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Abstract

New measurement systems are often expensive and need a solid economic
justification. Traditional tools based on the value of information are sometimes
difficult to apply. When risks are traded in a market, it may be possible to use market
instruments to monetize the reductions in uncertainty. This paper illustrates such
market-based methods with a satellite system designed to reduce uncertainty in
predicting soil moisture in the United States. Soil moisture is a key variable in
managing agricultural production and predicting crop yields. Using data on corn and
soybean futures, we find that a 30 percent reduction in the weather-related
component of uncertainty in corn and soybean futures pricing yields a yearly US
consumer surplus of $1.44 billion. The total present value of information from the
satellite system for the United States—calculated with a 3 percent discount rate—is
about $22 billion, assuming the system is in operation for 20 years. The global value of
the improvements in weather forecasting could be $63 billion.

Key words: Value of Information, options pricing, SMAP, Bachelier formula, Black-
Scholes-Merton model
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1. Introduction

As measurement systems become more complex and more costly, political leaders
may become less engaged with science. The market makes resources available for
technological innovation but, as often pointed out (e.g., Weatherhead et al. 2018;
Archer 2016), resourcing the research on which innovation depends may be
challenging. Fields like climate science—with studies that show obvious near- and
medium-term impacts on human welfare but with little immediate market value—are
underfunded. For example, world outlays for climate research amount to about 5
percent of the yearly profits of Exxon Mobil." A key question for leveraging market
forces to support more research is how to monetize reductions in uncertainty. This

paper focuses on monetary value rather than on utility of social welfare generally.

Traditional value of information (VO theory (seg, e.g., Lawrence 2012; Keisler et al.
2014) is very well-anchored in decision theory. However, traditional VOI techniques
face several challenges in application. Baseline uncertainty, prior to costly
measurements, must be quantified. A decision context also must be identified—in
which uncertainty reduction can be parlayed into better decisions with higher
expected values. Of the 252 VOI applications reviewed by Keisler et al.,, only 74 are
applied to actual problems (2014, 8); more real applications have emerged since then
(seeg, e.g., Cooke et al. 2017, 2015, 2013; Gradowska and Cooke 2013).

This paper explores a new approach based on options theory. The approach applies in
cases where risks are traded on a market, and it can be used either ex ante or ex post.
An ex ante (i.e., prospective) VOI study is an assessment of the economic value of an
information-gathering mission conducted prior to mission completion. Typically, an ex
ante assessment will be performed during the mission design and early operational
phases to give a ballpark indication of the economic value that the mission could
potentially harvest. In contrast, ex post (i.e, retrospective) studies quantify the

economic value actually harvested after mission completion.

NASA’s Soil Moisture Active Passive (SMAP) mission, launched in 2015, provides a
workbench for monetizing future information. SMAP is an Earth-observing satellite
that measures and maps the moisture and freeze/thaw states of soil on the planet,
aiming to provide better data that can inform drought monitoring, flood prediction,
and crop management among many other efforts. Agricultural risks are actively traded

TSee Archer (2016), yearly global outlays for climate research are said to be $2 billion. Exxon’s
yearly profits are around $40 billion.
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in large markets, thus rendering SMAP a good candidate for ex ante market-based
monetization of uncertainty reduction.

Soil moisture strongly affects plant growth and agricultural productivity, especially
during water shortages and droughts. Crop conditions shift quickly due to changes in
soil moisture, temperature, fertilization, or disease. High-frequency, high-resolution
geospatial data—especially during growing seasons—are critical for food security,
assessments of crop yields, and informed decisionmaking in agricultural production
and commodity markets.

Currently, no global in situ network exists for monitoring soil moisture. Predictions are
model-based with relatively low resolution and large uncertainties. SMAP aims to

dramatically improve model predictions. The technologies for model improvement are
still under development—but tools for monetizing future reductions in uncertainty are

needed now.

The present study focuses on the value that could be harvested by reducing
uncertainty in US corn and soybean crop yields. This does not target the total value of
the mission. We show that a 30 percent reduction in the weather-related uncertainty
(standard deviation) in the price of US corn and soybeans is worth $1.44 billion per
year. Similar computations could be done for other crops or, indeed, for any
commodity with risks that are traded on the market. This provides a new line of attack
for making the economic value of new information visible to policymakers and to the

general public.

This paper is structured as follows: in Section 2, we discuss an introductory example
of risk trading. Section 3 explains the risk quantification methodology based on
options pricing. Section 4 explains the selection of a simplified option pricing formula
for VOI analysis. Section 5 establishes the methodology for monetizing uncertainty
reduction in weather predictions. In Section 6, we apply this methodology to illustrate
VOI calculation assuming uncertainty reduction of the weather predictions by 30

percent. The final section draws conclusions; the Annex presents historical data.
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2. Simple Example of Risk Trading

Markets have mechanisms for trading risks between those who will pay to remove a
risk and those who will accept payment to assume that risk. An early example is the
corn futures market. Farmers need to purchase seed corn before planting. Because
the future price of seed corn is uncertain, farmers are willing to pay a premium in

September to guarantee that they can purchase a given quantity of seed in April of

the following year at a given price—the “strike price.”

If the actual price in April is
below the strike price, the seller of the futures option makes money as he can buy at
the market and sell for a higher price to the farmer. If the actual price is above the
strike price, the seller loses. In any event, the farmer purchases his seed corn at the
price he anticipated in September. If no uncertainty existed in the future price of seed
corn, there would simply be no futures market. If the April price were known with
certainty to be within $0.50 per bushel of the September price, then the price of the
futures option could not exceed $0.50 per bushel. As the uncertainty of the April price

increases, so does the price of the futures option.

The idea of using options prices to value reductions in uncertainty depends on having
pricing models that translate options prices into quantifications of uncertainty. Since
the introduction of the corn futures markets, the market instruments for risk trading
have expanded enormously. The following example introduces the simplest

instruments in a more general setting.

2 A futures contract is a legal agreement to buy or sell a particular commodity or asset at a
predetermined price at a specified time in the future.
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3. Risk Quantification Using Option
Pricing

Suppose a family has a college savings of $50,000, and the savings will be needed in
two years to cover tuition. At present, the $50,000 is invested in an exchange-traded
fund (ETF) DIA that replicates the Dow Jones Index and should yield a similar return.
Over the last eight years, the assets invested in DIA increased in value about 2.5 times
(about 11.5 percent per year). The family has 200 shares of DIA. At the beginning of
September 2018, the shares were traded at around $260 per share, thus the current
market value of the investment is about $52,000. If the shares continue to grow at 11.5
percent per year, then by September 2020 the value will be about $65,000.

However, if the market goes down, the family may lose a critical fraction of savings
meant to cover college tuition in two years. During two years, in April 2007 to April
2009, DIA shares dropped by 45 percent. The market value of this downside risk could
be calculated as a value of a “European put option at-the-money” on DIA shares. This
option gives the family the right, but not the obligation, to sell its shares at $260 per
share on August 1, 2020. The put option contract costs $20 per share and the total
cost to hedge the entire position is about $4,000. In case DIA value is below $260 per
share on August 1, 2020, the family exercises the options contract and protects its
savings. The family is exposed to risk with a market value of $4,000. There are many
different types of options. For example, an “American put option at-the-money” allows
the family to sell its DIA shares for $260 at any time prior to August 1, 2020. Options
need not be “at-the-money” but may involve a strike price different from the current
price.

Suppose our family also wants to make a down payment of $50,000 on a house in
September 2020 and has a separate portfolio of shares of TFT®. The shares of TFT
have about the same volatility as DIA, also with a hedging cost of $4,000. Hedging
both positions would cost $8,000. However, since DIA and TFT are not completely
correlated, it is quite possible that one option would be exercised in September 2020
but not the other. If the family shops around, they might find an options trader who
would hedge both positions for $7,000. The options market provides many exotic and

3 TFT is the iShares 20+ Year Treasury Bond ETF. The fund seeks to track the investment
results of an index composed of US Treasury bonds with remaining maturities greater than 20
years (see: https://www.ishares.com/us/products/239454/ishares-20-year-treasury-bond-
eth
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complex hedging strategies. For simplicity and because of the availability of market
data, we do not further consider exotic strategies here.

To use options prices to value a reduction in uncertainty, we must relate the market
value of the risk ($4,000 in the above example) to uncertainty in the underlying asset.
This is accomplished by options pricing models relating the monetary risk to a
measure of uncertainty called “volatility”. Volatility is the standard deviation of the
one-period percentage change in the price of the underlying asset. Given a pricing
model and knowing the options price, we can back out the volatility of the underlying
asset. A measure of volatility obtained in this way is called “implied volatility”. Using
reported data on option pricing, the implied volatility of DIA is about 14 percent (one-
year volatility). In other words, if the price of the underlying at period one is $260, the
1o confidence band for the price in the next period is $260x(1+0.14) = ($223.6,
$296.4); the 26 confidence band is ($187.2, $332.8). Implied volatility can thus be

related to the uncertainty distribution of the underlying asset.

We can now run this argument in the other direction. If we reduce the standard
deviation of the underlying, we can compute the resulting reduction in the options
price, and this translates to consumer surplus. If our family can buy off its risk for
$2,000 instead of $4,000, it will have $2,000 to spend on other things. If the reduction
of uncertainty is expressed as a reduction in the standard deviation of a risky asset,
that will affect all types of options on that asset. There is no need to compute the
price reduction of European, American, calls, puts, at-the-money, not at-the-money,
etc.—as they are all functions of the volatility. For a prospective VOI study, it is
sufficient to consider a simple European call option at-the-money and the total volume
of trade in the underlying asset*.

It is important to emphasize that the market is not prescient. The fact that the buyer
and seller agree on the price of an option does not mean that the volatility implied by
that price is correct. If the buyer and seller both believe that climate change is a hoax,
they may trade options on climate-related risky assets at a very low price. If they
believe there is a significant chance that climate damages will occur, they would trade
such options at much higher prices. The market doesn’t know which price is “right”—it
only reflects the players’ beliefs.

“ According to put-call parity property for an at-the-money European option, the value of both
call and put options is equal as long as the spot price of the underlying asset equals the strike
price.
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4. Option Pricing Formulas

Several option pricing formulas are described in the literature (see, e.g., Haug 2007;
Rouah and Vainberg 2007). The first known and the simplest formula is the Bachelier
formula for at-the-money options (Haug 2007, 13):

c=p= 1:0.40\/7

21

’ (1)

where ¢ denotes the price of an at-the-money call option; p stands for the price of an
at-the-money put option; o denotes the standard deviation of the price of the
underlying security during a one-time period. T is time to maturity (until expiration).
Formula (1) could be used as an approximation for the more advanced Black-Scholes-
Merton (BSM) model for option pricing, but there are some discrepancies for a high
volatility and for a longer period to maturity of the option. The Polya approximation
(see Pianca 2005) provides a close tracking of the BSM at-the-money price. The Polya

approximation formula is:

c =81 —ev?t/(2m

’

@

where S denotes a spot price of the underlying asset and v denotes the price volatility
defined as the standard deviation of the price divided by the price:

v=c/S. @

If v2t/2m < 1,theny/1 — e~v?t/@m) ~ [p2t /27, from which the relation to the

Bachelier formula is evident.

Volatility is dimensionless but is often expressed as a percent. Thus, if o= 5/3, then v
= 33 percent. In the literature, there are several more sophisticated option pricing
formulas that consider skewness and kurtosis of price distribution, account for
stochastic volatility, accommodate jump-diffusion processes, and so forth. For our
analysis, Polya approximation or Bachelier pricing provide a sufficient precision, and
offer a direct way to attribute a fraction of risk to the variance in weather prediction.

Market-Based Methods for Monetizing Uncertainty Reduction: A Case Study



5. Attribution: Market Risk versus
Accuracy of Weather Prediction

Consider a stylized model of corn prices with two major sources of uncertainty:

e weather in June-July that determines supply of corn and soybeans
e state of the global economy that determines demand and non-weather-
related factors in general

A relation between weather and corn and soybean yields is well described in the
literature (see, e.g., Westcott and Jewison 2013) and summarized in the Annex.
Weather factors and the state of the global economy are effectively independent. Let
02 denote the variance of the corn price and o2 denote the variance of the soybean

price, then:

02 = 0%+ Ofc; 4)

02 =0l +0fs; (LA

where 6. and 07 denote the variance in price attributed to weather-related

uncertainty for corn and soybeans, whereas o and o4 denote the price variance
attributed to market uncertainty and represent the market risk associated with
holding one bushel of corn and one of soybeans, respectively. We are interested in the
terms oi%,. and afor the next section (we continue with corn, since calculations for
soybeans are similar):

Tl = 02 — Oy
Owe =08 — Opgc )
By definition, gy, o and gy, are in dollars per bushel ($/BU).

Formulas (4) and (4A) imply that the prices of corn and soybeans have Pearson
correlation close to 1. Data do show that this correlation is about 90 percent,
suggesting that this model is indeed a good approximation (see Annex Figures A.2.A
and B). Unlike the example in Section 3, this simple model gives no advantage for joint

hedging of corn and soybean positions.
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As in the example in Section 2, we use DIA as a proxy for the market risk. To calculate
oy (the market risk associated with holding one bushel of corn), we first should
calculate how many shares of DIA could be bought for the same amount as one bushel
of corn. The ratio k is the price of corn (P;) divided by the price of DIA (Pp)®

_ _Pelg]

c $ .
Pp [Share]

Let ap;4 denote standard deviation of DIA, then:

$ —k Share
OMc gy = e Ty ODIA§pgre

Applying market data, we can estimate the standard deviation of corn prices and
standard deviation of DIA. For the numerical analysis, we use an ETF—“CORN"—that
replicates the corn futures market® and DIA (another ETF) that represents market
factors not specifically related to corn. DIA tracks the Dow Jones Index and is widely
used to characterize stock market dynamics. Based on historical data on daily CORN
and DIA pricing (from 2010 to the end of September 20187), we calculated daily
volatility of CORN and DIA as well as annualized volatility.?2 Then, from Formula (3) we

estimate standard deviation (o= v*S).

5 In other words, one can be long one bushel of corn and be exposed to the volatility of corn
price or, alternatively, sell a bushel of corn (short of corn) to buy DIA and be exposed to market
volatility. The difference in risk could be attributed to weather prediction (holding corn is
riskier than holding DIA).

6 The “Teucrium Corn Fund (NYSE: CORN) provides investors unleveraged direct exposure to
corn without the need for a futures account. CORN provides transparency to investors by
investing in a known benchmark (described below), listing all holdings nightly, and
providing future roll dates. CORN was designed to reduce the effects of rolling contracts
(and contango and backwardation) by not investing in front-month (spot) futures contracts
and thus limiting the number of contract rolls each year”. See: http://teucriumcornfund.com/.
7 For volatility calculation, we consider longer time than for average annual price. To be on the
conservative side for calculation of VOI, we excluded a period of elevated prices from
calculation of an average weighted price. For example, in 2012-2013, an average price was
about $6.5/BU.

8 For a detailed explanation of volatility calculation see: https://www.fool.com/knowledge-
center/how-to-calculate-annualized-volatility.aspx
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Annualized corn volatility is 23 percent and DIA volatility is 14 percent. The price of
corn is about $3.8/BU and DIA is about $260 per share. Then:

$
3.8(—
ke = —50) 00146  and
260(Share)
Owe = \/Uc2 — 0 = \/Uc2 — (kcopra)? ®
so that
Owe = \/(0.23 * 3.8)% — (0.0146 * 0.14 * 260)? ~ 0.69[%] (@)
_ Share $ - $
oye = 0.0146[ 50 }*0.14 * 260[5hare] =~ 0.53[BU]. (€))

Thus, the standard deviation of the corn price (Formula 3) is 0.23 x 3.8 = 0.87[$/BU];
from (7), the share of weather-related uncertainty is about 0.69[$/BU]J; and share of
market-related uncertainty is about 0.53[%] (Formula 8).

We apply the same methodology for soybeans, calculating volatility using data on the
Teucrium Soybean Fund (NYSE: SOYB) that, like CORN, provides direct exposure to

soybeans futures without the need for a futures account.

Annualized volatility for soybeans is 21 percent; the price of soy was about $9.9/BU°
and DIA $260 per share—then kg, = 0.038, so that

Ops = +/(0.21 % 9.9)2 — (0.038 * 0.14 * 260)2 ~ 1.55[%] ©
Sh $ $
oms = 0.038[— =} * 0.14 * 260[——] ~ 1.39[—]. (10

The standard deviation of the price of soybeans (Formula 3) is about 2.08 [$/BU]; the
share of weather-related uncertainty is about 1.55[$/BU]J; and the share of market-

related uncertainty is about 1.39[%]. The squares of these quantities (i.e., the

variances) add but the “shares” do not. Table 1 summarizes uncertainty attributed to
weather and market calculated per bushel of corn and soybeans.

% Average spot price for the period 2014-2018.
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Table 1. Attribution of Price Uncertainty (standard deviation)
to Weather and Market per bushel of Corn and Soybeans

Price Weather-related Market-related

uncertainty [ i uncertainty [%]

uncertainty [ b ﬁ]

20)

Corn 0.87 0.69 0.53

Soybeans 2.08 1.55 1.39

Market-Based Methods for Monetizing Uncertainty Reduction: A Case Study
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6. Calculating Value of Information

Annual corn production in the United States is about 15 billion bushels; for soybeans,
about 4.2 billion bushels. The daily average price of corn (weighted by daily trading
volume) is $3.8/BU, calculated for the period from January 2014 to the end of August
2018; the daily average price for soybeans is $9.9/BU. The total annual volume of corn
is worth about $53 billion per year; for soybeans, about $42 billion per year. As with
any other commodity, corn and soybeans are primarily traded on the futures market.
Several different futures contracts with different expiration dates are traded on the
futures market simultaneously. Low predictability of commodity prices is an important
factor of risk for commodity consumers and producers. Prices for corn and soybeans
exhibit relatively high volatility (see Annex). Price fluctuations depend both on the
weather (which determines corn supply at the time of harvesting) and on the state of
the economy (which determines demand).

Using approximations of the BSM" option pricing model for an at-the-money call
option (Bachelier’s option pricing, Formula 1, is a good approximation of the price for
an at-the-money call option), an annualized value of risk associated with price
uncertainty (standard deviation) per one bushel of corn is 0.4 * g, and per one bushel

of soybeans is 0.4 * g (in this calculation we use an annual volatility, therefore T=1").

Using historical data, an annualized value of risk associated with the price uncertainty
is 1/V2m x implied volatility x price = 0.4*0.87[$/BU] = $0.35 [$/BU] for corn; and
0.4*2.08 [$/BU] =$0.83 [$/BU] for soybeans. The total annual risk for the corn market
due to price volatility is therefore about $5.25 billion (= 0.35 [$/BUI*15 [BBU]) and
about $3.5 billion in case of soybeans. In other words, the uncertainty (standard
deviation) in the price of corn costs society about $5.25 billion per year; uncertainty in
the price of soybeans costs about $3.5 billion per year.

° Calculated for the period from 2014-2018.

T See: https://www.investopedia.com/university/options-pricing/black-scholes-model.asp

2 The fraction of corn price variance attributed to weather predictions changes during the
year. It is highest in spring and lowest in late fall. It may be advisable to consider seasonal
fluctuation of weather-related risk. It will require calculating an option value for shorter than a
one-year period.

Resources for the Future

Ll



Table 2. Total Value of Risk Associated with Price
Uncertainty (standard deviation) and Its Attribution to
Weather and Market

Price Weather-related Market-related
uncertainty [$B] uncertainty [$B] uncertainty [$B]

Corn 5.25 420 3.18

Soybeans 35 2.69 2.34

Assume that the weather-related standard deviation were reduced by 30 percent—
then the new value of g,,,, using Formula (7), is 0.7*0.69$/BU = 0.49 $/BU. This
reduction in the weather-related standard deviation will result in a reduction in the
standard deviation for corn prices:

J(049)Z + (0.0146 * 0.14 + 260)Z = 0.72 [%]

The reduction in the standard deviation attributed to an improved weather forecast is

3
BUI

$ $71_
087 - 0.72 || = 0.15]
We apply the Bachelier formula (1) for an at-the-money call option to calculate the
benefits of an improved weather forecast per bushel of corn:

0.4*$0.15/BU = $0.06/BU.

With annual US corn production of about 15 billion bushels, the total value of
information leading to a 30 percent reduction in weather uncertainty is about $0.9B
(0.06[$/BUI*15[BBUI=$0.9 billion).

For soybeans, the new value of gy, is 1.76[$/BU]. Reduction in the standard deviation
of the market price of soybeans attributed to improved weather forecasting is about
0.32[$/BU] (2.08[$/BU1-1.76[$/BU]= 0.32[$/BUD.

Applying the Bachelier formula (1) for an at-the-money call option to calculate VOI for
soybeans: 0.4*$0.32/BU = $0.128/BU. Annual production of soybeans in the United
States is about 4.2 billion bushels—thus, the total value of information is about $0.54B

Market-Based Methods for Monetizing Uncertainty Reduction: A Case Study
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Corn

Soybeans

(0.128[$/BUT*4.2[BBU]=$0.54 billion). Therefore, the total annual benefit of risk
reduction (both for corn and soybeans) is $1.44 billion.

Calculations of VOI for corn and soybeans are summarized in Table 3.

Table 3. Summary of VOI Calculation

Market Market
SD of SD of value of value of
Price SDof SDof SD of Reduction  weather price after  risk before  risk after
volatility ~ price  market weather  weather after weather reduction reduction
[%] $/BU  [$/BU] [$/BU] SD [%] reduction reduction  (Bachelier)  (Bachelier)
[$/BU] [$/BU]
[$Billion] [$Billion]
0.23 0.87 0.53 0.69 30 0.49 0.72 5.25 432
0.21 2.08 139 1.55 30 1.08 1.76 3.49 2.96

Note: SD stands for standard deviation.

The total VOI for corn and for soybeans attributed to a 30 percent reduction in the
standard deviation of weather production is about $1.44 billion per year.

If the weather uncertainty is totally eliminated, then residual volatility equals 0.14—
and the total annual risk for the corn market due to price volatility is therefore about
$3.19 billion. The theoretical maximum VOI (value of perfect weather information)

equals the difference between an actual and residual value of risk for corn:
(0.23 — 0.14) * 3.8 [i] « 0.4 % 15[BBU] = 0.137 [i] « 15[BBU] = $2.05B.
BU BU

For soybeans, the theoretical maximum VOI is $1.16B per year.

The annual value of improved weather forecasting for the United States is about $1.44
billion per year. The total present VOI calculated with a 3 percent discount rate is
about $22 billion, assuming the Earth-observing system is in operation for 20 years.

This accounts for about 36 percent of global corn production and about 34 percent of
soybean production. Thus, the global value of the improvements in weather

forecasting could be up to $63 billion.

Resources for the Future
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Figure 1illustrates the benefits of standard deviation reduction (for corn and
soybeans) and the additional value of learning (weather prediction). The reduction of
standard deviation (in percentage terms) is on the horizontal axis; the corresponding
benefits (blue line) and remaining value of risk (gray line) are on the vertical axis.

Figure 1. Benefits of Risk Reduction for Corn and Soybeans
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Source: Authors calculations.

Note: The solid line depicts risk reduction in millions of dollars as a function of reduced
standard deviation in weather predictions, calculated in percentage terms; the dashed line is
remaining risk attributed to remaining uncertainty in the accuracy of weather predictions.

The VOI is a concave function of the standard deviation reduction. The value of
perfect weather information would be around $3.3 billion per year. A complete
elimination of weather-related variance in price forecasts for corn and soybeans is
impossible—but even a 30 percent reduction in the standard deviation yields slightly

less than half of the theoretical maximum.
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7. VOI in Welfare Indicators

Section 6 examined the VOI in a partial equilibrium context presenting a gross VOI. In
this section, we put the valuation problem in a general equilibrium framework. In a
general equilibrium model, somebody’s expenses could be somebody else’s revenue.
General equilibrium models allow quantifying the net losses for society attributed to
price volatility. Low predictability of commodity prices is an important risk factor for
commodity consumers and producers. Prices for corn and soybeans exhibit relatively
high volatility (see Figure A.2A and A.2B). Fluctuations of these prices depend on both
the weather that determines the supply of corn and soybeans by the time of
harvesting and the state of the economy that determines demand. Uncertainty
influences the business decisions of both consumers and producers of grain. Most
market participants actively hedge commodity prices using futures (and/or options)
contracts. Application of an optimal hedging strategy using futures allows market
participants to “lock in” a price level. Higher predictability of price means lower cost of
hedging. Application of a hedging strategy creates assurance regarding price but
costs money for the market agents that are coping with risk.

The cost of hedging should be treated as a part of the cost of producing and
consuming corn and soybeans. In the presence of these costs, the economy may reach
a relatively low equilibrium and will experience a corresponding welfare loss. We

illustrate this in Figure 2.

Figure 2. Price Uncertainty and Net Welfare Loss
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In Figure 2, D, denotes demand in the absence of uncertainty and D, is a risk-adjusted
demand curve, both as functions of supply, Q. For the sake of argument, we assume
that consumer is always hedging the grain price. The cost of hedging equals C. Here
we assume that the grain buyer makes the best possible prediction of the future price,
given all available information about soil moisture, weather forecasts, and so on. In
order to guarantee this price, the grain buyer also purchases a call option with strike
price equal to P** and an up-front premium of C. By paying this premium, the
consumer guarantees a price less than or equal to P**.

Note: D, is demand function in a risk-free case. S; is supply function. D, is a “modified”
demand function that reflects hedging cost equal to C, which is the difference
between P*** and P**.

As a result, the demand curve shifts downward. A new demand curve is D.. The
equilibrium price drops from P* to P**. Grain producers are also exposed to price
uncertainty. In order to guarantee both price and required volume, they also bear
some additional cost. An initial supply curve S; should shift upward; however, the
introduction of hedging instruments like futures and options allows the buyer and
seller to split hedging costs. For graphical illustration we assume that the buyer
always pays the seller an upfront premium, C(0), to guarantee the future price, and
this premium is sufficient to cover the seller’s cost of uncertainties. The supply curve,
S,, doesn’t shift upward, but the suppler receives actual compensation for one bushel
of grain less than or equal to P*** = P**+ C. If an actual spot price falls below P**, the
buyer does not exercise the call option and buys grain on the spot market for a price
below P**, letting the call option expire.

In the presence of uncertainty, society reaches a relatively lower equilibrium and
therefore experiences welfare losses. The new equilibrium grain production shifts from
Q* to Q** and society experiences the net losses equal to the area of triangle ABE.
Welfare loses are equal to C x (Q*— Q**)/2. The area of ABE is determined by slopes of
D, and S; and by C(0). Let the absolute slope of the demand function be d and the
slope of the supply function be s. Then the area of ABE equals (C?/(d+s))/2. Recall C
denotes cost of hedging. The cost of hedging equals the value of the at-the-money
call option. From (1) C= 0.4* o (where o denotes the standard deviation of the grain
price). The welfare loses are 0.08 0/(d+s). Reduction of the standard deviation by a
(0<a<M results in welfare loses of 0.08 6%/(d+s)(2a — a®. The hedging cost C has a
negative effect on demand, similar to the impact of a tax on consumption. Like
hedging costs, taxes on consumption shift the demand curve downward and result in
net welfare losses equal to the area of triangle ABE. In the economics literature, the
net welfare losses are known as a “deadweight losses”.
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8. Conclusions

Options theory provides tools for monetizing reductions in uncertainty with regard to
risks that are traded on options markets. Buyers and sellers agree on a price for
hedging risky positions. Familiar options pricing models translate this price into a
standard deviation for the underlying risky quantity. Reductions in uncertainty of this
quantity, combined with market information on the price and volume of the market,
can then be monetized as consumer surplus in a partial equilibrium model, or as higher
equilibrium value in a more general setting.

The application of these techniques is illustrated in a stylized example involving
NASA’s SMAP mission for reducing uncertainty in soil moisture. By decomposing the
price variance for soybeans and corn into a market and a weather component, it is
possible to quantify the effect of uncertainty reduction in the weather component on
the price of corn and soybeans futures. A 30 percent reduction in the weather
component leads to a yearly US consumer surplus of $1.44 billion. As this uncertainty
is reduced, the value of additional reductions shrinks. Nearly half of the value of
perfect weather information is obtained by reducing the weather uncertainty by 30
percent.

A complete VOI study requires several additional aspects not covered here—
additional impacts of uncertainty reduction on other crops, flood prediction, insurance
prices, global markets, and so on—should be factored in, as well as mission costs.
Further, the SMAP contributions must be compared to other measurement programs
targeting soil moisture prediction. Finally, the actual uncertainty reduction achieved
by SMAP relative to existing prediction methods must be established. The goal of the
present study is to show how such information could be used in combination with

market tools to monetize uncertainty reductions.
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Annex. Variability of Crop Production
and Price Volatility

The analysis of historical soybean and corn yields suggests a notable variability (see
Figure A1, A and B).

Figure A1.A. Corn Yield Variability and Long-Term Trend
(bushels per acre)
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Source: https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/cornyld.php
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Figure A1.B. Soybean Yield Variability and Long-Term trend
(bushels per acre)
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Source: https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/soyyld.php

Westcott and Jewison (2013) provide detailed analysis of the weather effect on corn
and soybean productivity and established the relationship between weather and crops
yields.” Variation in the productivity of corn and soybeans leads to variations in the
supply of these crops with corresponding variations in corn and soybean prices. While
deviation of corn and soybean production from trend is about 7 percent™ of an
expected value, the price volatility is above 20 percent.

Deviations from trend is the reason for supply shocks. A limitation in predictability of
an actual supply is the foundation for price volatility (see Figure A2, A and B).

BPaul C. Westcott, USDA, Economic Research Service Michael Jewison, USDA, World
Agricultural Outlook Board “Weather Effects on Expected Corn and Soybean Yields”
(https://www.usda.gov/oce/forum/past_speeches/2013_Speeches/Westcott_Jewison.pdf)
1 Calculated using USDA data on historical corn and soybean production
(https://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS)
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Figure A2.A. Historical Corn Prices of Corn ($ per bushel)
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Figure A2.B: Historical Soybean Prices ($ per bushel)
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Based on an extensive econometric analysis, Westcott and Jewison (2013) concluded
that “weather during the growing season is critical for corn and soybean yield
development.” Improved weather predictions should improve predictions of corn and
soybean production, closing gap between an actual and predicted production and

therefore reducing price volatility.
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