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Is weather really additive in agricultural production?

Implications for climate change impacts

Ariel Ortiz-Bobea∗

Abstract

Recent reduced-form econometric models of climate change impacts on agriculture assume climate is

additive. This is re�ected in climate regressors that are aggregated over several months that include the

growing season. In this paper I develop a simple model to show how this assumption imposes implausible

characteristics on the production technology that are in serious con�ict with the agricultural sciences. I

test this assumption using a crop yield model of US corn that accounts for variation in weather at various

times of the growing season. Results strongly reject additivity and suggest that weather shocks such as

extreme temperatures are particularly detrimental toward the middle of the season around �owering time,

in agreement with the natural sciences. I discuss how the additivity assumption tends to underestimate

the range of adaptation possibilities available to farmers, thus overstating projected climate change

impacts on the sector.

JEL Classi�cation Codes: Q54, Q51, Q12

Keywords: climate change, agriculture, production, additivity

1 Introduction

Agriculture is arguably one of the most researched sectors in the climate change impacts literature.

Statistical and econometric approaches have become increasingly popular among economists as alternatives

to their earlier biophysical process-based counterpart. These empirical approaches exploit cross-sectional

or time variation of observational data to recreate hypothetical counter-factual changes in local climate

based on the revealed preference paradigm (e.g., Schlenker, Hanemann and Fisher, 2005; and Deschênes

and Greenstone, 2007). The typical approach consists of estimating a reduced-form model capturing the
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sensitivity of agricultural production or welfare to changes in monthly or pluri-monthly climate variables

and multiplying the resulting parameters by the predicted changes of climate variables under climate change

to derive potential impacts on the sector.

A crucial challenge in this line of research is to choose the right climate variables. This is a di�cult

task because of the complex interactions of farmer behavior with crop growth and environmental conditions.

Weather �uctuates and a�ects crop growth throughout the growing season and informed farmers adjust the

timing and level of inputs accordingly. Attempts to capture too many of these biophysical and behavioral

complexities statistically quickly become subject to multicolinearity and spurious correlations (see Kaufmann

and Snell, 1997, for a discussion).

Somewhat dichotomous approaches have developed in the literature. In the econometric literature, re-

searchers have made somewhat arbitrary choices of variable types (e.g., precipitation, temperature, soil

moisture) and time frames of aggregation (pluri-monthly or monthly averages or totals) with little basis for

discrimination other than model �t and parsimony. A more parsimonious model, i.e., with less parameters

to estimate, may be chosen because it o�ers comparable predictive power despite violating agronomic wis-

dom. This seems to be the case regarding the choice of time frame of aggregation for climate variables in

this literature. Alternatively, in the agronomic and agricultural science-based literature, models have been

grounded in agronomic principles and agricultural production experiments without considering behavior and

revealed preferences of farmers. In practice, these objectives con�ict. While agronomic science suggests that

environmental conditions have varying e�ects throughout the season, some of the most in�uential economet-

ric studies have relied on climate variables aggregated over several months. For instance, the econometric

studies of Schlenker, Hanemann and Fisher (2006) and Deschênes and Greenstone (2007) aggregate cli-

mate variables over the April-September period while Schlenker and Roberts (2009, henceforth SR) regress

crop yields on climate variables aggregated over the March-August (corn and soybeans) and April-October

(cotton) periods.

Agriculture is well known to be a time-sensitive activity and pluri-monthly aggregation of weather over

the season seems at odds with this fundamental characteristic. This feature is known not only to farmers

and agronomists, but also to agricultural economists who have developed production models accounting for

the sequential nature of agricultural decision-making process (e.g., Mundlak and Razin, 1971; Antle, 1983).

Season-long pluri-monthly windows for weather aggregation imply serious assumptions about the technology

and farmers' ability to adapt in the long run. In particular, this choice of variables imposes neutral technical

change as well as implausible interactions of weather with endogenous farmer inputs and decisions. It also

conceals the potential for farmer adaptation through changes in the timing of the growing season. Although

this practice might be innocuous for short-run forecasting purposes, it can have serious consequences for
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long-term climate change impact analysis.

The purpose of this paper is to explore whether the temporal additivity of weather assumption is valid

for agricultural production. This is a prevalent premise in the econometric climate change literature for

which consequences have received little attention. In my exposition, I develop a simple theoretical model

to explore the implicit assumptions stemming from the adoption of a reduced-form approach and the use

of season-long weather variables. By a reduced-form model, I refer to a model that not only excludes the

accompanying structure of how decision processes interact with changing technology, but also aggregates

some of the processes temporally for the purposes of empirical implementation. For clarity of exposition

I focus on reduced-form crop yield models, such as SR, that regress crop yields on weather variables. I

then explore this question empirically and test for weather additivity using a 31-year balanced panel of US

county-level corn yields representing 70% of US production. Results suggest that weather e�ects are not

additive, and rather that extreme temperatures are particularly detrimental during the middle of the growing

season. I then discuss some of the implications of these �ndings for adaptation and the related shortcomings

of assuming additivity of weather in the context of climate change impact analysis.

The paper is organized as follows. In section 2 I develop a simple theoretical model to illustrate the

implicit assumptions of time aggregation in reduced-form crop yield models that are widely used in this

literature. In section 3 I present an empirical model to explore the e�ects of these assumptions and discuss

the results and implications for climate change impact analysis. Section 4 concludes.

2 Implicit assumptions of weather additivity

To explore the implications of imposing additivity of weather inputs in reduced-form crop yield models,

consider an underlying optimization model in which the farmer makes decisions sequentially during the

season. Input decisions in a stage of the growing season s = {1, ..., S} are made with uncertainty about

future weather and are conditioned on decisions already made as well as weather already observed. Assume

a risk-neutral farmer. The expected pro�t maximization problem is:

max
xts

Es

ptyt − s∑
j=1

rtjxtj −
S∑

j=s+1

rtjx
∗
tj(xts) | wt1, ..., wt,s−1, xt1, ..., xt,s−1

 (1)

subject to

yt = ft (xt1, ..., xtS , wt1, ..., wtS) + εt (2)

where Es represents an expectation at the beginning of crop stage s, input price vectors rtj apply to input
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vectors xtj chosen at each growing stage j, output price pt applies to yield yt, which depends on variation

in weather wti as well as input decisions xtj that apply through the various stages of the growing season.

x∗tj (xts) represents the optimal input decision vector at future stages given input decisions at all prior

production stages xt1, ..., xt,s−1 and all prior observed weather wt1, ..., wt,s−1 during the growing season as

well as the current decision xts at stage s assuming all future decisions will be made optimally given further

weather realizations. Yield can be represented generally as shown in (2) where εt is a random error in

production.

Changing Technology

The technology denoted by ft must be considered as changing over time t for the long-run nature of climate

change analysis. If output price and yield are considered uncorrelated at the individual farmer level and the

output price expectation does not vary with the crop stage (for conceptual simplicity), then the �rst-order

conditions for (1) after substituting (2) are:

E(pt)
∂

∂xts
E
[
ft
(
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS | wt1, ..., wt,s−1, xt1, ..., xt,s−1

)]
− rts = 0 (3)

Clearly, this optimization process, which is solved by backwardation, causes input decisions at stage

s to depend on weather variables at prior stages wt1, ..., wt,s−1. This is a direct theoretical reason why

interactions among weather and input decisions arises. Further, input decisions and weather variables could

also be correlated because some input decisions can a�ect vulnerability of crops to future weather during

the growing season (see Just and Pope, 1979).

Correlation of Input Choices and Weather

Yield is a central component of farmer pro�t and therefore an important channel for analyzing climate

change impacts. The literature readily recognizes that accuracy of climate change impact assessments for

agriculture depends on representing yield impacts correctly. While representing the full complexity of this

decision model is impractical, a �rst approximation of the crop yield model implied by this optimization

problem might be represented as:

yt = Ttα+Xtβ +Wtγ + Ztδ + εt (Model 1)
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where Tt = [1, t], Xt = [g(xt1), . . . , g(xtS)], Wt = [h(wt1), . . . , h(wtS)], and Zt is a vector of functions

of applicable interaction terms among and between input decisions and weather. The g and h functions

represent nonlinear e�ects of inputs and weather variables, respectively. For instance, the functional form of

h could capture well-known detrimental e�ects on crop yield of high temperatures and extreme precipitation

levels.

In contrast, however, standard practice in the literature omits farmer inputs and interactions, which

reduces Model 1 to a further simpli�ed form,

yt = Ttα
∗ +Wtγ

∗ + ut (Model 2)

where the constant term in α∗ is implicitly modi�ed by X̄β + Z̄δ and the error term implicitly represents

ut = Xtβ−X̄β+Ztδ−Z̄δ+εt. This simpli�cation, however, can severely bias estimates of the γ∗ parameters

that are used to assess the impacts of climate change. The reason is that weather variables are correlated

with the omitted input variables and with the interactions of terms among and between input and weather

variables.

One reason economists in this �eld have been willing to use highly approximating speci�cations is that the

interest is not in unbiased estimates of γ, but in unbiased long-run yield forecasts ∆y = ∆Wγ∗. However,

such forecasts based on Model 2 assume that the correlation between Wt and ut remains unchanged as

climate change occurs. In other words, Wt functions as a proxy not only for weather conditions but also

for correlated farmer behavior. This assumption is violated if the conditioning of optimal input choices

on previous input decisions and weather x∗ts (xt1, ..., xt,s−1, wt1, ..., wt,s−1) changes. This means that if the

correlation of the proxy with the omitted variable of interest changes in the forecasting period then forecasts

are biased. This can occur for various reasons.

Non-neutral Technical Change

First, Model 2 imposes neutral technical change. This is problematic for assessing climate change e�ects

because the parameters in γ∗ are likely functions of t. This would alter the optimal choice x∗ts and thus

change the correlation between Wt and ut, which would bias forecasts. This also occurs when technical

change is induced by climate change, which would make γ a function of long-run climate.1 Second, changes

in relative prices can lead to changes in optimal input use as shown in (3). Such changes may be major over

1It is possible to allow γ∗ to vary over time (e.g., Roberts and Schlenker, 2011) but estimates are inevitably confounded with
potential time trends in β. For instance, if inputs are becoming more productive (increasing β) but make crops more vulnerable
to weather shocks (δ < 0), γ∗ may well appear as becoming more detrimental over time despite γ and δ actually remaining
unchanged.
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a long time period, and thus introduce an additional source of bias for long-run yield projections.

Weather Aggregation Bias

Another simpli�cation in most econometric studies of climate change analysis is to use season-long measures

of weather. For US corn a common period is March to August because it spans the full growing season for

most producing regions. This practice imposes the same γ parameters on weather variables in all stages of

crop growth in the same season:

yt = Ttα
∗ + h

 S∑
j=1

wtj

 γ̄ + vt (Model 3)

where the number of parameters in γ∗ is reduced by a factor of S to obtain γ̄ and the error term is

implicitly further modi�ed to vt =
∑S
j=1 (h(wtj)− h(w̄j)) γ + Xtβ − X̄β + Ztδ − Z̄δ + εt.

2 This third

model assumes [h(wt1), . . . , h(wtS)] γ∗ = h
(∑S

j=1 wtj

)
γ̄, which assumes h is factor-wise separable. This

implies that weather realizations wt1, ..., wtS are perfect substitutes within the growing season. However,

this assumption is in serious con�ict with evidence from the agricultural sciences.

Aggregation of weather e�ects throughout the growing season can be very misleading. Extreme weather

events are not equally likely across stages of the growing season. Many crops across the Midwest are planted

in the spring and harvested in the fall when temperatures are cooler. The middle of the season, which

includes the sensitive �owering stage, typically occurs in the summer months when extreme temperatures

are more prevalent. As a result temperature shocks aggregated over the entire season may appear to be

detrimental to all crop stages, rather than to the most sensitive stages of crop growth.

Moreover, the model also presumes that the correlation between season-long weather variable h
(∑S

j=1 wtj

)
and the unexplained residual vt would remain constant under climate change. Given the underlying model

in (1) is sequential, this presumes the �rst-order conditions in (3) remain unchanged for any sequence of

weather variables wt1, ..., wt,s−1 with the same sum, that is,

∂

∂xts
E
[
ft
(
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS | wt1, ..., wt,s−1, xt1, ..., xt,s−1

)]
=

∂

∂xts
E

ft
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS |

s−1∑
j=1

wtj , xt1, ..., xt,s−1


which suggests no interactions among and between weather and endogenous inputs across stages. As an

illustration, this suggests that farmers would time fertilizer, pesticide, and irrigation applications indepen-

2The expression in Model 3 can be easily adapted to allow season-long averages of weather variables.
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Table 1: Characteristics of yield models
Inputs Weather Interactions

Model Speci�cation Error term β γ δ

1 yt = Ttα+Xtβ +Wtγ + Ztδ + εt εt
iid∼ N (µ, σ2) U U U

2 yt = Ttα
∗ +Wtγ

∗ + ut ut = Xtβ − X̄β + Ztδ − Z̄δ + εt C U C

3 yt = Ttα
∗ + h

(∑S
j=1 wtj

)
γ̄ + vt vt =

∑S
j=1 (h(wtj)− h(w̄j)) γ + ut C E C+E

U: Parameters are unrestricted; C: Parameters are constant over time but may di�er across stages; E:
Parameters are equal across stages.

dently from weather. This is obviously incorrect. The preeminent role of weather forecasts in agricultural

production constitutes a clear counterexample.

Summary

Table 1 summarizes the key points of this section. Yield forecasts under climate change based on all three

models assume constant relative prices, a likely artifact of the unpredictability of relative prices far in the

future. Model 1 can accommodate more general forms of technical change than Model 2, but both Models

1 and 2 impose neutral technical change. In that sense, Model 1 has wider applicability as it allows the

exploration of interactive e�ects of weather and endogenous farmer inputs. This could include analysis of

input uses that attenuate vulnerability to weather shocks.

However, such farmer behavior is generally poorly observed. Model 2 o�ers an alternative speci�cation

that omits farmer inputs and interaction e�ects. This model presents a somewhat �exible form to explore

implicitly the potential changes in yield with varying e�ects throughout the season. However, because the

functional form assumes neutral technical change, input and interactive parameters are assumed to remain

constant over the sample and forecasting periods.

Model 3, which is the widely used speci�cation in the literature, imposes additive weather and thus implies

equal marginal productivities of weather as well as equal interactive e�ects of weather with endogenous inputs

across all season stages. This is in addition to assuming constant weather and interactive parameters as for

Model 2. To explore the validity of the additivity assumption in Model 3, I rely on Model 2 and test for

equality of parameters across stages. I develop an empirical model for this purpose in the next section.
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3 Empirical exploration

Data

To explore the assumption of weather additivity in crop yield models requires matching data on weather

conditions with crop progress at various times over the growing season in each location. The highly detailed

weather data used in this paper is based on the North American Land Data Assimilation System (NLDAS)

, which is a joint project of the National Aeronautics and Space Administration (NASA), the National

Oceanic and Atmospheric Administration (NOAA), Princeton University, and the University of Washington.

The NLDAS weather dataset features hourly and 14-km resolution and has been shown to closely match

observations of highly precise weather stations in the Great Plains (Cosgrove et al., 2003). These data thus

allow considerable local speci�city. For instance, Indiana, which has the lowest average county size in the

Midwest (1,025 km2), includes over �ve NLDAS grids per county on average.

Agricultural data are obtained from the US Department of Agriculture's National Agricultural Statistics

Service (USDA-NASS). Because corn production data are available only at the county level, the hourly

gridded weather data must be spatially aggregated for each county. I do so by weighting each NLDAS data

grid within a county by the amount of cropland within each grid. The cropland area is derived from the

USDA-NASS's 2011 Cropland Data Layer which has a 30-meter resolution. This allows weighting NLDAS

data grids according to the amount of farmland they include in constructing the county-level observations.

Hourly observations were subsequently used to construct exposure to individual degree bins for the March-

August period for each year and county.

Because rainfed and irrigated corn yields are expected to respond di�erently to exogenous environmental

conditions, their respective parameters are estimated separately. For this purpose, I restrict the sample to

counties where at least 75% of the acreage, on average, is rainfed. Figure 1 illustrates where the sample

counties are located. The dataset corresponds to a balanced corn yield panel of 800 Midwest rainfed counties

for 1981-2011, which represents 70% of US corn production.

My major focus in this paper is to evaluate the validity of time aggregation of weather variables throughout

the growing season. In order to do so, I account for variation in weather conditions throughout the growing

season. This allows estimation of possible varying e�ects from intra-seasonal environmental conditions on

crop yield. Accounting for the timing e�ect using standard agronomic principles requires information on crop

stages. I thus rely on the Crop Progress and Condition weekly survey by USDA-NASS which provides state-

level data on farmer activities and crop phenological stages from early April to late November. Reporting

across states and years is not balanced. Although state reports date back to 1979, reporting for corn that

includes both the onset (planting/emergence) and the end of the season (maturation/harvesting) begins in
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Figure 1: Rainfed counties in the sample

1981 for the major producing states.

Speci�cally, this survey reports the percentage of a state's corn acreage undergoing certain farming

practices and reaching speci�c crop stages.3 As a consequence, it does not o�er clear �boundary� dates

between stages because of the timing variations within states.4 For the purpose of de�ning such boundaries

of the growing season for each county, I obtain stage median acreage dates. These correspond to the dates

at which 50% of the acreage in a given state has reached each stage in a given year.5

Crop stages reported by the USDA are not equally spaced in the growing season. They arguably cor-

respond to visible markers that can be easily veri�ed to simplify data collection. Some past studies (e.g.,

Kaufmann and Snell, 1997) have relied on weather variables matched to precise crop stages. However, results

are sometimes di�cult to interpret, especially for non-agronomists. In order to convey a more accessible crop

advancement metric, I divide the growing season into eight segments centered around �owering (i.e., silking),

which is considered the midpoint of the season. Four equally spaced periods occur in the vegetative phase

(between planting and silking) and four equally spaced periods occur in the reproductive or grain-�lling

phase (between silking and maturation). For simpli�cation, the crop advancement division is converted into

percentages with intervals of 12.5%. Thus, the 0-12.5% and 87.5-100% stages correspond, respectively, to

the �rst and last segments just after planting and just before maturation, and the 37.5-50% and 50-62.5%

3The report includes progress of farming activities (planting and harvesting) and of corn phenological stages (emerged,
silking, doughing, dented, and mature). The USDA de�nes these crop stages as follows. Emerged: as soon as the plants are
visible. Silking: the emergence of silk-like strands from the end of corn ears, which occurs approximately 10 days after the
tassel �rst begins to emerge from the sheath or 2-4 days after the tassel has emerged. Doughing: normally half of the kernels
are showing dents with some thick or dough-like substance in all kernels. Dented: occurs when all kernels are fully dented, and
the ear is �rm and solid, and there is no milk present in most kernels. Mature: plant is considered safe from frost and corn is
about ready to harvest with shucks opening, and there is no green foliage present.

4Visual inspection of district-level crop progress reports, which are available for only a few states, surprisingly reveals
variation similar to overall state progress for most years.

5For a few states and years, crop progress reporting began too late (the state had already surpassed the 50% acreage level)
or stopped too early (the state had not yet reached the 50% acreage level). For these cases, which represent less than 5% of the
cases, I obtained the median acreage date by extrapolation.
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Figure 2: Season divisions for Illinois corn in 2001

stages correspond, respectively, to the segments just before and just after �owering.

Natural scientists have found that crop development or phenology is proportional to accumulated growing

degree days (GDD; see, e.g., Hodges (1991); Smith and Hamel (1999); Fageria, Baligar and Clark (2006);

Hudson and Keatley (2009)). This variable is de�ned by the area under the temperature-time curve that

falls between two temperature thresholds (10 and 30ºC for corn) during a given period of time. Warmer

conditions generally lead to faster GDD accumulation and more rapid crop development. This concept can

be used to split the growing season into equally spaced segments.

Following this approach, I compute a cumulative GDD variable starting at planting for each state and

year and use it to represent the eight segments of the season. Figure 2 illustrates how the 2001 calendar for

Illinois can be broken down into seasonal segments . Although the segments have a di�erent numbers of days,

segments 1-4 and 5-8 are equally spaced in terms of GDD. Thus, wider segments signal slower development

due to cooler conditions.

Exposure to temperature bins is aggregated within each of these segments. As a result, the temperature

variables account for exposure to di�erent temperature levels during the eight individual segments of the

growing season. This allows assessment of how sensitivity to temperature varies with crop advancement.

Finally, because exposure to some temperature levels is low or nonexistent for some crop stages, I aggregate
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Table 2: Summary statistics of weather variables by stage
Stage 1 2 3 4 5 6 7 8 1 - 8

Advancement (%) 0-12.5 12.5-25 25-37.5 37.5-50 50-62.5 62.5-75 75-87.5 87.5-100 0-100
Length (days) 25.1 17.2 15.1 13.9 13.1 13.0 13.9 18.9 130.0
Precipitation (mm) 90.4 65.6 52.6 48.9 42.4 40.4 43.7 55.9 439.8
Exposure (hours)

0-10ºC 58.8 0.0 0.0 0.0 0.0 0.0 0.0 35.5 94.2
10-20ºC 330.9 147.8 85.0 61.9 58.6 71.7 96.0 203.2 1055.1
20-30ºC 208.4 245.5 246.0 232.7 214.0 201.5 200.3 189.2 1737.8
>30ºC 9.5 31.2 45.9 53.9 55.6 53.0 49.7 34.2 332.9

bins at the extremes that do not represent more than 0.15% of the growing season on average over the sample

period.

The summary statistics for each stage are presented in table 2. As expected, the early and late parts

of the season are slightly longer in terms of days. Total average precipitation by stage is fairly even when

adjusting for crop stage length. Also, exposure to low (high) temperatures is more likely in the extreme

(middle) parts of the season. This point should be kept in mind when assessing the e�ects of extreme

temperature on crop yields. It is clear that exposure to high temperature (>30ºC) is considerably greaterer

on average for stages 4 through 7, spanning the middle of the season when corn �owering occurs.

Model

In this section I present an empirical version of Model 2 to test for weather additivity throughout the

growing season. The model approximates the reduced-form crop yield model in SR, which introduced an

innovative approach to estimate the e�ect of exposure to di�erent levels of temperature on yield separately

using temperature bins. A key characteristic of their study is that the exposure to di�erent temperature

levels is computed during the entire season (March-August for corn). Thus, their estimated model uses

season-long weather variables as in Model 3. To generalize to the case of Model 2, I relax the additivity

assumption and explore di�erent response functions throughout the growing season.

While the SR model assumes that temperature e�ects on yield are cumulative and substitutable over

time, the nonlinear e�ects of temperature on yield are captured by the function h(w) representing �yield

growth� that depends on temperature w. Function h is obviously homologous to the function by the same

name presented in the theoretical section. Logged corn yield yit in county i and year t is represented as:

yit =

ˆ w

w

h(w)φit(w)dw + pitγ1 + p2itγ2 + zitα+ ci + εit (4)

where φit(w) is the time distribution of temperature (i.e., the temperature-time path) for March-August, pit
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is precipitation, zit is a state-speci�c quadratic time trend, andci is county �xed e�ects. In order to relax

the additivity assumption I allow h, γ1, and γ2 to vary within the growing season. The following model

introduces this �exibility:

yit =

ˆ s

s

ˆ w

w

h(w, s)φit(w, s) + pit(s)γ1(s) + p2it(s)γ2(s)dwds+ zitα+ ci + εit (5)

where φit(w, s) is the time distribution of temperature at each stage of the season s. Note that s indicates the

advancement of the growing season for a given year and location. Equation (5) cannot be estimated directly

because of the double integral. Therefore, I follow an approach similar to that of SR and approximate the

integral as a sum according to four alternative approaches: a step function allowing di�erent e�ects at each

1ºC interval (S1), a step function allowing di�erent e�ects at 3ºC intervals (S2), an eighth-degree polynomial

(S3), and a cubic B-spline with eight degrees of freedom (S4). This is done for each of the eight stages of

the season. The speci�cation for S1 is:

yit =

8∑
s=1

40∑
w=0

h(w + 0.5, s)︸ ︷︷ ︸
γh
ws

[Φit(w + 1, s)− Φit(w, s)] + pitsγ1s + p2itsγ2s + zitα+ ci + εit (6)

where Φit(w, s) is the cumulative time in temperature bin w in county i and year t in stage s.6 Speci�cations

for S2, S3, and S4 are provided in the appendix. Because unobserved explanatory factors are likely to be

spatially correlated, I account for spatial correlation of the errors in the estimation.

Results

Figure 3 presents the temperature response function for each stage of the growing season. There is agreement

between the four speci�cations for each individual stage, although some discrepancies can be perceived at

extreme temperature values. The most important result is that the response functions clearly di�er by stage

of the growing season. For instance, exposure to temperatures exceeding 30ºC have detrimental e�ects on

crop yield toward the middle of the growing period (i.e., 37.5-50%) but not toward the end of the season

(i.e., 87.5-100%). This con�rms wisdom from the agricultural sciences that crop growth around the �owering

stage of corn is the most sensitive to environmental stress. Note that temperature response functions do not

extend over the same range of temperatures for all stages (e.g., they do not extend to temperatures higher

than 30ºC for the 0-12.5% stage). This is due to a lack of observations of extreme values at some stages of

6Note that because some temperature levels do not occur in some stages, the associated parameters are not estimated. For
instance, h(0.5, s = 5) = 0, because a temperature around 0ºC never occurs in the �fth stage, and thus the associated parameter
γh0,5 is not estimated.
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the growing season.

I performed a simultaneous test of equality of weather parameters across stages for both temperature

and precipitation e�ects to con�rm the visual di�erences.7 An asymptotic chi-square test rejects equality

of parameters across stages with p-values below 2 × 10−16. Thus there is strong evidence that both the

temperature and precipitation response functions vary throughout the season.

These generalizations have important implications for climate change impact analysis. If climate change

is particularly detrimental through increased exposure to very high temperatures, then this type of weather

shock is more likely to occur in the summer, which is roughly around the middle of the current growing

season for corn in the Midwest. As �gure 3 reveals, extreme temperature is more damaging toward the

middle of the season. As a consequence, in the presence of climate change with an increase in the frequency

of high temperatures, farmers would be able to shift the growing season. A shift of even a few weeks can

be su�cient to reduce exposure during the most heat-sensitive stages of growth. Some part of the growing

season would still be a�ected by extreme temperature, but the detrimental e�ects would be reduced. This

type of adaptation scenario is made possible when weather is treated as non-additive. Ortiz-Bobea and Just

(2013) explore this possibility and show sizable bene�ts for farmers of changing the timing of the growing

season through changes in planting dates.

On the other hand, models that impose additivity of weather imply much more limited possibilities for

adaptation. The reason is that shifting the growing season does not lead to any sizable estimated bene�t

because weather shocks are assumed to have the same e�ects over all parts of the growing season. This

is particularly relevant when considering that climate change is expected to change intra-seasonal climate

patterns.

4 Conclusion

One of the crucial challenges in empirical studies that assess the potential impacts of climate change on

agriculture is the choice of the right climate variables. A common practice in this literature is to rely on

season-long variables because it leads to parsimonious models with relatively high levels of statistical �t. In

contrast, this paper shows that the underlying assumption of this approach is invalid. While a reduced-form

model with non-additive weather may provide some insights into how production might change in response

to a change in climate, the additional assumption of weather additivity introduces strong restrictions that

7The test was conducted for both step function speci�cations which, o�er clear parameter equivalence across stages. The
spline and polynomial speci�cations have eight parameters per stage but are de�ned over di�erent temperature ranges which,
does not allow for comparing these eight parameters directly across stages in a meaningful way.
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Figure 3: Temperature response by stage14



are at odds with the accepted wisdom of agronomic science. It is assumed not only that all marginal

productivities of weather variables are equal across stages of crop growth, and that weather variables are

perfect substitutes among states, but also that the interaction with time-sensitive endogenous inputs (e.g.,

fertilizer and pesticides) is constant no matter when the weather input is realized. This latter point would

imply that farmers do not rely on weather forecasts for adjusting the timing of input decisions, which is

obviously incorrect.

Based on an empirical analysis of US corn yields, I show that both temperature and precipitation e�ects

statistically di�er across stages. Results strongly reject the additivity assumption. Crop yield is shown to

be especially sensitive to temperatures exceeding 30ºC toward the middle of the season during the �owering

period. The same temperature levels do not seem to a�ect yield when they occur close to the end of the

season at maturation time.

Relaxing the additivity assumption in this literature can open the door to assessment of a richer set

of adaptation possibilities. Climate change impact studies that restrict the range of farmer adaptation

will inevitably overestimate potential costs. In that sense results stemming from current yield models are

pessimistic.

Appendix

The speci�cation for the model with a step function allowing di�erent e�ects at each 3ºC interval (S2) is:

yit =

8∑
s=1

39∑
w=0,3,6,9...

γhws [Φit(w + 3, s)− Φit(w, s)]︸ ︷︷ ︸
xits,h

+pitsγ1s + p2itsγ2s + zitα+ ci + εit

The model e�ectively regresses yield on the time spent within each interval in a given county and year

xits,h.

Model S3 assumes that the �yield growth� function h(w) is an eighth-degree polynomial of the form

h(w, s) =
∑8
k=1 γ

h
ksTks(w) where where Tk() is the kth order Chebyshev polynomial. The h superscript

in γ simply di�erentiates temperature parameters from precipitation parameters. Replacing g(h) with this

expression yields:
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yit =

8∑
s=1

39∑
w=−1

8∑
k=1

γhksTks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)] + pitsγ1s + p2itsγ2s + zitα+ ci + εit

=

8∑
s=1

8∑
k=1

γhks

39∑
w=−1

Tks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)]︸ ︷︷ ︸
xits,k

+pitsγ1s + p2itsγ2s + zitα+ ci + εit

The model e�ectively regresses yield on eight temperature variables xits,k, which represent the kth-order

Chebyshev polynomial evaluated at each temperature bin.

In a similar fashion, model S4 assumes that h(w, s) =
∑8
k=1 γksS

3
ks(w) where S3

k() is the piece-wise cubic

polynomial evaluated for each jth interval de�ned by eight control points:

yit =

8∑
s=1

8∑
k=1

γhks

39∑
w=−1

Sks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)]︸ ︷︷ ︸
xits,k

+pitsγ1s + p2itsγ2s + zitα+ ci + εit
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