard).  This committee also encouraged EPA to present multiple risk characterizations in cases where an alternative model was judged less plausible than the default, but where “full disclosure” would benefit from decision-makers and the public seeing what effect it would have on the risk estimate.

Unfortunately, EPA has always resisted the recommendations to codify its philosophy of defaults and to spell out for researchers what quantity and quality of evidence will be necessary for the Agency to replace a default with an alternative.  I have argued (“Too Much of the ‘Red Book’ is Still Ahead of its Time,” Human and Ecological Risk Assessment, 9(5), pp. 1253-1271) that this abdication destroys the incentives for conducting research to improve risk assessment, and encourages advocates to put resources into lobbying (either to promote a half-baked alternative or to influence the weight it will be given in a model-averaging exercise) rather than into research.  More recently, EPA has signaled its distaste for its own defaults, as if they were chosen for bureaucratic convenience rather than in light of the decades of theoretical and empirical support many of them have
 (as if the Agency views using a well-established inference that happens to be a default as akin to “defaulting” on an obligation or doing something reflexively rather than carefully).  In its 2005 Guidelines for Carcinogen Risk Assessment, EPA has claimed it has evolved beyond the need for defaults:

Rather than viewing default options as the starting point from which departures may be justified by new scientific information, these cancer guidelines view a critical analysis of all of the available information that is relevant to assessing the carcinogenic risk as the starting point from which a default option may be invoked if needed to address uncertainty or the absence of critical information.
Putting aside the glaring bias in this statement (if the defaults are worthy of their name, they reflect the presence of crucial information about how physical and biochemical processes work, not the absence of such), this process is illogical as well.  A model that is chosen only after a de novo “analysis of all of the available information” cannot be termed a default any longer, but is instead a judgment about the “correct” model with no presumption that what has been judged correct in past cases has any special claim.
 

Although this new policy does not necessarily move EPA any closer to an embrace of model averaging (it could simply foreshadow a period in which well-supported defaults are abandoned in favor of shaky alternatives, but where only one inference at a time is considered), the promise to “invent the wheel” for each risk assessment suggests a presumption against completing the analysis until model uncertainty is fully explicated.  Perhaps we need an “Environmental Estimation Agency” to manage this open-ended process (or perhaps we already have such an institution in the National Institute of Environmental Health Sciences).  But we need an environmental decision-making agency as well.  I may disagree with specific actions EPA may take, but I expect the Agency to keep its eye on environmental protection as it considers the twin activities of making both predictions and decisions under uncertainty.
Response to Reviewers’ Comments

Melissa Whitney and Louise Ryan,

Department of Biostatistics,

Harvard School of Public Health

 We are grateful for the thoughtful comments of the reviewers of our paper. They raise many important topics which are addressed in order of appearance

Mike Messner

Mike Messner asks how a BMA user should choose a prior distribution:   This is a good question . We have added the following text in the Discussion section of the paper   This added text also addresses the issue raised by another reviewer about the potential role of expert opinion:  “The sensitivity of the model-averaged BMD highlights the importance of careful specification of the prior set of candidate models.   In reality of course, no single model is likely to be “correct”.  The best one can hope for is the use of a sensible model that is flexible enough to capture the key features of the data.  In terms of specifying the model space for the purpose of toxicological dose-response modeling, the set of models allowed for by the EPA’s benchmark dose software are a good start.  It would be of value to expand this set to include additional models, for example, those motivated by biological considerations and perhaps reflecting specific mechanisms of toxicity.   A related question concerns specification of the prior weights assigned to each model.  We have taken the simplest approach of allowing each model the same a priori weight.  However, other approaches are possible.  For example, expert opinion could be used to elicit prior model weights.“  

He also mentions “weird bootstrap results” discussed in the workshop:  A programming error was the explanation for the “weird” results presented at the workshop.  This has been fixed now.  

Regarding the question when and/or whether Bootstrapping is preferable to MCMC:  This question was related to the fact that the bootstrap method sometimes resulted in more “weird” results.  This was actually an artifact of the programming error mentioned above.  The question is not so much “bootstrap versus Markov Chain Monte Carlo sampling”, as much as the frequentist-based approximation (which involves approximating the posterior model probabilities using the BIC model fit criterion) versus a fully Bayesian approach.  In the frequentist approach, one needs an estimate of the variance of the BMD.  We used bootstrap for this.  Other approaches are of course possible.  We include some discussion on this in the final section of the paper.  

The suggestion of a different type of bench test exercise in which data is generated from a model that is hidden from the modelers is an intriguing one. Modelers could compare their BMDLs with the BMDL from the ‘true’ model used to generate the data. As a variation on this theme, the data could be generated by a mixture of models, thus mixing model uncertainty with variability in the data. These are great ideas for another workshop! EPA could render an enormous service by funding this effort.   

Margaret Chu

We are grateful for the supportive suggestions of Margaret Chu, with which we heartily concur. She draws attention to an important feature of BMA, namely that it enables the analysis of model uncertainty when more than one model fits the data.   Dr Chu’s comments did not seem to point to the need for any specific revisions to the paper.  However, her point about our increasing knowledge of mechanisms is reflected in the comment we have inserted into the discussion regarding the inclusion of biologically-based models into the prior model set.  

Adam Finkel
Adam Finkel is certainly thought long and hard about the issues of averaging and raises numerous provocative issues.  Here are our response:

On the tension between this data-driven weighting and expert elicitation of weights:  In our opinion, this tension can be resolved to a certain degree using the BMA framework.  We have taken the simplest approach of weighting all the specified models equally.  There is no reason why expert opinion could not be incorporated to allow some variability in those prior weights.  The data would still be used to calibrate those weights (in terms of the posterior), but building in expert opinion could be very helpful in terms of giving even greater weight to biologically feasible models (assuming they fit the data well and therefore retain those higher weights a-posteriori).  We have added a note to this effect in the discussion.  

What does it mean to have an averaged BMDL?   This is a good point indeed.  It is quite true that the averaged BMDL that we present has a rather subtle interpretation and is not likely to be what the decision-maker or regulator wants.    We clarify this in the text by stating.  “Note that the weighted average of the BMDL should be interpreted carefully.   From a regulator’s perspective, it would better to compute a lower limit of  estimated BMDs.  This would more naturally be done using an MCMC approach, though frequentist versions would also be possible.  “

General comments regarding estimation of “central tendancy” rather than focusing on uncertainty.    We add the following to the discussion:  “While the examples presented in this paper illustrate some of the usefulness of BMA techniques for dose response modeling in the presence of uncertainty, many questions remain.  For example, BMA is primarily useful for estimating a reliable dose response model in settings where there is uncertainty about the model, either in terms of the particular class of dose response models that should be used or the covariates to be included.  Environmental risk assessment, on the other hand, is concerned with protecting the public.  It could be argued that the best estimate of the average risk is less important than a reliable characterization of the upper limit of the risk associated with various dose or exposure levels.  Exploring extensions of the BMA technology to address this would be worthwhile.  

 Combining Risks from Several Tumors using Markov Chain Monte Carlo 

Leonid Kopylev
, John Fox, Chao Chen

National Center for Environmental Assessment

U.S. Environmental Protection Agency

Washington, D.C.

Abstract

Risks from multiple tumors occur for many carcinogens, and there is a need for statistical methods and the corresponding software tools to produce a combined risk estimate. The risk of experiencing tumors across several sites has been termed "composite risk" by Bogen (1990) and “aggregate risk” by the NRC (1994). Composite risk characterizes the animal's risk of developing a tumor at one or more of the sites considered, not just the risk of developing tumors at each and every site considered. How does one estimate the combined risk and, if needed, the corresponding benchmark dose for multiple tumor sites?  This article demonstrates an MCMC based approach that answers this question with a special attention to the proper choice of an appropriate prior. 

Introduction
In animal bioassays, tumors are often observed at multiple sites. Unit risk estimates calculated on the basis of tumor incidence at only one of these sites may underestimate the carcinogenic potential of a chemical (NRC 1994).  Furthermore, the NRC (1994) and Bogen (1990) concluded that an approach based on counts of animals with one or more tumors (counts of "tumor-bearing animals") would tend to underestimate overall risk when tumors occur independently across sites. On independence of tumors, NRC (1994) stated: “…a general assumption of statistical independence of tumor-type occurrences within animals is not likely to introduce substantial error in assessing carcinogenic potency.” Also, application of a single dose-response model to pooled tumor incidences (i.e., counts of tumor-bearing animals) does not reflect possible differences in dose-response relationships across sites.  Therefore, the NRC (1994) and Bogen (1990) concluded that an approach that is based on well-established principles of probability and statistics should be used to calculate composite risk for multiple tumors. Bogen (1990) also recommended a re-sampling approach, as it provides a distribution of the combined potency. Both NRC (1994) and Guidelines for Carcinogen Risk Assessment (US EPA 2005) recommend that  a statistically appropriate upper bound on composite risk be estimated in order to gain some understanding of the uncertainty in the composite risk across multiple tumor sites. 


This comment presents a Markov Chain Monte Carlo (MCMC) computational approach to calculating the dose associated with a specified composite risk and a lower confidence bound on this dose, assuming that the tumor sites of interest (those believed to be biologically relevant) have been identified and suitable dose-response models (all employing the same dose metric) have been selected for each tumor site. These methods can also be used to calculate a composite risk for a specified dose, as well as the associated upper bound on this risk.  For uncertainty characterization, MCMC methods have the advantage of providing information about the full distribution of risk and/or benchmark dose. This distribution, in addition to its utility in generating a confidence bound, also provides expected values of risks that are useful for economic analyses.

The methods presented here are specific to the multistage model with non-negative coefficients fitted to tumor incidence counts (i.e., summary data rather than data on individual animals, as in the Nectorine example; if data on individual animals are available, other approaches are possible), and they assume that tumors in an animal occur independently across sites.  The Nectorine example is used to illustrate proposed methodology and compare it with the current approach. 

Combining risks for the multistage model

The NRC (1994) has described an approach for combining risk estimates across tumor sites based on the multistage model: P(d , θ) = 1 - exp[-(q0 + q1d + q2d2 + ... + +qkdk)],  where  θ = (q0​,q​1, ​...), qi ≥ 0, where d ≥ 0 is the dose metric, and P(d , θ) is the probability of response at dose d, with parameters θ .  For the multistage model and two tumor types, A and B, assume m>k, and 
PA(d, βA) = 1 – exp(-(β0A + β1A*d + … + βkA*dk))

PB(d, βB) = 1 – exp(-(β0B + β1B*d + … + βmB*dm))

Assuming independence of tumors
 

PAorB(d | βA,βB) = PA(d, βA) + PB(d, βB) – PA(d, βA) * PB(d, βB)

we have, 

PAorB(d, βA,βB) = 1–exp(-[(β0A+β0B) + (β1A+β1B)*d +…+ (βkA+ βkB)*dk  +

 +βk+1B*dk+1+…+βmB*dm]).

Similarly, for more than two tumor types, the combined tumor model, Pc, is 

 Pc(d, θ) = 1 – exp(-[Q0 + Q1 d + Q2 d2 + ... + Qk dk]),

where Q i  =  ∑ q ij , in which i indexes the model 'stages' 1 to k and j indexes the tumor sites, with θ =  (Q0, Q1, ..., Qk).

The benchmark dose method (Crump 1984) consists of estimating a lower confidence limit for the dose associated with a specified increase in adverse response (i.e. increased risk) above the background level. Extra risk (ER) is a common choice: 

ER = 
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The benchmark dose (BMD) for extra risk is the solution of the above equation when the     left-hand side is fixed. Statistical inference for chemical risk assessment has mainly emphasized finding confidence limits for the BMD. 
For two tumors, Extra Risk is given by:

ERAorB(d, βA,βB)   =
(PAorB(d, βA,βB) – PAorB(0,  βA,βB)) / (1 - PAorB(0, βA,βB)).

After   simple algebra, 

ERAorB(d, βA,βB)   =
1 – exp(-[(β1A+β1B)*d +…+ (βkA+ βkB)*dk+ βk+1B*dk+1 + +…+βmB*dm]).

BMD for combined risk BMRAorB is (after re-arranging and taking logarithms of both sides) the solution to the polynomial 

-log(1-BMRAorB)= (β1A+β1B)*d +…+ (βkA+ βkB)*dk+ βk+1B*dk+1 +…+βmB*dm 

A similar polynomial equation applies when more than 2 tumors are observed in a bioassay. 

Bayesian approach

A Bayesian approach for calculating a confidence bound on the BMD for composite risk can be implemented using WinBUGS (Spiegelhalter et al. 2003). This is a freely available software package that can be used to apply MCMC methods (e.g. Smith and Gelfand 1992, Casella and George 1992, Chib and Greenberg 1995, Brooks 1998, Gilks et al. 1998, Gelman et al. 2004).  Gelfand et al. (1992) discusses MCMC methods involving constraints, as in the case of applying the multistage dose-response model to the Nectorine data, where maximum likelihood estimates (MLE) for background coefficients for both tumors are on the boundary.

The use of MCMC methods (via WinBUGS) to derive a posterior distribution of BMDs for a single multistage model has been recently described by Kopylev et al. (2007).  This methodology can be straightforwardly generalized to derive a posterior distribution of BMDs for combined tumor risk across sites, using the approach for composite risk described in the previous section. 


The mode and 5th percentile of the resulting posterior distribution of the dose for a fixed extra risk provide estimates of the BMD and the BMDL (‘lower bound’) for composite tumor risk.  Similarly, the mean and 95th percentile of the posterior distribution of the composite extra risk provide estimates of the expected extra risk and the upper bound on the extra risk. 

Example

The data for the Nectorine bioassay is given in Table 1. Two tumor types were observed and no information beyond summary data is available. 

	Tumor Type
	Concentration (ppm)

	
	0
	10
	30
	60

	Respiratory epithelial adenoma
	0/49
	6/49
	8/48
	15/48

	Olfactory epithelial neoblastoma
	0/49
	0/49
	4/48
	3/48


Table 1. Nectorine bioassay data.

A linear multistage model fits better (based on lowest values of the Deviance Information Criterion (DIC) reported by WinBUGS) than a quadratic or cubic model for both adenoma and neuroblastoma tumors. Similarly, a linear model is preferable for both tumors, based on minimizing AIC (based on BMDS (US EPA 2006) computations). The WinBugs results are obtained based on convergence of 3 chains with different initial values, and 50,000 burn-in (i.e. the first 50,000 samples discarded) from 50,000 simulations each, using WinBUGS 1.4.1. The posterior distribution is obtained from the combined 150,000 samples from the three chains and thinned by retaining every 10th sample to reduce auto-correlation, resulting in 15,000 samples. A prior that is a mixture of a diffuse continuous distribution on a positive real line and a point mass at 0 was used for multistage parameters. In WinBUGS, the prior was constructed by truncating a high variance Gaussian prior distribution at -1 and using the “step” function to collect mass from the interval on the negative real line at 0 as a point mass. In a limited Monte Carlo simulation of the frequentist properties of the posterior, this was a reasonable choice for a range of scenarios we investigated. 

The posterior distribution of the extra risk at dose 11 ppm and BMD10 is shown on Figures 1 and 2 (11 ppm is chosen because it is close to the combined BMD10). The posterior distribution of the linear coefficient for the neoblastoma tumor is strongly bimodal with 40% of its mass at 0 and the rest of the mass continuously distributed. In a linear model, lack of the linear term implies no extra risk, i.e., risk is the same at every dose. Since the extra risk for a linear model is a 1:1 function of the linear parameter, there is also bimodality of extra risk for neoblastoma in Fig.1. As the BMD in a linear model is inversely proportional to the linear term, for that 40% of neuroblastoma simulations in which the estimated linear term was zero, the BMD (Fig. 2) could not be determined (mathematically, it is infinite). In contrast, the linear parameter for the adenoma model has a unimodal posterior bounded away from zero (and so the Extra Risk distribution for adenoma (Fig. 1) is also bounded away from 0); consequently, the distribution of BMD and extra risk for combined tumors is well-defined. 
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Figure 1. Distribution of the extra risk at dose 11ppm for individual and combined tumors for the Nectorine example. Note that 40% of the distribution for neuroblastoma extra risk is at 0, since the posterior of the linear parameter for this model has 40% of its mass at 0. 
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Figure 2. Distribution of the logarithm of BMD10 for individual and combined tumors in the Nectorine example. Letters “B” on the x-axis  indicate BMD10s for adenoma and combined tumors.  For 40% of neuroblastoma simulations (see Fig. 1 caption), BMD cannot be determined (is infinite); thus the integral under the distribution for neuroblastoma is 0.6. 


Tables 2 and 3 show individual and combined BMDs and extra risks calculated by two approaches: WinBUGS and BMDS (US EPA 2006). Lower confidence bound on combined BMD (Table 2) is obtained by an experimental module of BMDS which is still undergoing testing. That module uses profile likelihood approach similar to the current approach for an individual tumor in BMDS. Also note that for the extra risk WinBUGS provides estimates of average extra risk, whereas BMDS provides estimates of MLE extra risk. 

Interestingly, while BMDLs calculated by two methods are quite close for individual tumors, there is a difference in combined BMDL (Table 2) and upper bound on extra risk (Table 3).  

	Approach
	WinBUGS
	BMDS

	
	5th percentile (BMDL)
	Posterior

mode

(BMD)
	95th percentile BMDU
	5th percentile (BMDL)
	MLE

(BMD)
	95th percentile BMDU

	Adenoma
	11.06
	14.20
	20.63
	11.32
	15.17
	22.79

	Neuroblastoma
	40.63
	&
	&
	39.91
	70.11
	153.60

	Combined
	8.69
	11.24
	20.63
	9.58*
	12.47
	*


Table 2. Statistics for individual and combined BMD10 for the Nectorine example. 

& - BMD and BMDU for neuroblastoma could not be determined for 40% of simulations

* - Lower confidence bound on BMD is obtained with BMDS module which is still under development. This software does not calculate BMDU.

	Approach
	WinBUGS
	BMDS

	
	5th percentile
	Mean
	95th percentile
	5th percentile
	MLE
	95th percentile

	Adenoma
	0.055
	0.076
	0.099
	0.048
	0.072
	0.097

	Neuroblastoma
	0
	0.011
	0.028
	0.007
	0.016
	0.028

	Combined
	0.059
	0.086
	0.135
	*
	0.088
	0.115*


Table 3. Statistics for individual and combined extra risks for the Nectorine example. 

*- see caption for Table 2.

It is clear from the figures that risk of adenoma dominates the risk of neuroblastoma. However, even for this example, with markedly unequal risks from the tumors, the extra risk can be substantially greater when risks are combined.  For example, Table 3 shows that the 95th percentile risk at 11 ppm is about 35% greater for combined risk than for adenoma alone (WinBUGS computation). The difference for average risk is less pronounced (13% larger) but still nontrivial. 

Discussion

In this article, an application of Bayesian methods for calculating probability distributions for composite cancer risk estimates is proposed. Advantages of the proposed approach are that the concept can easily be extended to a more general case, such as a Bayesian hierarchical model with covariates, and computations are easy to implement. 

As NRC (1994) stated, ignoring issues about combining tumors could lead to underestimation of risk. In this example with an order of magnitude difference between individual tumors, the underestimation was moderate, compared to other uncertainties inherent to extrapolating risk from animals to humans. It is easy to see that in some situations (e.g. more than two tumors or tumors of similar potency), ignoring additional tumors could lead to a serious underestimation of risk from a toxic substance.  


It is very important to choose an appropriate prior when parameter estimates are either on the boundary of the parameter space or are near the boundary for a finite sample. We chose a prior that is a mixture of a diffuse continuous prior over the non-negative real line and a small point mass at 0. In limited Monte Carlo simulations, such mixture priors performed reasonably well in a frequentist sense. Using a continuous prior over the non-negative real line could lead to undesirable frequentist properties of the posterior when model parameters are at or near the boundaries of parameter space (zero for parameters of the multistage model). However, further research is needed to determine the optimal way of allocating prior density to the point mass at 0 and the continuous non-negative part.


The approach presented in this article provides statistical uncertainty in risk estimates conditional on the data set and multistage models of specified order. The approach can be straightforwardly extended to models other than the multistage model; Bayesian model selection could also be used.  However, the uncertainty discussed in this article is only for a particular dose-response model and does not address uncertainty associated with the selection of a particular model, or a set of models. 

The approach assumes independence of tumors given dose. Independence may not be true for some types of tumors. Possible next steps include investigation of consequences of violation of independence assumption, and ways to evaluate and incorporate dependence in the methodology.  
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Uncertainty in dose response from the perspective of microbial risk

PFM Teunis1,2
Dose response assessment for microbial pathogens differs from its toxicological counterpart in two important aspects: the discrete nature of the inoculum (Tillett and Lightfoot,1995) and the abundance of heterogeneity. The former aspect, particulate inocula, greatly helps dose response modeling because it limits model space considerably (see below). The second aspect, heterogeneity, may be partly due to the noxious agent itself being a biological organism that often (but not always) co–evolved with its host. Data for microbial dose response assessment usually come from human studies, and as a consequence, data sets are often small. Despite scarcity of experimental or observational data, biological variation should not be ignored, even in the simplest problems.

Binomial uncertainty

Most microbial dose response studies use binary outcomes. The use of binomial sampling as the basic distribution of uncertainty depends on assumptions about heterogeneity (variability) of risk. When the experiment is repeated, would we find the same fraction positives at any given dose?  Or would factors like susceptibility have changed so that the experiment would have a new outcome, a realization from a set of possible probabilities, rather than a fixed probability? 

Suppose we would have 5 animals in a given dose group, 3 of which would die as a consequence of exposure. Does that mean that any animal has a 3/5 = 60% probability of death at that dose?  Or did the 3 susceptible animals have some factor predisposing them to die, and the exposed population happened to include 3 of these susceptible animals, and 2 others who had zero probability of death. Of course that question cannot be answered when the experiment is repeated only once.

This does, however, show a weakness in using binary endpoints in a dose response study. In such a study heterogeneity cannot be studied because the response is a group response, not an individual one. This can be modelled as a detection problem, with (a combination of) physiological variables scored by an observer, who applies some criterion for deciding whether an animal is positive or not (Slob and Pieters, 1997a,b). Heterogeneity is a fundamental property of living organisms (outside the laboratory) and is rather important in risk assessment. This problem of identifying heterogeneity may be attacked by choosing graded response variables, or adding graded covariables influencing the binary outcome.

An example is a study where the infectivity of the pathogenic protozoan Cryptosporidium parvum was determined in a human challenge experiment, with individual baseline serum IgG levels as a covariable (Teunis et al. 2002b).
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Figure 1:  Dose response relation for infection by Cryptosporidium parvum (Iowa isolate) in humans, using baseline anti–Cryptosporidium IgG levels as a covariable. Posterior mode plane, blanketed between 5 and 95% predicted levels.

Each individual subject has received a certain dose, has a specific baseline IgG level and infection status (0 or 1). The model is a modified hit theory model, using a logistic relation to describe the influence of (log) IgG level on the single hit probability  EQ p\s\do5(m). Details can be found in Teunis et al. (2002b). The resulting dose response relation has two arguments, the dose and the (log) baseline IgG level (Fig. 1).

Epidemiology and dose response

Heterogeneity in experimental or observational data is usually structured hierarchically: sets of studies of different strains of a microbial pathogen, or separate studies of the same pathogen in different populations (different ages, for instance). For this reason, mixed models are a natural choice for addressing heterogeneity in risk, especially when studies must be combined (Teunis et al., 2002a).
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Figure 2:  Dose response relation for infection by Cryptosporidium parvum (5 different isolates) in humans. Shown are fractions infected and posterior mode curves for each of the individual isolates, and a density graph of quantiles of predicted probabilities of infection (spanning a 99% interval).

A series of human challenge studies for Cryptosporidium parvum showed that different isolates of the same pathogen species may have strongly diverging dose response relations. Both the locations (ID EQ \s\do5(50)) and shapes of the dose response relations were different (Fig. 2). The predictive intervals show the uncertainty in the probability of infection for an unspecified isolate, represented by a sample from the joint parameter distribution characterizing infectivity within and between isolates. This distribution may be used to characterize the uncertainty in the infectivity of an unspecified “new” environmental isolate.

Often there is insufficient information (lack of experimental data) to identify parameters, especially for a complicated model with many parameters. In risk assessment, however, we are mainly interested in prediction: what is the magnitude of the uncertainty in predicted levels of risk, marginalizing over all levels of heterogeneity. Predictions can be made, even in cases where parameters cannot be estimated. The magnitude of (posterior) uncertainty then increases, because of the increase in degrees of freedom of the model.
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Figure 3:  Dose response relation for infection by Escherichia coli O157:H7 in humans. Shown is the fraction observed in an outbreak, and a density graph of quantiles of predicted probabilities of infection (99% interval). From Teunis et al.(2004).

With this in mind, it can even be sensible to deliberately overparameterize a model, to maximize uncertainty in the predicted outcome, or at least to avoid gross underestimation of this uncertainty. An example is the use of epidemiological data for dose response assessment: data from a single outbreak can be used as a “natural experiment” with a single applied dose and corresponding attack rate. For a few pathogens reports of sufficiently high quality do exist, and the question then is: what model should be used?  A model with 1–parameter can be fitted, ignoring any heterogeneity in infectivity of pathogens and/or susceptibility of hosts. However, it can be easily shown that a 2–parameter model allowing for such heterogeneity in host–pathogen interaction produces much more generous uncertainty estimates for the predicted risk (Teunis et al., 2004).

Figure 3 shows the uncertainty in predicted probabilities of infection as a function of dose, for E. coli O157:H7, treating data from a single outbreak as an experiment with a single applied dose. Near this observed dose the uncertainty is small (binomial uncertainty), above this dose we know very little, except that the infection risk is not smaller than the observed risk (due to the monotonically increasing dose response relation). But below the observed dose the uncertainty is not very large. The reason is that the observed dose is low (31 cfu) so that a slightly lower dose approaches the level where exposure is becoming unlikely. We consider this a strong argument for limiting infectivity at low doses, for any microbial pathogen (see below).

This approach can be taken one step further by considering not a single outbreak but a set of outbreaks by the same pathogen. These are likely to have different dose response relations, one for every single observed pair of dose and attack rate (affected/exposed) data. A (small) set of studies may thus be approached as alternative realizations of a dose response model with different sets of parameters in each observed outbreak, but with a joint distribution of all these parameter sets over all studies. A literature study produced a useful set of outbreaks with the required information (Strachan et al., 2005), however, a 1–level analysis failed to produce an appropriate model fit. Re–analysis of these data, using a two–level model with variable infectivity within and between outbreaks produced improved dose response estimates, with wider predictive intervals (Figs. 4 and 5). The latter analysis also included dose uncertainty due to non–Poisson exposure, as these were foodborne outbreaks with sometimes highly inhomogeneous exposure, by adding an additional parameter into the model (Teunis et al., 2007).
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Figure 4:  Dose response relation for infection by Escherichia coli O157:H7 in humans, based on 8 different outbreaks. Shown are fractions infected and posterior mode curves for each separate outbreak. From Teunis et al (2007).

The uncertainty in predicted dose response for E. coli O157:H7 may seem quite high (Fig. 5a) but extrapolation to low doses shows that the estimated uncertainty may not be disastrous for risk assessment (Fig. 5b). This is again a consequence of the infectivity being high, shifting the dose response relation for infection to doses where exposure limits the infection risk.
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Figure 5:  Contour graph of percentiles of predicted probabilities of infection by Escherichia coli O157:H7 in humans, corresponding to Fig. 4. High doses (range of observations) and low dose extrapolations are shown.

These analyses were most conveniently done in a Bayesian framework, because distributions for heterogeneity at any level can be specified, and their influence on the outcome is easily tested by manipulating prior distributions.

Particulate inocula

Compared to toxicological risk assessment, microbial dose response assessment is usually based on human dose response data. Model selection in dose response is aided by the high infectivity of many microbes. Only few organisms (particles) are required for a considerable (i.e. observable) risk of infection, possibly resulting from evolutionary optimization of pathogens maximizing their chances of propagation in their preferred hosts.

As a consequence, exposure (to 1 or more organisms) is an important proxy for infection. Important because the sampling distribution for a sample from a microbial suspension can be verified experimentally, and because this imposes an upper limit to all microbial dose response models. Infection can never occur with a higher probability than exposure: if the probability of exposure is 0.01 (say because an exposed subject ingested 10 ml of suspension of 1 organism/l) then the probability of infection cannot exceed 1% . For well mixed (Poisson) suspensions the dose response relation should be a mixture of exponentials, with the distribution describing the heterogeneity in host–pathogen interaction as mixing function (Teunis and Havelaar, 2000).
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Figure 6:  Single hit infectivity (
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) for Escherichia coli O157:H7 in humans. From Teunis et al. (2007).

The above argument also gives hit theory models a prominent position in microbial risk assessment: infection is conditional on exposure, and exposure is a strong determinant of the shape of microbial dose response relations. Formulating the microbial dose response model as a mixture of a (Poisson or other) exposure component with a (Beta or other) distribution for the single hit probability allows interpretation of the latter: this is the probability that any single ingested pathogen survives all host barriers to infection. The distribution of this probability (called  EQ p\s\do5(m) for crossing m barriers) is a ‘generic’ characteristic (independent of exposure) of a host–pathogen combination. An example is shown for the E. coli O157:H7 model (Fig. 6).

These distributions of  EQ p\s\do5(m) show considerable variation, which is not only caused by host factors. Unlike in toxicology, one cannot assume that all viruses or other microparasites have the same properties. In addition to variable host susceptibility, we have to take into account pathogen variation. Some of this variation changes with time, because many pathogens cannot survive outside their hosts for an extended period. There are other issues as well: differences between infection and illness endpoints, innate immunity (genetic compatibility of host and pathogen), and dynamic aspects as transient (acquired) immunity, and secondary spread of infection in a population. These are important but not immediately pertinent to the topics of this workshop.

Verification of human risk estimates

Risk assessment is usually applied in cases where other approaches (i.e. epidemiological studies) are not feasible, often because the expected probabilities of effects are so low that study sizes would be too large. As a consequence the outcomes of a risk study is often hard to verify, as alternative means of measuring the predicted effects are not available. Risk studies therefore are speculative: the results cannot be falsified. Risk studies are also increasingly used to support decision making, in industry and government. It would therefore be useful to at least in principle have methods for checking the quantitative outcomes of risk studies.

Microbial risk may be in a favourable position for such a ‘reality check’ because there usually is not much cause for doubting causality. Outbreaks of food or waterborne infectious disease do occur and the agent is often identified. Dose response studies, if they exist, are usually based on human challenge, not rodents. On the other hand, much is unknown about pathogen variability, the importance of secondary transmission, and human susceptibility for illness.

In an EU project (Polymod, in the 6th framework programme of the EU) two aspects of this problem are addressed: (1) use of outbreak data for dose response assessment, and (2) development of serology–based methods for estimating incidence of infection.

Outbreaks versus challenge studies

Motivation for the former study is the potential bias of human challenge studies: pathogens must cause relatively mild illness (these pathogens are usually propagated in lab conditions, to remove other unwanted harmful microbes or chemicals), and volunteers must be immunecompetent and in good general condition, so that the study is not likely to do them any serious harm. This is the converse for outbreaks, where pathogens are not adapted to lab conditions, and are likely to be from virulent strains. And outbreaks are detected because of clustering of patients, who may be more susceptible than the general population, at least to developing illness symptoms. It is useful to have data from both of these sources of information, because they may be viewed as extremes on a common scale (of pathogen infectivity and pathogenicity, and host susceptibility). Some results of outbreak based dose response have been mentioned above. It may be noted that sometimes outbreaks and experimental challenge studies can be reconciled, indicating that the bias may not always be serious (Teunis et al., 2005).

Serology–based incidence estimates

The latter study: developments of serology–based incidence estimates, is aimed at finding a common scale for measuring infectious disease risk, by risk assessment and by epidemiology. Microbial risk studies are better equipped for estimating infection risks than for estimating illness risks. Illness is much more dependent on host factors that are usually unknown; experimental studies usually result in few illnesses. For many foodborne pathogens, a considerable fraction of infected cases remains asymptomatic, and these healthy infected individuals cannot be easily found in epidemiological studies. Infection is however known to be often associated with a seroconversion: shortly after exposure there is a rapid increase in serum antibody concentrations, followed by a slow decline, dependent on antibody class and pathogen. If the serological response to infection is known for a study population, so that its heterogeneity can be characterized (Versteegh et al., 2005), a cross–sectional population sample (a ‘snapshot’ sample of the population) can be used for estimating times since infection, or incidence of infection, for the sampled population. A pilot study for a respiratory infection (pertussis) supported claims that silent transmission of this pathogen in the Netherlands exceeds estimates based on reported illnesses by several hundredfold (de Melker et al., 2006). We now are working on improvements of the procedure, and application to enteric infections, and initial results indicate that incidence of asymptomatic Salmonella infections in Denmark also exceeds the incidence of symptomatic ones by two orders of magnitude (Simonsen et al., 2007).

Suppose two studies in microbial risk produce two independent estimates of risk, say as estimated probabilities of infection. When these estimates are on a common scale (so that we are not comparing apples and oranges) the question of whether they agree is sensible. Either set of estimates is based on separate data, and calculations are made with different models, so that the two sets of outcomes may be assumed independent. Both estimates are uncertain, possibly characterized by a Monte Carlo sample of predicted outcomes.

The variances (or other measures of spread) of the two estimates do not have to be equal, as the two methods may have different precision, also because they are based on different data. First concern therefore is similarity of the locations of the two sets of estimates.

Various procedures can be used, a very simple method might be useful in practice, for instance subtract one set of estimates from the other, and use the fraction positives (or negatives) as a decision criterion.
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At the heart of the actual quantitative assessment of dose-response uncertainty is the common process of fitting one of several plausible dose-response models to bioassay data to determine a dose corresponding to a selected response level at the lower end of the observable range.  This is the central uncertainty issue evaluated by the workshop.  That is, the workshop  was set up to explore alternative ways to tackle this aspect of quantitative dose-response assessment – namely, for a chosen set of data how can one fit a dose-response curve, with an understanding of the uncertainty, in the range of the observed data.   

Results most useful for environmental decisions are values at the lower end of the dose range, including an estimate of the lower confidence limit on the dose that yields a response near the bottom of that observed range and information about the degree of uncertainty at the lower end of the observable response range.   The basic terminology is that the curve is fit to find a benchmark dose or BMD that produces a specified response, commonly 5% or 10% above the background level.   The lower confidence limit on the BMD is termed the BMDL.


The process of synthesizing information to determine the hazard of a chemical and provide quantitative information as to the dose-response relationship is very complex and involves many other steps including evaluating study design, concordance, and relevance of animal data to human risk.  A number of commenters have expressed dissatisfaction with the “standard approach” as it often provides a single risk estimate, usually one meant to assure that the risk is not underestimated.   The EPA is evaluating approaches to provide “best estimates” of risk and more fully characterize the uncertainties in risk estimates and the variability in risks across subpopulations.   

If by “best estimate” one is seeking a value useful to estimating the “expected value” of risk or “expected value” estimate of total impact on a population, a challenge is that the expected value reflects not just the single most likely value, but reflects the contribution towards the expected value of the full distribution of possible risk values.   This is not an easy task.  It involves complex judgments evaluating a wealth of empirical data, deciding which studies are most relevant, how to extrapolate from diverse animals to humans, and how to extrapolate to lower doses.  Much of that judgment is currently reflected in text discussions of the available studies and underlying science.


This workshop was not meant to explore all these facets of the process, but rather to focus on one relatively well-defined question:  Given a bioassay data set, how should we quantify the uncertainty in the dose-response relationship?  Even within this restricted format, results indicate that the scientific jury is still out on ways to improve the current practice.  That simple insight is perhaps the foremost result of this workshop. The four modeling approaches deployed on the four bench test problems represent four different philosophies for capturing uncertainty in dose response.


The approaches tested in the workshop, formulated in the introduction, are summarized as follows:

1. Benchmark Dose Modeling (BMD):  Choose the ‘best’ model, and assess uncertainty assuming this model is true.  Supplemental results can compare estimates obtained with different models and sensitivity analyses can investigate other modeling issues.

2. Probabilistic Inversion with Isotonic Regression (PI‑IR:  Define model-independent ‘observational’ uncertainty, and look for a model which captures that uncertainty by assuming the selected model is true and providing for a distribution over its parameters.

3. Non-Parametric Bayes (NPB):  Choose a prior mean response (potency) curve (potentially a “non-informative prior”) and precision parameter to express prior uncertainty over all increasing dose-response relations, and update this prior distribution with the bioassay data.

4. Bayesian Model Averaging (BMA) (as applied here):  Choose an initial set of models, and then estimate the parameters of each model with maximum likelihood. Use classical methods to estimate parameter uncertainty, given the truth of the model. Determine a probability weight for each model using the Bayes Information Criterion (BIC), and use these weights to average the model results.  


The Benchmark Dose (BMD) model is the current standard approach for estimating doses corresponding to a target response level, above background.  The other three methods could be considered somewhat ‘exotic’ as they are new, do not draw on a wealth of experience, and cannot rely on standardized software (although there have been a number of researchers investigating the potential use of Bayesian Model Averaging for this task).  

For this workshop, expert modelers were asked to quantify the uncertainty as a function of dose for several example chemicals and data conditions.  Although they were not specifically asked to derive benchmark doses, most did so for selected chemicals – notably for the 10% response level (BMD10) and corresponding lower confidence limit (BMDL10).  These estimates and the indication of whether the approach captures parameter or model uncertainty, or both, are summarized in Table 1 and highlighted as follows:

· An estimate from a single “best” BMD model captures parameter uncertainty but not model uncertainty, and the uncertainty captured on the parameter distribution is conditional on the model being true. Assessors are advised to examine results from different models to see if large differences exist; supplemental results can also be presented to show model sensitivity.

· The PI-IR approach captures both model and parameter uncertainty in the sense that the uncertainty captured is model independent and is represented as a distribution over model parameters. We might say that the uncertainty captured is not model dependent, but once captured, it is caged in the parameter space of a model chosen for that specific purpose. 

· The NPB approach captures model-independent uncertainty and does not represent this as a distribution over model parameters, but rather as a distribution over response curves. 

· The BMA approach as deployed here applies maximum likelihood estimates for the parameters of a chosen set of models and uses the BIC approximation to weigh the different models.  In this sense, it combines classical parameter uncertainty and Bayesian model uncertainty   Weighting the BMDLs from the models is not expected, however, to yield a good estimate of the confidence limits that would evolve from considering as a whole the weighted distribution of uncertain estimates from the set of models

TABLE 1 Summary of Model Results
	Model
	Metric
	Combined Results per Chemical
	Uncertainty Addressed

	
	Method/ Measure
	Estimate Per 
BMD Guidance
	Frambo-zadrine
	Nectorine 
	Persimo-nate 
	Parameter
	Model

	Benchmark Dose 
(BMD) 


	BMD Software
	BMD10
	7.21
	33.7
	a:  15.2 | 70.1
	3.6
	Yes, 
parameter distributions conditional on model being true
	No

	
	
	BMDL10
	4.93
	12
	a:  11.3 | 39.9
	2.86
	
	

	
	Parametric bootstrap
	BMD10
	d
	30.3
	a:  17.3 | 63.0
	3.61
	
	

	
	
	BMDL10
	d
	13.8
	a:    4.6 | 43.8
	2.83
	
	

	Probabilistic Inversion-Isotonic Regression

(PI-IR)
	Median
	BMD10
	2.53
	23.5
	15.8
	b
	Yes, 
uncertainty expressed as distribution over parameters
	Yes, uncertainty captured is not model dependent

	
	 
	BMDL10
	0.849
	16.8
	10.2
	b
	
	

	
	
	
	

	Non-Parametric Bayes

(NPB)
	Mean
	BMD10
	6.23
	10.20
	7.03
	2.92
	Yes, 
prior covers all increasing potency curves
	Yes, uncertainty captured is not model dependent

	
	 
	BMDL10
	2.60
	1.05
	2.81
	0.32
	
	

	
	 
	 
	 
	 
	 
	 
	
	

	
	 
	 
	 
	 
	 
	 
	
	

	Bayesian Model
Averaging

(BMA)
	 
	BMD10
	5.31
	c
	d
	d
	No, 
each model uses MLE parameter values
	Yes, probabilities for each of the chosen models are used

	
	 
	BMDL10
	2.91
	c
	d
	d
	
	

	
	 
	 
	 
	 
	 
	 
	
	

	Kopylev et al


	MCMC

Mode
	BMD10
	d
	d
	a:14.2 | e
	d
	Yes, diffuse prior with Bayesian updating
	No, uses only multistage model

	
	
	
	
	
	11.24
	
	
	

	
	
	BMDL10
	d
	d
	a:11.06 | 40.63
	d
	
	

	
	
	
	
	
	8.69
	
	
	

	 a. BMDLs are given for separate tumor types:  adenoma | neuroblastoma; If split, lower is combined tumor value

	 b. The 95% percentile of the background probability was above the benchmark response (BMR).

	 c. BMA over logistic models with dose, dose + gender, and dose + gender + dose-gender interaction.

	 d. Not computed.

	 e. Cannot be determined


A first cursory conclusion is that there is a fairly wide spread in BMDL10 values. This is particularly true for the illustrative chemical persimonate.  The BMD and NPB approaches differ by almost an order of magnitude, and PI-IR would return a value of zero.  For frambozadrine, BMD modeling and PI-IR are in the same ballpark, but NPB is again an order of magnitude lower.  This might suggest that the NPB method, which makes no assumptions that restrict attention to one or more model classes, factors in more uncertainty. However, for the first data set, NPB agrees reasonably with the BMD method and PI-IR is much lower. 

The BMA method restricts attention to a limited class of models. The flexibility of this approach is demonstrated in the data set for frambozadrine, where it is applied in a creative way to answer the question about aggregating male and female rats, within the logistic model. The other cases were not reported. The PI-IR method selects a unique model type, based on its ability to capture observational uncertainty. Probability distributions as a function of dose are obtained for all data sets. For the last data set, the uncertainty in the background response rate was too high relative to response rates at low doses to derive a BMDL10. The BMD approach derives answers without excessive computing time. Table 1 does not show the fact, illustrated in Swartout’s chapter, that statistically ‘nearly equivalent’ models may give different results for the BMD and BMDL.


By focusing on the problem of estimation within the range of the observed data, the workshop temporarily put aside questions of whether or how one can then extrapolate to lower doses and risks of concern for environmental decision making.  Most environmental exposure levels start below the range typically observable in bioassay or human (typically occupational) epidemiology studies.  Therefore, the ultimate question does indeed involve either low-dose extrapolation or some other way to make decisions keying off the lower end of that observable range of data.


The workshop also did not aim to address how best to consider the myriad of biological and other scientific judgments involved in vetting various datasets and selecting which to prioritize for model applications.   Nevertheless, this was clearly a key issue in discussing the approaches examined – i.e., the extent to which biology, chemistry, analytical errors, and other information should inform the statistical approaches used for the chosen datasets.

Where Might the Current Method Merit Enhancement?


One question is whether the calculation of the confidence limit on the benchmark dose for the low response level truly captures the full range of even the statistical uncertainty (let alone the kinds of judgments applied to select a data set).   If the current approach does not capture enough of the statistical uncertainty, other approaches might be worth exploring. Countervailing considerations as to whether an alternative approach is worth pursuing include whether it:  

· Works routinely – for example, does it converge to a solution?

· Is computationally straightforward or intensive – does it take seconds or days to compute?

· Can be applied reasonably easily or requires many sophisticated judgments in its application?

· Produces results that can be transparently explained and seem reasonable. 


It is possible that methods which are not yet “suitable for prime time” could nevertheless be helpful in “recalcitrant” cases where the BMD approach is not sufficiently stable, or does not enclose the observed percentage responses in the 90% confidence bands.  The first recalcitrancy is illustrated in Swartout’s results for respiratory adenoma for the example chemical nectorine. The AIC values for the multistage and Weibull models do not differ significantly (143.6 vs. 143.9).  However, the BMDL10s in these two cases are 11.3 (multistage) and 0.259 (Weibull) (see Tables III-3 and III.4).  The frambozadrine and persimonate cases illustrate the second limitation:  the best-fitting model seems to have trouble enclosing the observed response rates within the 90% uncertainty bounds (see Figures II-2 and IV-2).  Some discussants did not necessarily think this was a problem, since there can be sources of error other than binomial sampling distribution such as measurement error that the modeling is not explicitly set up to address..  


When recalcitrant cases arise, we will not simply switch to some alternate procedure, rather we will have to exercise judgment in a greater degree.  It is at this point that some depth in the repertory of techniques for capturing uncertainty becomes useful.  Models that are not yet ready for routine application, may nonetheless prove valuable in difficult cases, where the additional analytical or computational burdens are justified.  As experience and confidence is gained with other models, they may gradually move into more widely accepted use.   Thus, while an alternative might not be a good candidate for replacing a standard method as the default approach, it is worth having available in cases one might be able to identify where the default approach has difficulties or where the alternative would have real benefits.

How Could We Improve on Quantitative Characterizations of Uncertainty?


One criterion discussed in the workshop is whether the estimated confidence limits around the best-fitting model encompass a reasonable amount of the experimental data.   If the confidence limits around the estimate do not include the actual observed data, one might conclude the approach is giving a false sense of precision around the fit curve and that the true uncertainty is likely broader than is represented.   At least one participant (PI-IR) started with an observation that this was not always the case and developed a method specifically designed to address that problem. 

The current state of knowledge and debate about the complex processes underlying dose-response, is such, that our current approaches might overly constrain possible outcomes by imposing a set of model specifications a priori.  One approach examined in the workshop imposes almost no fixed dose-response shape other than monotonicity and also produces a Bayesian estimate of probabilities of risk as a result but with a rigorous mathematical basis.


Related to the question about whether we can reasonably specify a model form a priori is a view that while perhaps we can articulate a reasonable set of biologically plausible models, we do not estimate a good “expected value” or risk or capture the full range of uncertainty when we narrow down to the model that “best fits” the data without carrying forward into the results the other model forms that also seemed reasonable and should carry some weight in our estimates of “best value” or of uncertainty.   A final approach was explored that does start with a constrained set of models, but does then carry forward some contribution from each reasonable model through a Bayesian averaging approach.

What Did We Learn?


A key outcome is that the workshop expanded our modeling repertory, and this alone is an important achievement. We learned that there are workable alternatives to current practice, each with their own strengths and weakness. 

· The PI-IR approach  seems to capture observational uncertainty, and it seems readily applicable to integrated uncertainty analysis. On the other hand, it does not always work with “standard” dose response models. The process of finding suitable non-standard models could be very time consuming. 

· The NPB approach has a solid mathematical foundation, but is difficult to explain and is somewhat less successful in capturing observational uncertainty.  Moreover, it is not clear how it would work in an integrated uncertainty analysis.  

· BMA is very flexible and could easily adapt to integrated uncertainty analysis. It is not clear whether the approximation used in selecting parameters for each model could be readily discharged so as to include full parameter uncertainty. Moreover, the initial choice of models might require further argumentation.  Note that all of the ‘exotic’ approaches are based on ‘research grade’ software. 


The workshop will hopefully provoke other modelers to attempt similar analyses on these bench test problems. The pros and cons of different models can be debated on a philosophical level as long as the rivers flow and the trees grow. Real progress, however, is made when different approaches are applied to the same problems, so that their performance can be compared.  Moving the discussion from the philosophical to the applied level may be the greatest return of the workshop.


We need experience with the relatively ‘clean’ problems like the bench test problems, in order to ‘toughen up’ for the really hard problems including extrapolating from animals to humans, extrapolating to doses well below those tested in bioassay experiments, dealing with sensitive subpopulations, and accounting for sparse data.   Existing techniques for addressing these problems for responses considered to have a threshold (noncarcinogenic effects, and in some cases the cancer endpoint), start with a point of departure or reference value, like a BMDL, and divide this value by “uncertainty factors.”  The practice of using uncertainty factors dates from 1954 (Lehman and Fitzhugh), and remains controversial. 


Almost all reviewers stressed that the really hard problem lies in extrapolating beyond ‘clean example’ bioassay data.  It is important for policy makers to develop the depth of field to look beyond current methods.  One might imagine factoring in more exotic types of data, e.g., from allometric scaling studies (per discussant Rhomberg), drug testing studies on children and other sensitive groups (per discussant Hattis), or even data from structured expert judgment.  How would our present methods for capturing uncertainty deal with these new types of data?  


If indeed the new methods afford more modeling flexibility, we may cherish the hope that they will be better able to deal with difficult data. We may find that current standard BMD modeling has the greatest difficulty in dealing with exotic data and moving beyond the era of uncertainty factors. 


With such reflections we have reached the boundary of what can be concluded from this workshop. Having taken the first step, to test approaches for characterizing the “easy” uncertainty related to fitting curves to observed data, subsequent bench test workshops can focus on the much more complicated set of extrapolations.  The ultimate aim is to better characterize dose-response in order to better understand potential health effects at exposure levels environmentally relevant to humans. 
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� 	This describes the bootstrap method. Under the hypothesis that the best model is true, the mean and variance-covariance of the parameter estimates can be calculated. Since these distributions are asymptotically normal, the appropriate normal distributions may also be sampled directly. In Chapter 2, Swartout uses both methods. 


�  The data set accompanied BMDS Version 1.4.1; the Agency has continued to refine the BMDS and supporting materials since the workshop exercises were distributed, so current online materials contain different example data (see US EPA 2008).   


� The parametric bootstrap procedure does not account for over-dispersion (i.e., extra-binomial variance) in the response data.


� Different DR relations may be seen as instantiations of a general functional form, for example a Taylor expansion of log(dose), therefore the distinction between ‘parameter’ and ‘model’ uncertainty is more semantic than real, and is not maintained in this report.


� To recall, the B(16,35) density is p16-1(1-p)35-1/B(16,35), where B(16,35) = 15!(34!/50!.


� I am grateful to Eric Cator of TU Delft for suggesting this approach.


� Where possible, we used the normal approximation to the binomial.


� In the studies reported here, we begin with a wide uniform or loguniform distribution on the parameters, and conditionalize this on a small box containing the values of the observational uncertainty distributions. Each observational uncertainty distribution is based on 500 samples; in other words, on tables like Table 3, with 500 sample rows.


� There had been many incorrect proofs, and proofs of special cases, see Fienberg (1970), Kullback (1986, 1970), Haberman (1974) and Ireland and Kullback (1968).  More general results involving the “Bregman distance” were published earlier in Russian (Bregman 1967), for a review see (Censor and Lent, 1981). A simple sketch of Csiszar’s proof is in Csiszar (undated).


� The EXCEL solver with default settings was used for all the optimization results.


� “Inference for Deterministic Simulation Models: The Bayesian


Melding Approach”, JASA, 95: 12441255, 2000.


�   “Measuring the health effects of air pollution: to what extent can we really say that people are dying from bad air?” J Environ Econ Mgmt, 47: 30-54, 2004.


� “Bayesian Model Averaging” in Time Series Studies of Air Pollution and Mortality” Journal of Toxicology & Environmental Health, Part A, 70: 1-5, 2007.


� Alle Ding sind Gift, und nichts ohn Gift; allein die Dosis macht, daß ein Ding kein Gift ist. "All things are poison and nothing is without poison, only the dose permits something not to be poisonous." 





�Earlier proposals are Ferguson (1973), Antoniak (1974), Disch (1981) Ammann (1984). Mukhopadhyay (2000), Gelfand, and Smith (1990), Shaked and Singpurwalla (1990) Ramsey (1972) abnd Ramgopal, Laud and Smith (1993) have also contributed significantly to the development of these models.





� R.E.Barlow, D.J.Bartholomew, J.M.Bremner, H.D.Brunk (1972). See also the discussion in Cooke’s paper, in this volume.


� The author served as a supervisor of Burzala’s masters thesis, on which this work is partially based.





� The ratio of two lognormal distributions is itself lognormal, with median equal to the ratio of the two medians and logarithmic standard deviation equal to the square root of the sum of the squares of each logarithmic standard deviation.  So [A(B] has median 0.8 and logarithmic standard deviation of 2, whereas [B(A] has median 1.25 and logarithmic standard deviation of 2.  Because the arithmetic mean always exceeds the median (by a factor of exp (0.5*log-standard-deviation squared)), both distributions have an arithmetic mean greater than 1.





� I made up a simpler example to show how this would be done and to confirm my intuition about the result.  Assume there are two equiprobable models: under Model 1, the BMD is 100, distributed lognormally with a logarithmic standard deviation of 1.4, so that the BMDL is 10.  Under Model 2, the BMD is 1, with the same standard deviation, so its BMDL is 0.1.  The weighted arithmetic average of the two BMDLs is 5.05 ((10+0.1)(2).  But if you sample a BMD from each distribution with equal probability, the 5th percentile (of 10,000 Monte Carlo iterations here) is 0.18, a factor of 28 smaller (more protective).  The arithmetic mean of 5.05 in fact is a 45th percentile bound, not a “lower bound” in any colloquial sense at all.





� The weighted geometric mean of N data points xi with corresponding weights wi (when the wi sum to 1 as they do here) is � EMBED Equation.3  ���.  The geometric mean allows small values of x to have some influence on the summary statistic, as opposed to the arithmetic mean, which “averages them away.”





� I first presented this example in Discover magazine (“Who’s Exaggerating?”, May 1996, pp. 48-54): rival factions of meteorologists contest whether one causal model applies to a hurricane brewing in the Gulf of Mexico (and that it will therefore hit New Orleans) or whether another model applies that will cause it to hit Tampa.  The respective assessed probabilities p and q are such that if one averaged the spatial locations of the two model predictions, the “expected landfall” of the hurricane would be at Mobile.








� In various exceptional cases, for example, adverse effects in rodents are quite probably irrelevant to humans due to profound interspecies differences—but surely the general presumption that effects are conserved across species is where the science leads us, not merely a “convenient truth.”


� EPA used very similar language in its 2004 staff paper An Examination of EPA’s Risk Assessment Principles and Practices: “EPA’s current practice is to examine all relevant and available data first when performing a risk assessment. When the chemical- and/or site-specific data are unavailable (i.e., when there are data gaps) or insufficient to estimate parameters or resolve paradigms, EPA uses a default assumption in order to continue with the risk assessment. Under this practice EPA invokes defaults only after the data are determined to be not usable at that point in the assessment — this is a different approach from choosing defaults first and then using data to depart from them.”  The curious use of “invokes” makes the default seem distasteful indeed, and in my view inappropriately pits defaults against data, without realizing that the defaults are often built on an enormous foundation of data, while the alternatives sometimes present data, but data that are incomplete or misleading.
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� Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.
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