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Abstract

Many energy consuming consumer durable goods, such as home appliances and

vehicles, are subject to energy efficiency or greenhouse gas standards. We show, in

theory and in practice, that because of demand and supply linkages across product

attributes, such standards can affect consumer welfare via a broader range of at-

tributes than the literature has considered. We demonstrate these effects as part of

the first retrospective analysis of European passenger vehicle standards for carbon

dioxide. The standards have substantially reduced fuel consumption and emissions,

but changes in other attributes undermine at least 25 percent of the welfare gains

of the standards.
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1 Introduction

Many consumer durable products, such as home appliances and passenger vehicles, are

subject to energy efficiency standards and environmental regulation. Such regulations

introduce a shadow cost on energy consumption or emissions, which incentivizes firms

to improve energy efficiency or discount energy efficient versions of their products (e.g.,

Goldberg 1998; Jacobsen 2013; Durrmeyer and Samano 2018). In the absence of other

market failures, the regulations are less efficient than emissions taxes, but if consumers

systematically undervalue energy cost savings when choosing a product, standards may

be more efficient than taxes by correcting that market failure (Allcott and Greenstone

2012; Leard et al. 2017). An extensive literature has examined whether consumers

undervalue energy cost savings, finding mixed results (e.g., Busse et al. 2013; Houde

2018; Leard et al. 2017)

The literature has recognized that standards may affect attributes other than the

regulated one. For many products, consumers value not just the regulated attribute, such

as a refrigerator’s energy efficiency, but also unregulated attributes, such as storage space.

A few studies have considered an unregulated attribute that is related technologically to

the regulated attribute. For example, a manufacturer can modify a vehicle’s power train

to trade off performance for fuel economy and emissions. Consequently, tightening fuel

economy or emissions standards causes manufacturers to reduce performance to reduce

fuel consumption and emissions (Knittel 2011; Klier and Linn 2015; Reynaert 2019)

In this paper, we consider the welfare consequences of regulating one of multiple at-

tributes in a differentiated product market. We show theoretically that standards can

affect virtually any other attribute via demand and supply linkages. Because an unreg-

ulated market can under or over provide these attributes, not just the regulated one,

the welfare consequences of standards depends on the full set of attribute changes. We

consider the application of Europe’s recently tightened carbon dioxide emissions stan-

dards for passenger vehicles. Although the standards have affected vehicle performance

(i.e., acceleration) only modestly, they have substantially reduced residual vehicle qual-

ity, which we define as the combined willingness to pay (WTP) for all other attributes
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(Houde and Spurlock 2015). The combined attribute changes offset at least 25 percent of

the total fuel cost and greenhouse gas benefits, which is roughly double the magnitude of

rebound and scrappage inefficiencies of passenger vehicle standards documented in the

literature (Jacobsen and Van Benthem 2015).

The first part of this paper provides a general framework for environmental regulation

of differentiated product markets. We consider a firm that sells a differentiated product

and chooses the price and attributes of the product to maximize profits.

The firm chooses three types of attributes. The first is the attribute that is directly

regulated, such as a new vehicle’s fuel economy or an air conditioner’s energy efficiency.

The second type includes attributes that are linked technologically to the regulated at-

tribute, as in the fuel economy—performance example above. The third type includes

any other attribute, such as those the firm chooses jointly with the regulated attribute

when designing the product. While the literature on fuel economy regulation has con-

sidered the first and second types (e.g., Klier and Linn 2015; Reynaert 2019), we are

not aware of analysis of the third type—either for passenger vehicles or for any other

product.

We derive two theoretical results from a stylized model. First, regulation of a par-

ticular product attribute may affect any other attribute either positively or negatively,

depending on the structure of demand and attribute choice. For example, on the de-

mand side of the market, a regulation that reduces a vehicle’s fuel costs could increase

consumer demand for cargo space if the lower fuel costs cause the consumer to take

extended vacations. On the supply side, design constraints may cause the firm to trade

off attributes for one another. For example, if a firm has a fixed research and devel-

opment budget, regulating lower emissions could cause the firm to invest more research

and development in reducing emissions and less in improving other attributes.1

Second, standards could increase or decrease private welfare, dependnig on whether

the unregulated market over- or underprovides all attributes. Intuitively, in the absence
1Porter and Van der Linde (1995) and the ensuing “Porter Hypothesis” literature suggest that tighter

regulation could induce innovation that either reduces the direct costs of meeting the regulation or
reduces the cost of improving product attributes that are not directly related. The mechanism we
discuss in this paper is distinct, because it arises from demand and cost relationships among attributes.
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of regulation, if consumer demand for one attribute (such as energy efficiency) is posi-

tively correlated with demand for a second attribute (such as exterior styling), the firm

may choose low levels of both attributes to help segment the market. Regulating one

attribute reduces the incentive to offer a low level of the other attribute. That is, the

unregulated market could underprovide attributes, in which case regulation could raise

consumer welfare.

In the empirical part of the paper, we test whether Europe’s carbon dioxide emis-

sions standards for passenger vehicles have affected product attributes. European road

transportation accounts for about 20 percent of Europe’s carbon dioxide emissions, and

Europe’s carbon dioxide emissions standards are the primary policy aiming to reduce

these emissions. In Europe„ about 15 million new vehicles are sold annually, and these

vehicles represent roughly one-quarter of all the vehicles sold globally that are subject

to fuel economy or greenhouse gas standards. Legally binding standards were finalized

in 2009 and began to apply in 2012. Although manufacturers have achieved the stan-

dards partly by designing vehicles to meet the test cycles rather than reducing on-road

emissions (Reynaert and Sallee 2019), the standards have substantially reduced on-road

emissions (Tietge et al. 2017).

We examine three margins along which manufacturers may respond to the standards:

adjusting the relative prices of vehicles to shift customers to obtain vehicles with lower

emissions; trading off emissions for performance or weight; and adjusting other attributes.

We use highly disaggregated data for the European market covering the years 2005

through 2017. The data include the eight countries with the largest markets in Europe,

which collectively account for about 90 percent of all sales in Europe. Observations are

by country, year and vehicle, where a vehicle is a unique model (nameplate), trim, body

type, engine and transmission configuration, fuel type and drive type—such as the BMW

320 four-door sedan with a four-cylinder diesel-powered engine, an eight-speed automatic

transmission, and rear-wheel drive.

Because the theory suggests that regulation can affect virtually any attribute, we

devise a two-stage empirical strategy that allows us to estimate the effects of the stan-

dards on any attribute. First, we estimate consumer demand for vehicle attributes. As

4



in the theoretical model, we distinguish three types of attributes: (a) fuel economy,

which is directly affected by the regulation (because fuel economy is inversely related to

greenhouse gas emissions); (b) horsepower and weight, which are related technologically

to fuel economy; and (c) other attributes of the vehicle. The previous literature has

considered attributes in categories (a) and (b), but not (c). We use the term residual

quality to characterize the combined WTP for all attributes of the vehicle in (c), such

as safety, reliability, and cargo space. Quality is a residual in that it excludes WTP for

attributes in the first two categories. Importantly, quality includes any attribute that

may be affected indirectly by the regulation via the design process.

We estimate WTP for each attribute and quality with a nested logit model that uses

a vehicle’s market segment and country of origin to define the nests. The estimation

accounts for endogeneity of vehicle prices and within-nest market shares by using in-

struments based on the physical size and engine size of other vehicles in the market.

We estimate own-price elasticities of demand and consumer WTP for fuel economy and

horsepower that are broadly consistent with the European vehicle demand literature (for

example, Grigolon et al. 2017; Reynaert 2019). Having estimated the demand parame-

ters, we recover quality as a residual.

In the second stage, we test whether the European carbon dioxide standards have

affected quality, horsepower, weight, and price. We identify the effects of the standards

on vehicle quality and other attributes using a shift-share (i.e., Bartik) approach. We

define three time periods to match the timing of the regulations: 2005—8 (no standards);

2009—11 (standards proposed but not enacted); and 2012—7 (standards enacted). We

interact the overall shift in regulatory pressure over time with cross-sectional variation in

the pressure that the standards apply to each firm (Klier and Linn 2016); the theoretical

analysis motivates the functional form.

We find that the standards reduced quality and have had small effects on performance,

weight, and vehicle prices. Whereas Klier and Linn (2016) show that the standards

reduced slightly horsepower and weight in the beginning of the second period (2007

through 2010), this effect appears not to have been persistent.

We quantify the welfare implications of the quality changes by comparing them with
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the fuel cost savings and carbon dioxide emissions benefits of tightening the standards.

For a hypothetical 1 percent tightening of the standards, the attribute changes offset at

least 25 percent of the fuel cost and carbon dioxide benefits of the standards.2

Our paper contributes to the existing literature in several ways. First, we generalize

the treatment of differentiated product regulation. Fischer (2010) shows that fuel econ-

omy regulation can improve private consumer welfare if a subset of consumers undervalue

fuel economy. We show that product attribute regulation can affect a large set of other

attributes that are linked to the regulated attribute via demand or supply channels,

generalizing Houde and Spurlock (2015). Whereas Buchanan (1969) and Fowlie et al.

(2016) analyze the implications of output distortions for introducing a carbon price to

an imperfectly competitive market with a homogeneous product (such as cement), we

consider the implications of market failures in attribute choices.

Second, we conduct the first retrospective analysis of the European passenger vehi-

cle standards. Klier and Linn (2016) use data through 2010 and Reynaert (2019) uses

data through 2011, which is just prior to the period in which the standards take effect.

Moreover, whereas those papers consider performance and vehicle price changes, we pro-

vide the first evidence on the effect of passenger vehicle fuel economy and greenhouse gas

standards on vehicle quality. We show that although the European standards appear not

to have affected horsepower, weight, or vehicle prices, the standards have substantially

reduced quality. Reynaert (2019) anticipates that the benefits of the standards would

be lower than the costs, and our analysis confirms the low benefits of the standards.

Third, we contribute to the literature on attribute-based fuel economy and greenhouse

gas standards. The European standards, like most others, depend on a vehicle attribute;

the European standards depend on a vehicle’s weight. Ito and Sallee (2018) show that

attribute-based standards may affect the attribute on which the standard is based. We
2Mock et al. (2014), Tietge et al. (2015), and Reynaert and Sallee (2019) conclude that vehicle

manufacturers have designed vehicles to perform well on the tests used to assess compliance with the
standards. Such gaming is distinct from outright cheating, such as what occurred in the Volkswagen
emissions scandal. Because of this gaming, on-road fuel consumption and emissions reductions have
been roughly half as large as the reductions in tested fuel consumption and emissions. For that reason,
we consider the percent change reported in the text to be a lower bound of the share of fuel cost and
greenhouse gas benefits offset by attribute changes. Responding to the apparent gaming, Europe has
recently adopted a new testing procedure.
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highlight the possibility that standards may affect attributes other than the attribute on

which the standard is based. Although Ito and Sallee (2018) find that Japan’s weight-

based standards distorted vehicle weight, we do not find evidence that the European

standards have affected weight. The difference may arise from the fact that the European

standards are linear in weight and the Japanese standards vary discretely with weight.

Finally, we analyze new vehicle markets, and Brucal and Roberts (2019) and Houde

and Spurlock (2015) analyze home appliance markets. An important difference between

our analysis and theirs is that whereas they identify the effects from time series vari-

ation in the standards, we combine time series variation in aggregate standards with

cross-sectional variation in the stringency of the standards. This allows us to control

for potentially confounding factors that may be correlated with the adoption of the

standards.

2 Regulating Emissions from Differentiated Product

Markets

We consider a market in which firms sell differentiated products to consumers. We begin

with a case in which the product attribute is exogenous, and subsequently we endogenize

the attribute. We represent the standard as a shadow price that a regulator imposes on

the endogenous attribute, and conduct comparative statics of a non-marginal change in

the shadow price. With an endogenous regulated attribute, increasing the stringency of

regulation could cause the firm to increase or decrease other attributes.

2.1 Case 1: Exogenous regulated attribute

The market contains J products and M consumers who choose the product j that max-

imizes utility (for simplicity we abstract from the decision to forgo purchasing any prod-

uct). Each consumer, i, has utility that is linear in the price of the product j, pj, and

other attributes of the product. The consumer values three attributes: mj, xj, and zj.

The attribute mj may be subject to regulation, such as if the attribute is the vehicle’s
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fuel economy. For the moment, all three attributes are exogenous. The utility function

is given by

Uij = αpj +mjβ
m + xjβ

x + zjβ
z + εij. (1)

The parameter α < 0 is the disutility of forgone income, the parameters β are the utility

from the corresponding product attributes, and εij is a household-specific utility shock.

Making a distributional assumption for εij (for example, extreme value) and integrating

over the error term yields a function for the product’s market share

sj = s(pj,mj, xj, zj;α, β). (2)

The market share depends on the product’s price and attributes as well as the preference

parameters.

The market includes n > 1 firms, and for simplicity we focus on a single firm that

produces one type of product, j. The attribute mj is exogenous and the firm maximizes

profits by choosing the product’s price,

max
pj

(pj − cj)sjM − νF (mj)sjM, (3)

where cj is the exogenous marginal cost of producing the product. For each unit of

the product that the firm sells, a regulation introduces a cost on the product attribute

νF (mj). The regulation function F (mj) characterizes the form of regulation. For en-

ergy efficiency and greenhouse gas standards, F (mj) is typically decreasing in mj. For

example, if mj is the vehicle’s fuel economy (miles per gallon) and the regulator imposes

a fuel consumption rate tax, F (mj) = 1/mj and ν is the tax rate; a lower fuel economy

implies a higher tax. Note that for emissions rate or fuel economy standards, F (mj) is

negative if the vehicle’s fuel economy or emissions rate exceeds the standards.

The first-order condition for the product price is
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∂sj
∂pj

(pj − cj − νF )M + sjM = 0. (4)

Equation (4) is a variation of the standard monopoly markup equation. The greater the

price sensitivity of demand (that is, ∂s
∂p
), the lower the equilibrium price. The regulation

distorts the optimal price. For example, a fuel consumption tax raises the equilibrium

price inversely with the vehicle’s fuel economy.

2.2 Case 2: Endogenous attributes with technological trade-off

In this subsection, the attributes mj and xj are endogenous. The vehicle is endowed

with levels of mj and xj, denoted by mj0 and xj0. The variable xj is an attribute that

is linked technologically to the regulated attribute. For example, considering the market

for refrigerators, a manufacturer can improve energy efficiency (mj) by adding insulation,

which may decrease storage space (xj). In that case, there is a technological relationship

between energy efficiency and storage space.

The firm makes decisions in two stages. First, the firm can design the vehicle and

choose levels ofmj and xj that differ from the endowment. Specifically, there is a trade-off

between the two attributes, and if the firm selects a level of mj that is greater than mj0,

the firm must reduce xj below xj0. We characterize this relationship by expressing the

attributes xj as a function of mj: xj − xj0 = x(mj −mj0), where
∂xj
∂mj

< 0. Importantly,

trading off these attributes does not affect marginal costs.3

The first-order condition for mj is

[
∂sj
∂mj

+
∂sj
∂xj

∂xj
∂mj

](pj − cj − νF )M − νF ′sjM = 0. (5)

F ′ is the derivative of the regulation function with respect to the product attribute. The
3Alternatively, we could endogenize marginal costs as in Klier and Linn (2012). Specifically, the

marginal costs can increase with the level of technology (for example, the energy efficiency of a vehicle),
where a higher level of technology allows the firm to increase one attribute without affecting the other
attributes; consumers do not directly value the technology, but only the attribute improvements that a
higher level of technology enables. Having chosen the technology, the firm can then trade off attributes
without affecting marginal costs as in the main text. The conclusions are not affected by endogenizing
marginal costs in this way.
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firm chooses the price in the second stage, and the price first-order condition is the same

as in equation (4).

To interpret equation (5), it is useful to begin by assuming that there is no regulation

(ν = 0). Combining equations (4) and (5) yields

Wm

W x
= − ∂xj

∂mj

, (6)

where Wm = −
∂sj
∂mj/

∂sj
∂pj

is the marginal WTP for mj and similarly for W x. Equation (6)

shows that the firm equates the ratio of marginal WTP with the technological trade-

off between the two attributes. If consumers have declining marginal WTP for both

attributes, an increase in the marginal WTP for one attribute causes the firm to decease

the other attribute.

If there is regulation and ν > 0, the first-order conditions can be combined to yield

Wm +W x ∂xj
∂mj

= νF ′. (7)

As noted above, F ′ is typically negative, as would be the case for an emissions tax. If

ν > 0, the right-hand side of the equation is negative, which causes the firm to trade off

xj for mj. This result is intuitive, as more stringent regulation causes the shadow cost

(ν) to increase. The firm responds by increasing the regulated attribute at the expense

of the unregulated attribute.

Figure 1 provides the intuition for equations (6) and (7). The curve labeled x(m)

represents the technological tradoeff between the regulated attribute (x) and the unreg-

ulated attribute (m). The curve is analogous to a production possibilities frontier, in

that it describes the maximum level of x for any level of m, given the endowments of

the two attributes. The curve Wm

Wx is the ratio of the WTP for the two attributes (we

assume that WTP for each attribute is decreasing in the corresponding attribute). Point

A shows that without regulation the firm chooses levels of the two attributes such that

the technology and WTP curves are tangent to one another. The regulation causes the

firm to choose a point along the frontier such that the WTP ratio is steeper than the

tradeoff; the firm substitutes the unregulated for the regulated attribute and chooses

10



point B.

Figure 1: Firm’s Profit Maximization

Note: The vertical axis represents the attribute mj that is subject to regulation, and the horizontal axis
represents the attribute xj that is linked technologically to the regulated attribute. The curve x(m)
represents the technological tradeoff function: xj − xj0 = x(mj −mj0). The curve Wm

Wx is the ratio of
the marginal WTP for the two attributes. The point A shows the firm’s profit maximization without
regulation (equation 6). Point B shows the firm’s profit maximization under regulation (equation 7).

2.3 Case 3: Endogenous attributes with design trade-off

In this subsection we endogenize the choices of zj andmj0. The attribute zj is not related

technologically to mj and xj. For example, zj may represent a vehicle’s cabin space.

In cases 1 and 2, mj0 was exogenous and choosing mj > mj0 required the firm to

reduce the level of xj. In case 3, the firm chooses product attributes and price in three

stages. In the design stage, the firm chooses zj andmj0 and incurs a costD(m0j, zj),where

the cost is increasing in both arguments. In the second stage, the firm chooses mj and

xj, and in the third stage, the firm chooses the price. For simplicity, both xj0 and cj

remain exogenous (the conclusions are unaffected by endogenizing these parameters).

The firm’s profit maximization problem becomes:

max
pj ,mj ,xj ,mj0,zj

(pj − cj)sjM − νF (mj)sjM. (8)

As in case 2, xj − xj0 = x(mj −mj0). In addition, we assume that there is a maximum
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cost that the firm can incur during the design stage, D. This maximum cost captures

capital market or time constraints that the firm faces, such as the need to update a refrig-

erator during a regular product cycle. Provided that this constraint binds, the equation

D(m0j, zj) = D implicitly defines mj0 as a function of zj. Given this relationship, we

write mj0 = D(zj;D).

The first-order condition for price is the same as equation (4), and the first-order

condition for mj is the same as equation (5). The first-order condition for zj is

[
∂sj
∂zj

+
∂sj
∂xj

∂xj
∂mj0

∂mj0

∂zj
](pj − cj − νF )M = 0. (9)

Setting ν = 0 and combining equation (9) with equation (4) yields

W z +W x ∂xj
∂mj0

∂mj0

∂zj
= 0, (10)

where W z is the marginal WTP for attribute z. This equation has a similar structure

to equation (6), and it shows that the choices of the unregulated attributes are related

to one another according to the two trade-off functions, x and D.

Equations (7) and (10) imply that increasing ν affects both unregulated attributes.

To see why, suppose for the moment that increasing ν causes the firm to trade off xj for

mj, while leaving zj unchanged. In that case, lower xj would raise W x, and equation

(10) would no longer hold with equality. Consequently, marginally increasing ν also

affects zj. Thus, regulating one attribute affects not only other attributes that are linked

technologically to that attribute, but also attributes that are chosen jointly with the

regulated attribute during product design.

In the cases considered so far, increasing ν causes the firm to reduce xj and zj, but

this need not hold generally. For example, suppose W x depends not only on xj but also

on zj, such that increasing zj raises W x. In particular, redesigning a vehicle’s exterior to

have a sporty look (zj) could increase a consumer’s marginal WTP for horsepower (xj).

Under these assumptions, increasing ν could cause the firm to increase zj and reduce

the extent to which the firm trades off xj for mj. Therefore, whether increasing ν causes

zj to increase or decrease depends on the magnitudes of the derivatives in equations (7)
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and (10) as well as the cross partial derivatives of the marginal WTP for each attribute

with respect to the other attributes.

We briefly discuss the intuition for the result that increasing ν can cause the firm

to increase other attributes, potentially increasing consumer welfare. Suppose consumer

WTP for mj is positively correlated with WTP for zj. If there is no product regulation,

depending on competition and attribute choices of other firms, the firm may find it

optimal to offer low levels ofmj and zj, relative to the levels of attributes chosen by other

firms. For example, for home appliances, consumer preferences for energy efficiency (mj)

may be positively correlated with preferences for overall product quality (zj). In such

a situation, the firm may offer a low-quality product that also has low energy efficiency

because doing so helps the firm segment the market and attract the consumers with low

demand for the two attributes.

Starting from this equilibrium, hypothetically regulating mj has a similar effect on

the firm’s attribute choices as if consumer demand for mj were to increase. This can be

seen by comparing equations (6) and (7), which show that ν > 0 has the same effect on

attribute choices as an increase in demand for mj. Essentially, the regulation reduces

the positive correlation between mj and zj, reducing the firm’s incentive to offer a low

level of zj.

The model shows that the regulation affects product attributes that are not directly

targeted. Moreover, regulation could either increase or decrease other attributes, de-

pending on the structures of demand and costs. Above, we noted some simplifications,

such as the fact that costs are exogenous and that the firm sells only one product. Re-

laxing these assumptions would not change the conclusion that regulation can affect

unregulated attributes in either direction.

3 Background and Data

The conclusions from Section 2 motivate an empirical analysis of whether regulating one

product attribute can affect a broad set of other attributes. The remainder of the paper

focuses on the European carbon dioxide emissions standards, and this section describes
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the policy context and the data.

3.1 Policy context

In Europe, passenger cars contribute the majority of transportation emissions, and Eu-

rope’s carbon dioxide emissions standards are the central policy aiming to reduce those

emissions. Traditionally, European countries have taxed fuels more heavily than have

other countries (Parry and Small 2005). In 1995, the European Parliament and the

Council formulated an objective of reaching an average emissions rate of 120 grams

of carbon dioxide per kilometer (g CO2/km) by 2010 (European Commission 1995; a

gasoline-powered vehicle that emits 120 g CO2/km achieves about 45 miles per gallon).

However, the emissions target was voluntary, and by the mid-2000s, it was apparent that

the actual emissions rate would far exceed the target (European Council 2009).

Therefore, in 2007, the Commission proposed a legislative framework mandating pas-

senger vehicle emissions reductions. For each vehicle, the carbon dioxide emissions target

Ej depends on the vehicle’s weight wj:

Ej =

130 + 0.0457 · (wj − 1372), year ∈ [2012, 2015]

130 + 0.0457 · (wj − 1392.4), year ≥ 2016

A manufacturer’s emissions target is the sales-weighted average of the vehicle-specific

targets. Therefore, a manufacturer selling heavy vehicles has a higher target than does a

manufacturer selling light vehicles. The framework included a phase-in period that began

in 2012, and by 2015 each manufacturer had to attain an average carbon dioxide emissions

rate for new passenger cars of 130 g CO2/km (European Council 2009).4 Manufacturers

could comply individually or jointly. The European standards do not allow compliance
4Between 2012 and 2014, the standards were phased in by including a subset of the manufacturer’s

sales when computing its sales-weighted emissions rate: 65 percent in 2012, 75 percent in 2013, and 80
percent in 2014. Between 2012 and 2015, cars with emissions rates less than 50 g CO2/km (which are
mainly electric vehicles) earned more than 1 credit: 3.5 in 2012 and 2013, 2.5 in 2014, and 1.5 in 2015.
In certain situations, the target for vehicles capable of using fuel with high ethanol content was different
from that reported in the text.
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credit trading across firms. The framework also set a target of 95 g CO2/km to be met

by 2020, which has since been delayed.

Since 2012, a manufacturer whose sales-weighted average emissions rate exceeds its

target must pay fines that increase with the degree of the manufacturer’s noncompliance.

When the manufacturer exceeds its target by no more than 1 g CO2/km, the fine is 5

euros per g CO2/km per car. The fine increases to 15 euros from 1 to 2 g CO2/km, to

25 euros from 2 to 3 g CO2/km, and to 95 euros above 3 g CO2/km.

Because each manufacturer must meet the standard and manufacturers cannot trade

compliance credits with one another, the shadow cost of the regulation may vary across

manufacturers, νm. Therefore, the regulation function from the previous section is given

by F (mj) = νm(kf/mj − Ej), where kf is the carbon content of the fuel (which varies

by fuel type). The regulation creates an implicit tax on a vehicle if kf/mj > Ej, and it

creates an implicit subsidy otherwise.

3.2 Data

The main data were obtained from IHS Markit. For the eight EU countries with the

largest car markets in Europe (Austria, Belgium, France, Germany, Italy, the Nether-

lands, Spain, and the United Kingdom), the data include registrations by month and

vehicle from 2005 through 2017. A vehicle is defined as a unique model, submodel,

version, trim, market segment, number of doors, body type, fuel type (diesel, gasoline,

hybrid, plug-in hybrid, or electric), and drive type (front-, rear-, or all-wheel). For each

vehicle, the data also include the vehicle’s length, height, width, gross vehicle weight,

size, fuel consumption rate, carbon dioxide emissions rate, engine horsepower, number of

engine cylinders, engine size (that is, displacement), and number of transmission speeds,

as well as the retail price.5 The data are similar to those used in Klier and Linn (2015),

except that our data extend through 2017, whereas theirs ended in 2010.

We construct a categorical variable labeled origin that takes one of three values:
5There is far less negotiation between consumers and car dealers in Europe than in the United States.

Most of the literature on European new car markets uses retail prices rather than transaction prices
(e.g., Reynaert 2019).
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whether the car is produced by a domestic manufacturer, a foreign European or US

manufacturer, or an Asian manufacturer. We calculate the vehicle purchase tax, owner-

ship tax, and fuel tax using the annual European Automobile Manufacturers Association

(ACEA) Tax Guide. We also construct the vehicle’s per-kilometer fuel price by multi-

plying the fuel consumption rate (liters of fuel per kilometer) by the fuel price (2005

euros per liter). Monthly prices for gasoline (petrol) and diesel fuel are obtained from

the Weekly Oil Bulletin and are converted to 2005 euros using consumer price indexes

from Eurostat.

We drop vehicles with weight greater than 3,500 kilograms because they are not

subject to the carbon dioxide emissions rate standards for passenger cars, and we drop

vehicles with prices exceeding 59,537 euros, which is the 99th percentile of the price

distribution. In the final data set, a unique observation is a vehicle by country by year.

The data set contains 341,725 observations and 68,089 unique vehicles.
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Table 1: Summary Statistics
Variable Period 1 Period 2 Period 3

2005—8 2009—11 2012—17

Annual registrations of each vehicle in each country 336.15 295.08 212.28

(1099.48) (1044.79) (687.06)

Price (1,000 2005 euros) 25.78 25.94 26.46

(11.19) (11.70) (11.53)

Tax (1,000 2005 euros) 3.88 3.30 3.14

(5.25) (4.69) (4.83)

Engine horsepower 139.36 143.64 144.90

(54.03) (59.08) (60.57)

Gross vehicle weight (metric tons) 1.86 1.87 1.88

(0.27) (0.29) (0.29)

Size (cubic meters, m3) 11.26 11.33 11.36

(1.43) (1.47) (1.41)

Fuel cost (2005 euros/100 km) 8.31 7.21 6.10

(2.46) (2.06) (1.92)

Fuel consumption rate (liters/100 km) 7.02 6.26 5.15

(1.71) (1.51) (1.23)

CO2 emissions rate (g CO2/km) 174.42 154.32 125.60

(37.91) (33.76) (27.16)

Number of engine cylinders 4.34 4.25 4.01

(0.84) (0.80) (0.71)

Number of observations 101,389 74,709 165,627

Notes: The table reports means of the attributes for the time periods indicated in the row headings,
with standard deviations in parentheses. See text for details on data construction.

Table 1 provides summary statistics by time period. The table defines three policy

regimes that are used in the empirical analysis below. During the first period (2005—

8), the standards were voluntary and there were no fines for noncompliance. During

the second period (2009—11), manufacturers knew that mandatory standards would be

imposed starting in 2012. During the third period (2012—17), the standards were phased

in and firms were assessed fines for noncompliance.

The average price is stable across the periods, and the average tax decreases sub-

stantially. The average fuel consumption rate, fuel costs, and carbon dioxide emissions

rate decrease across the three periods, which is consistent with the fact that the carbon

dioxide standards tightened during the sample.

Figure 2 shows the median carbon dioxide emissions rate as well as the 25th and 75th
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percentiles of the emissions rate across vehicles. By the end of the sample, the average

emissions rate was far below the target of 130 g CO2/km, which likely is explained by

manufacturers’ efforts to comply with the target of 95 g CO2/km by the early 2020s.

Figure 2: CO2 Emissions Trend

Note: The figure shows the median, 25th percentile, and 75th percentile of CO2 emissions rate by year,
weighted by registrations.

Table 2 motivates the nested logit structure that we adopt in the next section. France

and Germany have the largest markets in Europe, and the table shows the market shares

in France and Germany of the top three French and German brands. The table indicates

a strong home bias, such that the French brands have substantially higher market shares

in France than they do in Germany, and vice versa for the German brands.

Table 2: Home Bias in Vehicle Market Shares
Brand Origin Market share in France Market share in Germany

Citroen France 0.13 0.02

Renault France 0.21 0.04

Peugeot France 0.20 0.03

Volkswagen Germany 0.08 0.20

Audi Germany 0.04 0.10

BMW Germany 0.03 0.09
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4 Estimating Consumer Preferences and Vehicle Qual-

ity

In this section, we implement a method similar to that of Houde and Spurlock (2015) to

estimate consumer preferences and vehicle quality. The first two subsections describe the

demand model and empirical strategy, and the third subsection reports the estimation

results.

4.1 Demand model

A market corresponds to a country c and year y, and each country has Mcy consumers

who are considering purchasing a vehicle. Each consumer can choose a new or a used

vehicle, where j = 0 indicates a used vehicle and j = {1, . . . , J} indexes the new vehicles.

As is customary in the vehicle choice literature (e.g., Berry et al. 1995), consumer i’s

utility is linear in vehicle attributes and an idiosyncratic preference shock:

Uijcy = αpjcy +Xjcyβ + ξjcy + εijcy (11)

The retail price of the vehicle is pjcy, and Xjcy includes the vehicle’s tax, fuel costs, log of

the ratio of horsepower and weight, log weight, and log size (the product of width, length,

and height). We include the vehicle’s price and tax separately in the utility function to

allow for the possibility that consumers respond differently to taxes than prices, because

of salience or other factors (Cerruti et al. 2019). Fuel costs are the price of fuel per 100

km of travel, as constructed for Table 1, and fuel costs are proportional to the present

discounted value of fuel costs over the vehicle’s lifetime assuming that the current price

equals the expected future real price. This measure of fuel costs is commonly used and

is consistent with existing evidence of consumer fuel price expectations (Anderson et al.

2013). The log of the ratio of horsepower and weight is included because it is directly

related to the vehicle’s acceleration (Leard et al. 2017). We define ξjcy as the vehicle’s

quality; the variable represents the mean utility across all consumers of the vehicle arising

from all attributes except price and the attributes in Xjcy. For example, ξjcy includes
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cabin comfort and cargo space. Finally, εijcy is the household’s preference shock.

We use a nested logit structure to capture preference heterogeneity across consumers.

Figure 3 illustrates the structure. First, the consumer decides whether to purchase a new

or used vehicle. If the consumer decides to purchase a new vehicle, the consumer then

chooses a market segment, where segments are denoted A through F and correspond

roughly to vehicle size (for example, A indicates mini cars and B indicates small cars).

Having chosen a segment, the consumer chooses an origin (domestic, other European

or US, or Asian) and a specific vehicle. We differentiate between foreign and domestic

cars to capture the home bias indicated in Table 2. The nesting structure implies that

εijcy = ηig(j)cy + (1 − σg)νijcy, where ηig(j)cy represents consumer i’s specific taste for

group g(j), and νijcy is an independently and identically distributed variable with Type

1 extreme value distribution.

Figure 3: Nested Logit Structure of Vehicle Choice

The probability of choosing vehicle j, Pj, is

Pj = Pj|so · Po|s · Ps, (12)

where Pj|so is the probability of choosing vehicle j conditional on choosing segment s and

origin o, Po|s is the probability of choosing origin o conditional on choosing segment s,

and Ps is the probability of choosing segment s. The nesting structure and assumptions
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on the error term yield

Pml|jl−1
=

exp(
λml

IVml

λjl−1
)∑

k∈Θjl−1
exp(

IVklλkl
λjl−1

)
(13)

IVml
= log[

∑
p∈Θml

exp(
δpl+1

λml

)], (14)

where the subscript l represents a particular level in the choice tree, the subscript l − 1

represents the choice level above, and subscript l + 1 refers to the choice level below

(McFadden 1981; Goldberg 1995). The subscript ml represents a specific alternative m

at the choice level l. Pml|jl−1
is the probability that a consumer chooses alternative m

at the choice level l conditional on the consumer having chosen j at the higher choice

level l − 1. The inclusive value IVml
measures the expected utility of the choice subset

given the choice m on level l. The dissimilarity coefficients are λml
and λjl−1

, which

measure the dissimilarity of consumer utility for choices belonging to the same nest.

Consistency of equation (13) with random utility maximization requires that λml
, λjl−1

∈

[0, 1]. Moreover, vehicles belonging to the same nest at level l are more similar on average

to vehicles belonging to the nest at level l− 1. For example, segment A (mini) cars sold

by French brands in France are more similar to one another than are all segment A cars

sold in France. This assumption implies that 0 < λml
< λjl−1

< 1. When λ approaches 1,

the distribution of εij approaches an independently and identically distributed extreme

value distribution, and the nested logit model degenerates to a multinomial logit model.

Combining equations (12) and (13) yields the market-level equation

logSjcy − logS0cy = αpjcy +Xjcyβ + σsologSj|so,cy + σslogSo|s,cy + ξjcy, (15)

where Sjcy and S0cy are market shares for vehicle j and the outside option (used car).

The similarity parameters are σso = 1− λso and σs = 1− λs.
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4.2 Strategy for estimating preference parameters and quality

Equation (15) is the basis for estimating preference parameters and vehicle quality. We

decompose the error term in the equation into five components: ξjcy = δmb(j) + δfj +

δsy + δcy + µjcy. The first component includes a fixed effect for each model and body

type, such as the hatchback version of the Volkswagen Golf, as distinct from the station

wagon version of the Golf. The second component includes fixed effects for each fuel type

(gasoline, diesel, gasoline hybrid, plug-in hybrid, and electric), which allows preferences

to vary across fuel types for reasons such as durability and refueling convenience. The

third component includes fixed effects for each segment by year, controlling for segment-

level demand or supply shocks, such as the increase in consumer demand for larger

vehicles over the sample. The fourth component includes a fixed effect for each market,

which includes the average utility from the outside option. The final term is a mean zero

error term.

This decomposition of the error term in equation (15) yields the estimation equation

logSjcy−logS0cy = αpjcy+Xjcyβ+σsologSj|so,cy+σslogSo|s,cy+δmb(j)+δ
f
j +δsy+δcy+µjcy.

(16)

Estimating equation (16) by ordinary least squares (OLS) would yield biased parameter

estimates because the vehicle’s price and the within-nest shares are likely to be correlated

with µjcy. Following Berry et al. (1995) we use the sum of attributes of other vehicles

in the market to instrument for price and market shares. The intuition supporting the

relevance of the instruments is that the profit-maximizing price of vehicle j depends

on attributes of other competing vehicles in the market, and that an increase in the

number of competing vehicles reduces the firm’s price. A similar intuition applies to the

endogenous market shares, because the equilibrium market share is likely to be correlated

with attributes of other vehicles. The relevance of the instruments arises from the firm’s

profit-maximizing price choices.

The exclusion restriction is satisfied if attributes of competing vehicles are uncor-

related with µjcy. Vehicle manufacturers typically make major redesigns of vehicles at
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regular intervals, during which they may make substantial changes to the vehicle’s power

train, architecture, and components. In between redesigns, manufacturers make more

modest changes, such as modifying the power train to adjust fuel economy or horse-

power. Consequently, µjcy is particularly likely to be correlated with attributes of other

vehicles that vary between redesigns. The correlation between µjcy and other vehicles’

attributes may be weaker for attributes that are typically changed only during redesigns.

Based on this reasoning, we use as instruments the physical dimensions (length, width,

and height) of other vehicles, as well as the number of engine cylinders, because these

attributes change infrequently during major redesigns; Leard et al. 2019 use similar

instruments.

After estimating the preference parameters in equation (16), we recover the vehicle’s

residual quality as ξ̂jcy− δ̂cy = δ̂mb(j) + δ̂
f
j + δ̂sy+ µ̂jcy. We exclude the country-year fixed

effects from quality because they include the mean utility from the outside option. We

normalize quality by the disutility of the vehicle price, Q̂jcy = −(ξ̂jcy− δ̂cy)/α̂, to express

quality in 2005 euros. Note that the instruments are necessary to obtain consistent

estimates of the preference parameters, but not the fixed effects components of quality.

4.3 Results

4.3.1 Preference parameters

Columns 1 and 2 of Table 3 report estimates of a multinomial logit model to compare

with column 3, which is the preferred nested logit model. Parameters are estimated by

OLS in column 1 and by IV in columns 2 and 3, using attributes of other vehicles as

instruments. Standard errors are clustered by model and trim to allow for correlation

within trims. All regressions include fixed effects for model by body type, country by

year, fuel type and segment by year. The appendix reports the first-stage estimates for

the IV models. The Sanderson-Windmeijer multivariate F-test of the excluded variables

reduces concerns about weak instruments bias and rejects the null assumption that the

model is underidentified.
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Table 3: Estimated Preference Parameters
(1) (2) (3)

Multinomial logit Multinomial logit Nested logit

Estimated by OLS IV IV

Price (1,000 2005 euros) -0.035 -0.288 -0.088

(0.003) (0.049) (0.016)

Log within segment-origin share 0.773

(0.018)

Log share of origin in segment 0.497

(0.029)

Tax (1,000 2005 euros) -0.064 0.033 -0.006

(0.003) (0.018) (0.006)

Fuel cost (2005 euros/100 km) -0.339 -0.275 -0.063

(0.011) (0.016) (0.008)

Log horsepower/weight (hp/kg) -0.013 2.603 0.900

(0.078) (0.515) (0.158)

Log weight (tonnes) -0.543 4.871 1.735

(0.269) (1.063) (0.321)

Log size (m3) 8.223 8.270 1.963

(0.378) (0.409) (0.196)

First-stage summary

F-test of excluded instruments for price 20.05 16.55

F-test of excluded instruments for within-origin share 50.58

F-test of excluded instruments for share of origin in segment 58.37

Number of observations 341,725 341,725 341,659

Number of unique vehicles 68,089

Number of unique vehicle models 429

Notes: The table reports coefficient estimates with standard errors in parentheses, clustered by model
and trim. All regressions include country—year fixed effects, model—body type fixed effects, fuel type
fixed effects, and segment—year fixed effects. Column 1 is estimated by ordinary least squares, and
columns 2 and 3 are estimated by instrumental variables, using width, length, height, and number of
engine cylinders as instruments (see text). We use the Sanderson-Windmeijer multivariate F-test of
excluded instruments to account for clustering of the standard errors.

The price coefficient is negative and statistically significant at the 1 percent level

for all three demand models. The magnitude of the price coefficient is larger using IV

than OLS, which is consistent with expectations because the IV strategy corrects for

the positive correlation between price and the error term. Table 4 shows that the OLS
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estimates yield implausibly small own-price elasticities.6 The preferred IV estimates in

column 3 yield own-price elasticities that typically lie between -5.8 and -8.9, which is

consistent with the fact that the price sensitivity parameter is identified by variation

across highly disaggregated vehicles. The estimates are somewhat larger than other

estimates that use similarly disaggregated European data (e.g., Grigolon et al. 2017).

Table 4: Estimated Own-Price Elasticities
Multinomial logit Multinomial logit Nested logit

OLS IV IV

Median -0.68 -5.58 -7.41

Mean -0.67 -5.55 -7.37

Standard deviation. 0.08 0.64 0.87

5th percentile -0.81 -6.68 -8.90

95th percentile -0.53 -4.36 -5.80

Notes: Own-price elasticities are calculated using equation (17). The elasticities are weighted by regis-
trations.

Coefficients on the within-group shares represent the similarity parameters for vehi-

cles within the same group. Both estimates are significant at the 1 percent level and lie

between 0 and 1. The similarity parameter for the share of origin within segment is less

than the within-origin share, which is consistent with the assumed nesting structure.

The tax coefficient in Table 3 is negative (as expected), but it is not statistically

significant. The lack of significance may reflect the strong correlation between taxes

and prices after including model—body type fixed effects. The estimated own-price

elasticities are similar if we add the tax to the price, as in Grigolon et al. (2017).

In column 3, the estimates of the fuel cost and log of the ratio of horsepower and

weight coefficients are statistically significant, and they have the expected signs. The

coefficient on weight is positive and statistically significant. The coefficient reflects con-

sumer preferences for performance, safety, and components such as speakers, all of which
6The elasticity of choice probability for vehicle j with respect to attribute X(n) is

∂Pj/Pj

∂X
(n)
j /X

(n)
j

= [
1− Pj|so

λso
+

(1− Po|s)Pj|so

λs
+ (1− Ps)Po|sPj|so]β

(n)X
(n)
j , (17)

where λs is the dissimilarity of alternatives belonging to the same segment but having different origins,
and λso is the dissimilarity of alternatives belonging to the same segment and having the same origin.
The elasticity increases with the preference coefficient and decreases with the dissimilarity parameters.
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are correlated with weight. Finally, the vehicle size coefficient is statistically significant

and positive, as expected.

Table 5 provides an economic interpretation of the coefficients on fuel costs, perfor-

mance, weight, and size. For comparability with the literature, the top panel reports

the mean willingness to pay for 1 percent changes in the indicated attributes. The three

columns correspond to the three demand models reported in Table 3. On average, con-

sumers are willing to pay 46 euros for a 1 percent reduction in fuel cost savings and

about 102 euros for a 1 percent increase in performance. These estimates are similar to

those reported in Leard et al. (2017) for the US market.

Table 5: Willingness to Pay and Valuation Ratio
(1) (2) (3)

Willingness to pay for 1 percent change (2005 euros)

Fuel cost decrease 617 61 46

Horsepower/weight increase -4 90 102

Weight increase -155 169 197

Size increase 2,349 287 223

Valuation ratio

15 years, r = 0.06 6.63 0.65 0.49

15 years, r = 0.03 5.55 0.55 0.41

10 years, r = 0.06 8.74 0.86 0.65

Notes: Each column reports results using preference parameter estimates from the corresponding column
in Table 3. Valuation ratio is the willingness to pay for a 1 percent reduction in fuel costs divided by the
present discounted value of the fuel cost savings. These calculations assume that each vehicle is driven
14,700 kilometers each year and that the future real price of fuel equals the average real price of fuel in
the estimation sample. The calculations use the vehicle lifetime and real discount rate indicated in the
row heading.

The bottom panel of Table 5 provides a second interpretation of the willingness to

pay for fuel cost savings. We define the valuation ratio as the willingness to pay for a

1 percent reduction in fuel cost savings divided by the present discounted value of a 1

percent reduction in fuel cost savings. A valuation ratio of 1 implies full valuation, where

consumers pay 1 euro for 1 euro of present discounted fuel cost savings; a ratio less than

1 implies undervaluation. Making this calculation requires assumptions on future fuel

costs, kilometers traveled, and the real discount rate. The first row shows the valuation

ratio under the same assumptions as in Grigolon et al. (2017). Our estimated valuation
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ratio, 0.49, is smaller than their estimate of 0.91, which they estimated using data prior

to the carbon dioxide standards.

The fuel cost coefficient in the utility function and the valuation ratio are identified

by variation in fuel costs across vehicles and over time in the estimation sample. Some

of the variation arises from the adoption of fuel-saving technologies, such as high-speed

transmissions and stop-start ignition. Therefore, the parameter estimates and valuation

ratios reflect any consumer utility or disutility from the underlying technologies, which

could explain the low valuation ratio that we estimate.

4.3.2 Quality

After estimating the preference parameters, we compute the quality in euros as described

at the end of Section 4.2. Figure 4 plots the unweighted mean quality by country and

year, for each of the three demand models estimated in Table 3. For each country, quality

may vary over time because of within-vehicle changes in quality as well as entry and exit

of vehicles. The vertical dashed lines indicate the three regimes of the standards.

Overall, quality increases over time. There are a few instances, typically around

the time of the 2008—9 economic recession, when quality decreased, which appears to

have been due to the exit of some high-end vehicles. The figure indicates that for most

countries, quality increased more quickly during the first period (before the standards

took effect) than in the second and third periods (after the standards were announced and

as they were phased in). This pattern provides suggestive evidence that the standards

caused quality to increase less quickly than in the first period. Of course, other factors

may have contributed to the slowing quality growth, such as the economic recession;

the empirical analysis in the next section aims to disentangle the effects of the carbon

dioxide standards from other factors.
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Figure 4: Mean Quality by Country and Year (2005 = 1)

Notes: The figure plots the estimated model-weighted quality index by country and year, using estimates
from the indicated demand model (see Table 3). The quality is divided by the negative of price coefficient
and normalized to equal one in 2005. Vertical dashed lines indicate the cutoffs for the three policy
periods.

Table 6 shows that estimated residual quality varies with observed vehicle attributes

that are not included in the demand model. In this figure and for the remainder of

the paper we normalize estimated quality by the negative of the vehicle price coefficient

(α), and quality is measured in 2005 euros. Vehicles belonging to the E and F segments

(large medium and large cars) have about 10 percent higher quality than do smaller cars.

Similarly, vehicles with engines in the highest quartile of engine size have quality about

10 percent higher than vehicles with smaller engines. Because quality includes vehicle

attributes that are not shown in the table, we do not interpret the correlations among

quality and observed attributes as causal relationships. Instead, we interpret the table

as showing strong correlations among quality, vehicle size, and engine size.
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Table 6: Mean Quality by Vehicle Attribute
Segment Mean Drive type Mean Number of engine cylinders Mean Engine size Mean

A/B 103 All 114 ≤4 103 Lowest quartile 103

C 104 Front 103 5/6 113 Second quartile 104

D 104 Rear 108 ≥7 151 Third quartile 104

E/F 114 Highest quartile 114

Notes: The table reports the sales-weighted mean quality by the indicated attribute. Quality is divided
by the negative of price coefficient and is measured in thousands of 2005 euros.

4.3.3 Alternative demand specifications

Because residual quality is derived from the demand model, we report a number of

alternative demand model specifications in the appendix. Appendix Table 11 shows

the main parameter estimates using alternative nesting structures. The two subsequent

tables show that the estimated own-price elasticities and WTP are similar for the other

nesting assumptions.

In Appendix Table 14 we return to the preferred nesting structure from Table 3.

Column 1 repeats the estimates from that model, and columns 2 through 4 include

additional fixed effects for model trim and time, which account for potential unobserved

factors at the trim level. The estimated own-price elasticities and WTP vary somewhat

across these specifications.

The nested logit model, as with other discrete choice models derived from a linear

utility model with an additive error term, can yield biased estimates of own-price elastic-

ities because of implicit assumptions on the cross-vehicle variation of unobserved product

attributes (Ackerberg and Rysman 2005; Berry and Pakes 2007). One approach to ad-

dress this problem is to control for the number of products in the same segment and

to control for the similarity of observed attributes across products. Column 5 follows

Houde and Spurlock (2015) and adds these two variables to the preferred model.

In our baseline demand estimation, we drop luxury cars whose prices are above the

99th percentile of the price distribution. To check the effect of dropping luxury cars,

instead of dropping those luxury cars, we generate a dummy variable for them and

include it in the demand estimation (see column 6 of Appendix Table 14). The price

coefficient is smaller than the baseline, which implies less elastic demand and a higher
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valuation ratio.

To address the possibility that demand shocks affect the WTP for fuel costs or weight,

we reestimate the consumer demand model and allow the preference parameters to vary

across time periods (see column 7). The average of the preference coefficients is similar

to our baseline estimates.

Appendix Figure 6 plots the quality index by year for different demand estimations.

The quality index estimated by the alternative models has similar patterns to the pre-

ferred estimation. Because the estimated preference parameters vary across the demand

specifications reported in the appendix, in robustness analysis below we report results

using quality estimated from the alternative specifications.

5 Estimating the Effects of the Standards on Quality

and Other Attributes

The first subsection describes the empirical strategy for estimating the effects of the

carbon dioxide standards on vehicle quality, horsepower, weight, and vehicle price. The

second subsection reports the point estimates, discussing statistical significance and po-

tential sources of bias.

5.1 Empirical strategy

The objective is to estimate the effects of the standards on equilibrium quality and

observed attribute choices. Motivated by the model in Section 2 and following Klier and

Linn (2015), we construct a measure of stringency that is analogous to a shift-share or

Bartik-style estimation (Bartik 1991). Equations (7) and (10) show that the standards

affect vehicle attribute choices in proportion to the shadow cost of the regulation, ν, which

varies across firms. We assume that the shadow cost is proportional to the amount the

firm has to reduce the average emissions of its fleet, and we define stringency Stringencyf

as
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Stringencyf = ln(ef )− ln(Ef ), (18)

where ef is the registration-weigthed average emissions rate of the firm’s vehicles, and

Ef is the registration-weighted emissions rate target. We use the emissions rate, weight,

and registrations of vehicles during the first year of the sample to compute Stringencyf .

Therefore, Stringencyf does not vary over time, and it measures the amount that the

firm has to reduce emissions during the sample.

Because of the timing of the regulation, we expect Stringencyf to affect attributes by

different amounts in the three periods: (1) 2005—8, pre-standard period; (2) 2009—11,

announcement period; and (3) 2012—17. Therefore, we interact the variable with fixed

effects for the three time periods. The estimation equation is

Yjct = γ1 + γ2Stringencyf ∗ I(2)
t + γ3Stringencyf ∗ I(3)

t + δj + δsy + δcy + εjcy, (19)

where Yjct is the dependent variable (quality, ln(horsepower/weight), log weight, or log

price); I(l)
t is an indicator for period l; δj, δsy and δcy are vehicle, segment by year and

country by year fixed effects; εjcy is an error term; and γ are coefficients to be estimated.

The dependent variable ln(horsepower/weight) is a proxy for performance, because

it is proportional to acceleration (Leard et al. 2017). Because the equation includes

vehicle and country-year fixed effects, we omit the main effects of Stringencyf and time

period fixed effects. The dependent variables for quality, ln(horsepower/weight), and

log weight are normalized by −α, and we interpret the variables as the WTP for quality,

horsepower, and weight. Note that we use a vehicle-level measure of stringency for the

regressions that include price as a dependent variable. This is because according to

equation (4), the regulation affects prices in proportion to the difference between the

vehicle’s emissions rate and its target, rather than the firm’s average emissions rate and

target.

The key coefficients γ2 and γ3 are identified by cross-sectional stringency variation

interacting with the temporal variation in the (unobserved) shadow cost of the stan-
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dards. For example, γ2 would be negative if vehicles sold by firms with high stringency

experience larger quality decreases between the first and second periods compared with

vehicles sold by firms with low stringency. We test whether the coefficients γ2 or γ3 are

statistically significant from zero, which we interpret as the market-wide average effect of

the standards on the dependent variables during the corresponding periods. That is, by

defining stringency as a proxy for the shadow cost of the standards and interacting the

variable with time period fixed effects, we estimate the average effects of the standards

on the dependent variables, despite the fact that the shadow costs of the standards are

unobserved.

We estimate equation (19) by OLS. The vehicle fixed effects control for the cross-

sectional correlation between stringency and the dependent variable, and the country by

year fixed effects control for country-level demand or supply shocks to the dependent

variable. We also include the segment by year fixed effects to control for segment-level

demand or supply shocks. For example, the vehicle fixed effects control for the possibility

that high-quality vehicles typically are heavier or have higher carbon dioxide emissions

rates.

Because carbon dioxide emissions rates are strongly correlated with fuel consump-

tion rates, it might seem that demand for fuel cost savings would be correlated with

Stringencyj, which would bias the estimates. However, this is not a significant con-

cern because quality is a residual estimated from the demand model, which purges the

variable of consumer WTP for fuel cost savings.

A more serious concern is that the causal interpretation relies on a parallel trends as-

sumption: in the absence of the standards, temporal variation of the dependent variables

would not be correlated with Stringencyf . A violation of this assumption amounts to

an omitted variable that is correlated cross-sectionally with stringency and that varies

over time. In the robustness analysis below, we modify equation (19) to address several

types of omitted variables bias.
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5.2 Results

Table 7 reports the estimates of equation (19). The dependent variables are quality,

ln(horsepower/weight), log weight, and log price. In columns 1 through 3, the coeffi-

cients on the stringency variables are the change in WTP (in thousands of 2005 euros)

for the dependent variable caused by a 1 percent change in stringency during the relevant

period. All regressions include fixed effects for vehicle, segment by year, and country

by year. Standard errors are bootstrapped to account for the fact that the stringency

variable is computed after estimating equation (16).

Table 7: Effects of the Standards on Quality, Performance, Weight, and Price
(1) (2) (3) (4)

Dependent Variable Quality Log (Horsepower/Weight) Log Weight Log Price

Stringency Variable firm-level firm-level firm-level vehicle-level

Period 2 x Stringency -5.227 1.87 -0.086 -0.009

(1.747) (0.450) (0.291) (0.012)

Period 3 x Stringency -2.672 0.194 0.413 -0.021

(2.332) (0.711) (0.416) (0.013)

Joint F—test 5.186 16.932 1.999 5.465

P Value 0.006 0.000 0.136 0.004

Number of Observations 339,065 345,033 345,033 348,320

Adjusted R-squared 0.825 0.967 0.986 0.992

Notes: Each regression is weighted by registrations and includes vehicle fixed effects, country fixed
effects, year fixed effects, country by year fixed effects and segment by year fixed effects. All columns
use the firm-level stringency variable except for column 4, which uses the vehicle-level stringency variable.
Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model and
trim. The dependent variable in columns 1 through 3 is normalized by −α, and the variables are
measured in thousands of 2005 euros.

Column 1 shows that the standards reduced quality in periods 2 and 3. According

to the estimates, a 1 percent increase in stringency in period 2 reduced quality by 52

euros, which is statistically significant at the 1 percent level. The stringency coefficient

for period 3 is negative but it is not statistically significant, which may reflect the fact

that emissions decreased sharply in period 2 but were flat in period 3 (see Figure 2)

The standards slightly increased performance in period 2 and did not affect weight.

In contrast, Klier and Linn (2015) find that the standards slightly reduced horsepower

and weight at the end of the 2000s. Our results suggest that although the standards
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initially reduced horsepower and weight, this effect appears not to have persisted into the

enforcement period. The fact that performance did not decrease in period 2 is consistent

with the consumer preference estimates reported in the previous section. Recall that

manufacturers can trade off horsepower for fuel economy, but doing so reduces consumer

WTP for the vehicle if the consumers value the horsepower more highly than the fuel

economy. The estimate preferences suggest that such a trade-off would substantially

reduce WTP for the vehicle, and by more than the quality reduction reported in Table

7.

Column 4 shows that the standards did not affect vehicle prices. This likely reflects

two opposing forces that roughly cancel one another. On the one hand, an increase in

stringency causes the firm to adopt fuel-saving technology that reduces emissions, which

raises production costs and vehicle prices. On the other hand, the lower quality reported

in column 1 indicates a decline in demand, which reduces the price.7

Next, we assess the robustness of the estimates of equation (19). Because Table 7

shows that the standards affected quality primarily, henceforth we report results using

only quality as the dependent variable; the appendix includes results for the other de-

pendent variables. For convenience, column 1 of Table 8 repeats the baseline estimate

from Table 7.
7Another possibility is that an increase in stringency causes manufacturers to reduce prices to en-

courage consumers to purchase vehicles with lower stringency. Reynaert (2019) finds that manufacturers
did not pursue this strategy before 2012.
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Table 8: Robustness Results for Quality
Dependent variable is quality

(1) (2) (3) (4) (5) (6)

Specification Baseline Include

quality trends

Include

horsepower

trends

Include fuel

consumption

trends

Median

regression

Include

dummy for

luxury cars

Period 2 x

Stringency

-5.227 -5.376 -5.419 -6.126 -2.861 -10.833

(1.747) (1.725) (1.788) (1.735) (0.007) (3.564)

Period 3 x

Stringency

-2.672 -2.647 -2.929 -2.454 -0.653 -4.953

(2.332) (2.379) (2.502) (2.301) (0.012) (4.734)

Joint F—test 5.186 5.764 5.419 7.587 162109.240 5.538

P value 0.006 0.003 0.004 0.001 0.000 0.004

N 339,065 339,065 339,065 339,065 339,065 353,725

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. All regressions use the firm-level stringency, and include vehicle fixed effects, segment by year
fixed effects and country by year fixed effects. All regressions are weighted by registrations. Column
1 repeats column 1 from the previous table. Columns 2 through 4 include the change in the variable
indicated in the row heading between 2005 and 2008, interacted with year fixed effects. Column 5 uses
the median regressions. Columns 6 includes the dummy variable for luxury cars, which equals to one if
the car has a price above the 99th percentile.

Above we noted that the main threat to identification would be an unobserved shock

correlated with the stringency variable in the cross section and that varies over time. We

take several approaches to modify the estimation equation and control for such omitted

variables. First, we consider demand or supply shocks that occur in the first period

and that persist across periods. To control for such shocks, we compute the changes in

quality, horsepower, and fuel consumption rate between 2005 and 2008, and interact the

changes with year fixed effects. Adding these interactions to the estimation equation

controls for shocks correlated with the corresponding variables that occurred in the first

period and persist into the subsequent periods. Columns 2 through 4 show that adding

these variables does not affect the results.

Second, we allow for demand shocks correlated with stringency that occur during any

period. Because stringency depends on the vehicle’s fuel consumption rate and weight,

such demand shocks could affect the WTP for fuel costs, performance, or weight. The

appendix shows that allowing consumer demand for these attributes to vary over time
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does not affect the results. Moreover, Appendix Tables 17and 18 show that the results

are similar if we compute quality from the range of demand models that were discussed

in the previous section.

Third, we follow a common approach to assessing the magnitude of omitted variables

bias, which is to consider whether the key independent variable (i.e., stringency) is cor-

related with observables, under the presumption that unobserved and omitted variables

are likely to be correlated with observables. The appendix shows the results if we re-

place vehicle fixed effects with higher-level fixed effects, such as model-trim fixed effects.

Reassuringly, the estimates are similar to the baseline, suggesting that stringency is not

strongly correlated with observed vehicle attributes and reducing concerns about omitted

variables bias.

We check that the results are not driven by the presence of outliers. Using a median

regression in column 5 yields smaller estimates, but they remain statistically significant.

Overall, quality is correlated with vehicle price, and some high-end vehicles have partic-

ularly high estimated quality. In our baseline regressions, we drop vehicles whose prices

are above 99th percentile of the price distribution. Instead of dropping those vehicles,

column 6 includes them and adds a dummy variable for them in the demand estima-

tion and equation (19). Overall, the estimates vary across specifications, but we observe

negative and statistically significant effects of the standards on quality in the second

period.

Because of the vehicle fixed effects, the stringency coefficients are identified by within-

vehicle changes in the dependent variables over time. This specification may omit quality

changes caused by entry and exit of individual vehicles due to the standards. We can

allow for this possibility by aggregating the data to the model level and reestimating

equation (19). In this case, the stringency coefficients are identified by within-vehicle

quality changes as well as model-level quality changes caused by entry and exit of vehicles

belonging to a specific model. This does not include model entry and exit, but the

appendix shows that such entry and exit are rare. Aggregating the data to the model-level

causes the stringency coefficients to increase, especially for the third period. However,

we treat these results with caution because unlike with the disaggregated results, when
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aggregating to the model level it is not possible to control for potential vehicle-level

demand or supply shocks.

6 Welfare Analysis

We use the estimation results to quantify the consumer and social welfare effects of

increasing stringency by 1 percent for each vehicle sold in the last year of our sample.

We focus on consumer and social benefits, and abstract from compliance costs, which is

outside the scope of the paper.

We consider a hypothetical 1 percent stringency increase for all manufacturers. We

assume that manufacturers reduce emissions by reducing the fuel consumption rate of

gasoline and diesel fuel vehicles. This assumption is consistent with the fact that re-

ducing emissions rates of these vehicles, rather than introducing new plug-in vehicles,

has accounted for nearly all of the emissions reductions observed through the end of the

sample. Under this assumption, the higher stringency reduces fuel consumption rates

and fuel costs by 1 percent.

The first row of Table 9 reports the consumer benefits of the lower fuel costs using two

approaches to value the savings, which we use to bound the consumer benefits. First, we

use estimated willingness to pay from the demand model. This is the appropriate welfare

measure if the undervaluation reported in Table 5 arises from hidden costs, as discussed

above. In that case, the undervaluation includes the disutility from the technologies, and

using the estimated preference parameters accounts for these hidden costs.
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Table 9: Consumer and Social Welfare Effects of a 1 Percent Stringency Increase (2005
euros per vehicle)

Benefits from fuel cost savings and lower emissions

Method Fuel savings computed using preference estimates Fuel savings computed using full value

Fuel cost savings 45.54 93.15

Social value of lower GHG emissions 7.39

Willingness to pay for changes in attributes and quality

WTP for the quality change -39.50

WTP for the performance change 9.29

WTP for the weight change 2.84

Price change 2.90

Sum -24.47

Impact on vehicle weight and emissions target

Percentage change in weight 0.16%

Percentage change in target 0.09%

Notes: The table reports the consumer and social welfare effects of increasing stringency by 1 percent.
In the first panel, we use two methods to compute the benefits from fuel cost savings and the social
value of lower emissions: the first method uses the estimated preference parameters, and the second
uses the present discounted value of the fuel cost savings. The social value of the lower emissions uses
the same assumptions on vehicle lifetimes and driving as those used to compute fuel cost savings, a
3 percent discount rate, and the US Environmental Protection Agency estimates of the social cost of
carbon. The second part computes the willingness to pay for changes in attributes and quality due to a
1 percent increase in stringency. We use the estimates from Table 7 to compute the changes in attributes
and quality. The third part computes the impact of the stringency increase on vehicle weight and the
emissions target. The tighter standards increases the vehicle weight, which raises the emissions target.

The second approach is to assume that undervaluation reflects a consumer mistake,

and that consumers incorrectly undervalue the fuel cost savings. In this case, consumers

benefit from the full value of the fuel cost savings (see Train 2015). The second column

of the table uses the value of fuel cost savings computed in Table 5, and with the same

assumptions as in the first row of that table.

The second row reports the social benefits of the lower greenhouse gas emissions. The

calculation uses the same assumptions on vehicle lifetimes and driving as those used for

the fuel cost calculations. We use the US Environmental Protection Agency’s estimates

of the social cost of carbon, counting the global benefits and using a 3 percent discount

rate.

The second panel reports changes in WTP for performance, weight, and quality, as

well as the price change. Note that the weight and price changes are not statistically
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significant, but the point estimates are included in the welfare calculations. The net

welfare change is -24 euros, which is 25 percent of the combined fuel cost and emissions

benefits in the first panel.

These calculations assume that a 1 percent stringency increase translates to a 1

percent reduction in on-road fuel consumption and emissions. However, Mock et al.

(2014), Tietge et al. (2015), and Reynaert and Sallee (2019) conclude that on-road fuel

consumption reductions have been just half as large as the reductions in tested emissions

rates because of gaming of the emissions tests. Accounting for this effect means that

the quality reduction caused by tighter standards offsets 50 percent of the consumer and

social benefits in Table 9.

7 Conclusions

In this paper, we have investigated the effects of regulating product attributes on other

attributes and social welfare, focusing on the European passenger vehicle carbon dioxide

emissions standards. We used a static model of a differentiated product market to

derive two general results. First, regulating one product attribute may affect a wide

range of other attributes. Whereas the literature on passenger vehicle fuel economy

regulation has considered attributes that are technologically related to fuel economy,

such as horsepower, we showed that many other attributes may be affected because of

trade-offs in the product design process and demand correlations across attributes.

Second, we showed that in an imperfectly competitive market, firms can under or over

provide attributes. Therefore, regulating one attribute could increase welfare by causing

firms to increase other attributes. Because the consumer welfare effects of regulation

depend on changes in all product attributes, estimating welfare effects of regulations

requires accounting for all these changes.

The remainder of the paper focuses on European carbon dioxide emissions standards

for passenger vehicles. We defined the residual quality of the vehicle as the consumer

WTP for the vehicle excluding fuel costs, performance, and size. We estimated quality

and willingness to pay for other attributes using a nested logit demand model, and we
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found that the standards have substantially reduced quality. In particular, the attribute

changes offset at least 25 percent of the fuel cost and greenhouse gas benefits of the

standards.

For context, there is an extensive literature on two inefficiencies of the standards:

rebound and vintage differentiated regulation (e.g., Jacobsen and Van Benthem 2015).

The rebound effect refers to the increase in driving caused by the fact that the stan-

dards reduce per-mile fuel costs, which undermines some of the greenhouse gas and fuel

consumption benefits. Moreover, because the standards apply to new but not existing

vehicles on the road, the standards are a form of vintage differentiated regulation and

can delay scrappage of older and higher-emitting vehicles. The estimated welfare effects

of attribute changes are roughly twice the magnitude of the rebound or scrappage effects

reported in the literature. Future research could investigate the underlying sources of

quality changes or consider whether standards in other countries have affected quality.
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Appendix

Data construction

Our main data were obtained from IHS Markit. The data include registrations by month

and vehicle, and we aggregated the data to country-year level for estimation. A vehicle

is defined as a unique model, submodel, version, trim, market segment, number of doors,

body type, fuel type (diesel, gasoline, hybrid, plug-in hybrid, or electric) and drive type

(front-, rear-, all-wheel).

In the data, the names of models, body type, fuel type, and drive type are sometimes

inconsistent across countries and years. We harmonize these variables across countries

and years. Figure 5 shows the market shares of survivals and entrants after harmonizing

the model names. Market shares of surviving vehicles are typically above 95 percent,

and market shares of entering vehicles are typically less than 5 percent. Note that one

of the demand specifications that we consider in the robustness analysis includes model

by year fixed effects, which controls for changes in unobserved attributes due to entry

and exit.

Figure 5: Market Shares of Surviving and Entering Models
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First-stage results

Table 10: First-Stage Estimation Results for Preferred Nested Logit Model
Price Log share within

segment-origin

Log origin share

within segment

Sum length (same firm, different segments) -2.70E-06 -3.60E-07 -8.80E-07

(7.7e-07) (4.1e-07) (1.1e-07)

Sum length (different firm, same segment) 8.70E-06 6.10E-06 -3.90E-06

(2.2e-06) (1.4e-06) (4.3e-07)

Sum width (same firm, different segments) -4.30E-06 -7.10E-08 -7.00E-08

(2.2e-06) (1.0e-06) (3.4e-07)

Sum width (different firm, same segment) -4.10E-05 8.30E-06 1.30E-05

(7.8e-06) (5.3e-06) (1.9e-06)

Sum height (same firm, different segments) 1.10E-05 4.50E-07 2.90E-06

(2.2e-06) (1.0e-06) (3.1e-07)

Sum height (different firm, same segment) 9.60E-06 -1.90E-05 -8.40E-06

(6.4e-06) (4.9e-06) (2.0e-06)

Sum engine cylinder (same firm, different segments) 1.40E-03 2.20E-04 -1.30E-05

(2.5e-04) (1.2e-04) (3.5e-05)

Sum engine cylinder (different firm, same segment) 5.70E-03 -3.50E-03 1.90E-03

(1.5e-03) (8.5e-04) (4.5e-04)

Sum length (same firm, different origins) -7.90E-06 -6.00E-06 4.10E-06

(2.2e-06) (1.4e-06) (4.0e-07)

Sum width (same firm, different origins) 4.40E-05 -8.40E-06 -1.20E-05

(7.9e-06) (5.3e-06) (1.8e-06)

Sum height (same firm, different origins) -1.70E-05 2.10E-05 8.30E-06

(6.3e-06) (4.8e-06) (2.0e-06)

Sum length (different firms, same origin) -1.30E-06 1.90E-06 -4.50E-07

(5.7e-07) (3.3e-07) (1.6e-07)

Sum width (different firms, same origin) -8.40E-06 3.50E-06 -8.50E-07

(1.7e-06) (7.6e-07) (3.8e-07)

Sum height (different firms, same origin) 1.30E-05 -7.30E-06 3.80E-07

(1.6e-06) (8.1e-07) (4.2e-07)

Sum engine cylinders (same firm, different origins) -5.40E-03 3.10E-03 -2.50E-03

(1.6e-03) (8.5e-04) (4.3e-04)

Sum engine cylinders (different firms, same origin) 5.80E-04 -1.30E-03 8.70E-04

(2.6e-04) (1.2e-04) (8.7e-05)
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Table 10: (Continued)
Price Log share within

segment-origin

Log origin share

within segment

Tax (1,000 2005 euros) 4.00E-01 -7.00E-02 -6.90E-03

(7.1e-03) (3.7e-03) (6.8e-04)

Fuel cost (2005 euros/100 km) 2.60E-01 -3.40E-01 -5.80E-03

(1.9e-02) (1.1e-02) (1.3e-03)

Log horsepower (hp) 1.00E+01 -4.20E-01 4.80E-02

(1.6e-01) (6.9e-02) (7.8e-03)

Log weight (tonnes) 2.20E+01 -1.20E+00 -5.00E-02

(6.4e-01) (2.7e-01) (4.4e-02)

Log size (m3) 4.40E-01 7.80E+00 5.20E-01

(6.0e-01) (4.0e-01) (9.1e-02)

EV/PHEV 6.50E+00 -4.30E-01 -3.50E-03

(6.4e-01) (1.9e-01) (1.3e-02)

Gas/hybrid -2.00E+00 3.30E-01 5.20E-03

(6.2e-02) (3.8e-02) (4.1e-03)

Constant 3.60E+01 -2.40E+01 -1.60E+00

(1.5e+00) (9.7e-01) (2.2e-01)

First-stage summary

F-test of excluded instruments for price 20.05 16.55

F-test of excluded instruments for within-origin share 50.58

F-test of excluded instruments for share of origin in segment 58.37

Number of observations 341,725 341,725 341,659

Notes: The table reports the first-stage estimation results for our preferred demand estimation (Column
1 in Table 3 3). The Sanderson-Windmeijer multivariate F-test of the excluded variables concerns about
weak instruments bias and underidentification in the case of multiple endogenous regressors and clustered
standard errors.
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Demand: Alternative specifications

Table 11: Alternative Nesting Structures
Dependent variable is log market share

(1) (2) (3) (4)

Nests Segment and origin Segment Origin Segment by origin

Price (1,000 2005 euros) -0.088 -0.102 -0.08 -0.147

(0.016) (0.019) (0.014) (0.025)

Log within-segment share 0.742

(0.023)

Log within-origin share 0.817

(0.020)

Log within segment-origin share 0.773 0.606

(0.018) (0.019)

Log share of origin within segment 0.497

(0.029)

Tax (1,000 2005 euros) -0.006 -0.0004 0.012 0.006

(0.006) (0.007) (0.005) (0.010)

Fuel cost (2005 euros/100 km) -0.063 -0.068 -0.045 -0.107

(0.008) (0.008) (0.006) (0.009)

Log horsepower 0.9 1.016 0.782 1.454

(0.158) (0.190) (0.146) (0.261)

Log weight (tonnes) 1.735 1.994 1.404 2.749

(0.321) (0.387) (0.293) (0.522)

Log size (m3) 1.963 2.07 1.955 3.54

(0.196) (0.235) (0.199) (0.235)

Number of observations 341,659 341,659 341,659 341,659

Notes: The table reports estimation results for different nesting structures. Column 1 is repeated from
column 3 in Table 3. Column 2 assumes a single nest corresponding to market segments, column 3
assumes a single nest corresponding to origin, and column 4 assumes a single nest corresponding to
market segment by origin. Columns 2 through 4 are otherwise identical to column 1. Standard errors
are in parentheses, clustered by model and trim.
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Table 12: Estimated Own-Price Elasticities: Alternative Nesting Structures
(1) (2) (3) (4)

Segment and origin Segment Origin Segment by origin

Median -7.41 -7.59 -8.42 -7.18

Mean -7.37 -7.55 -8.37 -7.13

Standard deviation 0.87 0.88 0.97 0.84

5th percentile -8.90 -9.11 -10.09 -8.62

95th percentile -5.80 -5.95 -6.58 -5.61

Notes: Each column reports results using preference parameter estimates from the corresponding column
in Table 11. The calculations are otherwise identical to those in Table 4.

Table 13: Willingness to Pay and Valuation Ratio: Alternative Nesting Structures
(1) (2) (3) (4)

Segment and origin Segment Origin Segment by origin

Willingness to pay for 1 percent change (2005 euros)

Fuel cost decrease 46 42 36 46

Horsepower/weight increase 102 100 98 99

Weight increase 197 195 176 187

Size increase 223 203 244 241

Valuation ratio

15 years, r = 0.06 0.49 0.46 0.38 0.50

15 years, r = 0.03 0.41 0.38 0.32 0.42

10 years, r = 0.06 0.65 0.60 0.51 0.66

Notes: Each column reports results using preference parameter estimates from the corresponding column
in Table 11. The calculations are otherwise identical to those in Table 5.
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Table 14: Demand: Alternative Specifications
Dependent variable is log market share

(1) (2) (3) (4) (5) (6) (7) (8)

Price (1,000 2005

euros)

-0.088 -0.118 -0.07 -0.116 -0.093 -0.043 -0.090 -0.088

(0.016) (0.031) (0.023) (0.018) (0.017) (0.013) (0.016) (0.004)

Log within

segment-origin share

0.773 0.764 0.761 0.771 0.581 0.744 0.761 0.773

(0.018) (0.023) (0.019) (0.019) (0.029) (0.021) (0.019) (0.005)

Log share of origin

within segment

0.497 0.514 0.507 0.489 0.51 0.474 0.482 0.497

(0.029) (0.035) (0.027) (0.031) (0.036) (0.032) (0.030) (0.009)

Tax (1,000 2005

euros)

-0.006 -0.001 -0.017 0.004 -0.014 -0.02 -0.006 -0.006

(0.006) (0.011) (0.009) (0.007) (0.006) (0.005) (0.006) (0.001)

Fuel cost (2005

euros/100 km)

-0.063 -0.063 -0.074 -0.049 -0.119 -0.071 -0.06 -0.063

(0.008) (0.012) (0.010) (0.008) (0.010) (0.008) (0.009) (0.002)

Log

horsepower/weight

0.9 0.942 0.562 1.118 0.899 0.452 0.841 0.9

(0.158) (0.248) (0.197) (0.179) (0.172) (0.136) (0.165) (0.038)

Log weight (tonnes) 1.735 2.274 1.234 2.561 1.753 0.655 1.631 1.735

(0.321) (0.616) (0.453) (0.400) (0.338) (0.247) (0.357) (0.082)

Log size (m3) 1.963 2.238 2.039 2.21 3.53 2.214 2.126 1.963

(0.196) (0.271) (0.202) (0.222) (0.298) (0.218) (0.253) (0.061)

Log number in nest -0.188

(0.029)

Within-nest distance

across attributes

-0.046

(0.012)

Luxury 0.551

(0.162)

Model—body type

fixed effect

X X X X X X X

Model—body

type—trim fixed

effect

X

Trim fixed effect X

Model—year fixed

effect

X

Segment—year fixed

effect

X X X X X X X X

Number of

observations

341,659 339,821 341,286 341,378 341,655 356,479 341,659 341,659
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Notes: All regressions include country by year fixed effects. Column 1 repeats the specification in column

3 of Table 3. Column 2 includes model by body type by trim fixed effects. Column 3 includes model by

body type fixed effects and trim fixed effects. Column 4 includes model by body type and model by year

fixed effects. Column 5 includes the log number of within-nest vehicles and the distance variable from

Houde and Spurlock (2015). Column 6 includes a dummy variable for luxury cars. Column 7 allows

the preference parameters to vary across time. And preference parameters shown in column 7 are the

averages across time. Columns 2 through 8 are otherwise identical to column 1. Standard errors are in

parentheses, clustered by model and trim except for column 8, which reports standard errors that are

robust to heteroskedasticity.

Table 15: Estimated Own-Price Elasticities: Other Demand Models
(1) (2) (3) (4) (5) (6) (7) (8)

Median -7.41 -9.61 -5.61 -9.69 -4.27 -3.26 -7.21 -7.41

Mean -7.37 -9.56 -5.57 -9.63 -4.25 -3.27 -7.17 -7.37

Standard deviation 0.87 1.12 0.65 1.13 0.49 0.43 0.84 0.87

5th percentile -8.90 -11.55 -6.74 -11.64 -5.13 -4.10 -8.66 -8.90

95th percentile -5.80 -7.52 -4.39 -7.58 -3.35 -2.58 -5.64 -5.80

Notes: Each column reports results using preference parameter estimates from the corresponding column
in Table 14. The calculations are otherwise identical to those in Table 4.

Table 16: Willingness to Pay and Valuation Ratio: Other Demand Models
(1) (2) (3) (4) (5) (6) (7) (8)

Willingness to pay for 1 percent change (2005 euros)

Fuel cost decrease 46 34 67 27 82 105 42 46

Horsepower/weight increase 102 80 80 96 97 105 93 102

Weight increase 197 193 176 221 188 152 181 197

Size increase 223 190 291 191 380 515 236 223

Valuation ratio

15 years, r = 0.06 0.49 0.37 0.72 0.29 0.88 1.13 0.46 0.49

15 years, r = 0.03 0.41 0.31 0.61 0.24 0.73 0.95 0.38 0.41

10 years, r = 0.06 0.65 0.48 0.95 0.38 1.16 1.49 0.60 0.65

Notes: Each column reports results using preference parameter estimates from the corresponding column
in Table 14. The calculations are otherwise identical to those in Table 5.
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Figure 6: Quality Index: Alternative Demand Models

Notes: The figure plots the estimated quality index by year, where quality is computed similarly to
Figure 4. The top panel uses estimates from Table 11, and the lower panel uses estimates from Table
14.
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Quality regressions: Alternative specifications

Table 17: Robustness Results for Quality: Alternative Nesting Structures
Dependent variable is quality

(1) (2) (3) (4)

Nests: Segment-Origin One Nest: Segment One Nest: Origin One Nest: Segment-Origin

Period 2 x Stringency -5.227 -4.064 -4.669 -3.744

(1.747) (1.545) (1.488) (1.490)

Period 3 x Stringency -2.672 -2.457 -2.931 -1.214

(2.332) (2.024) (2.732) (2.113)

Joint F—Test 5.186 3.834 6.744 3.845

P Value 0.006 0.022 0.001 0.021

N 339,065 339,065 339,065 339,065

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. All regressions include vehicle fixed effects, segment by year fixed effects and country by year
fixed effects. Each column uses the quality computed from different nesting structures. Column 1
replicates our baseline results assuming a multi-level nested logit model as in the Column 1 of Table
11 11. Column 2-4 assume a one-level nesting structure, and each column assumes the same demand
model as in the corresponding column in Table 11 11.
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Table 18: Robustness Results for Quality: Alternative Demand Specifications
Dependent variable is quality

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline FE2 FE3 FE4 Congestion

effect

Dummy for

luxury cars

Time-variant

preference

parameters

Model—level

quality

Period 2 x Stringency -5.227 -3.484 -6.418 -3.681 -3.194 -10.833 -4.869 -6.160

(1.747) (1.373) (2.195) (1.399) (2.210) (3.564) (1.730) (3.491)

Period 3 x Stringency -2.672 -2.045 -3.232 -2.12 0.203 -4.953 -2.967 -13.793

(2.332) (1.838) (2.908) (1.881) (3.076) (4.734) (2.351) (3.919)

Joint F—Test 5.186 3.573 5.030 3.829 1.948 5.538 4.257 8.168

P Value 0.006 0.028 0.007 0.022 0.143 0.004 0.014 0.0003

N 339,065 337,693 338,769 338,807 339,062 353,725 339,065 16,929

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. All regressions except the column 8 include vehicle fixed effects, segment by year fixed effects
and country by year fixed effects. Column 1 replicates the baseline results in Table 77. Columns 2-7 use
the quality computed from different specifications of the demand model as in the corresponding column
in Table 14 14. All columns assume a multi-level nested logit model for demand. In column 2-4, the
demand model includes different fixed effects. Column 5 includes the congestion effect in the demand
model. Column 6 uses the full sample instead of dropping cars whose prices are above 99th percentile of
the price distribution, and it includes a dummy for those luxury cars. Column 7 allows the preference
parameters to vary across time. Column 8 aggregates the data to the model by country by year level,
and regresses the model-level quality on the interactions of the firm-level stringency with time periods
as well as country by year fixed effects and the model fixed effects.

Table 19: Robustness Results for Log (Horsepower/Weight): Other Specifications
Dependent variable is log horsepower to weight

(1) (2) (3) (4) (5) (6)

Specification Baseline Include

quality trends

Include

horsepower

trends

Include fuel

consumption

trends

Median

regression

Include

dummy for

luxury cars

Period 2 x

Stringency

1.87 1.863 1.497 1.878 1.924 3.844

(0.450) (0.447) (0.489) (0.476) (0.000) (0.921)

Period 3 x

Stringency

0.194 0.236 -0.267 0.554 0.902 0.457

(0.711) (0.706) (0.756) (0.802) (0.000) (1.449)

Joint F—test 16.932 16.738 11.168 13.867 5.69E+12 16.993

P value 0.000 0.000 0.000 0.000 0.000 0.000

N 345,033 345,033 345,033 345,033 345,033 360,270

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. Each column replicates the same regression as the corresponding column in table 8 except
the dependent variable is log of the ratio of horsepower and weight.
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Table 20: Robustness Results for Log Weight: Other Specifications
Dependent variable is log weight

(1) (2) (3) (4) (5) (6)

Specification Baseline Include

quality trends

Include

horsepower

trends

Include fuel

consumption

trends

Median

regression

Include

dummy for

luxury cars

Period 2 x

Stringency

-0.086 -0.102 -0.059 0.079 0.097 -0.17

(0.291) (0.290) (0.311) (0.307) (0.000) (0.595)

Period 3 x

Stringency

0.413 0.415 0.572 0.418 0.348 0.861

(0.416) (0.413) (0.437) (0.470) (0.000) (0.848)

Joint F—test 1.999 2.161 2.949 0.634 8.07E+6 2.056

P value 0.136 0.115 0.052 0.531 0.000 0.128

N 345,033 345,033 345,033 345,033 345,033 360,271

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. Each column replicates the same regression as the corresponding column in table 8 except
the dependent variable is log weight.

Table 21: Robustness Results for Log Price: Other Specifications
Dependent variable is log price

(1) (2) (3) (4) (5) (6)

Specification Baseline Include

quality trends

Include

horsepower

trends

Include fuel

consumption

trends

Median

regression

Include

dummy for

luxury cars

Period 2 x

Stringency

-0.0093 -0.0097 -0.009 -0.0088 -0.0004 -0.0094

(0.0121) (0.0119) (0.0122) (0.0123) (0.0000) (0.0120)

Period 3 x

Stringency

-0.0207 -0.0212 -0.0206 -0.0188 -0.0086 -0.0207

(0.0126) (0.0124) (0.0127) (0.0130) (0.0000) (0.0124)

Joint F—test 5.465 5.540 5.558 4.029 1.75E+5 5.652

P value 0.004 0.004 0.004 0.018 0.000 0.004

N 348,320 348,320 348,320 348,320 348,320 363,635

Notes: Standard errors are in parentheses, bootstrapped using 1,000 replications and clustered by model
and trim. Each column replicates the same regression as the corresponding column in table 8 except
the dependent variable is log price.
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Table 22: Robustness Results for Quality: Different Fixed Effects
Dependent variable is quality

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fixed

Effects

model-

trim

model-

trim-

body

type

model-

trim-

body

type-fuel

type

model-

trim-

body

type-fuel

type-

segment

model-

trim-

body

type-fuel

type-

segment-

transtype

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors-

number

of engine

cylinders

vehicle

Period 2

x Strin-

gency

-5.382 -5.177 -5.585 -5.506 -5.699 -5.825 -5.448 -5.128 -5.227

(1.796) (1.766) (1.756) (1.751) (1.768) (1.771) (1.740) (1.727) (1.747)

Period 3

x Strin-

gency

-6.902 -5.882 -5.478 -5.161 -4.836 -5.591 -4.587 -2.448 -2.672

(2.731) (2.713) (2.620) (2.633) (2.594) (2.622) (2.378) (2.293) (2.332)

Stringency -46.439 -38.021 -39.963 -40.027 -46.769 -46.972 -47.102 -50.421

(4.622) (5.346) (16.740) (16.681) (10.536) (10.580) (10.548) (7.833)

Joint

F—Test

5.021 4.476 5.131 4.981 5.201 5.423 4.903 4.873 5.186

P Value 0.007 0.011 0.006 0.007 0.006 0.004 0.007 0.008 0.006

N 336,480 336,295 336,036 335,987 335,384 335,100 334,947 334,657 339,065

Notes: A vehicle is defined as a unique model, submodel, version, trim, market segment, number of
doors, body type, fuel type (diesel, gasoline, hybrid, plug-in hybrid, or electric), transmission type,
number of engine cylinders, number of gears, and drive type (front-, rear-, or all-wheel). Each column
includes the fixed effects indicating in the header, while controlling for all other variables that are used
for defining a vehicle. All regressions include the country-year fixed effects, segment-year fixed effects,
and use the firm-level stringency.
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Table 23: Robustness Results for Log (Horsepower/Weight): Different Fixed Effects
Dependent variable is log (horsepower/weight)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fixed Effects model-

trim

model-

trim-

body

type

model-

trim-

body

type-fuel

type

model-

trim-

body

type-fuel

type-

segment

model-

trim-

body

type-fuel

type-

segment-

transtype

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors-

number

of engine

cylinders

vehicle

Period 2 x

Stringency

0.921 0.916 1.524 1.533 1.421 1.397 1.391 1.52 1.87

(0.622) (0.629) (0.581) (0.584) (0.598) (0.606) (0.602) (0.658) (0.450)

Period 3 x

Stringency

-2.03 -1.848 -1.404 -1.36 -1.512 -1.411 -1.495 -1.192 0.194

(0.973) (1.000) (0.929) (0.934) (0.993) (0.994) (0.948) (1.056) (0.711)

Stringency 8.671 8.364 -6.322 -6.319 -3.651 -3.567 -3.461 -3.108

(0.735) (0.794) (1.629) (1.625) (1.133) (1.083) (1.081) (1.214)

Joint F—Test 6.592 5.843 8.487 8.367 7.635 7.134 8.594 11.246 16.932

P Value 0.001 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000

N 341,748 341,553 341,292 341,233 340,616 340,329 340,175 339,882 345,033

Notes: A vehicle is defined as a unique model, submodel, version, trim, market segment, number of
doors, body type, fuel type (diesel, gasoline, hybrid, plug-in hybrid, or electric), transmission type,
number of engine cylinders, number of gears, and drive type (front-, rear-, or all-wheel). Each column
includes the fixed effects indicating in the header, while controlling for all other variables that are used
for defining a vehicle. All regressions include the country-year fixed effects, segment-year fixed effects,
and use the firm-level stringency.
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Table 24: Robustness Results for Log Weight: Different Fixed Effects
Dependent variable is log weight

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fixed Effects model-

trim

model-

trim-

body

type

model-

trim-

body

type-fuel

type

model-

trim-

body

type-fuel

type-

segment

model-

trim-

body

type-fuel

type-

segment-

transtype

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type-

number

of doors-

number

of engine

cylinders

vehicle

Period 2 x

Stringency

0.043 0.081 0.148 0.144 0.145 0.127 0.074 0.035 -0.086

(0.298) (0.306) (0.281) (0.282) (0.286) (0.286) (0.285) (0.288) (0.291)

Period 3 x

Stringency

1.295 1.36 1.292 1.292 1.314 1.227 0.936 0.577 0.413

(0.448) (0.438) (0.415) (0.417) (0.424) (0.415) (0.390) (0.419) (0.416)

Stringency -1.568 0.861 -1.134 -1.134 -0.894 -0.929 -0.929 -1.000

(0.131) (0.155) (0.174) (0.174) (0.187) (0.144) (0.156) (0.129)

Joint F—Test 8.0951 8.8564 8.3022 8.3092 8.6189 8.0720 6.4531 2.3125 1.9987

P Value 0.0003 0.0001 0.0002 0.0002 0.0002 0.0003 0.0016 0.0991 0.1356

N 341,748 341,553 341,292 341,233 340,616 340,329 340,175 339,882 345,033

Notes: A vehicle is defined as a unique model, submodel, version, trim, market segment, number of
doors, body type, fuel type (diesel, gasoline, hybrid, plug-in hybrid, or electric), transmission type,
number of engine cylinders, number of gears, and drive type (front-, rear-, or all-wheel). Each column
includes the fixed effects indicating in the header, while controlling for all other variables that are used
for defining a vehicle. All regressions include the country-year fixed effects, segment-year fixed effects,
and use the firm-level stringency.
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Table 25: Robustness Results for Log Price: Different Fixed Effects
Dependent variable is log price

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fixed Effects model-

trim

model-

trim-

body

type

model-

trim-

body

type-fuel

type

model-

trim-

body

type-fuel

type-

segment

model-

trim-

body

type-fuel

type-

segment-

transtype

model-

trim-

bodytype-

fuelcat-

segment-

transmission

type-

drive

type

model-trim-

bodytype-

fuelcat-

segment-

transmission

type-drive

type-number

of doors

model-trim-

bodytype-

fuelcat-

segment-

transmission

type-drive

type-number

of

doors-number

of engine

cylinders

vehicle

Period 2 x

Stringency

-0.012 -0.011 -0.01 -0.01 -0.01 -0.01 -0.011 -0.009 -0.009

(0.009) (0.009) (0.011) (0.011) (0.012) (0.012) (0.013) (0.013) (0.012)

Period 3 x

Stringency

-0.02 -0.02 -0.021 -0.02 -0.02 -0.02 -0.022 -0.02 -0.021

(0.009) (0.009) (0.013) (0.013) (0.014) (0.014) (0.015) (0.014) (0.013)

Stringency 0.02 0.018 0.017 0.016 0.015 0.014 0.016 0.031

(0.008) (0.008) (0.012) (0.012) (0.014) (0.014) (0.016) (0.021)

Joint F—Test 3.042 3.007 2.619 2.448 2.238 2.220 2.120 5.409 5.465

P Value 0.048 0.049 0.073 0.086 0.107 0.109 0.120 0.004 0.004

N 345,752 345,559 345,300 345,250 344,642 344,364 344,212 343,925 348,320

Notes: A vehicle is defined as a unique model, submodel, version, trim, market segment, number of
doors, body type, fuel type (diesel, gasoline, hybrid, plug-in hybrid, or electric), transmission type,
number of engine cylinders, number of gears, and drive type (front-, rear-, or all-wheel). Each column
includes the fixed effects indicating in the header, while controlling for all other variables that are used
for defining a vehicle. All regressions include the country-year fixed effects, segment-year fixed effects,
and use the firm-level stringency.
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