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Abstract

In Bangladesh, cholera poses a significant health risk. Yet, information about the nature and
severity of cholera risk is limited as risk varies over time and by location and changing weather
patterns have made historical cholera risk predictions less reliable. In this paper, we examine
how households use geographically and temporally personalized cholera risk predictions to
inform their water use behaviors. Using data from an eight month field experiment, we estimate
how access to a smartphone application containing monthly cholera risk predictions unique to
a user’s home location affects households’ knowledge about their cholera risk as well as their
water use practices. We find that households with access to this application feel more equipped
to respond to environmental and health risks they may face and reduce their reliance on surface
water for bathing and washing—a common cholera transmission pathway. We do not find that
households invest additional resources into drinking water treatment, nor do we find reductions
in self-reported cholera incidence. Access to dynamic risk information can help households
make safer water choices; tailoring information provision to those at highest risk could reduce
cholera transmission in endemic areas.
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1 Introduction

Cholera remains a pressing public health challenge, imposing significant mortality and morbid-

ity burdens on impacted populations. Recent estimates suggest that over 1.3 billion people are at

risk of cholera and that there are at least 2.86 million cholera cases and 95,000 cholera-related deaths

annually (Ali et al., 2015). Cholera is transmitted via the bacterium Vibrio cholerae, often through

contaminated food and water. While cholera can be fatal—especially among young children—it

is also highly treatable through oral rehydration solutions (ORS) and preventable through safe

water, sanitation, and hygiene practices (Davies et al., 2017; Islam et al., 2018; Mogasale et al.,

2020). Indeed, while the disease remains prevalent in low- and middle-income countries (LMICs),

municipal water and sewage treatment systems have largely eradicated cholera transmission in

high income countries.

Due to its deltaic terrain, monsoon climate, and social factors such as high population density

and lack of widespread water and sewer infrastructure, Bangladesh faces public health threats from

both endemic and epidemic cholera (Zaman et al., 2020).1 The seasonal nature of the hydrology—a

prolonged dry season in winter and spring followed by an intense monsoon in summer—exposes

much of the population to water insecurity and associated cholera outbreaks (Akanda et al., 2009,

2013). During the long dry season, water shortages intensify as sources across the rural landscape

become unusable due to worsening quality and insufficient quantity. Frequent and widespread

flooding—in part due to elevation and monsoon, but also exacerbated by climate change—elevates

the risk of cholera outbreaks across Bangladesh. Indeed, Bangladesh ranks within the top five

countries globally in terms of population at risk for cholera, demonstrating the substantial cholera

burden in the country (Ali et al., 2015).2

Despite improvements in cholera treatment and prevention, there are at least 100,000 cases

of cholera and 4500 deaths from the disease in Bangladesh each year (Islam et al., 2018). These

estimates are almost certainly an underestimate due to inadequate availability of resources for

cholera testing. Further, while much is known about the seasonality and peaks of cholera risk, this

information is often inaccessible to the populations most vulnerable to its transmission. Despite

1Bangladesh faces a variety of other water-related environmental risks including naturally occurring arsenic contami-
nation of groundwater (Aziz et al., 2015; Nickson et al., 1998) and saltwater intrusion (Khan et al., 2011).

2Other high-risk countries include India, Nigeria, China, and Ethiopia (Ali et al., 2015).
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some knowledge of cholera’s seasonality, as climate change has made weather patterns, especially

the timing of the monsoon, more unpredictable, it is increasingly difficult for households to use

historical patterns to predict the timing of high disease risk. In this paper, we use a field experiment

to examine the effects of providing geographically personalized and temporally dynamic cholera

risk predictions directly to households in Matlab, Bangladesh via a smartphone application. These

disease risk predictions are generated via a remote sensing model developed for Bangladesh and

calibrated to the Matlab sub-district using cholera incidence reports. Thus, in this setting we

examine the value of this information in informing household water-use behaviors. In recent

years, both mobile phone and smartphone access has expanded across Bangladesh, making these

technologies viable platforms for information dissemination. Indeed, systemic reviews of mobile

health (mHealth) programs globally demonstrate a rise in the use of mobile phone technology in

healthcare provision and services and point to strengths and limitations of these programs (Aamir

et al., 2018; Aranda-Jan et al., 2014; Marcolino et al., 2018).

We conducted the field experiment with a sample of 2014 households across 40 villages in

Matlab—a rural sub-district of approximately 500,000 households in Bangladesh with a dual-

peak seasonality in endemic cholera risk. We disseminated monthly predictions of cholera risk—

discretized into low, medium, or high risk messages—to sample households via a simple Android

app called CholeraMap. The risk predictions were generated via a remote sensing model that uses

rainfall, temperature, elevation, and population density data to predict cholera risk at a one km2

resolution using a monthly time step. The model was calibrated to this resolution and the Matlab

area for the purposes of this information dissemination field experiment. The risk predictions for

the entire Matlab area were available to CholeraMap users at the beginning of each month. The

risk prediction for the user’s home location—set at the point of app installation—were further

contextualized for CholeraMap users through a series of interactive app tabs. We also developed a

control app, a simple Android app called CholeraApp, that was identical in terms of design and

functionality but provided users with only static, publicly available information about averting

cholera risk. We use both CholeraApp using households and pure control households (households

without CholeraMap or CholeraApp) as comparison groups.

We assess willingness to use and engage with CholeraMap as an early warning system of

cholera risk and measure the impact of this information intervention on household cholera-related
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knowledge, water use and hygiene practices, and cholera incidence. Several results emerge. First,

we find that CholeraMap users increased their cholera-related knowledge. Among CholeraMap

households, confidence in responding to environmental and health related challenges increased by

9.3 percent and 7.7 percent, respectively, compared to control households over the study period.

Further, following the intervention period, CholeraMap users were 21 percent less likely to report

diarrhea as a major health concern for household children. Taken together, these results suggest

that the information available in CholeraMap increased households’ confidence that they could

respond to the environmental and health risks they faced—cholera chief among them. Second,

we find that CholeraMap households adjusted their water-use behaviors, particularly related to

surface water use. Following the study period, adult men and women in CholeraMap households

decreased their use of pond water—a commonly contaminated surface water source—for bathing

and other washing by 22.9 percent and 25 percent, respectively, compared to control households.

We find no evidence that CholeraMap households shifted their drinking water treatment behaviors,

perhaps due to high baseline use of groundwater for drinking, which is less likely to contain

microbial contamination. Nor do we find changes in handwashing behavior or self-reported

cholera incidence. Finally, with regard to app-design, we find higher CholeraMap use compared

to CholeraApp use as measured by distinct app visits, pages viewed, and time spent on the app.

On the other hand, we find that users were more likely to delete CholeraMap, perhaps due to

misconceptions of higher space or data demands due to its dynamic features. Taken together, these

results suggest that the additional engagement of CholeraMap, which may have increased the

intensive margin of app use among committed users, may have decreased the extensive margin

of app use among CholeraMap households. These findings highlight the need to assess app user

experience to further refine the platform for information dissemination.

This paper makes at least three contributions to the literature. First, it joins a nascent literature

evaluating the impacts of mobile phone-based infectious disease risk messaging on household

averting behavior (see Dammert et al. (2014) and Wimberly et al. (2021) for examples related to

dengue and malaria, respectively). It demonstrates that modeled cholera risk predictions can be

effectively disseminated directly to households using smartphone applications. By examining two

different cholera-related applications, the study speaks to how early warning system design—in

this case measured by app design—affects information provision and its impacts. Second, building
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on a literature of environmental health information intervention evaluations (Bennear et al., 2013;

Brown et al., 2017; Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009; Guiteras et al., 2015;

Haushofer et al., 2019; Jalan and Somanathan, 2008; Janke, 2014; Ward and Beatty, 2016), it provides

insight into how a new type of information intervention—a cholera risk prediction early warning

system—can shift household perceptions of disease risk and influence averting behavior. Third,

it demonstrates how newly widespread technologies, such as smartphones, can be integrated

into scalable, effective policy design. This is especially important in contexts—such as the one

examined in this study—where environmental risks are dynamic and costly and where populations

are vulnerable and difficult to reach.

The rest of the paper is organized as follows. Section 2 provides a background on related litera-

ture and water-related health risks in Bangladesh. Section 3 describes the cholera risk prediction

model used for the information intervention and the CholeraMap and CholeraApp apps. Section 4

outlines the experimental design and data, and Section 5 specifies our empirical strategy. Section 6

presents our results, and Section 7 provides robustness checks and heterogeneity analysis. Section

8 concludes with a discussion of the policy implications of our findings.

2 Background

2.1 Early warning systems for environmental risk

Environmental risks such as natural disasters, air and water contamination, and vectors and

other pests threaten human health and well-being around the world. A recent analysis of the

global burden of disease from environmental risks assess that approximately one quarter of global

deaths are from modifiable environmental factors (Prüss-Üstün et al., 2016). Early warning systems

providing information related to various types environmental risks have been designed and

implemented in a number of settings to assess how information provision affects individual and

household decisions to avert these environmental risks.

Given the diversity of environmental risk contexts and settings in which they have been tested,

existing research on the impacts of such early warning systems provides a range of impact estimates.

The environmental engineering, public health, and economics literatures provide background on

the design and evaluation of these systems. In two settings most directly related to our own
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context, Dammert et al. (2014) and Wimberly et al. (2021) assess how disease risk prediction systems

affect household behavior and health in the context of vector-borne diseases—dengue and malaria,

respectively. Dammert et al. (2014) use a randomized field experiment to examine how various

forms of information about dengue risk and prevention affect households’ uptake of preventive

measures against the disease as well as dengue transmission in Peru. While not explicitly designed

as an early warning system, Dammert et al. (2014) sent SMS text messages containing information

about dengue prevention, detection, and control and assessed impacts across areas with varying

levels of dengue transmission. They find that households that received the informational SMS

messages reported increased use of screens and bednets and decreased prevalence of dengue-

related symptoms.3 In the context of malaria, Wimberly et al. (2021) developed a model that uses

high resolution satellite observations to assess malaria risk. While the impacts of the model have

not yet been assessed, Wimberly et al. (2021) outline efforts to provide user-friendly modeled

outputs to researchers and practitioners. Finally, in the context of cholera, previous work shows

evidence of demand for cholera early warning systems (Akanda et al., 2018; Aziz et al., 2021)

Early warning systems have also been evaluated in a number of other environmental settings

including air pollution alerts (Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009; Janke, 2014;

Ward and Beatty, 2016), flood warning systems (Atreya et al., 2017; Ferris and Newburn, 2017;

Sufri et al., 2020), and agricultural pests (Gómez et al., 2019). In air pollution-related applications

from the United States, Cutter and Neidell (2009) and Graff Zivin and Neidell (2009) show that

air quality alerts shift transportation and activity choices. For example, Cutter and Neidell (2009)

found that when air quality levels trigger alerts that contain messages about the importance of

using public transportation to reduce car emissions, there are small reductions in daily traffic.

Similarly, Graff Zivin and Neidell (2009) found reductions in discretionary time spent on outdoor

activities on days with smog alerts, suggesting these warnings triggered a short-term averting

response. In England, Janke (2014) found that air quality alerts decreased hospital admissions for

asthma, suggesting that the alerts provided valuable information to a population vulnerable to poor

air quality. The impacts of early warning systems have also been evaluated in the contexts of floods

and agricultural pests. For example, Atreya et al. (2017) found that flooding early warning systems

3In another dengue-related application, Buczak et al. (2012) use satellite data products to model dengue outbreak
predictions in Peru. They do not assess the impacts of providing these predictions to at-risk households.
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such as sirens, whistles, and bells in a flood-prone region of Mexico increased household flood

preparedness. In the context of agricultural pests, Gómez et al. (2019) developed an early warning

system for desert locusts using earth observation datasets. Gómez et al. (2019) demonstrated the

validity of their model in Mauritania, however, they have not yet assessed the impact of providing

the early warning system to vulnerable households.4

Reviewing existing work on early warning systems reveals that there is little existing work

evaluating the viability and value of an early warning system for cholera risk. Yet, applications

related to other diseases—dengue and malaria—and environmental risks—air pollution—suggest

such systems could be used and valuable. Our paper fills this gap, by providing insight into the

value of the information provided by an early warning system for cholera risk in a cholera-endemic

region, as measured by household early warning system use and behavioral change.

2.2 Water, sanitation, and hygiene behavioral change

Despite the somewhat limited literature on evaluating the impacts of early warning systems for

infectious disease, existing research in the economics literature identifies the impacts of information

and other environmental health interventions designed to promote improved water, sanitation,

and hygiene behaviors in LMICs.5 Evidence from randomized interventions in Cambodia and

India has shown that providing households with results from water quality tests of their drink-

ing water increased demand for water treatment (Barnwal et al., 2017; Brown et al., 2017; Jalan

and Somanathan, 2008). These results suggest that personalized risk information can motivate

behavioral change. In the sanitation space, Community-Led Total Sanitation (CLTS) campaigns

use information—such as messages designed to promote latrine use—as a main triggering tool in

community interventions (Kar and Chambers, 2008). Evaluations of CLTS campaigns have shown

these information-driven interventions to be effective tools in reducing open defecation despite

4A number of early warning system applications discussed in this section used mobile phone platforms and SMS
messaging to disseminate warning information. There is a related literature on the use of mHealth platforms to provide
or connect users with healthcare services. While these platforms demonstrate how mobile phone technology has been
used in healthcare, we do not provide an overview of this literature because these applications are not early warning
systems. We refer the interested reader to mHealth systematic reviews (Aamir et al., 2018; Aranda-Jan et al., 2014;
Marcolino et al., 2018) and applications (Haenssgen and Ariana, 2017; Haenssgen et al., 2021; Hampshire et al., 2021) for
more information.

5Pattanayak et al. (2018) provide a review of the literature on environmental health economics in LMICs, specifically
detailing work on valuation, adoption, and evaluation of environmental risk reducing technologies related to water,
sanitation, and hygiene.
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remaining uncertainty regarding the sustainability of improved sanitation behaviors and the cost

effectiveness of said interventions (Gertler et al., 2015; Guiteras et al., 2015; Orgill-Meyer et al., 2019;

Whittington et al., 2020).

Other types of interventions have also shifted household water, sanitation, and hygiene be-

haviors. Monetary tools, including subsidization, free provision, and credit, are commonly im-

plemented and evaluated. Using a randomized field experiment in Zambia, for example, Ashraf

et al. (2010), found that higher prices for water treatment products decreased demand for these

products among households. Interestingly, however, they also resulted in increased use. Eval-

uating a randomized trial in Kenya that provided drinking water treatment free of charge in

exchange for vouchers, Dupas et al. (2016) find similar evidence. Further, recent work by Dupas

et al. (Forthcoming) from Malawi showed households were more likely to use freely-available

drinking water treatment if they obtained the treatment resources by redeeming coupons rather

than automatically from community health workers. In Pakistan, Akram and Mendelsohn (2021)

show that among households that track children’s diarrhea incidence, drinking water treatment is

higher and more consistent, and that the behavioral change persists for a longer period of time.

All of these studies suggest that drinking water treatment is more often used when households

invest some effort—whether monetary or time—in obtaining treatment materials. In the sanitation

space, BenYishay et al. (2017) found that access to microloans increased latrine installation among

households in rural Cambodia. Devoto et al. (2012) found similar results for piped water adoption

in Morocco, suggesting that credit access helped households pay for private, piped connections—

resulting in significant welfare gains. Luoto et al. (2014) combined free provision of point-of-use

water treatment products with informational messaging campaigns in Kenya and Bangladesh and

found that the combination of pricing and informational tools promoted increased drinking water

treatment in both settings.

This evidence from the economics literature demonstrates that informational, monetary, and

other tools can effectively promote improved water, sanitation, and hygiene behaviors. These

studies also demonstrate that there is important heterogeneity in response to such interventions,

identify challenges of evaluating and motivating sustained behavioral change, and draw attention

to the cost effectiveness of program implementation. Taken together, the literature suggests that

designing scalable and efficient interventions that build on what is known about promoting
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improved water, sanitation, and hygiene behavior should be prioritized. Further, they suggest that

additional evaluations of the mechanisms that underlie successful campaigns to improve water,

sanitation, and hygiene behavior can provide valuable inputs for future policy design.

2.3 Water risk communication in Bangladesh

While limited access to safe, improved water sources affect billions globally, Bangladesh is

particularly vulnerable as a result of its climate and geography. The combined water quality

challenges of both surface and groundwater contamination, by pathogens and naturally occurring

arsenic, respectively, have made Bangladesh a common setting for water risk communication efforts.

We contribute to this literature by providing insight into the value of dynamic and personalized

cholera risk information to Bangladeshi households living in a cholera-endemic region.

Evaluations of efforts to communicate arsenic risk—which varies naturally across Bangladesh—

to local populations have generated additional insights into how households respond to environ-

mental risk communication (Aziz et al., 2015). For example, Madajewicz et al. (2007) found that

Bangladeshi households responded to messages about groundwater arsenic; when households

learned their tubewells were contaminated, the probability of switching to arsenic-safe tubewells

increased substantially. Importantly, however, Madajewicz et al. (2007) found that mass communi-

cation of arsenic risk was sufficient to motivate behavioral change; a personalized, door-to-door

information campaign did not differentially shift behaviors. In a similar context, Bennear et al.

(2013) found that more detailed messaging was not more effective in shifting households away

from use of arsenic-contaminated tubewells. The authors note, however, that repeated messaging

may result in a different outcome compared to the one-time messaging intervention evaluated in

their study.

In addition to naturally occurring arsenic, surface water contamination presents the acute risk

of cholera and other diarrheal diseases. Evaluations of efforts to promote safe water, sanitation,

and hygiene practices to reduce disease risk have shown messaging interventions to be minimally

effective in shifting behaviors, while provision of water treatments and handwashing facilities were

more effective in increasing use (Guiteras et al., 2016; Luoto et al., 2014). Despite these findings of

limited response to messaging campaigns, other work finds evidence of demand for additional

information about cholera risk among Bangladeshi households, especially in the form of early
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warning systems (Aziz et al., 2021).

3 Modeling and communicating cholera risk predictions

To provide temporally and geographically dynamic cholera risk predictions to households in

Matlab, we first model predicted cholera risk and then disseminate predictions via a smartphone

application.

3.1 Predicting cholera risk

Cholera risk can be predicted based on hydrological and climatic characteristics of a region

(Akanda et al., 2011). We developed a model to predict cholera risk based on weather and seasonal

characteristics. Informed by remote sensing data including rainfall observations, anomalies, and

forecasts, land surface temperature, land surface elevation, and population density, the model

generates monthly risk predictions at a one km2 resolution.6 The model generates risk predictions

scaled from 0 (indicating no cholera risk) to 1 (indicating very high cholera risk). We calibrated the

model across Bangladesh using cholera surveillance data.7 Figure 1 depicts the monthly cholera risk

prediction maps generated from this model for March 2021 through November 2021, demonstrating

the changing cholera risk predictions in Matlab during this time, and matching with the double

peak cholera pattern endemic to the region (Akanda et al., 2011, 2013).

3.2 Early warning systems: CholeraMap and CholeraApp

To disseminate the model-generated cholera risk predictions, we developed a smartphone

application called CholeraMap. CholeraMap is a simple Android smartphone application that

6Rainfall observations available from the Integrated Multi-satellitE Retrievals for GPM (IMERG)
(https://gpm.nasa.gov/data/imerg). Rainfall anomaly data available from the Tropical Rainfall Measur-
ing Mission/Global Precipitation Measurement (TRMM/GPM) (https://gpm.nasa.gov/missions/trmm).
Rainfall forecasts available from SERVIR North American Multi-Model Ensemble (SERVIR NMME)
(https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Land surface temperature data available from the
Moderate Resolution Imaging Spectroradiometer (MODIS) (https://modis.gsfc.nasa.gov/data/dataprod/mod11.php).
Land surface elevation data available from the Shuttle Radar Topography Mission (SRTM)
(https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-
mission-srtm). Population density data available from the Socioeconomic Data and Applications Center (SEDAC)
(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4).

7Cholera surveillance data come from the Endemic Cholera Control in Bangladesh Study (ECBS). More information
about ECBS is available at https://www.gtfcc.org/research/control-of-endemic-cholera-in-bangladesh-update-the-
existing-cholera-investment-case-surveillance-and-developing-the-funding-consortium/.

9

https://gpm.nasa.gov/data/imerg
https://gpm.nasa.gov/missions/trmm
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.gtfcc.org/research/control-of-endemic-cholera-in-bangladesh-update-the-existing-cholera-investment-case-surveillance-and-developing-the-funding-consortium/
https://www.gtfcc.org/research/control-of-endemic-cholera-in-bangladesh-update-the-existing-cholera-investment-case-surveillance-and-developing-the-funding-consortium/


provides cholera early warning risk maps and associated information about interpreting cholera

risk levels and safe water behavior.8 The cholera early warning risk maps are updated monthly.

While the maps depict the entire Matlab region—an area of approximately 484 km2—app users

observe a house marker depicting their location on the map to personalize risk levels. Due to

concerns about data service demands and connectivity, the app was designed to minimize location

services. Accordingly, the app uses smartphone locations services at the time of registration to set

a user’s location, which is then held constant anytime the app is used. The only way to change

the location from the place where the app was installed is for a user to uninstall and reinstall

CholeraMap. All CholeraMap users register with a username and identification number selected

by the user.9

Following successful use of character association and story telling to promote improved sanita-

tion in Bangladesh (Chesterton, 2004), CholeraMap uses a series of interactive tabs to depict the

story of a young woman using a smartphone to learn about cholera risk in her village. Figure 2

depicts the three main tabs of CholeraMap.10 In the first tab (Figure 2a), the young women views

a multi-colored map of Matlab, Bangladesh. A few key landmarks are identified along with a

house marker, locating her personalized cholera risk prediction for the month. A legend informs

that red coloring on the map indicates high levels of predicted cholera risk; yellow medium risk;

and green low risk. In the second tab (Figure 2b), the risk level from the previous tab is further

explained. The young women sees her village, with many households colored in red, indicating

high risk of cholera transmission. The text on the tab mirrors this message, as does the red color,

the number of red colored households, and worried expression on the young women’s face. The

information provided on this tab varies monthly, along with the risk prediction map, and always

matches the risk category of the home location observed on the risk prediction map tab. That

is, if the user’s location falls in an area with medium (low) risk predictions, the subsequent tabs

would display information about medium (low) risk and use yellow (green) coloring. Finally, the

third tab (Figure 2c) depicts an animated gif of the young woman boiling her drinking water—a

cholera risk averting behavior. This tab also contains additional information about averting cholera

8CholeraMap is available on the Google Play store: https://play.google.com/store/apps/details?id=com.cholera_map.
9For the purposes of examining CholeraMap use, users that were part of this project used their phone numbers as

their identification number to guarantee unique identification numbers among our sample users.
10While the app images in Figure 2 show text in English for clarity, all text in CholeraMap is in Bangla.
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risk including practicing safe sanitation, frequent handwashing with soap, washing fruits and

vegetables before eating, treating drinking water, and using ORS if infected with cholera. As with

the previous tab, this the messages and color scheme are updated monthly to match the predicted

risk level based on the user’s home location.

In addition to CholeraMap, which we designed to provide geographically personalized monthly

cholera risk predictions to users, we designed and deployed a simpler Android smartphone appli-

cation called CholeraApp.11 We designed CholeraApp to contain cholera-related information that

would be publicly available to our intended app users—households in rural Matlab. CholeraApp

uses the same character, story telling approach, and user navigation as CholeraMap to provide

the user with information about reducing their household’s cholera risk. These messages include

practicing safe sanitation, frequent handwashing with soap, washing fruits and vegetables before

eating, treating drinking water, and using ORS if infected with cholera. CholeraApp is a static

application; the information in the app is not updated. Accordingly, the value of CholeraApp to a

user may be the compilation of cholera-related information into one, easily accessible platform;

however, all information provided in CholeraApp is also available on other public health platforms.

4 Experimental design

We implemented a field experiment in the Matlab sub-district of Bangladesh. Matlab is a rural

area of 500,000 people located in southeastern Bangladesh, approximately 50 km southeast of

Dhaka, the country’s capital city (see Figure 3). The region is low in elevation—situated on the

banks of the Dhonagoda River and near the confluence of the Padma and Meghna Rivers—putting

the area at risk for flooding during the monsoon season. Other water-related challenges, including

surface water microbial contamination, saltwater intrusion and groundwater arsenic, limit safe

water access in the region (Jabed et al., 2020; Mukherjee and Bhattacharya, 2001).

Due to its proximity to Dhaka and water-related challenges associated with surface water and

groundwater contamination, Matlab has been the site of the Heath and Demographic Surveil-

lance System (HDSS) since 1963 (Aziz and Mosley, 1994; Alam et al., 2017). The HDSS monitors

demographics, socioeconomic status, water and sanitation conditions, and health of households

11CholeraApp is available on the Google Play store: https://play.google.com/store/apps/details?id=com.cholera_app.
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in Matlab. In addition, healthcare services are provided in the region by the Government of

Bangladesh health service delivery system as well in field hospitals run by the International Centre

for Diarrhoeal Disease Research, Bangladesh (icddr,b). These icddr,b field sites have been the

location of substantial improvements in cholera treatment since the 1970s, most notably the devel-

opment of ORS (Lancet, 1978; Zaman et al., 2020). Despite such improvements in cholera treatment

and reductions in incidence, cholera remains a public health threat in Matlab. While endemic to

the region, cholera risk spikes in two distinct seasons—pre-monsoon (approximately March-May)

and post monsoon (approximately September-October) (Akanda et al., 2011). This seasonality in

risk notwithstanding, households have minimal access to reliable information about the dynamic

nature of cholera risk in their villages. Further, climate change-induced disruptions to the timing of

the monsoon and other weather patterns have made it increasingly difficult to predict cholera risk

without the use of sophisticated models.

Matlab is divided into seven administrative blocks. Three of these blocks—blocks E, F, and

G—are government services areas; the remaining blocks—blocks A, B, C, and D—are icddr,b service

areas (icddr,b, 2020). Our study sites fall entirely within the government service area blocks of E, F,

and G, which are located in the northern portion of Matlab, primarily north of the Dhonagoda River.

To limit informational spillovers across study arms and to reduce implementation burden in a

region that experiences intermittent connectivity challenges, study arms (CholeraMap, CholeraApp,

and control) were assigned by administrative block, with block E villages assigned to CholeraMap;

block G villages to CholeraApp; and block F villages to control. As service access, environmental

and geographical conditions, socioeconomic status, and demographic conditions do not vary with

block designation within the government service areas, we do not believe this assignment threatens

our research design.

From a listing of villages with populations of at least 100 households in each of our study

blocks, we randomly selected 40 villages for our study sample. Village selection was stratified by

block: 15 villages were randomly selected from blocks E and G and 10 villages were randomly

selected from block F. Approximately 50 households in each study village were randomly selected

for inclusion using a geographical systematic random sample.12 To be eligible for the study, a

12To generate this sampling frame, a geographically central household was selected for inclusion in the study. Starting
with this household, every kth household was selected for the study, where k = N

50 and N is the numbed of households
in the village.
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household had to own at least one, working smart phone. A recent, nationally representative,

survey found that 82 percent of Bangladeshi households owned mobile phones and 55 percent of

Bangladeshi households owned smartphones (AfAI and A2I, 2018-19). Thus, we note that while

a majority of Bangladeshi households have access to smartphone technology, these households

are likely more socioeconomically advantaged compared to households without smartphones.

Accordingly, we caveat the generalizability of our results on this sampling criterion.

If a selected household was unwilling to participate or did not own a smartphone, a neighboring

household that met the sampling criteria was selected in its place. Our final sample contained 2142

households. Of the 2142 households recruited for the study, 2014 households (95 percent) were

re-surveyed at the end of the study. The main reasons for attrition included the inability to find the

intended respondent after multiple revisit attempts and migration.

4.1 Smartphone application intervention

Households were assigned to one of three study arms—CholeraMap, CholeraApp, or control—

based on their locations in blocks E, F, or G. Households assigned to the CholeraMap arm installed

the CholeraMap application onto their smartphones with the help of a trained fieldworker. Users

installed CholeraMap by either downloading the app from the Google Play store or, if connectivity

was limited, via direct transfer of the app Android Package Kit (APK) from a smartphone carried

by the enumerator. As the user’s location at the time of install was critical to establishing the

location of cholera risk prediction information observed by the user, all apps were installed at the

user’s home. If connectivity was limited, fieldworkers used a data hotspot to facilitate installation.

One user per household—generally the primary water procurer and respondent to household

survey (see section 4.2)—registered for CholeraMap using their self-selected username and ID

number. Fieldworkers answered user questions regarding the app and its functionality at the time

of installation. Households assigned to the CholeraApp arm installed the CholeraApp application

onto their smartphones with the help of a trained fieldworker. All installation processes used for

households in the CholeraMap arm were also implemented for households in the CholeraApp arm.

Households in the CholeraApp and CholeraMap arms had access to the apps for the duration of
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the study, approximately March/April 2021-October/November 2021.13 Households in the control

arm did not receive access to either app.

In addition to installation support, households in the CholeraMap and CholeraApp treatment

arms received monthly phone calls, bimonthly text message reminders, and monthly payments

for data services. Trained enumerators called app-using households each month to (i) provide

technological support; (ii) answer questions about the app; and (iii) ask households about their

water use practices and household cholera incidence that month. Each household was contacted

up to three times per month; if the intended respondent could not be reached after three calls,

enumerators resumed attempts to connect in the following month. App-using households also

received bimonthly text messages reminding them about CholeraMap and CholeraApp. Incoming

SMS text messages are free in Bangladesh, so households did not incur any costs associated with

these messages. CholeraMap households received one text message at the beginning of each month

notifying users that the cholera risk prediction maps had been updated and one text message in

the middle of each month reminding users that cholera risk information was available on their

phones in CholeraMap. CholeraApp users received two text messages—one at the beginning of

each month and one in the middle of each month—reminding them that there was information

about reducing cholera risk available on their phones in CholeraApp. Finally, to offset any data

related costs associated with the use of CholeraMap or CholeraApp, app-using households received

monthly payments of 100 taka (approximately US$1.20) through bKash, a common payment service

in the area.14 As one gigabyte of mobile data in Bangladesh costs approximately 60 taka (US$0.70),

these payments were significantly higher than the data costs incurred using CholeraMap and

CholeraApp.

13CholeraMap and CholeraApp are currently updated and maintained by Akanda Labs. If the apps are updated or
discontinued, households still using the apps will receive a notification alerting them of the change.

14Receiving bKash payments requires a free account tied to a mobile phone number and bKash account. If households
did not have bKash accounts and wanted to receive the payments, fieldworkers helped them open bKash accounts.
Households could opt out of receiving bKash payments if they did not want to receive them or did not want to create a
bKash payment account.
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4.2 Data

Household surveys

The baseline household survey was conducted in March–April 2021. The primary adult water

procurer was targeted as the survey respondent as this individual would be knowledgeable about

household water use behaviors as well as household health. Based on usual household water

procuring responsibilities, the targeted respondent was generally a female household head or

wife of household head. For CholeraMap and CholeraApp households, the survey respondent

was also the intended app user; this was the case in approximately 75 percent of households.15

The baseline household survey collected household roster information and contained sections on

household cholera incidence, treatment costs, and knowledge; sources of public health messaging;

household water treatment and storage; sanitation and hygiene; routine water-related behaviors of

household members; risk preferences; smartphone and data use; and socioeconomic characteristics.

Enumerators also collected household GPS coordinates.

Table 1 reports baseline descriptive statistics for our household sample and comparisons across

study arms. Panel A reports household characteristics. The average household in our sample has

about five household members, and over a third of households have at least one child under the

age of five. Education levels are fairly low, with the 60 percent of household heads’ education levels

under the secondary level. In line with the rural setting, 70 percent of sample households own land.

Nearly 70 percent of households own televisions and approximately 20 percent of the sample owns

either a bicycle or motorbike. Across study arms, household characteristics are fairly balanced.

We do find that CholeraMap households are more likely to own land and less likely to own a

bicycle or motorbike compared to CholeraApp and control households. They are also less likely

to own televisions than CholeraApp households, suggesting that CholeraMap households may

be slightly more socioeconomically disadvantaged. We also find that CholeraApp households are

more likely to own televisions and have slightly lower education compared to control households.

As these imbalances do demonstrate some differences in observable characteristics across study

arms, we use a difference-in-differences study design and control for household characteristics in

15In approximately 25 percent of households the app user and survey respondent were different members of the same
household. There were a variety of reasons for this including smartphone sharing within a household and a survey
respondent’s lack of comfort with app technology.
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our empirical analysis.

Panel B reports household knowledge and behaviors related to water use, sanitation and

hygiene, and cholera. Approximately 15 percent of our sample households had experienced at least

one case of cholera in the previous month. Despite this evidence of cholera transmission, average

perceptions of cholera risk throughout the year were low at baseline (1.13 on a 1 (low) to 3 (high)

scale). The average sample household spends 15-30 minutes collecting water daily, uses some sort

of pumped water as their primary drinking water sources, and does not report high levels of water

insecurity or stress. Rates of permanent water storage and drinking water treatment are low, with

averages of 19 percent and 16 percent, respectively. In terms of hygiene and sanitation, the average

sample household reported handwashing frequency of 4 times per day and latrine ownership is

nearly universal. Finally, in terms of non-drinking water use, over a third of adults use pond water

(a common surface water source in the area) for bathing and washing.

As with household characteristics, we check for balance on knowledge and behaviors related

to water use, sanitation and hygiene, and cholera across study arms. We find that CholeraMap

households are slightly less likely to use pumped water, treat drinking water, and rely on pond

water for non-drinking water compared to CholeraApp households. They also report lower

handwashing and higher permanent water storage. Compared to control households, CholeraMap

households report slightly longer water collection times, water refilling frequency, and water stress.

Finally, compared to control households, CholeraApp households report slightly longer water

collection times and more frequent water refilling, drinking water treatment, and handwashing. As

these imbalances do demonstrate some differences in observable characteristics across study arms,

we use difference-in-differences for our empirical analysis.

Households were revisited in October–November 2021 for an endline household survey. When-

ever possible, the same respondent who answered the baseline survey was re-surveyed. The

endline survey was identical to the baseline survey with the exception of an additional module on

CholeraMap or CholeraApp use and functionality for CholeraMap and CholeraApp households,

respectively.
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Cholera risk predictions

Using GPS coordinates collected during the household survey, we obtained monthly predictions

of cholera risk for all study households based on the results from our cholera risk model (see Section

3.1). For CholeraMap households, this data allows us to identify the risk level each household

observed in the app each month; for all study households, this data allows us to examine the

underlying cholera risk environment to contextualize our results.

App analytics

App analytics for CholeraMap and CholeraApp were collected for the duration of the study.

Analytics including the data, start time, end time, and tab name were collected for each tab view of

CholeraMap and CholeraApp. These analytics data were identified by the identification number

entered by a user at installation. Because we ensured these identification numbers were unique

within our sample, we were able to match app analytics data to app using households to examine

app use and contextualize our findings. We were able to match app analytics and survey data

for 96 percent of households. To assess app engagement, we compare app use analytics between

CholeraMap and CholeraApp users for the duration of the intervention (approximately April

2021-October 2021). We examine four outcomes: (i) distinct app visits; (ii) time spent on app;

(iii) pages viewed; and (iv) time spent per visit. We consider distinct visits our main outcome of

interest as CholeraMap has more pages and contains more information than CholeraApp, thus

increasing the likelihood of higher pages viewed and longer time spent on CholeraMap. We find

these outcomes illuminating, however, as differences would suggest users found the additional

information provided by CholeraMap of value.

Outcomes of interest

We examine three categories of outcomes in our main analysis: (i) cholera-related knowledge;

(ii) water and hygiene behaviors; and (iii) health. In regard to knowledge outcomes, we examine

if households report feeling equipped to deal with environmental challenges they face, if house-

holds report feeling equipped to deal with health challenges they face, and if households report

diarrhea as a top health concern for their children. In regard to water use behaviors, we examine if
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households report treating drinking water before use—which could include any type of filtration

or boiling—and use of pond water (main surface water) for bathing and washing among adult

male and female household members. In terms of hygiene behavior, we examine the number of

daily scenarios in which households report washing hands with soap. Finally, in terms of health,

we examine cholera incidence in the previous month. All outcomes were gathered on baseline and

endline household surveys.

To examine whether CholeraMap impacts households in a more dynamic fashion, we rely on

data collected via a monthly phone survey of application (CholeraMap or CholeraApp) households.

For these analyses, we examine four alternative outcomes. Specifically, we examine impacts on (i)

household drinking water treatment; (ii) household cholera incidence; (iii) household water stress;

and (iv) household water security.

5 Empirical strategy

We estimate differences in app use between CholeraMap and CholeraApp users as well as

the impacts of app access on household cholera-related knowledge and water use behaviors. To

examine differences in app use across treatment arms, we use a simple linear regression model.

To evaluate the impacts of app access, we use difference-in-differences and modified event study

designs to estimate the effects of CholeraMap and CholeraApp on household water use behaviors.

We consider these analyses as indicative of estimating the value of the information provided by

CholeraMap and CholeraApp to households, as they demonstrate how the information impacted

household outcomes. These empirical approaches use the panel structure of our data, with the

difference-in-differences analysis using only household survey data from the baseline and endline

surveys and the modified event study using data from both the baseline and endline household

surveys as well as the monthly phone surveys.

5.1 Estimating difference in CholeraMap and CholeraApp use

To examine differences in app use across CholeraMap and CholeraApp households we provide

both graphical and regression results. The graphical results depict the difference in the average

number of visits, time spent, and pages viewed between CholeraMap and CholeraApp users. The
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regression results are estimated using linear regressions of the following specification:

Yi = α + βCMi + Xi · θ + ε i (1)

where Yi represents the outcome of interest (app visits, time spent on the app and per visit, and

app pages viewed), CMi is an indicator for households in the CholeraMap treatment, and Xi

is a vector of household controls including respondent age and gender, education and gender

of the household head, household size, presence of children under five, land, television, and

bike/motorbike ownership, and perceived cholera risk. We cluster standard errors at the village

level, which was the level of app assignment. Endline data from CholeraMap and CholeraApp

households are used for these analyses. Our coefficient of interest β provides an estimate of the

effect of having CholeraMap on app visits, pages viewed, and time spent, relative to CholeraApp.

We also estimate differences in stated app use and self-reported information receipt and behav-

ioral change among app-using households at endline. We use the same specification as Equation

1 but focus on three different outcomes. In particular, we measure if the app is still installed at

endline as well as self-reported information gained from the app and self-reported behavioral

change as a result of the information from CholeraMap or CholeraApp.

5.2 Difference-in-differences specification

To assess how access to CholeraMap and CholeraApp impacted household knowledge about

cholera, water use and hygiene behaviors, and cholera incidence, we use a difference-in-differences

study design. We compare differences in outcomes across treatment arms (first difference) and

between baseline and endline (second difference). The difference-in-differences design accounts

for differences in baseline characteristics between households assigned to the three study arms,

making it our preferred empirical approach.

We obtained difference-in-differences estimates using linear regressions of the following specifi-

cation:

Yit = α + β1CMi + β2CAi + β3Postt + β4(CM × Post)it + β5(CA × Post)it + Xit · θ + ε it (2)

Yit is a household-level outcome for household i in wave t (outcomes of interest detailed in
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Section 4.2). CMi is an indicator for assignment to CholeraMap treatment, CAi is an indicator for

assignment to CholeraApp treatment, and Postt is an indicator for the post-intervention wave.

Xi is a vector of household controls including respondent age and gender, education and gender

of the household head, household size, presence of children under five, land, television, and

bike/motorbike ownership, and perceived cholera risk. We cluster standard errors at the village

level, which was the level of app assignment. The comparison group for all estimates is control

households. Our main coefficient of interest is β4, which provides a causal estimate of CholeraMap

access on household cholera knowledge, water use and hygiene behaviors, and cholera incidence,

relative to control households. β5 provides the comparable estimate for CholeraApp. Identification

is achieved under the assumptions of parallel trends and no spillover effects. Our study design

addresses both of these assumptions. First, random household selection provides support for the

existence of parallel trends in our setting, despite our inability to test this assumption directly.

Second, as our study design ensured that neighboring villages were not assigned to different study

arms, we limited the potential for information spillovers.

5.3 Modified event study specification

To investigate whether households make short-term behavioral adjustments in response to

dynamic cholera risk information, we use a modified event study specification. In this analysis,

which is estimated using only app-receiving (CholeraMap or CholeraApp) households, we interact

CholeraMap receipt with monthly indicators. The monthly indicators measure the time since

application installation. We present results of the following specification

Yit = α +
5

∑
j=1

[πj · CMi · 1 · (t = j)] + β1riskit + β2visitit + β3minsit + δt + ρi + ε it (3)

Equation 3 relies on data from the baseline and endline surveys as well as the monthly phone

surveys conducted with all CholeraMap- and CholeraApp-receiving households. Thus, we focus

on four outcomes collected across all surveys including: (i) household drinking water treatment;

(ii) household cholera incidence; (iii) household water stress; and (iv) household water security.

Given the monthly time step of this analysis, we also control for the risk prediction category of

the household (riskit) which is known only for CholeraMap households but observable for both
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CholeraMap and CholeraApp households; whether the household visited their app in month t

(visitit); and the amount of time the household spent on the app in moth t (minsit). We also include

monthly and household fixed effects and cluster standard errors at the village level. Finally, we

use the month of app installation (i.e., the baseline survey data) as omitted event study category.

Our coefficients of interest, πj , map the trend in behavioral differences between CholeraMap and

CholeraApp households across the project implementation period.

6 Results

We first examine differences in application use between CholeraMap and CholeraApp house-

holds. Then, we present results of our difference-in-differences specification. Finally, we present

results from our modified event study specification.

6.1 App use

Figures 4 and 5 depict average app use among CholeraMap and CholeraApp households. For

each outcome—monthly app visits and time spent on the app—CholeraMap users were more

engaged with the app than were CholeraApp users. In the month following app installation,

approximately 50 percent of CholeraMap users visited the app, compared to just under 30 percent

of CholeraApp users. In subsequent months, the percent of users visiting the apps each month de-

clines, yet users consistently return to CholeraMap more frequently compared to CholeraApp. The

same pattern holds for app use. In the month following app installation, CholeraMap users spent

an average of around 2 minutes on the app, compared to less than 1 minute among CholeraApp

users. In subsequent months, users consistently spent more time visiting CholeraMap compared to

CholeraApp. These patterns follow expectations of differences in app use between CholeraMap

and CholeraApp households; as CholeraMap is dynamic and contains more information, we would

expect users to spend more time on CholeraMap and revist the app more frequently.

Table 2 reports results from the app use regression model, which are consistent with the

descriptive trends observed in Figures 4 and 5. The average CholeraMap user made 1.5 more

distinct app visits over the study period compared to the average CholeraApp user. Similarly,

the average CholeraMap user viewed 266.3 more pages and spent 81.2 more minutes on the app
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during the intervention period compared to the average CholeraApp user. Users also spent much

more time on CholeraMap per visit; the average CholeraMap visit is approximately 20 minutes

longer than the average CholeraApp visit. These patterns are consistent with app design. First,

CholeraMap was dynamic, with the cholera risk maps and associated messages for users changing

monthly. CholeraApp, on the other hand, was static. Second, CholeraMap had three information

pages (in addition to the home page), while CholeraApp had only one information page (in addition

to the home page). Finally, CholeraMap contained more substantive content than did CholeraApp;

engaging with this information took users additional time. We note, however, that while these

patterns align with design expectations, they also demonstrate that CholeraMap users found it

worthwhile to engage with all the information pages in the app, suggesting that the information

provided by CholeraMap was of value to user households. That is, users did not view only first or

second page (i.e., mirroring CholeraApp content); rather, they spent time engaging with multiple

pages.

Table 3 reports results from the app use regression model, focusing on endline outcomes. We

find that CholeraMap households are thirteen percentage points less likely to have the app installed

at endline compared to CholeraApp households.16 This could reflect a perception—although

incorrect—among CholeraMap households that the app had substantial storage and data-use

requirements. Subsequent app design and communication must take these features into account

to meet the technical expectations of potential users. We also find that CholeraMap households

are six percentage points more likely to self-report behavioral change based on the information

they received in CholeraMap. While these results are descriptive, this correlation does suggest

that the information provided by CholeraMap was informative and helpful, perhaps motivating

safer water-use behavior. Finally, we find no measurable difference in the stated receipt of new

information in the app between CholeraMap and CholeraApp households. We do note, however,

that nearly 80 percent of CholeraMap and CholeraApp households reported that the apps provided

their households with new information. This suggests a considerable need to provide cholera risk

information to vulnerable and at-risk households in cholera-prone regions and a willingness among

households to receive health-related information through these app platforms, again suggesting

16We took a conservative approach to assessing endline installations. Enumerators requested to see the household
smartphone and observe whether the app was still installed. Thus, our metric of households with the app still installed
at endline should be considered a lower bound.
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the value of the information provided by these apps to households living in a cholera-endemic

region.

6.2 Impacts on knowledge, water use, hygiene, and health

Table 4 reports our main difference-in-differences findings which indicate the impacts of

CholeraMap and CholeraApp on cholera-related knowledge, water use and hygiene practices,

and cholera incidence. Columns (1)-(3) report knowledge-related behaviors. We find CholeraMap

households increased their confidence in their abilities to respond to environmental and health

risks. After using CholeraMap for 8 months, CholeraMap households were 8 percentage points (a

9.3 percent increase from the baseline mean) more like to report they felt equipped to deal with

environmental risks and 7 percentage points (a 7.7 percent increase from the baseline mean) more

likely to report they felt equipped to deal with health risks compared to control households. In

addition, following the study period, CholeraMap households were 12 percentage points (a 21 per-

cent decrease) less likely to report diarrhea as a major health concern for children in the household

relative to control households. We see similar, although slightly less precise, results for CholeraApp

households: Following the study period, CholeraApp users reported feeling more equipped to

address health challenges and were less likely to report diarrhea as a major health concern for

household children compared to control households. While our results form CholeraApp are

less precisely estimated, we are unable to reject the null hypothesis of no difference in effect size

between CholeraApp and CholeraMap users in the post period.

Columns (4)-(7) report impacts on household water use and hygiene practices. We find no

evidence that CholeraMap or CholeraApp shifted drinking water treatment or handwashing

frequency. For drinking water this result is, perhaps, unexpected. At baseline, the majority of

households reported use of groundwater from tubewells as their primary drinking water source

throughout the year. As groundwater is less susceptible to microbial contamination, few households

would view groundwater treatment as a cholera-related averting behavior. We do, however, find

that CholeraMap users decreased their use of pond water (a common surface water source in

Matlab) for non-drinking purposes including bathing and washing clothes. We find this pattern

of behavioral change for both adult men (a 22.9 percent reduction) and women (a 25 percent

reduction) in CholeraMap households relative to control households. While the estimate of the
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effect on pond water use for CholeraApp households is similar, it is much less precisely estimated;

however, we are unable to reject the null hypothesis of no difference between these two sets of

estimates. This shift in non-drinking water use, taken together with descriptive water use statistics

from our sample, suggests an interesting trend in water-related behavior among CholeraMap

households. Most households in our sample relied on groundwater sources (specifically private or

shared tubewells) for drinking water. As households generally view groundwater as safer from a

contamination standpoint, the use of water filtration and regular boiling practices is low within

our sample. Households do engage with surface water, however, through other activities such a

bathing and clothes washing. Further, many men also engage in regular ablution rituals with pond

water for prayers multiple times a day, often taking contaminated pond water in the mouths in

the process. Our results suggest that CholeraMap using households shifted these interactions in

response to up-to-date information about cholera risk.

Column (8) reports impacts on household cholera incidence in the previous month. We find no

significant evidence to suggest that cholera incidence in CholeraMap or CholeraApp households

decreased over the study period relative to control households. We note that while households

can take actions to avert cholera risk, given the infectious nature of the disease, household health

outcomes are tied not only to the household’s own behavior but also to the behaviors of other

households in their village. As app access was limited to study households, there may have been

insufficient access to CholeraMap to achieve reductions in cholera incidence as a result of app

dissemination.

6.3 Behavior over time

Figure 6 plots the event-time coefficients and associated 95 percent confidence intervals that

estimate dynamic changes in water-use practices, concerns, and household health. We find that

there are some differences in behavior between CholeraMap and CholeraApp households over

time. First, as 6a shows, in the month following app installation, we see a slight, and imprecisely

estimated, increase in drinking water treatment among CholeraMap households. This shift is not

sustained; however, in the following months we see no measurable difference between drinking

water treatment between CholeraMap and CholeraApp households. Second, as shown by 6b, we

do not see any dynamic difference in cholera incidence between CholeraMap and CholeraApp

24



households. Third, as shown by 6c and 6d, we find changes related to households’ perceptions

of their water security. We find that CholeraMap households report higher levels of water stress,

perhaps generated by additional information about risks of water-related diseases. This stress,

however, does not generate concerns related to water security. CholeraMap households report

higher water security than do CholeraApp households, perhaps suggesting that information

provided by CholeraMap helps households seek out more secure water sources.

7 Robustness checks and heterogeneity analysis

To assess the robustness of our primary analysis and examine heterogeneity in the impacts of

CholeraMap and CholeraApp, we conduct a series of robustness tests and heterogeneity analyses.

We consider three alternative empirical specifications, relying on household fixed effects, ANCOVA

analysis, and instrumental variables to assess the robustness of our findings. For heterogeneity, we

consider differences in impact based on cholera risk levels (i.e., the type of information receive)

and by app use.

7.1 Robustness checks

We first assess whether the impacts of CholeraMap estimated in our main difference-in-

difference framework are robust to the inclusion of household fixed effects. Supplemental Table A1

reports the results of this analysis, demonstrating consistent, albeit slightly less precise, findings.

Importantly, we find that our main behavioral change—reduced reliance on surface water among

adult men and women in the household—remains highly significant. Adults in CholeraMap house-

holds are approximately 8 percentage points less likely to rely on surface water, representing about

a 23 percent reduction from the baseline mean. We do find that our results related to households

feeling more equipped to deal with environmental and health concerns remain similar in terms of

magnitude, but are less precisely estimated.

While the study design provides evidence regarding the applicability of the standard assump-

tions necessary to draw causal conclusions from the difference-in-difference specification, we also

consider an alternative ANCOVA analysis in which we use only data from the endline survey and

control for baseline characteristics (McKenzie, 2012). As the ANCOVA analysis does not rely in the
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linearity of the difference-in-differences specifications, we use non-linear regression models for

these estimates. For regressions with binary outcomes, we use a logit model and for regressions

with count outcomes we use a Poisson model. Supplemental Table A2 reports these estimates,

displaying odds ratios as the logit results in Columns (1)-(4) and Columns (6)-(8) and incidence

rate ratios as the Poisson results in Column (5). We find that CholeraMap and CholeraApp house-

holds are more likely to report feeling equipped to deal with environmental and health risks their

households are facing, and less concerned about diarrheal disease. These results are consistent with

our main findings. Inconsistent with our primary specification, we do not find significant changes

in surface water use among adult household members, perhaps due to the reduction in estimate

precision as a result of the smaller endline sample on which these specifications are estimated.

Finally, recognizing that our difference-in-difference specifications estimate the effect of access to

CholeraMap or CholeraApp on household knowledge, water-use behavior, and health, and not use

of CholeraMap or CholeraApp, we use an instrumental variables specification to estimate the effect

of app use on our outcomes of interest. Specifically, we instrument frequent app use—defined as at

least six distinct app visits during the implementation period—with experimental treatment. As

there are two apps, we run separate regressions for CholeraMap and CholeraApp households. Each

regression uses data from only the endline survey, and app households and control households for

the estimation. Supplemental Table A3 reports the results of this specification, showing results for

CholeraMap in Panel A and results for CholeraApp in Panel B. We find that both CholeraMap and

CholeraApp using households are more likely to report feeling equipped to deal with environmental

and heath risks and less likely to be concerned with diarrhea. These results are consistent with our

main analysis. We do not find, however, precise estimates regarding impact on surface water use

among household adults. While the magnitude and direction of the estimate for CholeraMap is

similar to our primary specification, the estimate lacks statistical precision.

7.2 Heterogeneity by cholera risk levels and app use

In addition to our main results, we assess whether factors such as the content of the information

available in CholeraMap (i.e., information associated with varying predictions of cholera risk) and

app use mediate the estimates. Turning first to information content, Table 5 reports the effects
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of receiving information about high cholera risk compared to medium or low cholera risk.17 We

define “high risk” as households that received at least one high risk cholera prediction during

the study period (approximately 80 percent of the sample). Households that only received low or

medium cholera risk predictions are defined as not high risk. Because risk messages were only

available to CholeraMap households, this analysis only includes CholeraMap users. As the risk

messages received were entirely dependent on environmental characteristics, we consider this a

source of exogenous variation in information content.

We find that CholeraMap households that received high risk messages felt less equipped to

respond to environmental and health challenges at the end of the study compared to CholeraMap

households that never received high risk messages. This suggests that while some information

about averting cholera was available in CholeraMap, it may have been insufficient to address

households’ heightened concerns about the disease when risk of transmission was especially high.

We also find that high risk CholeraMap households decreased pond water use for bathing and

other washing. This suggests that behavioral change may be driven by households that received

high risk information from CholeraMap. Finally, we find marginally significant evidence of high

cholera incidence in high risk CholeraMap households at the end of our study period relative to

CholeraMap households who never received high cholera risk predictions. These higher incidence

rates suggest both that the cholera risk predictions are consistent with higher cholera prevalence

and that responses to these high risk messages were insufficient to overcome the environmental

cholera conditions.

Turning next to app use, Table 6 reports the effects of CholeraMap (relative to CholeraApp)

among frequent app users.18 We define frequent app users as households that made at least 6

distinct visits to CholeraMap or CholeraApp during the study period. As app use is an applicable

metric only among app study arms, control arm households are omitted from this analysis. Our

17We use a difference-in-differences framework to estimate these results:

Yit = α + β1HRi + β2Postt + β3(HR × Post)it + Xit · θ + εit (4)

All variables are defined as in Section 5, and HRi is an indicator for receiving at least one message of high cholera risk
during the study period, zero otherwise.

18We use a difference-in-differences framework to estimate these results:

Yit = α + β1CMi + β2Postt + β3(CM × Post)it + Xit · θ + εit (5)

All variables are defined as in Section 5.
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results suggest only minor differences in impacts of CholeraMap relative to CholeraApp among

frequent app users. First, we find that frequent CholeraMap users increased their handwashing at

endline compared to frequent CholeraApp users. Second, we find that self-reported cholera inci-

dence increased among frequent CholeraMap users at endline compared to frequent CholeraApp

users. As frequent app users are a selected sampled, the generalizability of these results is limited.

They do suggest, however, that households may have turned to CholeraMap as a information

source after contracting cholera.

8 Discussion and conclusion

In this paper, we assess the willingness of households to use a smartphone application that

conveys dynamic and geographically personalized cholera risk predictions. Further, we estimate

the causal effect of access to this information on household cholera-related knowledge, water

and hygiene behaviors, and cholera incidence. In so doing, we provide insight into the value

that information about cholera risk—generated using a remote sensing model and disseminated

using a smartphone app—has for households living in cholera-endemic areas. We examine these

relationships in the context of Matlab, a rural sub-district of Bangladesh southeast of Dhaka. Matlab

provides a distinctive setting in which to assess household response to cholera risk information due

to its geographic, climatic, and socioeconomic demographics. That is, this low-lying region faces

regular monsoon flooding, which elevates the risk of cholera outbreaks; climate change impacts

have affected the regular seasonality of cholera risk; and a lack of widespread water and sewer

infrastructure limits the ability to halt local cholera transmission (Ali et al., 2015; Zaman et al.,

2020).

We designed a field experiment in which we disseminated cholera risk predictions through

a simple Android smartphone app called CholeraMap. We evaluated knowledge, behavior, and

health changes eight months after CholeraMap installation. We used two comparison groups to

measure the impacts of CholeraMap—a control app group that received access to an app containing

only publicly available cholera risk information called CholeraApp and a pure control group with

no access to either app.

We found that households in the CholeraMap study arm were 13 percentage points less likely
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to have CholeraMap still installed on their smartphones at the time of endline data collection

compared to CholeraApp users. Despite this extensive margin of app use, we find that CholeraMap

users were more engaged with the app relative to CholeraApp users, consistent with expectations

given the dynamic and more comprehensive nature of CholeraMap’s design. CholeraMap users

made an average of 1.5 more visits to the app during the study period than CholeraApp users.

They also viewed an average of 266 more pages and spent approximately 81 more minutes on the

app than did CholeraApp users. Although a different context, these results mirror those found by

Ashraf et al. (2010), Dupas et al. (2016), and Dupas et al. (Forthcoming), which all find that small

financial or time investments required to obtain drinking water treatments decreased the number

of households accessing them but increased the intensive margin of use. Our results may reflect a

similar pattern: Not all households were willing to keep the app installed on their phones; however,

for those that did, CholeraMap proved more engaging.

We also found that feelings towards environmental and health concerns changed for CholeraMap

users, relative to control households. Following the intervention period, CholeraMap users reported

9.3 percent and 7.7 percent increases in their confidence to respond to environmental and health

concerns, respectively. This could reflect a reduction in stress related to a critical environmental

health concern, cholera, as a result of access to CholeraMap. Further, we find that CholeraMap

households changed their water use behavior. Adults in CholeraMap households reduced their

reliance on pond water (a common surface water source) for non-drinking purposes such as bathing

and other washing. We find no evidence of changes in drinking water treatment, handwashing, or

cholera incidence among CholeraMap households.

The significant reduction in pond water use for bathing and other washing and lack of behavior

change related to drinking water aligns with patterns of water use in Matlab as measured by

our baseline survey. Nearly all households in our survey used private or shared tubewells as

their primary water source throughout the year. Groundwater is generally safer from bacterial

contamination relative to surface water unless contaminated by a nearby latrine or through storage.

Accordingly, rates of drinking water treatment among sample households were low. Thus, there

was limited space for drinking water behavioral response to CholeraMap. For non-drinking water

use, however, sources and interactions were more varied at baseline. Thus, our findings could

reflect households shifting away from surface water interactions in general rather than specifically
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tied to drinking water sources.

We also examine heterogeneity in CholeraMap impact by the type of informational messages

received (i.e., the cholera risk predictions) and by app use. We find that, relative to CholeraMap

households that never received high risk messages, CholeraMap households that did receive high

risk messages felt less equipped to respond to environmental and health challenges at endline. This

demonstrates that the message content played a role in users’ responses to CholeraMap. Further, it

suggests that, while some information about averting cholera was available in CholeraMap, future

app design should expand these messages to better address households’ heightened concerns

about high cholera risk. Finally, we find that among frequent app users, CholeraMap users

increased the frequency of handwashing relative to CholeraApp users. We also see higher cholera

incidence among frequent CholeraMap users. As there is selection into app use, these estimates are

correlational; however, they suggest differential use patterns and behavioral responses between

CholeraMap and CholeraApp users. For example, it is possible that CholeraMap household rely on

CholeraMap not only as an early warning system, but also as a reference source when households

experience cholera or cholera-like illnesses.

This paper contributes to a nascent literature evaluating the impacts of early warning systems for

infectious disease and to the established literature on the adoption of environmental risk reducing

technologies related to water, sanitation, and hygiene. Our results show that risk predictions

from complex environmental models can be effectively disseminated to households. Further,

they show that while challenges remain related to connectivity, storage, and technology/data

access, the use of existing and widespread technologies such as mobile phones and, increasingly,

smartphones, provides a user-friendly and accessible platform for information dissemination. From

a policy perspective, phone-based dissemination is highly scalable and low-cost, suggesting that

additional efforts to improve app design, functionality, and engagement could further promote the

effectiveness of CholeraMap or another platform as an early warning system for cholera in other

regions facing endemic or epidemic cholera risk.

Our results also show that user-directed information interventions could be effective in promot-

ing safe water, hygiene, and sanitation behaviors. Unlike information interventions implemented

by community health workers, trained intervention staff, or media-based communication cam-

paigns, CholeraMap provided dynamic and geographically personalized cholera risk predictions
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on a user’s own smartphone device. Accordingly, users had constant access to this information.

Our findings suggest that the combination of personalized and easily accessible information—made

possible through a smartphone platform—could be key elements of an effective early warning

system for cholera.
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Figures

Figure 1: Cholera risk prediction maps for Matlab, Bangladesh, March 2021-November 2021. Cholera risk measured on a
scale of 0 (no cholera risk) to 1 (high cholera risk). Colors depict discretized risk levels: green areas have predicted risk
levels between 0 and 0.33; yellow between 0.33 and 0.66; and red 0.66 and 1.
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(a) Cholera risk map tab with geolocation
of CholeraMap

(b) Cholera risk visualization tab of
Cholera Map

(c) Risk-reducing behaviors tab of
CholeraMap

Figure 2: Screenshots from CholeraMap in a month predicting high cholera risk
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Figure 3: Map of Bangladesh showing Matlab study area
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Figure 4: Percent of users who visited CholeraMap and CholeraApp in the months following installation
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Figure 5: Average time spent monthly on CholeraMap and CholeraApp in the months following installation
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(a) Treat drinking water (b) Cholera incidence

(c) Water stress (d) Sufficient water

Figure 6: Modified event study estimates

Notes: The panels in this figure present the modified event study results comparing outcomes for CholeraMap and
CholeraApp households. Each panel depicts a different outcome: drinking water treatment (Panel (a)), cholera incidence
(Panel (b)), water stress (Panel (c)), and sufficient water (Panel (d)). Each plot shows the coefficient estimate from
Equation 3 and its 95 percent confidence interval. All specifications are run using linear regression and control for app
visits, cholera risk, and time spent on app; they also include month and household fixed effects. Baseline data (i.e., zero
months after installation) is used as the omitted event-time category.
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Tables

Table 1: Sample descriptive statistics

(1) (2) (3) (4) (5) (6) (7)
Full Sample CholeraMap CholeraApp Control Map-App Map-Control App-Control

Panel A. Household Characteristics

Female respondent 0.94 0.93 0.97 0.94 -0.04*** -0.01 0.03**
(0.23) (0.26) (0.18) (0.25) (0.01) (0.01) (0.01)

Respondent age 38.23 38.63 36.45 40.14 2.18*** -1.51** -3.69***
(12.30) (12.73) (11.65) (12.22) (0.63) (0.71) (0.69)

Male household head 0.57 0.58 0.56 0.58 0.02 -0.00 -0.02
(0.50) (0.49) (0.50) (0.49) (0.03) (0.03) (0.03)

Household size 4.68 4.62 4.71 4.73 -0.09 -0.11 -0.03
(1.74) (1.75) (1.77) (1.68) (0.09) (0.10) (0.10)

Household head education below secondary 0.60 0.59 0.58 0.63 0.00 -0.04 -0.05*
(0.49) (0.49) (0.49) (0.48) (0.03) (0.03) (0.03)

Children under 5 0.38 0.36 0.39 0.39 -0.04 -0.03 0.01
(0.49) (0.48) (0.49) (0.49) (0.03) (0.03) (0.03)

Land ownership 0.70 0.74 0.66 0.68 0.08*** 0.06** -0.02
(0.46) (0.44) (0.47) (0.47) (0.02) (0.03) (0.03)

Television ownership 0.68 0.66 0.74 0.62 -0.07*** 0.04 0.12***
(0.47) (0.47) (0.44) (0.48) (0.02) (0.03) (0.03)

Bike/motorbike ownership 0.20 0.16 0.23 0.22 -0.07*** -0.06*** 0.01
(0.40) (0.36) (0.42) (0.41) (0.02) (0.02) (0.02)

Panel B. Water and sanitation

Cholera incidence 0.15 0.14 0.16 0.15 -0.01 -0.01 0.01
(0.36) (0.35) (0.36) (0.36) (0.02) (0.02) (0.02)

Perceived cholera risk 1.13 1.13 1.13 1.12 0.01 0.01 0.00
(0.36) (0.37) (0.35) (0.35) (0.02) (0.02) (0.02)

Pumped water source 1.00 0.99 1.00 1.00 -0.01* -0.01 0.00
(0.06) (0.09) (0.04) (0.04) (0.00) (0.00) (0.00)

Water collection time 1.93 1.98 1.95 1.83 0.03 0.14*** 0.11**
(0.82) (0.85) (0.80) (0.82) (0.04) (0.05) (0.05)

Permanent water storage 0.19 0.21 0.17 0.20 0.03* 0.00 -0.03
(0.40) (0.41) (0.38) (0.40) (0.02) (0.02) (0.02)

Daily water refilling 0.85 0.86 0.86 0.81 -0.00 0.04* 0.05**
(0.36) (0.35) (0.35) (0.39) (0.02) (0.02) (0.02)

Treat drinking water 0.16 0.13 0.21 0.13 -0.08*** -0.00 0.07***
(0.36) (0.34) (0.40) (0.34) (0.02) (0.02) (0.02)

Water stress 0.07 0.09 0.06 0.06 0.03** 0.03** 0.00
(0.25) (0.28) (0.23) (0.23) (0.01) (0.01) (0.01)

Handwashing (soap) 4.05 3.99 4.29 3.79 -0.30** 0.20 0.50***
(2.37) (2.40) (2.51) (2.05) (0.13) (0.13) (0.13)

Latrine ownership 0.94 0.94 0.94 0.93 -0.00 0.01 0.01
(0.24) (0.23) (0.23) (0.25) (0.01) (0.01) (0.01)

Pond water use (men) 0.37 0.35 0.39 0.37 -0.05* -0.02 0.03
(0.48) (0.48) (0.49) (0.48) (0.03) (0.03) (0.03)

Pond water use (women) 0.35 0.33 0.38 0.33 -0.06** -0.01 0.05*
(0.48) (0.47) (0.49) (0.47) (0.02) (0.03) (0.03)

Observations 2014 769 732 513
Notes: Statistics reported as mean (standard deviation). P-value of difference between study arms indicated by stars: *** p<.01, ** p<.05, * p<.10. Perceived cholera risk measured on a scale
ranging from 1 (low perceived risk) to 3 (high perceived risk). Water collection time measured on a scale from 1 (less than 15 minutes) to 4 (greater than 60 minutes). Handwashing (soap)
measured as a count of reported daily handwashing scenarios.
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Table 2: Comparison of CholeraMap and CholeraApp visits and time use

(1) (2) (3) (4)
Distinct visits Pages viewed Time (minutes) Time per visit (minutes)

CholeraMap 1.49*** 266.30*** 81.15*** 20.47***
(0.22) (20.03) (7.78) (3.39)

Mean 4.31 286.32 94.87 31.89

Observations 1488 1414 1416 1416
R2 0.05 0.16 0.13 0.05

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and
age, household size, household head education, children under five, land ownership, television ownership, bike or
motorbike ownership, and perceived cholera risk. Specifications run using analytics data collected over the duration of
project implementation (approximately seven months) using data from CholeraMap and CholeraApp households only.
Asterisks denote statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.

44



Table 3: Comparison of endline app-use characteristics between
CholeraMap and CholeraApp

(1) (2) (3)
App New Behavior

installed information change
CholeraMap -0.13*** 0.00 0.06*

(0.03) (0.02) (0.03)

Mean (CholeraMap) 0.40 0.78 0.54

Observations 2702 1484 1283
R2 0.02 0.04 0.02

Notes: Standard errors, clustered at the village level, in parentheses. All regres-
sions control for respondent gender and age, household size, household head
gender and education, children under five, land ownership, television owner-
ship, bike or motorbike ownership, and perceived cholera risk. Asterisks denote
statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.
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Table 4: Difference-in-differences estimates of the effects of CholeraMap and CholeraApp on knowledge, water-use behavior, and health

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
CholeraMap -0.04 -0.04 0.01 -0.00 0.13 -0.02 -0.01 -0.01

(0.04) (0.02) (0.04) (0.02) (0.18) (0.07) (0.07) (0.02)
CholeraApp 0.02 -0.02 -0.04 0.07*** 0.41** 0.04 0.06 0.00

(0.04) (0.02) (0.04) (0.02) (0.18) (0.09) (0.08) (0.02)
Post 0.03 0.01 -0.05 -0.04* 0.04 0.09*** 0.11*** -0.04***

(0.02) (0.02) (0.04) (0.02) (0.22) (0.02) (0.02) (0.01)
CholeraMap × Post 0.08** 0.07** -0.12** 0.01 0.01 -0.07*** -0.08*** 0.01

(0.04) (0.03) (0.06) (0.02) (0.27) (0.03) (0.03) (0.02)
CholeraApp × Post 0.03 0.06** -0.10* 0.00 -0.14 -0.04 -0.05 -0.03

(0.03) (0.03) (0.05) (0.03) (0.26) (0.03) (0.03) (0.02)

Baseline mean (CholeraMap) 0.86 0.91 0.57 0.13 4.04 0.35 0.32 0.15
Baseline mean (CholeraApp) 0.91 0.93 0.53 0.21 4.26 0.39 0.38 0.16

p-value: CholeraMap vs. CholeraApp 0.23 0.71 0.63 0.90 0.47 0.27 0.28 0.10

Observations 3906 3980 3983 3908 3983 3202 3977 3983
R2 0.03 0.03 0.03 0.02 0.06 0.03 0.03 0.02

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and age, household size, household head gender and education, children under five,
land ownership, television ownership, bike or motorbike ownership, and perceived cholera risk. Specifications run using data from household surveys collected at baseline and endline among control,
CholeraMap, and CholeraApp households. Asterisks denote statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.
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Table 5: Difference-in-differences estimates of the effects of high cholera risk on knowledge, water-use behavior, and health among CholeraMap households

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
High risk 0.16** 0.10** 0.02 -0.04** 0.26 -0.21** -0.21** -0.06

(0.06) (0.03) (0.06) (0.02) (0.18) (0.07) (0.07) (0.05)
Post 0.25*** 0.16*** -0.11 -0.03** 0.44 0.06*** 0.08** -0.08**

(0.07) (0.04) (0.09) (0.01) (0.33) (0.02) (0.03) (0.03)
High risk × Post -0.18** -0.11** -0.08 -0.00 -0.51 -0.05 -0.06 0.06

(0.07) (0.04) (0.10) (0.02) (0.38) (0.03) (0.04) (0.04)

Baseline mean (High risk) 0.89 0.94 0.57 0.12 4.11 0.32 0.29 0.14

Observations 1485 1514 1517 1487 1517 1227 1514 1517
R2 0.08 0.06 0.04 0.02 0.06 0.06 0.06 0.02

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and age, household size, household head gender and education, children
under five, land ownership, television ownership, bike or motorbike ownership, and perceived cholera risk. Specifications run using data from household surveys collected at baseline
and endine among CholeraMap households only. Asterisks denote statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.
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Table 6: Difference-in-differences estimates of the effects of CholeraMap on knowledge, water-use behaviors, and health among frequent CholeraMap and CholeraApp
using households

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
CholeraMap -0.06 -0.02 0.03 -0.02 -0.84*** -0.03 -0.06 -0.06*

(0.04) (0.03) (0.05) (0.04) (0.23) (0.10) (0.09) (0.03)
Post 0.05 0.04** -0.18*** -0.01 -0.42*** -0.00 0.02 -0.08***

(0.03) (0.02) (0.04) (0.03) (0.15) (0.04) (0.04) (0.03)
CholeraMap × Post 0.05 0.02 -0.01 -0.04 0.77*** 0.02 -0.00 0.08*

(0.04) (0.04) (0.07) (0.04) (0.24) (0.05) (0.05) (0.04)

Baseline mean (CholeraMap) 0.85 0.93 0.60 0.15 3.96 0.33 0.29 0.14

Observations 854 871 872 853 872 662 870 872
R2 0.06 0.05 0.04 0.04 0.09 0.04 0.04 0.03

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and age, household size, household head gender and education, children
under five, land ownership, television ownership, bike or motorbike ownership, and perceived cholera risk. Specifications run using household survey data collected at baseline and endline
from CholeraMap and CholeraApp households who visited their apps approximately once per month during the implementation period. Asterisks denote statistical significance: * p <0.10, **
p < 0.05, ***p < 0.01.
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Appendix A Supplemental Results

Table A1: Difference-in-differences estimates of the effects of CholeraMap and CholeraApp on knowledge, water-use behavior, and health with household fixed effects

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
Post 0.03 0.01 -0.06 -0.05 0.06 0.10*** 0.11*** -0.04*

(0.03) (0.03) (0.06) (0.03) (0.30) (0.03) (0.03) (0.02)
CholeraMap × Post 0.07 0.07 -0.12 0.01 0.00 -0.08** -0.08** 0.01

(0.05) (0.04) (0.08) (0.04) (0.38) (0.04) (0.04) (0.03)
CholeraApp × Post 0.03 0.06 -0.10 0.01 -0.14 -0.03 -0.05 -0.03

(0.05) (0.04) (0.07) (0.04) (0.36) (0.04) (0.05) (0.03)

Baseline mean (CholeraMap) 0.86 0.91 0.57 0.13 4.04 0.35 0.32 0.15
Baseline mean (CholeraApp) 0.91 0.93 0.53 0.21 4.26 0.39 0.38 0.16

p-value: CholeraMap vs. CholeraApp 0.42 0.82 0.72 0.99 0.61 0.25 0.42 0.24

Observations 3906 3980 3983 3908 3983 3202 3977 3983
Household FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.56 0.53 0.56 0.69 0.61 0.83 0.82 0.56

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and age, household size, household head gender and education, children under five,
land ownership, television ownership, bike or motorbike ownership, and perceived cholera risk. Asterisks denote statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.
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Table A2: ANCOVA estimates of the effects of CholeraMap and CholeraApp on knowledge, water-use behavior, and health

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
CholeraMap 2.22*** 3.27** 0.63** 1.06 1.03 0.67 0.68 1.03

(0.57) (1.64) (0.12) (0.25) (0.06) (0.21) (0.21) (0.21)
CholeraApp 2.92*** 7.93*** 0.57*** 2.00*** 1.06 1.05 1.10 0.74

(0.83) (4.20) (0.11) (0.50) (0.05) (0.41) (0.42) (0.15)

Baseline mean (CholeraMap) 0.86 0.91 0.57 0.13 4.04 0.35 0.32 0.15
Baseline mean (CholeraApp) 0.91 0.93 0.53 0.21 4.26 0.39 0.38 0.16

p-value: CholeraMap vs. CholeraApp 0.34 0.12 0.52 0.00 0.52 0.29 0.23 0.03

Observations 1971 1987 1989 1986 1989 1607 1986 1989
Notes: Standard errors, clustered at the village level, in parentheses. Logit models used to estimate Columns (1)-(4) and Columns (6)-(8); results are reported as odds ratios. A Poisson model was used to
estimate Column 5; results are reported as incidence rate ratios. All regressions control for respondent gender and age, household size, household head gender and education, children under five, land
ownership, television ownership, bike or motorbike ownership, and perceived cholera risk at baseline and endline. Results estimated using only endline data. Asterisks denote statistical significance: *
p <0.10, ** p < 0.05, ***p < 0.01.
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Table A3: Instrumental variables estimates of the effects of CholeraMap and CholeraApp use on knowledge, water-use behavior, and health

(1) (2) (3) (4) (5) (6) (7) (8)
Equipped Equipped Diarrhea Treat Handwash with Pond use Pond use Cholera

environment health concern drinking water soap frequency adult men adult women incidence
Panel A: CholeraMap
Frequent app use 0.10*** 0.08** -0.30** 0.01 0.36 -0.25 -0.25 0.01

(0.10) (0.08) (-0.30) (0.01) (0.36) (-0.25) (-0.25) (0.01)

Baseline mean 0.86 0.91 0.57 0.13 4.04 0.35 0.32 0.15
First stage F-stat 493.92 482.24 475.96 472.97 475.96 413.37 468.56 475.96
Observations 1,255 1,267 1,269 1,267 1,269 1,038 1,267 1,269

Panel B: CholeraApp
Frequent app use 0.22*** 0.17*** -0.69*** 0.34*** 1.14 0.04 0.09 -0.13

(0.22) (0.17) (-0.69) (0.34) (1.14) (0.04) (0.09) (-0.13)

Baseline mean 0.91 0.93 0.53 0.21 4.26 0.39 0.38 0.16
First stage F-stat 120.02 115.11 115.11 113.30 115.11 109.50 114.63 115.11
Observations 1,227 1,235 1,235 1,234 1,235 993 1,234 1,235

Notes: Standard errors, clustered at the village level, in parentheses. All regressions control for respondent gender and age, household size, household head gender and
education, children under five, land ownership, television ownership, bike or motorbike ownership, and perceived cholera risk. Results estimated using only endline data.
Asterisks denote statistical significance: * p <0.10, ** p < 0.05, ***p < 0.01.

51


	About the Authors
	About RFF
	Sharing Our Work
	Pakhtigian et al - Cholera Aversion.pdf
	Introduction
	Background
	Early warning systems for environmental risk
	Water, sanitation, and hygiene behavioral change
	Water risk communication in Bangladesh

	Modeling and communicating cholera risk predictions
	Predicting cholera risk
	Early warning systems: CholeraMap and CholeraApp

	Experimental design
	Smartphone application intervention
	Data

	Empirical strategy
	Estimating difference in CholeraMap and CholeraApp use
	Difference-in-differences specification
	Modified event study specification

	Results
	App use
	Impacts on knowledge, water use, hygiene, and health
	Behavior over time

	Robustness checks and heterogeneity analysis
	Robustness checks
	Heterogeneity by cholera risk levels and app use

	Discussion and conclusion
	Supplemental Results

	WP 22-24 Cover Sheet.pdf
	About the Authors
	About RFF
	Sharing Our Work




