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Abstract 
  

In this paper, we develop an integrated cost-benefit analysis framework for ozone and 
fine particulate control, accounting for variability and uncertainty.  The framework includes air 
quality simulation, sensitivity analysis, stochastic multi-objective air quality management, and 
stochastic cost-benefit analysis.  This paper has two major contributions.  The first is the 
development of stochastic source-receptor (S-R) coefficient matrices for ozone and fine 
particulate matter using an advanced air quality simulation model (URM-1ATM) and an efficient 
sensitivity algorithm (DDM-3D).  The second is a demonstration of this framework for 
alternative ozone and PM2.5 reduction policies. Alternative objectives of the stochastic air quality 
management model include optimization of the net social benefits and maximization of the 
reliability of satisfying certain air quality goals.  We also examine the effect of accounting for 
distributional concerns. 
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with Meteorological Variability 

 

Jhih-Shyang Shih, S. Michelle Bergin, Alan J. Krupnick, and Armistead G. Russell∗ 

1. Introduction 

The process of developing strategies for meeting National Ambient Air Quality Standards 
(NAAQS) for ozone and fine particulates has been a subject of considerable debate among the 
states and between them and the U.S. Environmental Protection Agency, as well as in the 
research community.  In formulating standards and demonstrating attainment, policymakers 
obliquely take into account some uncertainties and variability, but these issues are generally not 
directly or quantitatively addressed. Other issues include less than optimal emphasis on and 
incentives for finding cost-effective approaches to meeting standards and a lack of recognition 
that different control policies affect environmental endpoints differently.  Currently, a framework 
to integrate uncertain scientific information with policy analysis to inform decisionmakers and to 
develop control strategies is lacking.   

The objective of this paper is to present an integrated cost-benefit analysis framework for 
ozone and fine particulate control, accounting for meteorological variability and uncertainty.  
The framework includes an air quality simulation model, sensitivity analysis, stochastic multi-
objective air quality management, and stochastic cost-benefit analysis.   
This paper has two major contributions.  The first is the development of stochastic source-
receptor (S-R) coefficient matrices for ozone and fine particulate matter using an advanced air 
quality simulation model (URM-1ATM) (Kumar et al., 1994; Boylan et al., 2002) and an 
efficient sensitivity algorithm (DDM-3D) (Yang et al., 1997).  The second is the demonstration 
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of how to conduct analyses of alternative ozone and PM2.5 reduction policies using this modeling 
approach.  Alternative objective functions utilized include optimization of the net social benefits 
and maximization of the reliability of satisfying certain air quality goals. 

In this paper, we present the framework and preliminary results of a few such cases, such 
as optimizing expected net benefit, incorporating equity criteria in developing control strategies, 
and making trade-offs between expected net benefits and reliability levels required to meet air 
quality goals. 

This framework has the potential for seven major uses: (1) to develop federal rules 
regarding transport and to develop state implementation plan (SIP) control strategies; (2) to 
evaluate interstate transfer of pollutants and emissions; (3) to study trading across states/regions 
and/or pollutants; (4) to conduct cost-benefit analysis and risk management analysis; (5) to help 
set air quality standards; (6) to investigate the importance of uncertainty and conduct value of 
information analysis; and (7) to set research priorities. 

2. Air Quality Model, Performance Evaluation, and Sensitivity Analysis 

Ozone and PM2.5 share common sources and formation routes in the atmosphere.  Ozone, 
a gas, is formed secondarily in the atmosphere by reactions between nitrogen oxides (NOx) and 
volatile organic compounds (VOCs) in the presence of sunlight.  Fine particulate matter is 
composed of many different chemical species, including (but not limited to) ammonium sulfate, 
ammonium nitrate, and organic and elemental carbon.  Depending on the chemical composition, 
PM2.5 can be directly emitted—e.g., from diesel vehicles, dust, and biomass burning, and/or 
formed secondarily from reactions of sulfur dioxide (SO2), NOx, ammonia (NH3), and VOCs.  
Controls placed to reduce one form of particulate may affect concentrations of the other, though 
not necessarily proportionally or even in the same direction.   

Previous studies have explored the responses of both ozone and PM2.5 to various controls 
(Krupnick et al., 2000), but have based their results on out-of-date air quality models.  Control 
strategies exist that lower both PM2.5 and ozone concurrently, or lower one or the other.  Thus, 
from an air quality management perspective, it is desirable to understand the relative efficacy of 
NOx and SO2 emissions reductions in controlling these air pollutants.   

Air Quality Model 

URM-1ATM is applied to two well-studied, high-pollution meteorological episodes 
occurring July 9-19, 1995 and May 22-29, 1995.  These base episodes were selected because 
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high-quality and complete data were available, they were previously modeled using a different 
multi-scale grid definition but with the same simulation system, and they cover large 
meteorological variation with moderate to high pollution formation. Meteorological information 
is developed using the Regional Atmospheric Modeling System (RAMS) (Pielke et al., 1992) in 
a nonhydrostatic mode, including cloud and rain microphysics. 

Emissions were generated using the Emissions Modeling System (EMS-95) (Wilkinson 
et al., 1994).  Day-specific emissions for the year 2010 are estimated under conditions that are 
anticipated with changes in population growth, vehicle turnover, emissions control technologies, 
and anticipated emissions regulations, including the NOx SIP call.  Given nonattainment 
designations in 2004 or 2005, many designated ozone and PM nonattainment areas would design 
implementation plans to meet a 2010 attainment date.  Meteorological and initial and boundary 
conditions are hour- and day-specific, and are held constant for base and future years. 

URM Model Performance   

The July and May 1995 base case episodes have been used to evaluate URM performance 
against ambient measurements.  Excluding model ramp-up days, eight and five days of 
simulation are available for evaluation of the July and May episodes, respectively.  Data from the 
EPA’s Aerometric Information Retrieval System (AIRS) (U.S. EPA, 2001) is used to evaluate 
model performance.  EPA guidelines for urban scale ozone modeling are +/- 15% for 
Normalized Mean Bias (NMB), and +/- 35% for Normalized Mean Error (NME).  This regional 
scale application resulted in an average NMB for ozone of –4.4% for the May episode and of 
3.1% for the July episode, and the NME was 17% for May and 22.3% for July, all well within 
the stated guidelines.  These values are calculated from measurements at sites coinciding with 
either 24km2 or 48km2 cells.  Data were available for over 400 sites for each episode. 

The Interagency Monitoring of Protected Visual Environments (IMPROVE) (NPS, 2000) 
network provides 24-hour averaged speciated aerosol data taken on Wednesday and Saturday of 
each week in our episodes, and these data are used to evaluate model performance for aerosols.  
Three days of data were available during the July episode (July 12, 15, and 19), with 
measurements from 18 sites in total, 12 of which coincided with 24km2 or 48km2 cells.  These 
sites resulted in an average NMB for PM2.5 of –9.34% and an average NME of 22.34%.  Two 
days of data were available for the May episode (May 24 and 27), with measurements from 17 
sites in total, 11 of which coincided with 24km2 or 48km2 cells.  These sites resulted in an 
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average NMB for PM2.5 of 9.77% and an average NME of 28.64%.  There are no EPA guidelines 
to indicate acceptable model performance for aerosols.   

Sensitivity Analysis 

The Direct Decoupled Method in Three Dimensions (DDM-3D) model (Yang et al., 
1997) is employed to calculate the local sensitivities of specified model outputs simultaneously 
with concentrations.  It is an alternative to the brute force method, where multiple simulation 
runs are needed.  Instead, the DDM-3D solves differential sensitivity auxiliary equations 
simultaneously to calculate the sensitivity fields (temporal and spatial).  The result of this 
method is the partial derivative of species concentrations with respect to minute changes in 
emissions. The major difference between the conventional brute force sensitivity approach and 
DDM-3D sensitivity analysis is the computational efficiency of the latter.  The use of DDM-3D 
could potentially eliminate the need for a large number of individual perturbation runs.  This 
feature of the research is important because the time between nonattainment designation and 
implementation plan development is limited and should be no more than three years.1  

3. Source-Receptor (S-R) Matrices 

The methods developed in this research yield the first regional set of S-R matrices 
derived from a unified air quality chemistry model.   

The receptor states/regions of interest typically cover multiple simulation grid cells.  
Therefore, to derive source-receptor matrices (S-Rs), we aggregated individual grid cell 
sensitivity values to a single receptor site value.  The sensitivity used for aggregation is the 
change of pollutant concentration at the peak of the specified time scale (one-hour or 8-hour 
daily maximum for ozone, and 24-hour average for PM2.5). This receptor aggregation is 
performed on both a population-weighted and an area-weighted basis.  Population-weighted S-Rs 
are needed for estimating health benefits from application of source controls and also give a 
better proxy for health effects than do area-weighted measures.  The sensitivities are normalized 
as the change of pollutant concentration over a specific time scale per 1,000 tons of a precursor 
emissions reduction by state and by source type. These sensitivity values represent the marginal 
reduction of emissions from the source region to ozone or PM2.5 reduction at a receptor site.   

                                                 
1 Part D, Subpart 1 of the Clean Air Act. http://www.epa.gov/oar/caa/caa172.txt 
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The ozone sensitivity results are comparable with others in the literature based on simpler 
models (Rao et al., 1999).  The PM sensitivity coefficients, however, are smaller (Krupnick et 
al., 2000).  This result may be due, in part, to the episodes chosen for study.  

Here, we present stochastic S-R matrices for ozone and PM2.5 based on their sensitivities 
with respect to elevated point source NOx reductions found in two different meteorological 
episodes.  We used an emissions inventory projected to the year 2010 as baseline emissions 
(Pechan, 2002).  This inventory assumes that all existing mandated and expected federal controls 
on emissions have been implemented, so the NOx emissions are in general low.   

We consider two different categories of sensitivity matrices: single cell S-R matrices and 
population-weighted S-R matrices.  A single cell S-R coefficient is the sensitivity of the peak 
concentration at a single cell within the receptor state/region, calculated without spatial and 
population weighting.  Use of this matrix is most appropriate for considerations of compliance 
with air quality standards and assumes that every grid cell within the receptor state/region has a 
monitoring station.  The state/region is in compliance as long as the concentration at any single 
grid cell is greater than or equal to the air quality standard.  On the other hand, we need to 
aggregate population-weighted sensitivity coefficients for every grid cell within the receptor 
state/region to obtain the S-R coefficient for use in benefit calculations.  The benefit is calculated 
as concentration change multiplied by population.  If the high pollutant concentration change 
happens in a rural area, it will receive a smaller weight relative to that of a concentration change 
in an urban area.   
 

Quantify Uncertainty and Variability of Source-Receptor Coefficients 
 

Air quality simulation models have been and will continue to be used for developing air 
quality control strategies.  There are many sources of uncertainty in the air quality simulations.  
Composite uncertainty combines effects of several types of uncertainty, including models, 
parameters, emissions inputs, and meteorology.  Alcamo and Bartnicki (1990) investigate the 
uncertainty of S-R relationship for sulfur deposition in Europe.  Hanna et al. (2001) study the 
uncertainties in predicted ozone concentrations (not sensitivity) for the Ozone Transport 
Assessment Group (OTAG) region.  In this research, we are interested in the uncertainty and 
variability of S-R coefficients (sensitivity) for both ozone and PM2.5 for the entire northeast of 
the United States.  Although our modeling framework is robust and allows us to study various 
sources of uncertainty, due to limited resources, we only investigate the uncertainty and 
variability of the S-R coefficient caused by meteorological variability.  The purpose of this 
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research is to demonstrate the concept and the framework.  The effects of other sources of 
uncertainty are left for future work.   

As we mentioned earlier, July 9-19, 1995 and May 22-29, 1995 meteorological episodes 
are used in this study.  Excluding the ramp-up days, we have eight 24-hour simulations available 
for the July episode (one for every day) and five for the May episode.  We pool these 13-day 
samples together to quantify the variability of sensitivities from different meteorological 
variations.  To quantify the variability, we fit normal distributions to every element of the S-R 
matrices and assume there is no correlation among elements within individual S-R matrices.  The 
Kolmogorov-Smirnov test is used to conduct a “goodness-of-fit” test of the proposed distribution 
(Ang and Tang, 1975).  Table 1 provides a summary of the percentage of elements in the above 
four different S-R matrices that pass the normality test with 5% significance level.  As these 
percentages are very high, we accept the assumption of normality.   

 

Table 1.  Summary of Normality Test 
 
Matrix 1 hour daily 

maximum 
ozone 

24 hour daily 
average PM2.5 

Single cell S-R matrices 83.1% 93.6% 

Population-weighted S-R 
matrices 

89.8% 96.1% 

 

Correlation Between Ozone and PM2.5 Sensitivities 

NOx is a precursor of both ozone and PM2.5.  Reducing NOx will have impacts on ozone 
and PM2.5 concentrations, so ozone and PM2.5 sensitivities with respect to NOx reductions are 
correlated.  However, the relationship is imbedded in a complicated chemical reaction 
mechanism and may not be linear.  Therefore, we also investigate the correlation between ozone 
and PM2.5 sensitivities with respect to NOx reduction.  In Table 2, we report the results of our 
investigation on the correlation of ozone and PM2.5 sensitivities for both non-population-
weighted single cell and population-weighted S-R matrices.  
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Table 2.  Correlation Between Ozone and PM2.5 Sensitivity 
 

Summary 
Statistics 

 
Single Cell S-R 

Matrices 

Population 
Weighted S-R 

Matrices 

Average  0.47 0.60  

Std dev 0.35 0.38  

Min -0.87 -0.98  

Max 1.00 1.00  

 

For single cell S-R matrices, the average correlation between ozone and PM2.5 
sensitivities is about 0.47.  For population-weighted S-R matrices, the average correlation is 
about 0.60.  These correlations are not trivial, and should be considered when developing control 
strategies.  Otherwise, one would either underestimate or overestimate the cost of control, 
depending on whether the correlation is positive or negative.  We hope to investigate this kind of 
inter-pollutant correlation in detail in the future.  In this research, for simplicity, we treat ozone 
and PM2.5 sensitivities as independent for both types of S-R matrices.   

4. State Cost Function Development 

In this section, we discuss the development of a NOx control cost function for each state.  
We use the control cost data from earlier research (Krupnick, 2000).  The original raw cost data 
is from a model run by E.H. Pechan and Associates for EPA, called the Emission Reduction and 
Cost Analysis Model for Oxides of Nitrogen (ERCAM-NOx) (Pechan 1997).  For each utility 
boiler, we identify five different NOx control technologies.  For each of these technologies at an 
individual boiler, we develop the marginal costs for an individual control technology and the 
marginal NOx reduction achievable using this single technology.  Costs for each control 
technology are expressed in total control costs (in 2000 dollars) divided by the tons of NOx 
emissions reductions.  A total of 925 utility boilers were considered in the study domain.  For 
each boiler, we consider as many as five different control technologies.  These five different NOx 
control technologies include low excess air (LEA), over fire air (OFA), low-NOx burners (LNB), 
selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR).   

To develop state NOx control cost envelope functions, we pool the marginal costs and 
associated NOx reductions of these five technologies for all utility boilers (some boilers are not 
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assigned all five technologies).  We then rank the marginal costs from the smallest to the largest 
and the associated NOx reductions.  Based on this marginal cost envelope, we then construct the 
total cost function for every state.   

Using the above approach, we obtain total costs of NOx control for 19 states.  The general 
observation is that total cost increases moderately when NOx reduction is small.  As NOx 
reductions increase, the total cost increases dramatically.  For mathematical programming 
purposes, we need to develop a mathematical function to describe the observed total costs.  We 
use a piecewise linear approximation approach to describe the total cost data points.  

The following Figure 2 shows the linear approximation of the nonlinear total cost 
function for NOx reduction in DEMD. 

 
Figure 2: NOx Abatement Cost Function for Delaware-Maryland 
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5. The Development of Stochastic Benefit Coefficients   

Coefficients relating changes in ozone concentrations and PM2.5 concentrations to health 
benefits were developed from an updated version of the Tracking and Analysis Framework 
(Bloyd et al., 1996; Krupnick et al., 2000).  TAF incorporates concentration-health response 
functions, population data, and valuation functions, along with standard errors on any estimated 
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coefficients.  In the following Table 3, we present low, medium, and high estimates of these 
“unit” benefit values in 2000 dollars per day per ppb (or µg/m3) per person.2   
 

Table 3.  Benefit Coefficients 

 

 

 

Ozone 

(dollars per day per 
ppb per person) 

PM2.5 

(dollars per day per 
µg/m3 per person) 

Low 0.0018 0.047 

Medium 0.0043 0.338 

High 0.0170 0.864 
in $2000 
Source: (Bloyd et al., 1996) 

 

6. Stochastic Multi-Objective Air Quality Management Model 

A wide variety of mathematical programming models have appeared in the air pollution 
management and operations research/management science literature.  For example, Greenberg 
(1995) and Cooper et al. (1996) have done excellent surveys and evaluations of these models, 
which include both deterministic (Morrison and Rubin, 1985) and stochastic models (Ellis et al., 
1985; Watanabe and Ellis, 1993; Sullivan, 1997).  These models generally use a linear cost 
function (applied to SO2 reductions) and use a Lagrangian model to develop S-R coefficients.  In 
this research, we develop a stochastic multi-objective air quality management model, which is 
different from previous research in several ways.  First, we use an Eulerian-type air quality 
simulation model and a very efficient DDM-3D sensitivity algorithm to develop the S-R 
coefficients and to quantify the S-R coefficient distribution due to meteorological variability for 
both ozone and PM2.5.  Second, we consider net benefit as an objective function rather than only 
applying a cost function.  The model is formulated to optimize expected net benefits subject to 
air quality at a specific state/region, satisfying air quality requirements with specified reliability.  

                                                 
2 We did not consider nonhealth effects, such as visibility for PM2.5 and material damage and vegetative 
effects for ozone in this research. 
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Third, the model also allows decisionmakers to take various equity criteria into account when 
developing control strategies.  In the following section, we present the stochastic multi-objective 
chance constrained programming model developed in this research. 

 

Stochastic Multi-Objective Chance Constrained Programming (CCP) Model  

 

Maximize  [ ]r s
r s

E TCDTBD −∑ ∑  

s.t. 

 

,                                                     s sx d≤  

 

s∀  (1) 

3,Pr[ ( * ) ] ,        3 3 3r sr s r O r
s

PEAKO O x GO α− ≤ ≥∑  

 

r∀  (2) 

 

,Pr[ * ) ] ,       (r s r PM rsr
s

PM x GPMPEAKPM α− ≤ ≥∑  

 

r∀  (3) 

3( * )* * ,                 3 3w
r sr s o r

s
pO BD O x ub=∑  

 

r∀  (4) 

( * )* * ,             w
r sr s pm r

s
px ubPMBD PM=∑  

 

r∀  (5) 

,                 3 rr rO BD PMBDTBD +=  

 

r∀  

 
(6) 

, ,*s ns s n
n

x bz=∑  

 

s∀  
(7) 

, ,*s ns s n
n

bfTCD z=∑  
s∀  

(8) 
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s∀  
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1
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=∑  

 

s∀  
(10)

,1 ,1s syz ≤  

 

s∀  
 (11)

,2 ,1 ,2s s sy yz ≤ +  

 

s∀  
 (12)

,3 ,2 ,3s s sy yz ≤ +  

 

s∀  
 (13)

,4 ,3 ,4s s sy yz ≤ +  

 

s∀  
 (14)

,5 ,4s syz ≤  

 

s∀  
 

1

(15)

, 0,1s ny =  

 

, 1, ,s n N∀ = −  
 (16)

, 0s nz ≥  

 

, 1, ,s n N∀ =  
(17)

 

The objective function of the above optimization problem is to maximize the expected 
value of net benefits (total benefits, TBD, at all the receptors minus total costs, TCD, at all the 
sources) to the entire study domain.  The first constraint means that NOx reductions from an 
individual state cannot be greater than the total emissions in the state.  The second constraint 
says that peak ozone concentration at receptor r after control (which equals the peak ozone 
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concentration before control, , minus the total control effects, 3rPEAKO ( * )3sr s
s

O x∑ , which 

equals the summation of single cell S-R coefficients, 3srO , multiplied by emissions reductions, 

sx , from all the sources) should be less than the ambient ozone concentration goal, G , with a 
given reliability,

3O

,O rα .  Because of meteorological variability, the impact at a receptor due to 
control from a source state/region ( 3srO ) is a random variable.  So there is always a possibility 

that a specified ambient air quality goal at a receptor state/region will not be satisfied 100% of 
the time.  Realizing this, the constraint allows for violation of the air quality goal at the receptor, 
but air quality must reach a specified reliability level.  The third constraint is that the peak PM2.5 
concentration at receptor r after control (which equals the ozone concentration before control, 

, minus the total control effects, rPEAKPM ( )*sr s
s

xPM∑ , which equals the summation of 

single cell S-R coefficients, srPM , multiplied by emissions reductions, sx , from all the sources) 
should be less than the air quality PM goal, PMG , with reliability ,PM rα .  The reliability level can 

be a given input parameter.  The overall problem is to find a control strategy such that the air 
quality goal is satisfied with the appropriate reliability level and net benefits are also maximized.  
One can also treat the reliability as an unknown decision variable and move it to the objective 
function, which means that, given the air quality goal, one can find the maximum reliability 
achievable.   

The fourth equation is the daily ozone control benefit for a specific state/receptor, r.  It is 
equal to the “population-weighted” S-R coefficients, 3w

srO , multiplied by emissions reduction 
from all sources times the unit ozone benefit, , times total population, 3oub rp , of this receptor 

state/region.  The fifth equation is the daily PM2.5 control benefit for a specific state/region, r.  
Equation 6 is the summation of equations 4 and 5 above. 

Note that equations 4 and 5 include the multiplication of two random variables, namely 
S-R coefficients and unit ozone and unit PM2.5 benefit coefficients.  This multiplication 
complicates the solution because there is no easy way to approximate the probability distribution 
of the multiplication of two random variables analytically.  To simplify the complexity in the 
stochastic air quality management model, we use the deterministic median of the benefit 
coefficients rather than treating the benefit coefficients as random variables.  So the implicit 
assumption is that the benefit coefficients are linear functions.  In that case, the right hand side of 
equations 4 and 5 are just the summation of stochastic ozone and PM2.5 population-weighted 
source-receptor coefficients multiplied by a deterministic variable and a parameter, making them 
normally distributed random variables.  The expected benefits then are equal to the summation of 
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source-receptor mean coefficients multiplied by a deterministic variable and parameter.  The 
sixth equation is the total daily benefit from NOx control at receptor r.   

Equations 7–17 are linear approximations of the nonlinear total cost functions for 
individual source states.  For each nonlinear total cost function, we use five break points to 
construct the piecewise linear function, which is made of four straight line segments.  The 
functional values at these break points, , are given.  Then we use a linear combination of 

known functional values at these break points to approximate values between these break points.  
The solution can only fall in one of the four segments.  Every break point is assigned a weighting 
variable, , with a value between 0 and 1 and a 0-1 binary interval indicator variable, .  If a 
solution, x, falls within the interval ( ,

nbf

1nb
nz ny

nb + ), then x can be represented as a linear combination 

as 

 

1(1 )n nn nx b bz z += + −  

 

  
 (18)

 

Since the function f(x) is linear for 1n nxb b +≤ ≤ , we may write  

 

1( ) (1 )n nn nf x bf bfz z += + −  

 

  
(19)

 

When , which means x falls in the interval n, then only  and  may be 
positive, but all other ’s must equal 0.  On the other hand,  is bounded above by the 
summation of neighboring integer interval variables, 

1ny = nz 1nz +

nz nz
1ny − ny+ .  Finally we have all weighting 

variables at break points sum equal to 1 and interval indicator variables sum equal to 1.  For a 
detailed discussion of this technique, please see Winston (1995). 

7. Stochastic Simulation 

There are two major purposes for developing our stochastic simulation model.  The first 
purpose is to use this module to estimate benefit distribution for the control strategy obtained in 
the stochastic air quality management model (in which we use deterministic benefit coefficients).  
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The second purpose is to verify the air quality chance constraint—that is, if the variability 
distributions of source-receptor coefficients are not normally distributed as in our assumptions. 

In the stochastic air quality management model, we use normal distributions to 
approximate the variability of ozone and PM2.5 S-R coefficients, but use constant median value 
for benefit coefficients although they are actually random variables.  In the first stage, we make 
sure that the chance constraints are satisfied.  In the second stage, we conduct the stochastic 
simulation using results from the stochastic air quality management model to quantify the 
distribution of net benefits.  In the second stage, we then can explicitly incorporate the 
uncertainty of the benefit coefficients.  We can also use the stochastic simulation model to verify 
the air quality chance constraints.   
 

8. Data 

In this section, we provide some input information needed in the stochastic multi-
objective air quality management model, including state baseline concentrations for ozone and 
PM2.5 and state population data. 

Baseline pollutant concentrations for ozone and PM2.5,  and , are 

based on the URM-1ATM model prediction using July and May episodes of 1995.  In the 
following Table 4, we list the peak of one-hour and eight-hour daily maximum ozone 
concentrations and 24-hour daily average PM2.5 concentrations for 19 states/regions in the study 
domain.  These are the concentration levels that need to be reduced in the stochastic air quality 
management model. 

rPEAKO rPEAKPM
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Table 4.  State Baseline Concentrations for Ozone and PM2.5
* 

Benchmark 
Concentration

Ozone1 

(ppb) 
Ozone2 

(ppb) 
PM2.5

3 
(µg/m3) 

AL 82.58 77.65 44.11 

DEMD 96.26 92.68 68.33 

GA 81.77 74.58 53.42 

IL 89.50 85.70 50.60 

IN 104.25 96.85 40.77 

KY 92.35 85.32 107.45 

MACTRI 98.50 89.34 77.64 

MI 111.80 102.54 33.76 

MO 81.06 76.75 37.25 

NC 76.49 72.51 47.79 

NJ 97.74 88.77 108.62 

NY 101.73 96.84 108.62 

OH 99.48 95.44 44.88 

PA 95.44 89.63 55.50 

SC 77.15 70.84 39.76 

TN 85.19 78.64 36.56 

VA 93.38 88.43 59.38 

WI 93.19 87.65 18.01 

WV 92.36 87.47 43.70 
*Unweighted maximum concentration from single grid cell. 
1 The peak of one-hour daily maximum from July and May episodes. 
2 The peak of eight-hour daily maximum from July and May episodes. 
3 The peak of 24-hour daily average maximum from July and May episodes. 

  

In the model development section, state population data, rp , are from the 2000 census 

database.  The census data were actually at the census block level, which are typically sub-grid 
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cell level units.  The census block population and housing counts are aggregated to a grid cell 
level.  Census blocks that occupy one or more grid cells have their population and housing 
counts apportioned to a grid cell by their area percentage in a grid cell.  The 2000 census 
population data is listed in the following Table 5: 

 

Table 5.  2000 State/Region Population 
State 

Region 

Population 

(1,000) 

AL 4,447 

DEMD 6,080 

GA 8,186 

IL 12,419 

IN 6,080 

KY 4,042 

MACTRI 10,803 

MI 9,938 

MO 5,595 

NC 8,049 

NJ 8,414 

NY 18,976 

OH 11,353 

PA 12,281 

SC 4,012 

TN 5,689 

VA 7,079 

WI 5,364 

WV 1,808 

Total 150,615 

Source: http://www.census.gov/statab/ranks/rank01.txt 
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9. Results 

At the beginning of this paper, we mentioned that our framework has several uses.  In this 
section, we illustrate some of them.  The first use discussed below is to derive the socially 
optimal control strategy.  The second use builds on the first, taking equity and distributional 
issues into account.  The last is to demonstrate how the framework can be applied in a novel risk 
management context to derive the trade-off between the risk of violating the air quality goal and 
the net benefits of control.   

Case 1.  Optimize Expected Net Benefits Without an Air Quality Constraint 

In this first case, we examine the allocation of emissions reductions that maximizes net 
benefits for the entire study domain, without an air quality requirement for any state.  In the 
result Table 6, the cost column gives the NOx control cost for the individual states.  The three 
benefit columns (ozone, PM, and ozone & PM benefit) in Table 6 show the total benefits 
occurring at a receptor state because of the NOx reductions over the entire study domain.  
Negative net benefits indicate states where emissions reductions benefit other states, but 
aggregated reductions do not benefit these states enough to offset the state’s control costs (IN, 
TN, and WV).  This could occur for a number of reasons, such as the state’s location near the 
upwind modeling domain boundary (IN, TN), low population levels (WV) or low pollution 
levels in that state, and/or high baseline emissions and therefore high control costs (IN, WV).  
Because emissions reductions in those states are found to contribute to net benefits overall, one 
implication of these results is that states benefiting from these reductions should share the costs 
of emissions reductions in the upwind states as part of their own air quality plans.   

The results show that the optimal NOx reduction is about 20% of the baseline, and that 
net benefits are about $1 million per day.  Ozone-based health benefits are $0.3 million per day, 
while PM2.5 benefits are about seven times this amount.  On a per-ton-reduced basis, benefits are 
$250/ton of NOx reduced as it affects ozone and $1,700/ton reduced as NOx affects PM2.5.  Costs 
are just over $1.4 million per day, or $1,100/ton of NOx reduced.  The largest net benefits are 
experienced in New York, which is not surprising given the weather patterns, which cause New 
York to gain many benefits from reductions in emissions from other states, and the relatively low 
costs of control in New York.  The latter occurs because relatively few tons are reduced in the 
optimal case (only 43 percent of baseline) and at a relatively low cost per ton (only around 
$700/ton reduced).   
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Table 6.  Optimize Expected Net Benefit Without an Air Quality Constraint 
Objective Value $997,928            

  

NOx 
Reduction 
(tons/day) 

Reduction 
Fraction 

Cost  
($1,000 

/day) 

Ozone 
Benefit 
($1,000 

/day) 

PM 
Benefit 
($1,000 

/day) 

Ozone & 
PM 

Benefit 
($1,000 

/day) 
Net Benefit 

($1,000 /day) 
AL 0 0 $0 $4 $19 $23 $23 
DEMD 80 0.47 $84 $23 $147 $170 $86 
GA 0 0 $0 $13 $55 $67 $67 
IL 0 0 $0 $6 $48 $54 $54 
IN 250 0.6 $406 $11 $69 $80 ($326)
KY 62 0.21 $57 $13 $95 $108 $51 
MACTRI 50 0.43 $45 $22 $176 $198 $152 
MI 0 0 $0 $9 $29 $37 $37 
MO 0 0 $0 $2 $2 $3 $3 
NC 115 0.42 $63 $27 $123 $150 $87 
NJ 34 0.55 $19 $29 $170 $199 $180 
NY 84 0.43 $57 $43 $401 $444 $387 
OH 107 0.22 $84 $18 $157 $176 $92 
PA 200 0.37 $170 $30 $294 $324 $154 
SC 0 0 $0 $8 $28 $36 $36 
TN 141 0.71 $211 $15 $77 $92 ($119)
VA 63 0.39 $95 $29 $150 $178 $83 
WI 0 0 $0 $1 $6 $7 $7 
WV 56 0.27 $99 $6 $34 $40 ($59)
Total 1,242 $1,390 $310 $2,078 $2,388 $998 

 

Case 2.  Every State Net Benefit Is Non-Negative 

In Case 1, the net benefits across states vary widely.  Some states have large positive 
benefits and some states have negative benefits.  In our research, we discuss four different 
methods to incorporate equity criteria in developing control strategies.  Here, we only show one 
example.  In Case 2, we model a scenario in which the expected net benefit for each state is 
constrained to be non-negative.   
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For this case, we just add a constraint for every state/region that says the net benefit at an 
individual state has to be greater than zero.  The results are in the following table: 

 

Table 7.  Every State Net Benefit Is Non-Negative 
Objective Value $864,359            

  

NOx 
Reduction 
(tons/day) 

Reduction 
Fraction 

Cost 
($1,000/day)

Ozone 
Benefit 

($1,000/day)
PM Benefit 

($1,000/day)

Ozone & PM 
Benefit 

($1,000 /day) 
Net Benefit 

($1,000 /day)
AL 15 0.04 $22 $4 $18 $22 $0 
DEMD 80 0.47 $84 $19 $120 $138 $55 
GA 53 0.22 $70 $13 $57 $70 $0 
IL 7 0.03 $12 $3 $9 $12 $0 
IN 11 0.03 $19 $3 $16 $19 $0 
KY 53 0.18 $49 $6 $43 $49 $0 
MACTRI 50 0.43 $45 $19 $160 $179 $134 
MI 19 0.06 $15 $5 $11 $15 $0 
MO 0 0 $0 $1 $1 $2 $2 
NC 115 0.42 $63 $24 $107 $131 $68 
NJ 34 0.55 $19 $26 $149 $174 $155 
NY 84 0.43 $57 $37 $340 $378 $321 
OH 94 0.19 $74 $9 $65 $74 $0 
PA 200 0.37 $170 $25 $232 $257 $87 
SC 24 0.12 $38 $8 $29 $38 $0 
TN 69 0.35 $57 $9 $47 $57 $0 
VA 63 0.39 $95 $23 $115 $138 $43 
WI 3 0.02 $3 $1 $2 $3 $0 
WV 13 0.06 $23 $4 $20 $23 $0 
Total 987 $914 $238 $1,541 $1,779 $864 

 

In comparing results in this table with results for Case 1, total net benefits are reduced 
from $1 million per day in the optimal case to $0.86 million per day.  States that have negative 
net benefit in Case 1 cut back their emissions control to reduce their control costs.  This 
difference is fairly minor because few states are in the negative net benefit category.  Although 
the net benefits gain from those four states is about $0.5 million per day, other states/regions in 
the entire study domain encounter a loss of $0.6 million per day, which results in a net benefit 
loss of $0.1 million per day for the entire domain.  Some states may encounter bigger losses than 
others. For example, OH, PA, and GA show large losses of $92 thousand per day, $67 thousand 

19 



Resources for the Future Shih, Bergin, Krupnick, and Russell 

per day, and $67 thousand per day, respectively.  The other states encounter smaller net benefit 
losses. 

 
 

Case 3.  Trade-Off Between Expected Net Benefits and Reliability Level Required 
to Reduce DEMD Peak Ozone Concentration from 96.3 ppb (Baseline 
Concentration) to 93.5, 94, 94.5 ppb 

In this case, we investigate the trade-off between net benefits for the entire study domain 
and, as an example, the reliability level of DEMD meeting an ozone reduction from the predicted 
baseline concentration of 96.3 ppb to goals of 93.5, 94, and 94.5 ppb.  The selection of DEMD 
and these ozone goals are for illustrative purposes only.  If one selects an upwind state instead or 
a more stringent air quality goal, it is likely that there will be no feasible solutions because of the 
small S-R coefficients toward the upwind state and/or the very low baseline emissions.3  

Because of meteorological variability, we expect that the reliability-net benefits curve 
would slope downward.  More emissions would need to be reduced in order to meet the air 
quality goal with a higher reliability requirement.  Because the benefit function is linear, and 
marginal costs increase with greater emissions reductions, net benefits fall as reliability 
increases. 

The results in Figure 3 bear out this expectation.  Indeed, the net benefit can go from 
positive to negative as the reliability requirement gets higher and higher.  Furthermore, meeting a 
given air quality goal can even become infeasible for reliability requirements above a certain 
level.  In this illustrative case, the maximum reliability for DEMD to meet air quality goals of 
93.5, 94, and 94.5 ppb is 67%, 83%, and 93%, respectively.  This solution is found by treating 
the reliability parameter as an unknown variable, moving it to the objective function, and 
maximizing it.   

                                                 
3 Instead of selecting a single state for this analysis, it is theoretically possible to select all states/regions to 

consider a given pollution reduction target jointly.  However, technically this problem is very difficult to solve 
because a joint probability distribution for the entire system is needed.  Because each state has different baseline 
pollutant concentrations as well as the upwind state issue we mentioned above, the feasible range for emissions 
reductions are different for individual states.  In general, downwind states have a bigger range.  So it is very possible 
that we won’t be able to find a feasible solution for the entire system with the same reduction target.  One option is 
to consider only downwind states jointly, because they are more likely to have big reduction ranges.  
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Another interpretation of Figure 3 is that, given the same reliability requirement, as the 
air quality target gets more stringent, the costs and benefits increase; but as costs increase faster 
than benefits, net benefits fall.  The trade-off curves shift unfavorably from right to left. 

A third interpretation of this analysis could be useful for setting air quality standards.  If 
one were to draw a horizontal line parallel to the x-axis and across the three trade-off curves—an 
“iso net benefit” line—net benefits on this line are constant.  Thus, the same value of net benefits 
can be achieved using different combinations of the air quality goal and the reliability 
requirement.   
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Figure 3. Trade-Off Between Expected Net Benefit and Reliability 
Level required to Reduce DEMD Peak Ozone Concentration from 

96.3 ppb to 93.5, 94, and 94.5 ppb (left to right) 
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10. Conclusion and Future Work 

In this paper, we developed an integrated cost-benefit analysis framework for ozone and 
fine particulate control, accounting for meteorological variability.  This framework includes air 
quality simulation, sensitivity analysis, stochastic multi-objective air quality management, and 
stochastic cost-benefit analysis.  We demonstrated a method to develop stochastic S-R 
relationships, and used those findings for an initial assessment of developing optimized control 
strategies.   

This research shows the potential of the approach, and provides some very important 
results.  In the first case, we examined the allocation of emissions reductions that optimizes net 
benefits for the entire study domain.  We found that some states (IN, TN, and WV) had negative 
net benefits, implying aggregated reductions do not benefit the emitting state plus the other 
receptor states enough to offset the emitting state’s control costs.  Because emissions reductions 
in these three states are found to contribute to maximizing net benefits, one implication of these 
results is that states benefiting from these reductions should share the costs of emissions 
reductions in the upwind states as part of their own air quality plans.   

The second case builds on the first case to take equity and distributional issues into 
account by adding the constraint that every state’s net benefit be non-negative.  It turns out that 
although this equity constraint results in benefits to the three negative benefit states of $0.5 
million per day, the entire domain encounters a net loss of $0.1 million per day.  Those losses to 
other states are therefore $0.6 million, 1.2 times the gains to the three states, suggesting that 
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policies to improve conditions for one group will hurt others significantly.  Indeed, any policy to 
improve equity that departs from the optimal solution necessarily involves the losers losing more 
than the gainers gain.   

In the third case, we investigate the trade-off between net benefits for the entire study 
domain and the reliability level to meet the air quality goal, using DEMD as an example.  
Because of meteorological variability, one could end up with either more frequent violations of 
the air quality standard or higher than expected control costs to meet the standard.  Without 
taking into account this uncertainty and variability, one could end up with an inefficient or 
infeasible control strategy.  For example, we find that costs to drop emissions increase 
dramatically beyond a 60% reliability level in order to meet the 93.5 ppb air quality goal.  
Interestingly, only a slightly higher goal (94.5 ppb) results in flat abatement costs up to an 85% 
reliability level.  These findings and our general results suggest that, first, reliability 
considerations should be an important part of any air quality attainment strategy and that more 
research is needed on what levels of reliability are appropriate.   

This is important in terms of regulatory accountability and resource allocation.  If 
environmental improvement expectations are not realized given unretrievable commitment of 
emissions reduction resources, the credibility and the economic efficiency aspects of 
environmental quality enhancement are brought into question.  If the likelihood of this result is 
high enough, it may be more prudent for decisionmakers to recognize and account for 
meteorological variability up front in the design of a NAAQS form and level and concomitant 
implementation plans.  In particular, the same value of net benefits can be achieved using 
different combinations of the air quality goal and the reliability requirement.  This finding could 
be useful for setting air quality standards because it provides the decisionmaker with some 
flexibility to meet social goals using different strategies, namely, a more stringent air quality goal 
with a lower level of reliability requirement or a less stringent air quality goal with a higher level 
of reliability requirement.  Incorporating this type of thinking in planning for the attainment of 
air quality standards would require changes in the Clean Air Act to redefine what is meant by 
“attainment.”   

This project has several limitations.  Due to project constraints, only two meteorological 
episodes were studied.  While those episodes were chosen to represent very different 
meteorology, they still do not span the whole range of conditions that lead to elevated ozone 
levels, and certainly do not include periods leading to high particulate matter (i.e., during the 
winter).  The number of episodes should be increased.   

23 



Resources for the Future Shih, Bergin, Krupnick, and Russell 

Second, the NOx control costs were only available for electric utilities.  As shown, much 
of the benefits from emissions controls are derived from lower PM, much of which is sulfurous 
or carbonaceous in nature.  The type of analysis done here should be extended to include other 
PM species.   

Third, this research only considers human health benefit.  The coverage of effects 
categories (nonhuman health for PM and O3 as well as the health endpoints for O3) could also 
affect the results.  In addition, we only consider elevated point NOx emissions.  Other sources 
(mobile) and pollutants (VOC) may affect the results. 

Finally, we will use the modeling framework to study trading across states/regions and/or 
various pollutants, correlations issues within the air quality management model, and other equity 
criteria. 
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Figure 1.  May and July 24-hour average PM2.5 sensitivity with respect to total SO2 reduction 
(µg/m3 per 1,000 tons/day).  Relative sensitivities for each state of the top six contributing states/regions 
and “all other states” for the effect of a unit reduction in SO2 emissions on 24-hour average area weighted 
PM2.5 concentrations for both the July and May episodes.   
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