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Abstract 
Safe Minimum Standards (SMSs) have been advocated as a policy rule for environmental 

problems where uncertainty about risks and consequences are thought to be profound. This paper explores 
the rationale for such a policy within a dynamic framework and derives conditions for when SMS can be 
summarily dismissed as a policy choice and for when SMS can be defended as an optimal policy based on 
standard economic criteria. We have determined that these conditions can be checked with quite limited 
information about damages and risks. In order to analyze the SMSs in a dynamic setting, we have 
developed a method for solving optimal control problems where the state space is divided into risky and 
non-risky subsets. 
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 Safe Minimum Standards in Dynamic Resource Problems—
Conditions for Living on the Edge of Risk  

Michael Margolis and Eric Nævdal1 

1. Introduction 

Environmental and resource problems include many  for which future damages are highly 
uncertain, possibly severe, and likely to be irreversible. In the public debate, a popular notion is 
that such problems should be dealt with by applying the Precautionary Principle (PP) and 
avoiding such risks altogether. PP seems to have great intuitive appeal both to the general public 
and to non-economist scientists. This may be why PP has been adopted in much environmental 
legislation, such as the Endangered Species Act and the Clean Water Act in the United States. 
Ciriacy-Wantrup (1952) suggested that such problems be addressed by establishing a Safe 
Minimum Standard (SMS) below which the flow of key ecosystem services should not be 
permitted to fall.  To prevent an extinction, for example, we might establish a SMS for the size 
of the reproducing population, another for the area of its habitat, and a third (actually a safe 
maximum) for the extent of human activity within the habitat area. The concept of the SMS has 
since been refined in Bishop (1978,1979), Bishop and Ready (1990), and Crowards (1998) and 
put into practice in the form of critical habitat designation for endangered species, minimum 
flow and purity requirements for water quality, and others. 

  None of these arguments, however, is based on a conventional social welfare-
maximization criterion, which makes SMS a controversial subject among economists. The  
cause of the controversy, as summed up by Farmer and Randall (1998), is that “SMS processes 
…cannot be derived from a single direct objective statement that also derives the policy 
exception upon which they are superimposed. ” The central contribution of this paper is to  
show that it is, in fact, possible to derive conditions under which an SMS policy will maximize 
social welfare and that surprisingly little information is required to verify whether these 
conditions hold.  

                                                 
1 Michael Margolis is a Fellow at Resources for the Future. He can be reached at marolis@rff.org. Eric Nævdal is a 
research fellow, Department of Forest Sciences, at the Agricultural University of Norway. He can be reached at 
eric.naevdal@isf.nlh.no. 
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Economists have suggested alternative justifications for the use of an SMS. Most of these 
develop the philosophical position that there are limits beyond which utilitarian calculus ceases 
to be legitimate. Bishop’s (1978, 1979) case was built on the assumptions that planners are 
unaware of the probabilities of relevant events and that a planner ignorant of probabilities should 
follow a “minimax” strategy, which minimizes the maximum possible loss. This strategy is 
tantamount to assuming the worst possible outcome is a certainty and will not in general 
maximize welfare. Further investigation by Smith and Krutilla (1979) and Ready and Bishop 
(1991) uncovered several plausible circumstances in which abandoning a species to extinction is 
clearly preferable to an SMS. Bishop (1979) thus suggested the policy be abandoned when its 
cost is “intolerably” high, but there is no way to determine exactly how high a cost ought to be 
tolerated. Norton and Toman (1997) suggested an SMS could play a role in a “two-tiered” 
decisionmaking system, in which utilitarian calculus would give way to a more conservationist 
approach as irreversibility and justice issues increase in importance. This system would be a sort 
of compromise, or consensus, among utilitarians and partisans of other philosophical schools. In 
a similar vein, Farmer and Randall (1998) show that SMS is a common feature of agreements 
negotiated among citizens with varying moral positions.  

 

Ciriacy-Wantrup (1952), however, based his original argument purely on discontinuities 
in the physical systems being managed or the models being used to predict those systems, rather 
than the philosophical framework used to value them. He recommended SMS as a management 
tool for what he called “critical zone resources,” a class in which he included animal and plant 
species, scenic resources, and the storage capacity of groundwater basins. The defining feature of 
this resource class was that the service flow could be smoothly manipulated at certain levels, but 
that beyond some critical zone a danger of collapse was introduced. Ecosystems often exhibit 
such threshold effects, at least at the level of resolution with which ecologists can understand 
them. For example, some species have minimum critical population thresholds such that a 
population will become extinct if population size goes below it. The location of this threshold 
will usually be imperfectly known. Another example is acid rain and eutrophication, which may 
lead to destruction or critical alteration of ecosystems if certain thresholds are violated (Mason 
1996). In the case of acid rain, the increase in large-scale mortality risk is rapid as pH levels go 
below 4.5. Biologists and limnologists often treat these thresholds as deterministic, but since they 
are often site specific, the actual location of the threshold in any given ecosystem would be 
stochastic until a sufficiently extensive biological study of the relevant ecosystem had been 
conducted and a deterministic threshold established. It will however be a manageable task to 
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establish bounds where one can say that below2 such a bound, the probability of a catastrophe is 
zero. Such a bound is here referred to as a risk threshold.  

The above are examples of risk thresholds created by the way in which natural scientists 
characterize problems. They can also be created by the way in which natural resource 
management is organized. Even if there is no bright line in the underlying risk, an SMS 
established by authorities at one level becomes a bright line for those whose compliance is being 
monitored. The U.S. Clean Air Act (CAA), for example, places local authorities in danger of 
losing control over economic development policy if the annual average concentration of any of 
several pollutants crosses a limit set by federal law. Thresholds for private sector decisionmakers 
are similarly induced by any regulation that places a firm in danger of increased regulatory 
scrutiny or litigation exposure conditional on an observable standard—for example, the 
Accidental Release Prevention rules of the CAA (EPA 1997). 

Given a risk threshold from either natural or social sources, a manager is likely to 
consider using the threshold level as an SMS. Our task in this paper is to examine the 
circumstances in which this response is consistent with utilitarian calculus, thus redeveloping 
Ciriacy-Wantrup’s original argument with new rigor. We are especially interested in knowing 
when an SMS is a logical response to uncertainty. We derive conditions under which the 
optimality of a SMS can be determined in a cost–benefit analysis framework under the weakest 
possible assumptions. We show that an SMS is optimal policy if managers can put lower bounds 
on two parameters: the seriousness of the catastrophe and a parameter that determines how the 
magnitude of risk varies with the state-variable’s position in state space.  

The present article examines SMSs in a dynamic context, reflecting our belief that this 
case is empirically the most important.3 The dynamic analysis of SMSs requires a division of 
state space into subsets with different risk structure. The boundaries between these sets are 
referred to as risk thresholds. We examine the particular type of problem where there is no risk 
in one subset of state space and risk in other subsets. In the risky subsets, the magnitude of the 
risk depends parametrically on the value of the state variables. We shall refer to state spaces that 

                                                 
2 The term “below the threshold,” as used here, is somewhat imprecise language and depends on the assumption that 
the probability of damage is a nondecreasing function, the function being strictly increasing if the argument is larger 
than the threshold. If the relevant variable is, for example, pH levels, where more is “good,” then “above the 
threshold” is the correct term. For simplicity, it is assumed throughout this paper that if a system is “below the 
threshold” then there is no risk. 
3 Some results for static problems may be found in Nævdal & Margolis (2001). 
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are divided into risky and non-risky subsets as mixed risk spaces. To our knowledge, optimality 
conditions for this type of problem have not yet been analyzed in the literature. The technical 
challenge presented by this type of problem is that of finding conditions for the behavior of the 
co-state variables as the state variables crosses from one subset to another. We derive conditions 
for considerably more general problems than that of SMSs.  

 

2. A Dynamic Model of Safe Minimum Standards 

In this section, we consider the problem of managing a resource over time. Risk is 
represented by an event we term a “catastrophe.” We must associate the likelihood of this event 
with some specific risk structure. Obviously, the choice of risk structure depends on the real 
world interpretation of our model. Also, the choice of risk structure will influence the 
optimization framework that is used to solve the problem.  The resource economic literature on 
optimal control in the presence of catastrophic risk can be roughly divided into two main 
categories. In one category, risk is modeled as a Poisson process where the catastrophic event 
has a probability distribution over time. The seminal paper for this model is, as far as we know, 
Dasgupta and Heal (1974).  Heal (1991) and Clarke and Reed (1994) provide examples of this 
application. In the second category, risk is modeled as an event that occurs when a state variable 
exceeds some threshold in state space and the location of this threshold is unknown. In this 
approach, the event is distributed over state space. The seminal papers for this model are Cropper 
(1976) and Kemp (1976). Applications are provided by Tsur and Zemel (1995, 1996) and 
Nævdal (2003a). Nævdal (2003b) examines this type of problem for general ones where the 
threshold is a curve in n-dimensional space. The two approaches are superficially similar. For 
example both the Poisson type risk structure and the state-space distributed risk structure may 
take the form of probability distributions that depend on the paths of the state variables. Since the 
solution of a state-space distributed problem is found by converting such a problem to a Poisson 
type process, the necessary conditions for optimality are also quite similar. However the physical 
interpretations of the two types of problems are quite different. The relationship between these 
two approaches and the economic implications of the different risk structures are discussed in 
some detail in Nævdal (2003b). The approach chosen in this paper assumes that the risk structure 
is of the Poisson type where the catastrophic event is distributed over time. In its most general 
formulation, this implies that that the point in time at which a catastrophic event occurs has the 
following probability distribution: ( )( ) ( )( )( )0

,~ , exp t

s x s dst x t − λτ λ ∫  over . The intensity of +R
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this distribution is given by λ(t, x(t)). The Poisson type risk structure is chosen for simplicity. 
Establishing the results below for state-space distributed events is straightforward.4  

All the articles mentioned in the previous paragraph assume that the catastrophe takes the 
form of a discrete jump in instantaneous utility. Here we use an alternative approach, referred to 
as Piecewise Deterministic Optimal Control (PDOC), where the catastrophe takes the form of a 
jump in one or more state variables. The most important reason for choosing this approach is that 
the solution includes co-state variables that are directly commensurable with the co-state 
variables in deterministic control. This will be important in developing our results. The chosen 
approach also has the advantage that it is slightly more general. Not only can the method we use 
in the present article be used to analyze problems where there is a discrete jump in instantaneous 
utility, but it can also be used to analyze catastrophes where there are parametric shifts in the 
differential equations determining the paths of the state variables. Catastrophes where there are 
both jumps in instantaneous utility and the equations of motion may also be analyzed. PDOC is 
explained in Seierstad (2002) and reviewed in the appendix.   

A possible source of confusion is that problems with events distributed over state space 
are occasionally given threshold interpretations. However, these thresholds are fundamentally 
different from the risk thresholds analyzed in this article. In the articles with state-space 
distributed risk, there is a shock of some sort when the threshold is crossed. In this article, the 
only thing that happens when the threshold is crossed is that the process becomes risky and a 
shock becomes possible. 

 
 
 
 
 
 
 

                                                 
4 There are of course other types of risk than catastrophic risk in resource economic problems, such as the case 
where movement in state variables is partly influenced by Brownian motion.  However, SMSs are, to our 
knowledge, suggested as a policy only in cases where there is risk of catastrophic events. Brownian motion is used 
to model incremental risk. There exist hybrid models where there is both Brownian motion and catastrophic risk, 
such as Dixit and Pindyck (1994).  Applying risk thresholds to these types of models is a possible extension not 
further discussed here. 
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Risk Thresholds in a Dynamic Context 

This section explains how to give meaning to the concept of a risk threshold when state 
variables are functions of time. Let the state variables, x (t) ∈ R , evolve according to a the law 

of motion 

n

 
 ( ),�x f x u=  (1) 

from a starting point denoted x (0) = x0. u∈  is a control function. If there is a catastrophe at 
some point in time τ, the state variable x jumps by a quantity g(τ, x(τ)). The arrival of this 
catastrophe is governed by a Poisson process with intensity 

Rm

( )xΛ . Equation (2) defines this 

process. 

 

 

( )( )
( )( )
( )( )

Pr , | ( )  

0 if 0
( )

( ) if 0

t t t t x t

x t
x

x x t

τ∈ + ∆ τ > ≈ Λ ∆

 φ <Λ = 
λ φ >

 (2) 

 

x(t) represents the state of the resource at time t. The risk threshold is a curve in state space, 
defined by φ(x(t)) = 0, with φ(x(t)) < 0 being the safe side. If φ(x(t)) > 0  there is risk of the event 
t = τ occurring. The intensity λ(x) is assumed everywhere continuous and increasing5 except 
possibly when φ(x(t)) = 0. It is important to note that there is no physical jump in the variables as 
the state variables cross the risk threshold. The system goes from a subset of state space where 
there is no risk to a subset of state space where there is risk or vice versa. It is only if φ(x(t)) > 0 
for a measurable amount of time that there is positive risk of a catastrophe occurring.  

 

                                                 
5 Some environmental variables are defined in such a way that an increasing numerical value reduces risk. This is  
the case for pH values whenever acidity represents an environmental problem. For such variables we would have to 
turn the definition around in an obvious way.  
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Optimization in the Presence of Risk Thresholds—A Conceptual Description 

In the most general formulation of a risk threshold problem, we look for paths that solve 
the problem:  

 

 ( )( )00
max , rt

u
E f x u e dt

∞ −∫  (3) 

 

subject to the differential equation in (1) and the stochastic process in (2).  f0 is the instantaneous 
utility depending on x and u. The problem defined by Equations (1) – (3) is may be envisioned as 
a sequence of decisions, where one solves a deterministic optimal-control problem whenever  
φ(⋅) < 0 and a piecewise deterministic problem whenever φ(⋅) > 0. Figure 1 illustrates this 
breakdown for the simplest possible sort of risk threshold—in which there is a time-invariant 
constant x  separating the safe side from the dangerous side—is defined by φ(x(t))= x(t) – x  ∀t. 
The horizontal line x is the risk threshold that divides the state space into subsets. Three paths 
are illustrated. These paths are not necessarily optimal, but serve to conceptualize the 
mathematical problem of optimizing in the presence of a risk threshold. ( )1x t  is always below 

the threshold. If this path is optimal, necessary conditions for optimality can be found with 
standard deterministic optimal control. If the path ( )3x t  is optimal, then necessary conditions for 

this path are found by applying PDOC. If the path ( )2x t  is optimal, this follows from applying 

standard deterministic control on the intervals [A, B], [C, D] and [E, ∞)  and PDOC in the 
intervals [B, C] and [D, E]. It is important to note that the points in time where the risk threshold 
is crossed are endogenous to the problem.  
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x

x ( )1 t

x ( )3 t

x ( )2 t

t

x( )t

A B C D E

 
Figure 1. State-Variable Paths through a Mixed-Risk State Space 

 

In fact, we need conditions for optimality for three types of problems: 

 

1. Optimality conditions for the path after the catastrophe has occurred. We assume 
here that the catastrophe can only happen once and is irreversible. We therefore 
take the social-welfare maximization problem to be deterministic after the 
catastrophe has occurred. 

2. Optimality conditions for the path if it is optimal to be in the deterministic subset 
of state space. 

3. Optimality conditions for the path if it is optimal to be in the risky subset of state 
space. 
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Necessary conditions for optimality in the deterministic intervals are well known. 
Necessary conditions for PDOC are less well known and are given in the appendix. The 
remaining question is the behavior of the solution at the times the threshold is crossed. The state 
variable, x, simply follows the differential equation unless the catastrophe occurs. The behavior 
of the co-state variable is potentially subtler. This is an isoperimetric problem, since we require 
x(t) to be on a certain surface when the threshold is crossed. Such problems often have jumps in 
the co-state variables at any time T when the threshold is crossed. In the appendix, we show that 
whenever the threshold is crossed from a state where φ(⋅) < 0 to a state where φ(⋅) > 0, the co-
state jump according to the following equation:  

 
( ) ( ) ( ) ( )( )(

( )( ) ( )( ) (( ))
0 0

1

, | ,

rTp T p T f f e p T f f
f

)x T J T x g x J T xλ τ

− + + − − + + −
−

+ + +

− = − + −

+ + −
 (4) 

where T is the time when the threshold is crossed. p(⋅) is the co-state; and J denotes the criterion 
function evaluated at T. That is, J(T, x) = maxu ( )( )( )0 ,

T

rt dtE f x t u e
∞ −∫  s.t. x(T) = x . Superscript 

+ indicates that the function is evaluated at the limit from above and superscript − indicates that 
the function is evaluated at the limit from below. Thus ( )( ), |J T x g x τ+ +  −  is the loss 

from the catastrophe if it happens at time T. It should be pointed out that these expressions are 
not assumed to be known, but are calculated recursively as a part of the necessary conditions. 
How is shown in Equation (34). 

( ,+ )J T x

The expression for the case where the state goes from φ(⋅) > 0 to a state φ(⋅) < 0 is given 
by 

 

 
( ) ( ) ( ) ( )( )(

( )( ) ( )( ) (( ))
0 0

1

, | ,

rTp T p T f f e p T f f
f

)x T J T x g x J T xλ τ

− + + − − + + −
−

− − −

− = − + −

− + −
 (5) 

 

The central insight from (4) and (5) is that there may be a jump in the co-state variable 
when x(t) crosses from one side of φ(·) = 0 to the other.  As always, the co-state variable may be 
thought of as the shadow cost in terms of current and future welfare incurred when an additional 
unit of the state variable is made freely available. The discontinuous shift in this shadow cost at 
the threshold is an indication, although not a proof, that the intuition of the static example carries 
over to the dynamic. Sometimes one should reach the threshold and then stop, since the price of 
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going farther jumps, but this is never the case if the onset of risk is slow in the sense that if 
( )xλ′  = 0 at the threshold. 

If an SMS is applied then �x  = 0 for all t after the threshold has been reached. For this 
case, (4) and (5) are not well defined because their derivation involves division by (� )x T +  = 0. 

When an SMS is applied, the co-state will jump according to 

 

( ) ( )
( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
0 0, , , , , , , ,

, , , ,

f T x T u T x T p T f T x T u T x T p T
p T p T

f T x T u T x T p T

+ + + + + − − − − −

− +

− − − − −

−
− =  (6) 

 

That is, the jump in the shadow cost of resource damage is the jump in instantaneous 
social welfare divided by the speed with which the state variable is changing as the threshold is 
approached. 

 

When is a SMS Optimal? 

We now turn to the question of when an SMS is optimal. To dispose of the trivial 
problems, assume x0 is on the safe side of the threshold and that the path of x will cross the risk 
threshold if no action is taken to regulate the resource. We must first define what is meant by a 
SMS in a dynamic context. One possible definition is simply to require that φ(x(t)) ≤ 0 ∀t. This is 
essentially what we shall mean by a SMS.6 A policy obeying a SMS would have to look 
something like Figure 2. In the interval [0, T) the system is approaching the risk threshold. In the 
interval [T, ∞), the SMS is binding. The similarity to a Most Rapid Approach path in linear 

                                                 
6 Strictly speaking, a slightly more general definition is possible and, as argued below, in fact, required if necessary 
conditions are to hold.  Defining Ψ(t) = λ(x(t)) if φ(x(t)) > 0 and Ψ(t) = 0 if φ(x(t)) < 0.  A path will be considered 
able to satisfy a SMS from the time s if and only if the Lebesque integral 

s
has measure zero. This means 

that we may allow the threshold to be violated as long as the violations are not large enough to give positive 
probability to the possibility that the catastrophe occurs. Thus, an SMS can include a policy of forcing the system 
back below the threshold as soon as the policy is seen to have crossed it, provided the observation and reaction is 
instantaneous. An infinite number of such jumps may be allowed and will, in certain circumstances, be required if a 
path is to observe necessary conditions. This point is further discussed below.  

( )t dt
∞
Ψ∫
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optimal control problems is superficial. If a path such as the one in Figure 2 is optimal, then the 
flattening in the path of x is caused by the jump in the co-state variable at time T.  

Our strategy for examining the optimality of an SMS is as follows. We assume that the 
solution is qualitatively similar to the path in Figure 2. We then use necessary conditions to 
examine for what parameter values such a path is consistent with optimality. For clarity we 
derive our results within a parameterized model. Let the equation of motion be 

( , )�x f x u u xδ= = −

0a =

; let the constant A be a net utility cost that is accrued if the catastrophe 

occurs. Formally this implies that we define a state variable a(t). The differential equation for 
this equation is , a(0) = 0. If the catastrophic event occurs, a(τ+) – a(τ-) = –A. Let the 
intensity of the catastrophe process be the quadratic function λ(x) = ( ) ( )20 1x x xλ λ x− + −  for 
all x ≥ x , where λ1 is strictly positive. The instantaneous cost of reducing u is given by 2

c (u0 – 

u) .  2

 

x

T t

x( )t

 
Figure 2. State-path satisfying SMS. 
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The objective function that we want to maximize is then given by: 

 

 ( )( )20
2

0

rtcE u u a e
∞

−− − +∫ dt  (7) 

  

Optimal Policies After a Catastrophe 

In order to characterize the solution,  we need to find the post-catastrophe solution. In the 
present example, this is equivalent to solving the problem 

 

 ( ) ( )( )20
2, * | max rtc

u
J x a A u u A e d

∞ −

τ
τ = = − − −∫ t

)

 (8) 

 

subject to , x(τ) = x*.  is the value of the objective function from the 

time, τ, that the catastrophe occurs and there is a flow, –A, of disutility. x* is interpreted as the 
value of x at the point in time when a catastrophe occurs. This problem has the trivial solution u 
= u0 for all t > τ. After all, the catastrophic event has already happened so there is no need to 
reduce x. Inserting u = u0 into equation (8) gives that  J(x*|τ) = 

x u x= − δ ( , * |J x a Aτ =

1 rr Ae− − τ−  for all values of x*. In 
particular, note that J( x |τ) = . This is the discounted value of receiving a stream of 
negative utility from the time τ if x is at the threshold. 

1 rr Ae− − τ−

 

Optimal Policies at the Risk Threshold 

The next step is to find the optimal solution for the interval [T, ∞), given that the 
catastrophe has not occurred. This is the interval where the state is in the risky region prior to the 
catastrophe occurring. T is as yet not determined, but should be thought of as the point in time 
when the risk threshold is crossed. By the principle of optimality, the results below will hold for 
any arbitrary choice of T as long as x(T) = x . The problem at hand is to solve: 
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( ) ( )( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

20
2

20 1

, | 0 max

. . : , 0, , ,

Pr , |

u

rtc

T

J T x a E u u a e dt

s t x u x a x T x a T A a a A

t t t x x x t x x x x t

∞
−

+ −

 
= − − + 

 

= − δ = = = τ − τ = −

τ∈ + ∆ ≥ ≈ λ ∆ = λ − + λ − ∆

∫
� �  (9) 

 

All constants are assumed strictly positive except, possibly, λ0.  It is assumed that the 
shape of λ is such that λ′ ≥ 0 for all feasible values of x. The Maximum Principle for PDOC 
problems is given in the appendix. Using (30) to derive the first order conditions gives: 

 

 0 rtxpu u e
c

−= +  (10) 

 ( ) ( )( ) ( ) ( ) ( )( )| , | 0 ,� x x x x |p p x p p t t x J t x a J t x a Aδ λ τ λ′= + − > + = − =  (11) 

 0� rtpx u e
c

xδ−= + −  (12) 

 

( )xp t  is the present value co-state variable for x.7 ( ), |J t x a A= is the criterion evaluated from 

time T given that the catastrophe has occurred. This expression was defined in (8). ( ), | 0J t x a =  

is the expected value of the criterion given that the catastrophe has not occurred. In general, 
 is determined by the differential equation in (34) and quite complicated to solve. 

However, we are examining the optimality of a SMS, and if a SMS is optimal, we can use the 
following reasoning to simplify the calculations. If the SMS is optimal, then the solution stays at 
the threshold and λ(x(t)) = λ(

( 0a = ), |J t x

x ) = 0 for all t ≥ T. The calculation of ( ), |J t x a A=  is then 

straightforward: 

 

 ( ) ( ) ( )20 0, | 0
2 2

rt rT

T

c cJ T x a u x e dt u x e
r

∞ 2− −= = − − = − −∫ δ δ

                                                

 (13) 

 

 
7A co-state variable for a(t) also may be computed, but does not affect the solution and has no important economic 
interpretation. Discussion of this variable is therefore omitted. 
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For all t ∈ [T, ∞) we get the quantities ( ), | 0J t x a =  and ( ), |J t x a A=  by substituting τ 

with t in (8) and T with t in (13). Let ( ) ( ) rt
x t ex t pµ =  be the current value co-state. If the optimal 

solution is going to be exactly at the risk threshold, then there is some instant T, such that x(t) = 
x  ∀ t ∈ [T, ∞). If x is equal to x  for all t > T, then �x  = 0  and ��x  = 0. This implies that 0� xµ = . 
Also, These results allow us to rewrite (11), the differential equation for � xp , as:  

 

 ( ) ( )21 00
2x

cr u x
r r

δ µ λ δ−= + + − +
 

A 
  (14) 

Solving for µ  gives:  x

 
( ) ( )

1 20

2x
c u x

r r
λ µ = −δ −+ δ  

A
r

  (15) 

 

µx is the current value shadow price on x consistent with a SMS being optimal. Inserting from 
(15) into the expression for �x  gives: 

 

 
( ) ( )

1 20 0 0
2

� c Ax u u x x
c r r r

λ  = + − δ − − δ = + δ  
 (16) 

 

Solving (16) with respect to A yields a critical value of A which we denote A* . 

 

 
( )( ) (

0
20

1*
2

cr u x r cA
−δ + δ

= +
λ

)u x−δ  (17) 

 

If A is known to be equal to A*, then implementing an SMS is optimal policy.  Note that 
if λ1 → 0 then A*→ ∞. Interestingly, λ0 does not even enter the expression for A*.  No matter 
how large |λ0| is, if λ1 is zero, then the derivative intensity function λ(x) is exactly zero at the 
threshold and it is optimal to accept some risk.  

Suppose, then, that a regulator knows all parameters in the model with certainty except A 
and λ1, but is able to put lower bounds on A and λ1. Denote those lower bounds AL and 1

Lλ . It is 

clear that if 
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( )( ) (

0
20

1 2L
L

c u x r cA
r

− +
≥ +

δ δ
δ

λ
)u x−  (18) 

then it will always be optimal to let the SMS be binding from some point in time. If lower 
bounds can be established for the relevant parameters A and λ1 and these obey (18), then a SMS 
policy will be optimal. These findings are summed up in Proposition 1. 

 

Proposition 1. 

Consider problem (9). If A and λ1 are random variables with lower bounds AL and 1
Lλ  and 

it can be established that AL and λ  obey the inequality in equation (18). Then there exists some 

point in time, T, such that the risk threshold is binding and a SMS policy is optimal. 

1
L

 

Note that (18) is a sufficiency condition, but not a necessary condition for a SMS to be 
binding. If a regulator is able to form a probability distribution over possible values of A, then a 
SMS may be optimal if E(A) ≥ A* even if A < A* with some probability.  The current value cost 
of implementing a policy that satisfies a SMS from the time t = T is given by: 

 

 ( 0

2
cC u
r )x= −δ  (19) 

From (18) it is evident that we find a lower bound for when the cost of accepting a SMS 
becomes intolerably high. Rewriting (18) gives us the following condition: 

 

 ( ) ( )( )0
20

12 L
L

c u x rc u x C A
r

− δ + δ
− δ = ≤ −

λ
 (20) 

 

The lefthand side is current value cost of a SMS. The right hand side is the ex ante lowest 
possible cost of allowing the state variable increase marginally above the risk threshold. If C is 
so high that (20) does not hold, then the SMS may be too high.  

It is interesting to note that calculating the optimality of a SMS requires less information 
than is required to calculate the optimal path if we know that SMS is not optimal, for example, if 
λ1 = 0. For that, we either need to know A (and all the other parameters) exactly or we must at 
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least be able to form meaningful probability distributions over the values they may be able to 
take. What we have derived is one structure of uncertainty—perhaps not only one—that can 
justify the application of an SMS on purely utilitarian grounds. This is true uncertainty in the 
sense of (Knight, 1921) The probability of catastrophe is not known, although a lower bound  
for it is.  

There is a technical issue concerned with how to characterize an optimal solution if we 
know that A > A*. That is, the cost of a catastrophe is strictly larger than the minimum cost 
required for the optimality of SMS. If this is the case, then a path with �x  = 0 does not, strictly 
speaking, satisfy necessary conditions. The optimal ( )x T + < 0 and will therefore be bounded 

towards the no-risk region. But as soon as we enter the no-risk region any path that satisfies 
necessary conditions is bounded towards the risk region. This is resolved by letting the control be 
a chattering control, which means one that is discontinuous at every point in time after the 
threshold has been reached. See Zelikin and V.F. Borisov (1994) for an extensive discussion of 
chattering controls. The control will jump according to (4) and (5) in such a way that whenever x 
> x , then �x < 0 and vice versa. The SMS will then be observed in the sense discussed in 
footnote 7. This is obviously an impractical control, but in the present context there is little loss 
from ignoring this issue when the threshold is reached and simply setting u = δ x at the threshold 
and thus keeping x at the threshold forever. However, see Nævdal (2001) for a deterministic 
threshold model where chattering is a fundamental and unavoidable property of the control. 

 

Optimal Policies Prior to Reaching the Risk Threshold 

So far we have examined the path the optimality of a path satisfying a SMS from the time 
the system reached the risk threshold. If A and λ1 are known with certainty to have values such 
that (17) holds with equality, this would be a straightforward procedure. A jump in the co-state 
variable could be calculated according to (6) and p(T-) be solved from: 

.  
 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

2
1 220

1 20

0

1 1
2

2

rT rT

rT

c Au x e P T e
c r r r cc Ap T u x

r r r P T
u e x

c

− −

−
−

−

 λ  − − δ − +  + δ  λ    − + − δ − = + δ  
− − δ

−

 (21) 
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Calculating the u(t), x(t) prior to T and T itself would be a straightforward, if 
algebraically tedious, problem. However, if we base the optimality of a SMS on lower bounds 
derived from (18) and do not have any more information about A and λ(x), then we cannot 
calculate the optimal path prior to reaching the SMS. In this case, we must form expectations 
about relevant parameters, no matter how vaguely founded, and approach the risk threshold as 
best we can. It should, however, be noted that, in most cases where a SMS is considered as a 
policy option, optimal policies prior to reaching the risk threshold are generally considered 
problems of secondary importance, if discussed at all. 

 

The model discussed here has a linear differential equation. This is a simplification, in 
particular as the many natural systems where a SMS is a potential policy exhibits very nonlinear 
behavior. This is a fairly innocuous assumption as far as evaluating the optimality of a SMS. 
Allowing for a nonlinear differential equation only increases the algebraic complexity. As long 
as we can recursively calculate the co-state variable and the value of J(⋅|τ), we can use the jump 

equations in (4) and (5) and check for the optimality of an SMS in the way described above. 
More important is the choice of functional form of λ(x), since the value of parameter λ1 turned 
out to be crucial. The choice of the quadratic function implies that λ(x) may be considered a 
Taylor expansion of the underlying risk structure. The coefficient for the quadratic term, λ0, 
disappears from the Equation (18). In fact, for any choice of polynomial, only the first order 
coefficient will matter. Hence, no matter how nonlinear the risk structure is, this does not impact 
the results. This argument does however assume that the underlying risk structure is continuous, 
which appears to be the most relevant case. 

 

Extensions 

Here we briefly discuss two possible extensions of the theory that may have some 
empirical relevance. 

 

Uncertainty About the Location of Risk Threshold 

So far the paper has assumed that the location of the risk threshold, x , is known to the 
regulator. In many cases this is not the case. It could be that the definition of Λ(x) would have to 
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be modified to take account for a stochastic x  with support [ Lx , Hx ] ⊂ [0, ∞). It turns out that 

the results derived above can be modified if we replace Λ(x) (and therefore also λ(x)) with a 
modified risk process given by 

)

 

0

t∆

<

>

 

 

( )( )
( )( )
( )( )

Pr , | ( )  

0 if 0
( )

( ) if 0

�

�
�

t t t t x t

x t
x

x x t

τ∈ + ∆ τ > ≈ Λ ∆

 φ <Λ = 
λ φ >

 (22) 

 

Here φ(x) = x(t) – xL and ( ) ( ) (20 1�
Lx x x x xλ = λ − + λ −

)
. The algebraic procedure to 

needed to translate Λ(x) to (xΛ  may be quite complicated, but once this task has been 

achieved, the results from above follow directly. 

�
L

 

Mixing Endogenous and Exogenous Risk 

For some problems where a SMS may be a policy option, it may be the case that there is 
underlying risk that is independent of human activity. For instance, there may be a risk that a 
population of a threatened species may collapse even in the absence of human interference. This 
could be modeled by using a risk structure of the following type: 

 

 

( )( )
( ) ( )( )

( ) ( )( )

Pr , | ( )

if 0
( )

( )  if 

t t t t x

t x t
x

x t x t

τ∈ + ∆ τ > ≈ Λ

 ω φΛ = 
λ +ω φ

 (23) 

 

Here there is some underlying stochastic process, ω(t), that may trigger the catastrophe. 

By using the methods in the appendix, it is straightforward to analyze the optimality of SMSs 
also when (23) drives risk. It turns out that in our model this does not affect the decision of 
whether a SMS is optimal or not. The condition in Equation (18) remains the same. Of course, a 
SMS is not strictly “safe” anymore. Rather, it is a decision not to impose more risk on a natural 
system than that which is already inherent in the natural functioning of an ecosystem. Modeling 
the risk structure in this way would make the SMS as it here defined closer to the concept of a 
Minimum Viable Population as it defined in Soule (1987).  
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Discussion and Conclusions  

The paper has analyzed the likelihood of a Safe Minimum Standard (SMS) being optimal 
policy in environmental regulation. Our most significant result is that one can establish a 
relationship between a lower bound on the damage and a lower bound on a crucial parameter in a 
pdf [a pdf file? confusing – probability density function – should be clear to the intended 
audience]that models uncertainty above a risk threshold. This is the first result to show that there 
are any circumstances in which an SMS can be dictated by a conventional social-welfare 
maximization criterion, rather than the minimax or nonutilitarian arguments resorted to by earlier 
authors. An important feature is that little knowledge about the nature of a catastrophe is 
required. Also, as mentioned in the introduction, such stark thresholds are often created by 
federal systems. Thus, it may well be optimal for a state regulator to impose an SMS on local 
polluters, given that the federal government has created an air-quality threshold, even if it is not 
the case that the threshold approach was the best for the federal authorities to have taken in the 
first place. 

It is somewhat paradoxical that the informational requirements to calculate that a SMS is 
optimal are less than the requirements to calculate the optimal path, given that the SMS is not 
optimal. It may be the case that the true optimal path is very close to a SMS, even if it can be 
established that the SMS is not optimal. In this case, one may argue that there are excessive 
research costs associated with deriving the optimal policy and that, when these costs are 
considered, it is optimal to implement a SMS rather than implementing a risky policy based on 
flawed data. Also, one should not discount the alternative arguments for SMSs, such as those 
presented by Farmer and Randall (1998) or Rolfe (1995).  
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Appendix: Optimal Control in Mixed-Risk State Spaces. 

This section briefly reviews and derives some mathematical results needed for the 
problem at hand. 

Deterministic Control Problems 

The problem Qd(t0, x(0), φ, S) is defined by: 

  (24) 
( )( ) ( ) ( )( )

( ) ( ) ( )( )

1

01
0 0 1,

1

, 0 max , , ,

. . : , 0 , , , , 0

t

tu U t

m n

J t x f t x u dt S t x t

s t U x x f t x u x t
∈

= +

⊆ ⊆ =

∫
φR R �

1

=

Necessary conditions—see Seierstad and Sydsæter (1987) for details—are usually given 
in terms of the Hamiltonian, H(t, x, u, p) = f0(t, x, u) + f(t, x, u). They are: 

( ) ( ) ( )( ) ( )( ), arg max , , , , , , , , ,� �
y

u x p H t x y p p H t x u p x f t x u x p
x
∂

= = − =
∂  (25) 

The transversality condition and the equation determining optimal t1 are 
given by: 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1 1 1, , , , ,i x i t 1,p t S t x t x t H t x u x p p S t x tγφ′ ′= + = −
 (26) 

 

γ is a scalar. The following properties are well known and are often used in economics: 

 

( )( )
( ) ( )

( )( ) ( ) ( ) ( )( ) ( )( )

0 0
0

0

0 0
0 0 0 0 0

0

,

,
, , , ,

J t x t
p t

x t

J t x t
H t x t u x t p t p t

t

∂
=

∂

∂
= −

∂

 (27) 

Piecewise Deterministic Problems  

Here we consider a problem Qs(t0, x(0), φ, S) given by 

 (28) 

( )( ) ( ) ( )( )

( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( ) ( )( )

1

1
0

0

0 0 0 1 1
,

1

0

, max , , ,

s.t: 0 , , , , 0

exp  on , , ,

m

t

u U t
t

n

t

t

J t x t E f t x u dt S t x t

x x f t x u x t

x t x d t x x g x

∈ ⊆

+ − −

 
= +  

 
∈ = φ =

τ λ σ σ ∞ τ − τ = τ τ

∫

∫

R

R �

∼
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Necessary conditions for problems like Qs(t0, x(t0), φ, S) can be found in various forms. 
Note that the random process determining τ obeys (2). We will present conditions due to 
Seierstad (2001). Nævdal (2000) has shown that the conditions derived by Seierstad can be 
stated in terms of a Risk-Augmented Hamiltonian, defined by:  

 ( ) ( ) ( ) ( )( ) ( )( )0 , , , , , | ,rH f t x u pf t x u x J t x g x J t xλ τ= + + + −  (29) 

 

Here J(t, x + g(x)|τ) is the criterion to a problem of type Qd(t, x + g(x) , 0, 0). Jr(t, x) is the 
objective function to a problem Qr(t, x, φ, S). Applying the Maximum Principle to Hr gives the 
following conditions. 

( ) ( ) ( )( ) ( )( ), arg max , , , , , , , , ,� �r r
y

u x p H t x y p p H t x u p x f t x u x p
x
∂

= = − =
∂  (30) 

The transversality condition and the equation determining t1 are given by: 
 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1 1 1, , , , ,
ii x i r t 1,p t S t x t x t H t x u x p p S t x tγφ′ ′= + = −  (31) 

 

Here γ is a real number roughly corresponding to a Lagrange multiplier on the constraint 
ϕ(x(t1)) = 0. By using the results ( )( ), |dJ t x g x xτ∂ + ∂  = ( )( ) ( )(; , n )p t t x g x I g x+ +  and that 

( ),rJ t x x∂ ∂  ( )p t=   

 
( ) ( )( ) ( )( )( )

( ) ( ) ( )( )( )

0 , |

, , |

� n
f fp p x p p t x g x I g x
x x

x J t x J t x g x

λ τ

λ τ

∂ ∂ ′= − − + − + −
∂ ∂

′+ − +
 (32) 

 

Here In is the n-dimensional identity matrix. The following results will be used later: 

 

( )( )
( ) ( )

( )( ) ( ) ( ) ( )( ) ( )( )

0 0
0

0

0 0
0 0 0 0 0

0

,

,
, , , ,

r

r
r

J t x t
p t

x t

J t x t
H t x t u x t p t p t

t

∂
=

∂

∂
= −

∂

 (33) 
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There is a conceptual problem with (32). The meaning of ( )( ),J t x g x |τ+  is clear, but 

J(t, x) is still undefined. Seierstad has shown that J(t, x) is given by the solution to the differential 
equation: 

 
 ( ) ( ) ( )( )( )0 , ,rtz f x u e x z J t x g x−= − + − +� |λ τ  (34) 

 

Equation (34) must be coupled with an end point condition z(T) = S(T, x(T)). Then J(t, x) 
= z(t). Solving the differential equations in Equations (30) and (34), along with the transversality 
conditions, gives necessary conditions for the problem at hand. 

Jump Conditions for the Co-State Variables at the Risk Threshold 

In this section we show how the Maximum Principle can be used to “glue” together 
problems like Qr(t, x, φ, S) and Qs(t0, x, φ, S) in order to solve problems like (24). This is less 
straightforward than it would appear, since, depending on the shape of λ(x), p may have discrete 
jumps whenever the risk threshold is crossed. We first examine the case where the state variables 
cross from a no-risk regime to a risk regime. To avoid lengthy algebra the jump condition is 
proved for x ∈ . Let T be a point in time when the threshold is crossed. Define T = li  

and T = l . Also define the following abbreviations: 

R

t T
t+

− m
t T

t−→

+ im
→ 0f

− = ( ) ( )( )0 , rTf u T x eT
−− − − , 

( ) , ( )( ) rT
0 0f f u T x+ + T e

++ −= ,  ( ) ( )( ),f f u T x T+ += +  and   ( ) ( )( )T,f f u T x− − −= . By 

combining equations (26), (33) it is clear that the conditions in (26) and (33) may be rewritten 

 
 ( ) ( ) ( )( )p T p T x tγφ− + ′= +  (35) 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , , ,d rH T x T u T p T H T x T u T p T− − − − − − − −=  (36) 

 
Treating (35) and (36) as two equations with two unknown variables, ( )p T −  and γ, 
enables us to form the following expression:    

 
( ) ( ) ( )( )(

( ) ( )( ) (( ))
0 0

1

, | ,

p T p T f f p T f f
f

)x J T x g x J T xλ τ

+ − + − + + −
−

+ +

− + = − + −

+ + −
 (37) 
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It is straightforward to verify that, in the case where x Rn∈ , the jump in the co-state 
variables are given by: 

 
( ) ( ) ( )( )(

( ) ( )( ) (( ))
0 0

, | ,

p T p T f f p T f f

)x J T x g x J T x

µ

λ τ

+ − + − + + −

+ +

− + = − + −

+ + −
 (38) 

Here µ is a n×1 vector with each element µj determined by: 

 
( ) ( )( )

, 1, 2, ,
, , ,

"j
j

x
j

f t x T u T T
x

n

φ

µ φ − − −

∂
∂

=
∂
∂

=  (39) 

 

The denominator is a dot-product. Applying the same method on the case where one 
moves from a regime with risk to a regime without risk, it can be shown that the appropriate 
equation determining the jump in the adjoint function is given by: 

 

 
( ) ( ) ( )( )(

( ) ( )( ) (( ))
0 0

, | ,

p T p T f f p T f f

)x J T x g x J T x

µ

λ τ

+ − + − + + −

+ +

− + = − + −

− + −
 (40) 

 

with µ still determined by (39). Note that the conditions here presented are only necessary 
conditions. Sufficiency conditions, it turns out, are not very useful since, in addition to requiring 
that J() satisfy certain curvature properties, they require that we check all possible combinations 
of the state variables crossing the threshold. Note from (38) and (40) that if λ(x) = 0 at the 
threshold (when φ(x) = 0) then setting ( ) ( )p T p T+ −=  will always be a solution. This may, 

however, not be the correct solution. If solving (38) or (40) gives rise to several solutions for 
( )p T − , these solutions must be compared analytically or numerically for optimality. This is 

particularly important in the context of SMSs, since a path satisfying a SMS in such a way that 
the SMS is binding from some time T is not compatible with a continuous adjoint variable. To 
see this, assume that we go from a no-risk zone to the risk threshold and then stay there forever 
as one would if a SMS policy is optimal. If we insert the solution ( ) ( )p T p T+ −=  into (37), we 

see that it fits, and therefore the control is continuous at the threshold. But if the control is 
continuous at the threshold, then 0f f− += =  and from (37) we see that this implies that we 

have divided by zero, which is a contradiction. Thus, we must look at the equations in (35) and 
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(36) again and assume that f +  = 0. Assuming that λ( x ) is continuous at the threshold means 

that we can write the jump in the co-state as: 

)( )( )x T+ +

 

( ) ( )
( ) ( ) ( ( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
0 0, , , , , , , ,

, , , ,

f T u T x T p T f T x T u T x T p T
p T p T

f T x T u T x T p T

+ + + − − − − −

− +

− − − − −

−
− =  (41) 

 

Equation (41) is the equation used in the text. 
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