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Abstract

To avoid electric-infrastructure-induced wildfires, millions of Californians have had
their power cut for hours to days at a time. We show that rooftop solar-plus-battery-
storage systems increased in zip codes with the longest power outages. Rooftop solar
panels alone will not help a household avert outages, but a solar-plus-battery-storage
system will. Using this fact, we obtain a revealed-preference estimate of the willingness
to pay for electricity reliability, the Value of Lost Load, a key parameter for electricity
market design. Our estimate, of around $4,300/MWh, suggests California’s wildfire-
prevention outages resulted in losses from foregone consumption of $322 million to
residential electricity consumers.
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1 Introduction

Recent large-scale power outages in Texas and California affected millions of households,

resulting in losses of economic output, critical infrastructure, and even life (Roberts, 2019;

King et al., 2021). In response to weather-related power outages, calls are increasing to

spend billions of dollars on “hardening” the electricity grid to be more resilient (Dyson and

Li, 2020). Decisionmakers thus face a complex task of balancing the costs of infrastructure

investments with the value of improved reliability. A key component in such cost–benefit

analyses is the consumers’ willingness to pay (WTP) to avoid electricity outages, referred

to as the “Value of Lost Load” (VoLL). Despite the importance of this parameter,

decisionmakers rely on estimates from either stated-preference surveys or macro models,

having limited evidence from revealed preferences.

In this paper, we estimate the impact of power outages on the household adoption of

solar-plus-battery systems, an emerging technology that serves as a defensive investment to

partially or fully avoid outages. The observed adoptions provide us the unique opportunity

to provide among the first revealed-preference estimates of the WTP to avoid power outages

for residential customers.

Our empirical application considers the case of California’s largest electric utility,

Pacific Gas and Electric (PG&E), which imposed large-scale power outages in 2018 and

2019. These outages—called Public Safety Power Shutoffs (PSPS)—came in the wake of

unprecedented wildfire activity and were used as a preventative measure to avoid further

electric-infrastructure-induced wildfires.1 The outages affected millions of Californians for

hours to days at a time. The longest outage event in October 2019 affected 700,000 customers,

with an average duration of 70 hours and some customers out of power for six days. While

these intense PSPS events were irregular, there were expectations that PSPS outages would

continue, as emphasized by the controversial statements made by PG&E’s CEO that PSPS-

1Fires initiated by electric infrastructure are larger than other fires because the conditions resulting in
their ignition, such as high winds, are the same conditions that make the fire more easily spread (Kousky
et al., 2018).
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driven outages were expected to continue for up to a decade (Gonzales, 2019).2

We use zip-code-level solar and battery-storage adoption data and variation in the timing,

location, and intensity of power outages to analyze residential households’ responses to these

large-scale outage events. We have detailed information on the length and intensity of each

power outage at a granular distribution-feeder level, which we map to the zip-code level using

the location of all distribution power lines in PG&E. We find that exposure to outages had a

large and statistically significant impact on battery storage adoption. Although residential

storage capacity is still scarce, we estimate that capacity increased by 45 percent in treated

zip codes due to the power outages. We find that the capacity additions are concentrated

in the top 25th percentile of the income distribution. These findings are consistent with a

growing literature that demonstrates that households in lower-socioeconomic-status regions

are less likely to adopt emerging energy technologies (Carley and Konisky, 2020).

To estimate the implied value households place on reliability, we estimate a dynamic

discrete choice model for the decision to adopt solar versus solar-plus-storage systems. We

estimate WTP for electric reliability of around $4,292/MWh, ranging from $2,477/MWh

to $5,239/MWh in the bottom to top quartile of the income distribution. We use these

estimates to compute the damages residential households incurred as a result of foregone

consumption during the PSPS outages in 2018 and 2019 in PG&E’s territory. Our estimates

suggest damages of $322 million to residential customers alone. The total cost of the outages

would also include damages to commercial and industrial customers. The benefits of the

outages are reflected by PG&E’s $30 billion amassed wildfire liability (Penn, 2021). When

evaluating the cost-effectiveness of outages for wildfire prevention, costs should be compared

to the costs of other wildfire-prevention strategies, such as restricting development in the

Wildland-Urban Interface (Kousky and Olmstead, 2010; Baylis and Boomhower, 2022b),

mandating fire-resistant building codes (Baylis and Boomhower, 2022a), or burying power

lines (McCarthy, 2021).

2We note that later California utilities made subsequent adjustments to their software, vegetation
maintenance, and equipment to reduce the intensity of future PSPS outages (Pacific Gas & Electric, 2022).
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Our study provides several contributions to the literature. First, our estimate is among

the first revealed-preference estimates of the WTP to avoid outages—the VoLL. This

parameter is widely used, for example, in evaluating the cost of reliability standards that

determine investment in electric infrastructure, deciding which consumers should be subject

to supply interruptions, quantifying liabilities from power outages, and setting wholesale

price caps and pricing when supply is scarce (Hogan, 2013; Schröder and Kuckshinrichs,

2015).3 The longstanding use of the VoLL has relied on stated-preference surveys or macro

models, due to the historical nonexistence of revealed-preference estimates (see Section A.1

for a summary).4 In a recent paper, Harris (2023) provides a revealed-preference estimate

through observed portable generator purchases from a nationwide home improvement retailer

in response to power outages and hurricane watches and warnings.5 Our estimates are larger

than Harris (2023), possibly due to California outages being much longer in duration on

average, suggesting that VoLL increases with outage duration.

Second, a well-established literature uses data on individuals’ averting or defensive

expenditures to estimate the value of nonmarket goods. Averting expenditures have allowed

researchers to estimate the value of a wide array of nonmarket goods, including improved air

quality (Neidell, 2009; Deschenes et al., 2017; Ito and Zhang, 2020), water quality (Kremer

et al., 2011; Zivin et al., 2011; Wrenn et al., 2016), and the value of a statistical life (Cropper

et al., 2011). However, these studies have relied on the averting expenditures being marginal

adoptions contributing to marginal changes in risk alone and have not addressed the context

3Value of Lost Load estimates used in practice to set wholesale price caps in North America range
from $1,000/MWh in Alberta, to $3,500/MWh in the Midcontinent Independent System Operator region,
to $5,000/MWh in Texas (Chang et al., 2018; Rhodes, 2022). Reliability requirements that are used to
determine capacity investment set standards that limit the probability of demand exceeding supply, such as
limiting the probability to less than 1 occurrence in 10 years. Murphy et al. (2020) estimate the implied
VoLL that would be required to justify this standard is in the range of $100,000–700,000/MWh depending
on the stringency of the standard.

4Contemporaneous work is underway to estimate the impact of outages in three California utilities on
adoption of solar-plus-batteries by Coulter et al. (2023) and to obtain a revealed-preference estimate of VoLL
using the California power outages by Burlig et al. (2023).

5In the case of non-residential VoLL, another exception is Beenstock et al. (1997) who estimates a
revealed-preference VoLL for public-sector agencies and industrial firms in Israel using cross-sectional data
on portable generator adoption.
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of an averting expenditure being a durable good purchase that has nonmarginal implications

on not only risk exposure but also some other household input. In this context, a model that

disentangles the joint benefits from a large sunk cost purchase is required. The sunk costs

of new distributed-energy technologies are rapidly changing, making it important to also

capture the implications of uncertainty, such as the additional value of waiting to adopt. We

provide a dynamic model that captures sunk investment costs, benefits from the nonmarket

amenity (avoided outages), and a stream of co-benefits (lower bills in the future), all under

uncertainty in future benefits and costs.

Third, the literature on power outages has largely been based in the context of developing

countries, showing, for example, that electricity reliability increases household electricity

consumption (McRae, 2015) and results in value at the household (McRae, 2015; Khanna

and Rowe, 2021; Meeks et al., 2023) and firm (Fisher-Vanden et al., 2015; Allcott et al.,

2016). However, our paper provides insights into the implications of power outages in places

with previously stable supply; implications that are expected to increase with the increase in

extreme weather events associated with climate change (Allen-Dumas et al., 2019; NOAA,

2022).

Fourth, we find recent outages amplify the growing disparity in the adoption of emerging

energy technologies. Research correlates socioeconomic and demographic factors with the

adoption of a wide range of technologies, including, electric vehicles (Borenstein and Davis,

2016), rooftop solar (Sunter et al., 2019; O’Shaughnessy et al., 2021), energy efficiency

(Goldstein et al., 2022), and battery storage (Brown, 2022). Our analysis extends this

literature by using a quasiexperimental approach and highlighting the disparity in residential

households’ abilities to ensure electricity reliability via investment in battery storage.

Fifth, a growing literature employs discrete choice models to analyze households’ decisions

to invest in rooftop solar that has focused on the impact of solar subsidies (Burr, 2016;

Feger et al., 2017; Langer and Lemoine, 2018) and using variation in subsidies to back

out households’ underlying discount factors (De Groote and Verboven, 2019; Bollinger et al.,
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2023). We use features of these models to consider an empirical application where households

can invest in rooftop solar or solar-plus-battery-storage systems, thus contributing to our

knowledge of battery investment. The literature on battery investment has focused on utility-

scale adoptions. A number of papers demonstrate additional benefits of utility-scale storage,

including prices (Butters et al., 2021), price volatility (Kirkpatrick, 2020; Butters et al.,

2021; Lamp and Samano, 2022), and greenhouse gas emissions (Carson and Novan, 2013;

Linn and Shih, 2019). Our paper focuses on residential storage adoption, which of smaller

scale, would be associated with similar external benefits in addition to the internal benefits

of averting power outages.

Our analysis proceeds as follows. Section 2 describes the data. Section 3 provides

a summary of the power outage events in PG&E and presents preliminary evidence and

statistics. Our empirical methodology and results are provided in Section 4. Section 5

presents our dynamic discrete choice model and our estimates on WTP to avoid power

outages. Section 6 concludes.

2 Data

We use multiple publicly available data sets. We obtained data on outage events from

October 2013 to September 2020 from the California Public Utility Commission (CPUC)

De-Energization database (California Public Utility Commission, 2020).6 These data detail

all PSPS outages at the distribution line (“feeder”) level and include information on the

location, start and end time, and the number of customers affected.

We overlay PG&E’s distribution line geospatial data (Pacific Gas & Electric, 2020) with

the Census’s Zip Code Tabulation Areas to construct a measure of outage intensity at the

zip code level. We match the outage data to the distribution lines to allocate outages to zip

codes. We use data on the distribution of population density from WorldPop (WorldPop,

6CPUC expanded the use of PSPS outages to include all investor-owned utilities, such as PG&E, starting
in 2018 (California Public Utility Commission, 2018). Our de-energization PSPS outage data ends on
December 31, 2019, with no additional PSPS events until September 2020 (after our sample).
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2020) to estimate the intensity of outage exposure weighted by population density (see

Section A.2 for additional details).

For data on technology adoption, we use Go Solar California’s (2020) Distributed

Generation Interconnection data, which include solar and battery storage interconnections

that are behind the meter at customer sites. These data provide information, including

the zip code, the date they applied for interconnection, system capacity, customer class,

and system costs. We focus on residential solar and/or battery storage installations in

PG&E between January 2014 and June 2020. Residential adoptions represents 97 percent

of all behind-the-meter solar and solar-plus-storage installations in our data (by count). In

addition, 90 percent of residential customer outage hours from PSPS outages during our

sample occurred in PG&E’s jurisdiction.7

Our dynamic discrete choice model requires additional data sources. In particular, we

require multiple data sets to estimate a residential customer’s annual electricity bill with and

without a distributed-energy technology. For the rate schedule of customers without solar or

batteries, we use PG&E’s E-TOU-C residential rate schedule, the default Time-of-Use (TOU)

schedule for a customer without a distributed-energy technology. For the rate schedule of

customers with solar-only or solar-plus-storage systems, we use the Net Energy Metering

2.0 retail rate policy that was in place in PG&E for our entire sample period (Pacific Gas

& Electric, 2021a,b). For electricity use, we use PG&E’s 2017–2020 representative hourly

residential load profile (Pacific Gas & Electric, 2021b). We use solar irradiance data from

the National Renewable Energy Laboratory (NREL) Multi-Year PSM Global Horizontal

Irradiance data (NREL, 2021) and NREL System Advisor Model to estimate hourly solar

output.

For estimates of the cost of solar adoption, we use reported system costs on non-third-

party-owned residential solar systems in Go Solar California’s (2020) Distributed Generation

7We focus on PG&E because our analysis requires access to geospatial distribution feeder-level data,
which are only publicly available for PG&E.
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Interconnection data set.8 For estimates of the cost of battery adoption, we use data

from California’s Self-Generation Incentive Program (SGIP), which provides subsidies for

residential battery storage projects, among other technologies (SGIP, 2020). These data

provide information on system characteristics, battery costs, and subsidies.

Finally, for the median income and percent of single-family units in a zip code, we use

data from the Census Bureau’s five-year American Community Survey (Integrated Public

Use Microdata Series, 2020).

3 Descriptive Background of the Power Outage Events

Electric infrastructure has been cited as a key driver of deadly wildfires in California (Kousky

et al., 2018). In the wake of unprecedented wildfire activity, California utilities began

implementing PSPS outages during periods of severe wildfire risk to reduce the threat of

infrastructure-induced wildfires. Table 1 reports PG&E’s PSPS outages by start date over

our sample period, and summarizes the number of distribution feeders on outage, residential

customers affected, and the average and maximum duration of the outages. This table

illustrates the ramp-up in outages in September and October 2019 due to a series of hot, dry,

and windy weeks of weather. These outages affected over 1.5 million residential customers

with an average outage duration of 70 hours. Certain feeders experienced outages lasting up

to 143 hours—nearly 6 days.

The PSPS outages in our sample are large compared to historical outages in PG&E. To

demonstrate this, we use the EIA’s Form-861 annual outage reliability data for 2013–2019

that includes outage metrics such as the System Average Interruption Duration Index

(SAIDI), which measures the sum of customer-minutes interrupted by outages over the year

divided by the number of total customers served (EIA, 2021). The average SAIDI between

8Other studies identified issues with reported system costs for third-party solar systems because they
are installer-reported appraised values rather than actual prices households pay (Pless and Van Benthem,
2019). To avoid these possible data quality issues, we focus on non-third-party systems, which represent 70
percent of the observations in our data, to establish estimates on the costs of a solar system.
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Table 1: PG&E Public Safety Power Shutoff (PSPS) Summary Statistics by Start Date

Start Date # Distribution # Residential Mean Duration Max Duration
Feeders Customers (Hours) (Hours)

Oct. 14, 2018 32 40,544 30.62 60.38
June 8, 2019 21 19,500 15.42 15.42
Sept 23, 2019 17 18,524 19.66 23.47
Sept 25, 2019 44 12,182 15.00 32.12
Oct 5, 2019 17 9,981 14.27 17.70
Oct 9, 2019 415 628,005 47.58 89.13
Oct 10, 2019 26 8,347 26.31 42.93
Oct 23, 2019 136 156,152 28.87 51.55
Oct 24, 2019 5 864 27.46 37.25
Oct 26, 2019 659 768,538 70.12 143.42
Oct 27, 2019 62 60,599 56.66 101.48
Oct 29, 2019 7 497 37.60 41.78
Oct 30, 2019 1 900 0.03 0.03
Nov 20, 2019 56 42,310 26.30 38.68

Notes: All PSPS outage events between October 2013 - August 2020. # Distribution

Feeders and # Residential Customers reflects the number of distribution lines and residential

customers that were affected by an individual outage. Mean and Max Duration reflect the

average and maximum length of the PSPS outages on a given start date.

2013– 2017 equals 179.2. In 2018–2019, where PSPS outages occurred, SAIDI was 828.35 (a

362 percent increase).

PG&E is required to publish detailed reports on the methodology to determine when

and where to implement a PSPS outage (e.g., Pacific Gas & Electric, 2019). PG&E first

uses weather forecast models and historical weather data to identify thresholds for severe

wildfire risks. If weather forecast models indicate a severe risk, PG&E identifies transmission

and distribution lines within the footprint of the wildfire risk area, uses wind speed and fire

threat indices to determine which lines are at most risk and de-energizes these lines.

Figure 1 presents a heat map of the outages during our sample period by zip code

in PG&E. We measure outage intensity by the residential-customer-outage hours. The

precise construction of this measure is summarized in Section 4.1. Figure 1 demonstrates a

considerable spatial variation in the exposure to and intensity of outages. The hardest-hit

areas are those located near mountainous regions with transmission lines. However, as can

be seen in the map, these are not the only regions affected by outage events.
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Figure 1: Power Outage Intensity

Notes. Percentiles of total residential customer-hours of outages in zip codes in PG&E’s service
territory. Outages occurred October 2018–November 2019.

The power outages garnered considerable controversy and criticism, but the widespread

objections coincided with the deployment of marketing strategies by solar and storage

retailers to motivate customers to install solar-plus-storage systems to circumvent future

electric service interruptions (Sunrun, 2021). These systems have a distinct advantage over

solar-only systems, which are unable to operate during outage events.

Figure 2 provides initial evidence that storage capacity increased in areas hardest hit

by outages. This figure presents the average monthly storage capacity at the zip code level

broken down by outage intensity quartiles, and shows a considerable divergence in storage

investment starting in late 2019, with the regions most impacted by the outages installing

more storage capacity. An unambiguous ranking of storage investment arises by quartile of

outage intensity. Although compelling, this descriptive analysis does not rigorously control
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for differences across zip codes.

Figure 2: Average Monthly Storage Investment by Outage Intensity
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Notes. Average storage capacity investment by quartile of outage intensity. Outages started in
October 2018, with the largest and most intense outages in October 2019.

While outage locations were dictated primarily by weather forecasts and fire-threat risks,

these areas often coincide with mountainous regions near city centers, which happen to also

be choice locations for the affluent. Table 2 presents summary statistics of the zip code

characteristics by outage exposure, demonstrating that two-thirds of zip codes in PG&E’s

territory have at least one outage. Outages tend to occur in regions that have a higher

share of the population that is white, higher educational attainment, more owner-occupied

housing, lower percentage below the poverty line, higher income, and lower density. However,

we observe considerable variation in the characteristics of affected and unaffected zip codes

over the full support of each of these variables. We control for differences in zip code

characteristics via fixed effects in our empirical methodology, outlined next.
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Table 2: 2019 Zip Code Average Characteristics by Outage Exposure

Unit No Outages Outages

White % 68.00 76.44
Black: Alone or in Combination % 4.23 3.51
Hispanic: Any Race % 39.38 18.61
Less than High School % 21.86 10.88
High School % 21.82 21.93
Some College % 21.49 24.00
College or More % 34.83 43.20
Below Poverty Level % 16.79 12.57
Owner Occupied Housing % 54.40 67.25
Median Household Income $ 73,412.48 83,229.60
Median House Value $ 499,850.52 599,311.46
Population Density Pop./km2 1,025.28 441.36
Observations 326 546

Notes: This table presents socioeconomic and demographic characteristics using the

2019 Census Bureau’s American Community Survey data (Integrated Public Use

Microdata Series, 2020), split by whether a zip code experienced a PSPS outage event

during our sample period.

4 Solar-Plus-Storage Adoption: Event Study

In this section, we empirically analyze the impact of the power outages on solar-plus-storage

adoption.

4.1 Outage Intensity by Zip Code

Our outcome of interest, solar-plus-storage adoption, is measured at the zip-code-month

level. We thus first construct a treatment variable to capture the intensity of outages at

the zip-code-month level from data at the distribution-feeder level. The feeder data have

information on which feeders experience outages, how many customers are on each feeder,

and the number of outage hours. A complicating factor arises because a feeder can pass

through multiple zip codes. For example, the red line in Figure 3 highlights a distribution

feeder that was on an outage. It intersects multiple zip codes represented by the black lines.

We do not observe how many customers on a feeder live in a particular zip code, but

assign customers to zip codes using a population-weighted measure. More specifically, we
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use an approach established in the geography literature that provides us with an estimate

of the population distribution on a 500-by-500 meter square grid across PG&E’s territory

(WorldPop, 2020). The gray shaded squares in Figure 3 presents that grid of population

estimates, where each square has a WorldPop cell estimate on population density. We

then allocate residential customer outage hours to each zip code based on a feeder-length

population-weighted measure. Appendix A.2 describes our population weights in more

detail.9

Figure 3: Distribution Feeder Map—WorldPop Grid

4.2 Event-Study Specification

We exploit the variation in where power outages occur and the intensity to which outages

affect residential customers to estimate the impact on the quantity of solar-plus-storage

9Note that we also employ weighting methods that allocate customers along a feeder based on the
percentage of a feeder’s line length in each zip code it intersects, assuming a uniform distribution of customers
along a feeder, and find our results are robust to this alternative specification (Table A3).
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adoption. We employ the following difference-in-difference (DID) event-study framework:

Storage Capacityzt = αz + δt+Cz×f(t) +

8∑
k=−12
k 6=−1

βk 1(t−T ∗z = k)×Outage Intensityzk + εzt, (1)

where Storage Capacityzt reflects the number of watts of storage installed in zip code z

and month t.10 We allocate the capacity to months based on the date the application of

installation was received to capture a customer’s intention to adopt battery storage. We

include zip code fixed effects, αz, to capture time-invariant differences across zip codes and

month-by-year fixed effects, δt, to capture time-varying factors that could impact technology

uptake. We include zip-code-specific time trends, Cz × f(t), to absorb possible pre-existing

zip code trends in distributed technology uptake.11 εzt is the stochastic error term. We

cluster our standard errors at the zip code-level.

We use a continuous measure of treatment, Outage Intensityzk, that captures the number

of residential-customer-outage-hours (i.e., residential customers affected times the number of

outage hours) in zip code z in month k. Our identification strategy relies on the assumption of

no underlying trends in battery storage uptake correlated with the exposure to and intensity

of an outage, conditional on controls. To detect such trends, we consider a flexible time

structure that includes leads and lags of our treatment variable. This also permits us to

evaluate heterogeneous treatment effects over time. We create a series of event-month

dummies, 1(t − T ∗z = k), which are equal to 1 when the month of the observation is

k = −12, ..., 0, ..., 8 months from the date when the zip code was exposed to the treatment

(T ∗z ). The omitted regressor is one month before the event (i.e., k = −1 is omitted).

Observations more than 12 months before or 8 months after are captured by the indicator

10Storage capacity is measured in either the rated power capacity (watts) or energy capacity (watthours).
The former reflects the amount of energy that can flow into or out of the battery in any given instant, and
the latter estimates the amount of energy that can be stored. Our data often have missing values on the
energy capacity, so we focus on the rated power capacity. For residential storage systems, the ratio of the
power rating and energy capacity is largely constant in the data when both numbers are reported.

11We consider a flexible specification on f(t) that permits quadratic time trends. The Appendix Section
A.4 shows specifications without these as well as different time controls.
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variables 1(t− T ∗z ≤ −12) and 1(t− T ∗z ≥ 8), respectively.12

The estimated values on βk for k < 0 capture the evolution of battery storage uptake

in eventually treated zip codes before the PSPS outage event, net of changes in untreated

zip codes after controlling for additional model covariates. These coefficients evaluate the

assumption that the timing and location of outages are unrelated to pre-PSPS event changes

in battery storage installations. βk for k > 0 estimates the divergence in battery storage

uptake k months after the outage, net of changes in untreated zip codes after controlling

for additional model covariates. These coefficients are all relative to one month before the

PSPS outage treatment, t− T ∗z = −1, which is the excluded category.

We look for heterogeneous treatment effects by socioeconomic characteristics and run a

series of robustness checks to explore the sensitivity of our results. In particular, because

our identification strategy exploits a certain degree of variation in the timing and intensity

of outages (recall Table 1), our treatment effects represent the weighted average of all two-

by-two DID estimates (Goodman-Bacon, 2021). We employ multiple robustness checks to

demonstrate our results are not driven by the concerns raised in this literature.

4.3 Event-Study Results

Figure 4 presents the event-study coefficient estimates on Outage Intensity in Equation (1).

In the pretreatment period, we do not observe systematic differences in investment in zip

codes that are eventually subject to outage events. Figure 4 demonstrates a positive and

statistically significant impact of Outage Intensity on battery capacity investment starting

three months after an outage event.13 In months 3–5, a one standard deviation change in

residential-customer-outage hours corresponds to a 32 percent increase in monthly storage

12We include event-month dummies for only eight months posttreatment because the largest and most
intense outages occurred in October 2019 and our data set ends in June 2020, eight months after.
Consequently, additional posttreatment variables are identified only off of the relatively infrequent outages
that arose earlier in the sample.

13The lagged effect is consistent with a delay between being exposed to the outages, deciding to adopt a
solar-plus-storage system, having to search for a provider of these systems, and finalizing all the necessary
paperwork before submitting an interconnection application to PG&E.
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capacity investment, relative to the average monthly storage capacity in the full calendar

year before the first outage event. Although smaller, the same comparison for month zero

and two months after the outage event reflects an 11 percent increase in storage capacity

investment. We observe a decline in the coefficients six months after the outage events. This

decline coincides with the beginning of the Covid-19 pandemic for the largest outage events

in September and October 2019. Regardless of this empirical difficulty, Figure 4 presents a

distinct effect of outage intensity on storage capacity investment 3–5 months after an outage

event.

Figure 4: Impact of Outage Intensity on Storage Capacity (Watts)
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Notes. Figure depicts estimates of βk from our specification in (1) regressing installed storage
capacity on leads and lags of outage intensity and quadratic zip-code-specific time trends. The
shaded region reflects the 95 percent confidence intervals. Coefficients can be seen in Table A2.

We use the coefficient estimates to predict the amount of storage capacity installed

compared to the amount of storage capacity that would have been installed in treated zip

codes absent the outage events. Our estimates find an additional increase of approximately

4.86 MWs of storage capacity. Although this number is small in comparison to the level of

utility-scale capacity in California, in percentage terms, the increase is large: we estimate a
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45 percent increase in residential storage capacity due to the outage events.

Because solar panels alone will not aid a household during a power outage, we would

not expect to find a distinct relationship between outages and the adoption of solar panels

alone. When examining the adoption of solar-only systems as the dependant variable in

Equation (1), the relationship between outages and adoptions is less clear: the coefficients

before and after treatment are noisy without the distinct increase we see with solar-plus-

battery adoption (see Appendix Figure A1(a)). This nonfinding of solar-only adoption lends

further support to the conclusion that outages drive solar-plus-battery adoptions.

The outages occurred in zip codes across the income distribution, but the largest

treatment effect is estimated in the zip codes with the largest median incomes. Figure

5 illustrates heterogeneous treatment effects of outage intensities on storage capacity

investment by median income quartiles.14 The finding of predominant adoption coming

from the highest incomes is in line with the growing literature that documents disparities in

distributed technology adoption by socioeconomic characteristics (e.g., Sunter et al., 2019).

More broadly, these findings raise the concern that individuals with lower socioeconomic

status will face disproportional burdens associated with reduced electric reliability as a result

of climate change.

We consider an array of robustness checks in the appendix and the key conclusion

remains: outages led to a large percentage increase in battery-storage adoption. Section

A.4 demonstrates that our key conclusion persists with alternative zip-code-specific time

trends. Section A.6 presents additional model specifications that include focusing only on a

comparison of the zip codes that were first and only exposed to PSPS outages in October

2019 (the largest outage event), compared to never-treated zip codes, the use of distribution

feeder length weights rather than the population-based weighting detailed in Section 4.1,

and the use of a discrete treatment variable.

14In the appendix, we show results by an Environmental Justice Index that captures socioeconomics,
health, and environmental indicators. We find storage uptake is higher in the communities with the least
environmental justice concerns, though the relationship is less strong than income alone (See Section A.5).
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Figure 5: Impact of Outage Intensity on Storage Capacity by Income Quartiles
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(a) First income quartile
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(b) Second income quartile
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(c) Third income quartile
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Notes. Regression estimates by subsamples of income quartiles. Figures depict estimates of βk
in Equation (1), regressing installed storage capacity on leads and lags of outage intensity and
quadratic zip-code-specific time trends. The shaded region reflects the 95 percent confidence
intervals. Coefficients are in Table A2.

We provide assurance against the critiques raised in the case of two-way fixed effects

estimates of DID with heterogeneous treatment (e.g., Goodman-Bacon, 2021 and Baker

et al., 2022). Reassurance against bias is the finding that only positive weights are used in

the treatment effect estimation using the Goodman-Bacon decomposition (Goodman-Bacon,

2021). In addition, the concerns associated with staggered treatment timing are mitigated

because the largest and most intense outages occurred in a single month, October 2019; 76

percent of our treated zip codes were first and only subject to outages in this month. See
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Section A.7 for a detailed discussion.

5 Estimation of the VoLL

In this section, we construct a dynamic discrete choice model to estimate the value of

electricity reliability, separate from the other benefits that a solar-only or solar-plus-storage

system provides a household. We exploit variation in outages that explain differences

in adoption of the two technologies to obtain a revealed-preference estimate of the value

customers place on averting outages, the residential VoLL.

5.1 Model of the Dynamic Discrete Choice of Technology

Our model consists of households that do not already have a solar or battery system. Every

month, they face a decision d: (1) do nothing, (2) adopt a solar system, or (3) adopt a

solar-plus-storage system.15 We assume that households are rational and follow a decision

rule that maximizes the expected discounted sum of payoffs from their decision. Payoffs

depend on the state of nature, s, which includes: current ownership status, the current

net-of-subsidy up-front investment costs of moving from no technology to one of the two

technologies, C1→d, the annual electricity bill that depends on technology ownership, cd, and

the annual duration of outages, OutageMWh. These state variables are stochastic, and the

household has expectations for how they will evolve in the future, s′. The state variables

enter the current-period payoff from making the adoption decision as follows:

u(s, d, ε) =


−c1 + ε if d=1, no adoption

−c2 + γ2 − C1→2 + γ1→2 + ε if d=2, solar

−c3 + γ3 − C1→3 + γ1→3 + ϕOutageMWh + ε if d=3, solar+storage.

(2)

15If a household adopts a system, then we model this as a terminal decision: we do not allow solar
households to adopt a storage add-on or remove an adopted system. In the estimation, we set the payoff
from changing states after adoption as prohibitively costly, and in the dataset, we only include single-family
homes that do not yet have a solar or solar-plus-storage system. We think this simplification is reasonable
given that storage add-ons are rare and also do not appear to respond to outages (Appendix Section A.3)
and that we do not observe system removals in our data.
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Each household has to pay an annual electricity bill, cs, which varies by year, and the

three endogenous states of ownership: (1) no technology, (2) solar, or (3) solar-plus-storage.

The household also faces an unobserved annual cost, equal to 0 when it does not own a

solar panel, γ2 when it does own a solar panel, and γ3 when it owns a solar-battery system.

These costs capture, for example, an unexpected household shock that results in a higher or

lower annual electricity bill, annual unobserved maintenance costs, or the warm glow from

producing one’s own power.

If the household adopts, it pays the current net-of-subsidy up-front cost and moves from

owning nothing to its new state of ownership, C1→d. The household also faces an unobserved

adoption shock, γ1→d, which captures any technology-specific unobservable fixed costs, such

as the cost of finding an installer or the initial warm glow from purchasing the system. Once

a system is adopted, it is an absorbing state, with no future decisions to revisit.

Our adoption data are at the zip-code level, which we expand to the household level using

the number of single-family houses in the zip code (Integrated Public Use Microdata Series,

2020), less the number of existing solar and storage systems. In each month, we allocate

households as adopters using the number of adoptions of solar and solar-plus-storage systems

listed for the zip code. We are implicitly assuming that all households are the same within

a zip code.

Avoided power outages enter the model as a unique benefit of adopting solar-plus-storage.

We express outages in megawatt-hours, OutageMWh, with the intended goal to estimate

the residential VoLL in the same unit as used in market design. The household makes a

decision each month, but it is based on the annual bill savings and annual expected outages.

Thus, outages are the rolling sum of outage hours experienced in the zip code in the prior

12 months, which we convert to outage megawatt-hours by multiplying by the residential

average electricity use per hour. The parameter estimate ϕ then provides a household’s

per-megawatt-hour WTP to avoid an outage. Finally, in each year, households also face a

random, unobserved shock, ε, that reconciles the differences in the model’s optimal choice
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and the actual choices observed.

In addition to the current-period payoff (Equation 2), the decision also depends on the

expected future payoffs, which include the option of waiting to invest, the value of which

arises from uncertainty in future costs and benefits. We account for household expectations

in how the technology-specific investment costs, electricity bills, and annual megawatt-hours

of power outages, s = {cd, Cd, OutageMWh}, will change over time, following transitions

governed by the probability density function f(s′, ε′|s, ε, d, θ). We assume a simple first-

order Markov process, specifically an AR(1) process, and estimate the parameters θ from

the observed past changes.16 The future periods are discounted at the discount factor β.

In the estimation, we set β at the annual discount factor estimated from solar adoption in

De Groote and Verboven (2019): 0.869 or an annual discount rate of 15 percent.17

With the state transition probabilities and the discount factor, we can express the

expected discounted value of the adoption decision as the unique solution to the Bellman

equation:

V (s, ε) = max
d

[u(s, d, ε) + β

∫
s′

∫
ε′
V (s′, ε′)f(s′, ε′|s, ε, d)dε′ds′ ].

Following Rust (1987), we adopt the conditional independence assumption: the

unobserved shock is independent over time and conditional on the state variables but the

future state is independent of the unobserved shock, such that the state transition can be

factorized as f(s′, ε′|s, ε, d) = f(s′|s, d)g(ε′|s′). The unobserved shock would, for example,

capture the benefit a south-facing homeowner gets from the more prominent showcase of

their panels on the front of their house. This unobserved benefit might increase as panel

prices rise but would not increase the price of the panels themselves.

Under the assumption that ε is independent and identically distributed with a Type I

16Figures A5–A8 depict the changes in the state variables over time.
17We note that when using a larger discount factor, we cannot replicate the data as well as when using

the discount factor estimated in De Groote and Verboven (2019). Our choice to use a 15 percent discount
rate is also in-line with the preliminary estimates of (Bollinger et al., 2023), that California households have
discount rates of 10–19 percent.
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Extreme Value distribution, the Bellman equation becomes:

Vθ(s, ε) = max
d

[vθ(s, d) + bε(d)]

where θ represents the parameters to be estimated, that is, those governing the state

transition probability densities, the unobserved costs, and the VoLL. And vθ is the fixed

point of vθ = Γ(vθ), where Γθ is a contraction mapping (Rust, 1987):

Γθ(v)(s, d) = u(s, d, θ) + β

∫
s′
b log

3∑
d′=1

[
exp

{
vθ(s

′, d′)

b

}]
f(s′|s, d)ds′ (3)

with scale parameter, b, from the extreme value distribution of ε, which we normalize to 1

(equivalent to $1,000). The extreme value distribution of the error ε gives us the multinomial-

logit, closed-form solution of the choice probabilities, given each choice’s value vθ(s
′, d′).

Our paper is an application of the nested fixed point algorithm, which is broken

into three stages. In a first stage, we estimate a subsample of the parameters—

the first-stage parameters, θ1st—which are found in the transition probability density

function, f(st+1|st, θ1st), for each of the state variables: the annual electricity bill, the

technology-specific investment costs, and annual megawatt-hours of power outage, s =

{c1, c2, c3, C2, C3, OutageMWh}. We assume that households make predictions for the future

values of these state variables based on their current levels and how they changed in the

past. For each, we assume these variables evolve with an AR(1) process, with intercept α0,s,

drift, α1,s, and normally distributed noise with standard deviation σs. Specifically, each state

variable transitions according to:

st = α0 + α1st−1 + σε. (4)

We assume the state transition probabilities are independent of each other and estimate

θ1st = {α0,s, α1,s, σs} separately for each of the six state variables. For each state variable, we

use data across all Z zip codes and T years, to find the θ1st that maximizes the likelihood:
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L1(θ1st) =
Zz∏
z=1

Ti∏
t=1

f(szt+1|szt , θ1st). (5)

These estimated transition probabilities, f(st+1|st, θ̂1st), form the expectations for how

the future states will evolve. For the outage state variable, when it is zero for current outages,

we set the expectation to be that future outages are also 0 and only follow the AR(1) process

after a household experiences an outage.18

The second-stage parameters, θ2nd = {γ2, γ3, γ1→2, γ1→3, ϕ}, are the unobserved

costs/benefits of the decision and the VoLL, from the current payoffs, Equation (2).

The estimated first-stage parameters, θ̂1st , are taken as given in the second-stage

estimation that exploits the monthly variation in outages and monthly data on zip-code

solar and storage uptake. Using the data on T month-year decisions from N households, we

estimate θ2nd by maximizing the second-stage maximum likelihood:

L2(θ2nd) =

Ni∏
i=1

Ti∏
t=1

p(dit|sit, θ2nd , θ̂1st). (6)

The Extreme Value distribution of the error ε gives us the multinomial-logit, closed-form

solution of the choice probabilities:

p(d|s, θ) =
exp vθ(s,d)

b∑
d′ exp vθ(s,d′)

b

. (7)

Apropos of its name, when finding the parameters that maximize the likelihood equation

(6), for each candidate θ2nd , the fixed point of the Bellman equation (3) is solved. The

parameter estimates are from the two-stage estimation, and to obtain consistent estimates of

the standard errors, we use the full likelihood function that includes both the first and second

stage. The full likelihood of observing the adoption decision and state variable transitions is

Lf (θ) =

Ni∏
i=1

Ti∏
t=1

p(dit|sitθ)f(sit+1|sit, θ). (8)

18Results from different expectations of outages are explored in Table A10.

23



We run one iteration of minimizing the negative of the full log-likelihood, invert the

Hessian matrix, and take the square root of the diagonal elements as our standard errors.

5.2 Identification

Our identification strategy relies on observing adoptions of two similar technologies that vary

in both (1) costs and (2) the ability to avert outages, paired with observing these adoptions

following exogenous exposure to varying intensities of outages.

First, on costs, the decision to invest in a solar-only or a solar-plus-storage system

involves weighing future bill savings against the up-front installation costs. Both types of

systems reduce a household’s electricity bill, with a modestly larger reduction from solar-plus-

storage.19 The bill savings can only partly justify the higher price tag for a solar-plus-storage

system. We account for bill savings as one driver of the adoption of solar-plus-storage using

variation in annual bills and up-front installation costs, including spatial variation in bills due

to solar irradiance in California’s different climate zones. Specifically, the observed differences

in the adoption of solar-only, d = 2, versus solar-plus-storage, d = 3, in response to changes

to the annual bill or up-front installation costs, identifies estimates of the unobserved costs

and benefits of choosing one system over the other, which are interpreted in relation to any

benefit (also unobserved) from not adopting any system, which we implicitly set to 0.

Important for our estimation is that only solar-plus-storage adoption provides the

additional benefit of allowing households to avert power outages. An observed increase

in the adoption of solar plus storage, d = 3, in response to an exogenous increase in outages,

OutageMWh, identifies our parameter of interest, WTP to avoid outages, ϕ.

In addition to the conditional independence and additive separability assumptions of

the nested fixed point algorithm (Rust, 1987), we also make the following assumptions.

Within an income quartile, households may vary by outage duration and electricity bills,

but all households are identical in preferences. On expectations, our main specification has

19Both systems will reduce a household’s electricity bill, solar by roughly 50 percent and solar-plus-storage
by roughly 60 percent.
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the assumption that outages are expected to follow as they did for those that experienced

outages, with those who never experienced outages not expecting them (the appendix

presents results with different assumptions on expectations). Our model also assumes that

batteries avert the full length of outages households experience and that it is the only averting

expenditure available to households. In Section 5.4, we describe how violation of these last

two assumptions would imply our estimate is a lower bound.

5.3 Data Inputs for the Discrete Choice Model

In this section, we summarize the data inputs used in the discrete choice model. We begin

by describing the annual electricity bill of the representative consumer and how it varies by

the household’s installed distributed-energy technology. We incorporate heterogeneity in our

model by allowing the scale of the household consumption to vary by income quartile. We

then detail how we establish estimates on the cost of solar and storage technologies.

Annual electricity bills

The electricity bill of a representative residential customer who has a solar or solar-plus-

storage system will vary over time at the hourly level. The difference in bills will depend

on how much electricity is consumed and produced and at what time of day. In addition,

it has been shown that electricity consumption is increasing in household income. We use

a representative load profile, the utility’s rate schedule, and hourly solar output to compute

the electricity bills of residential customers under the different technology choices for each

year of our sample. We use annual electricity consumption values from Borenstein et al.

(2022) to scale consumption by income quartile.

For the rate schedule of a customer without a distributed-energy technology, we use

PG&E’s E-TOU-C residential rate schedule, the default Time-of-Use (TOU) schedule that

customers are shifted onto as PG&E moves its residential customers to TOU tariff schedules.

For the rate schedule of customers with solar-only or solar-plus-storage systems, we use the

Net Energy Metering (NEM) 2.0 retail rate policy that was in place in PG&E for our entire
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sample period. It includes mandatory TOU pricing and other bill components, such as a

minimum bill and nonbypassable charges (Pacific Gas & Electric, 2021a,b).20

To calculate solar output, we need a measure of solar irradiance. We take the geographical

centroid of California’s 16 Climate Zones and gather solar irradiance data from the NREL

Multi-Year PSM Global Horizontal Irradiance data at these locations to permit geographical

variation (NREL, 2021).21 We use NREL’s System Advisor Model and the solar irradiance

data to simulate hourly solar output at each location. We match each zip code with its

relevant Climate Zone.

For customers with solar-plus-storage systems, we use this approach to characterize

hourly solar output. Under the NEM 2.0 TOU pricing tariff, the primary financial incentive

for using the battery is to arbitrage off of the peak-to-off-peak TOU price differential. We

develop an algorithm to model the charge and discharge operational decisions of the battery

system. The battery is charged in hours with excess solar production in the off-peak hours

and discharged in the evening peak hours to offset demand from the grid when the sun sets

during peak hours. We assume a 10 percent round-trip efficiency loss of the battery system.

For electricity consumption, we use PG&E’s 2017–2020 representative hourly residential

load profile (Pacific Gas & Electric, 2021b). This provides us with the demand profile shape

of a typical residential customer throughout the day and year. We scale this consumption

profile to achieve 2019 annual gross consumption levels in PG&E reported in Borenstein et al.

(2022) by income thresholds. More specifically, we use the income quartiles in our data and

the annual consumption values reported in their analysis to establish annual consumption

20A minimum bill serves as a floor on a customer’s bill and requires a NEM customer to have to pay a
minimum amount per-day to cover the costs of maintaining the electric grid. Consumers face nonbypassable
charges when they consume electricity from the grid. These charges cannot be offset by exporting excess
solar to the electricity grid; rather, excess solar can only be used to offset energy charges.

21California’s Climate Zones were established to create energy efficiency standards and are based on
energy use, temperature, weather, and other climatic factors (CEC, 1995).
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levels for each income quartile.22 For each income quartile, we scale the representative load

profile uniformly in each hour to achieve the targeted 2019 annual consumption levels.

We scale the solar PV system capacity to achieve an average annual solar output-to-

consumption ratio of 60 percent across all climate zones. This is consistent with the solar

PV system sizing observed in PG&E (Darghouth et al., 2011; Borenstein, 2017). This yields

solar systems that range from 2 KWs to 2.73 KWs.23 We observe that battery storage system

rated power capacity (in KWs) is approximately equal to the capacity of the solar panels on

average. Furthermore, the energy capacity of the battery (in KWhs), when it is reported,

is approximately two times the rated power capacity.24 We use these observed features to

scale the battery systems for each income quartile.

Appendix A.8.4.1 presents an alternative approach that uses the observed solar and

storage system capacities in the data and scales the annual consumption levels uniformly

across all zip codes upward to achieve an annual solar output-to-consumption ratio of 60

percent at the observed capacity levels. Although this approximates the observed solar

and storage system sizes well on average, it does not permit heterogeneity in consumption

and system sizes across income quartiles. Regardless, we demonstrate that our qualitative

conclusions are robust to this alternative approach.

After having established the rate structure, consumption profiles, and solar and storage

system characteristics for each income quartile, we calculate the representative customer’s

hourly electricity bill and aggregate it to represent an annual electricity bill. We find that

adding rooftop solar reduces the electricity bill by approximately 54 percent across the

22Using Figure 2 in Borenstein et al. (2022), we set the annual consumption threshold to be 5,500
KWhs, 5,800 KWhs, 6,000 KWhs, and 7,500 KWhs for the first to fourth income quartiles that have
income thresholds of approximately [0, $50,000], [$50,000, $68,000], [$68,000, $97,000], and above $97,000,
respectively. The reported annual consumption for incomes above $97,000 ranges from 6,000–9,000 KWhs;
7,500 KWhs reflects the midpoint of this range.

23The residential solar systems in our data range from 1.6 KWs to 16.5 KWs in the 1st–99th percentiles,
with a median value of 5.4 KWs. Consequently, the systems that arise using our income-quartile scaled
approach are relatively small. This is likely because the typical solar adopters are higher income and have
higher annual consumption values (Borenstein, 2017; Borenstein et al., 2022).

24This is consistent with the standard Tesla Powerwall specifications that have a 7 KW rated power
capacity and an approximately two times energy capacity at 13.5 KWhs.
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four income quartiles on average. A solar-plus-storage system reduces the electricity bill

by approximately 64 percent on average, resulting in an additional 10 percentage point

reduction on average.25 This reduction is consistent with the findings in the literature that

the bill-reducing value of a battery system is modest relative to its costs for residential

consumers under current retail tariffs, suggesting other reasons for adopting this technology

(e.g., resiliency and reliability value) (Fares and Webber, 2017; Barbose et al., 2021).

Rooftop solar adoption costs

During our sample period, the only subsidy provided to rooftop solar systems is the

federal income tax credit (ITC), which equals 30 percent of the project’s costs in 2017–2019

and 26 percent in 2020 (U.S DOE, 2021).26 For an estimate of the average solar cost and

subsidy, we use reported system costs on non-third-party-owned residential solar systems in

Go Solar California’s (2020) Distributed Generation Interconnection data set.27 We use this

individual application-level data to compute the median monthly reported solar cost. This

results in solar costs with an average of $4.1/watt over our sample.28 We apply the ITC to

these values to estimate the solar subsidy. As expected, the solar costs and ITC subsidy

values have declined over our sample.29

Solar-plus-storage adoption costs

We use data from California’s SGIP (SGIP, 2020; Go Solar California, 2020). The data

provide information on the system characteristics, customer class, and cost of battery systems

25See Figure A5 for a detailed illustration of the estimated bill savings by technology configuration and
income quartile over our sample.

26We follow Borenstein (2017) and Pless and Van Benthem (2019) and assume that the ITC is fully
monetized by the households. The credit is nonrefundable, so the customer needs to have enough tax
liability to absorb it. However, households can carry over unused credit to the next tax year reducing the
amount of any unused credit (U.S DOE, 2021). We may be overstating the benefits associated with the ITC.
For our analysis, any overestimates on the subsidy provided to solar will symmetrically impact customers who
adopt solar-only and solar-plus-storage systems. Our estimate of the VoLL is identified from the difference
between the household utility from adopting solar versus solar-plus-storage.

27Other studies have identified issues with reported system costs for third-party solar systems because they
are installer-reported appraised values rather than actual prices households pay (Pless and Van Benthem,
2019). To avoid these possible data quality issues, we focus on non-third-party systems, which represent 70
percent of the observations in our data to establish estimates on the costs of a solar system.

28This estimate falls closely in line with those reported in the literature (Barbose et al., 2021).
29See Figure A6 for a summary of solar capital costs and subsidies over our sample.
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installed and subsidies provided. We use the median monthly cost reported and subsidy

received per kW. In 2020, the CPUC expanded the SGIP to include subsidies for communities

affected by PSPS outages or households that lived in areas prone to wildfire prevention

outages. However, the implementation of these subsidies occurred after our sample period

(TerraVerde Energy, 2020).

We find costs and subsidies in the range of $1,418–2,880 per kW and $464–1,160 per kW

over our sample, respectively.30 Somewhat surprisingly, as shown in Figure A7, storage costs

have increased over time. This is consistent with findings in other studies that suggest that

this increase is driven by supply-chain constraints and value-based pricing (Barbose et al.,

2021). Storage subsidies have declined over time because of the ratcheted nature of SGIP

funding as storage enrollment increases (SGIP, 2020).

5.4 VoLL Estimates

We permit heterogeneity by estimating the model separately for zip codes stratified by

median household income, a key socioeconomic indicator, as shown in Figure 5. We split

our sample into quartiles based on the zip code’s median household income. Our estimate of

VoLL is increasing by income quartile, ranging from $2,477/MWh to $5,239/MWh, averaging

$4,292/MWh (see Table 3).31

The literature has a broad range of residential VoLL estimates, from as low as $50/MWh

to as high as $109,169/MWh, varying by country and estimation methodology (see Table

A1). Most comparable in size to our estimates is the US meta-analysis by Sullivan

et al. (2015) that includes 34 different data sets from various stated-preference surveys,

ranging from $1,444/MWh to $6,555/MWh. Our revealed-preference estimates lie in the

same general magnitude. Our estimates are larger than those of the only other available

30This equates to an average storage cost of $1,100/kWh before the subsidy and $787/kWh after the
subsidy, assuming a system configuration that is 14 kWh/7 kW reflecting a standard Tesla Powerwall (Tesla,
2019). These storage cost estimates fall closely in line with other residential battery storage estimates in
California (Barbose et al., 2021).

31The parameters from the first-stage transition probabilities and the other second-stage structural
parameters are discussed in Appendix Table A5.

29



Table 3: Estimated Value of Lost Load by Income Quartile

Income Quartile Subsample Average

First Second Third Fourth

ϕV oLL ($/MWh) 2,477 4,302 5,152 5,239 4,292
(75) (125) (161) (75) (115)

Note: Value of Lost Load ($/MWh) is the estimated ϕ in the dynamic discrete

choice model. In parentheses are standard errors calculated from the Hessian

matrix of the full log-likelihood function. The other estimated parameters from

the discrete choice model are found in Table A5. Final column shows the average

across the four income quartiles with a standard error calculated from the average

of the variances.

revealed-preference estimate at the writing of this paper, which has a central estimate of

$1,570/MWh (Harris, 2023).32 The difference could point to the importance of outage length

in determining a household’s WTP to avoid outages. The national average outage duration

is five hours per year (Harris, 2023), which is low compared to those treated by the California

power outages, which averaged 70 hours.

In the appendix, we show estimates under three variants of the model (Section

A.8.4). First, we show the estimates when we use data without scaling consumption by

income quartile. We assume households, regardless of income, consume the same amount

of electricity, which results in a wider range of VoLL estimates from $3,662/MWh to

$7,055/MWh (Table A7). Second, we show the estimates from alternative assumptions

on what households expect future outages to be: (1) outages will remain the same as the

current year with certainty, and (2) outages are expected to go to zero in the future. The

case with certain, constant outages results in estimates similar to our main specification with

uncertainty in outages, with values ranging from $1,731/MWh to $6,728/MWh (Table A10).

In the extreme case in which a household expects zero outages in the future, the estimates

are much larger, up to $42,757/MWh, and even with such a large VoLL, the simulations

32Using cross-sectional data from Israel with a sample of public sector agencies and industrial firms,
Beenstock et al. (1997) estimates a VoLL of $7,200/MWh in 1991 USD ($13,680/MWh in 2020 USD). This
is consistent with the survey-based literature that finds that commercial and industrial firms have a higher
VoLL.
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perform poorly, predicting far fewer adoptions than observed in the data. This extreme case

reiterates that the benefit of being able to avert outages is needed to justify the expense of

battery adoption today.

Our main estimates are likely lower bounds for at least three reasons. First, we do

not have data on other potential averting expenditures. For example, households could

have purchased portable generators (Harris, 2023), but no publicly available data exist that

detail the universe of household generator adoption at the zip code level. Or, for example,

households could be moving to different locations to avoid outages, an outcome that is outside

the scope of this paper. By not observing these averting expenditures, we are implicitly

assuming these households have zero WTP for outages, biasing our estimates downwards.

Second, we are assuming that the solar-plus-storage system completely averts a

household’s expected outage. If this is not the case, then we are underestimating their

WTP for averting outages (i.e., they are paying the same but averting less).

Third, it is possible that only a subset of storage projects in our data are provided

subsidies.33 Consequently, we may be overstating the subsidies provided for residential

storage projects, which would bias our estimates downward. We compare the total storage

capacity that filed applications in PG&E to the SGIP subsidy dataset and find that SGIP-

funded capacity makes up 78 percent of total storage capacity in PG&E during our sample

period, which thereby limits the extent of the bias.

Nonetheless, our estimates are useful to provide a lower-bound estimate of the damages

that residential households incurred during PG&E’s outage events in 2018 and 2019. We

take the estimated kWhs households were unable to consume as a result of the outages in

each zip code and multiply by the income-quartile-specific VoLL.34 Our estimates suggest

damages of at least $322 million to residential customers alone for the foregone consumption

33California’s Self-Generation Incentive Program has funding limits, and a subset of subsidies are tied to
household income.

34More specifically, for each zip code and month, we estimate the total number of foregone kWhs by
customer-outage-hours incurred by the average kWhs consumed. This number is multiplied by the zip
code’s income-quartile-specific VoLL estimate. We take the sum of these estimates over all zip codes in 2018
and 2019.
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value. The full cost of the outages would include various other factors such as the losses by

commercial and industrial customers, property damage, and potentially the loss of life.

6 Conclusion

We examine the defensive expenditure of solar-plus-storage adoption to reduce the exposure

to power outages in California. We exploit variation in exposure to hours-to-days-long power

outages. Using a DID empirical methodology, we demonstrate that zip codes exposed to more

intense power outages adopted more solar-plus-storage systems. Residential battery storage

is a nascent technology, so although the absolute value of capacity additions was small

in magnitude, in percentage terms, battery capacity increased considerably (45 percent in

affected zip codes). We find substantial heterogeneity by median household income, with

the largest effects arising in the highest income zip codes.

We use a dynamic discrete choice model of solar-plus-storage adoption to estimate a

household’s WTP to avoid outages, an essential parameter widely applied in the electricity

sector. This model allows us to disentangle drivers of adoption: the large capital investment

costs, the direct benefits of bill savings, and the value of averting future power outages. We

permit the WTP to vary based upon a zip code’s median household income and estimate

values averaging $4,292/MWh. In the context of California, our parameter estimates can

be used to compare the relative cost of wildfire-prevention strategies, such as burying power

lines and vegetation management, to the consumer benefits of avoided power outages. More

broadly, our revealed-preference estimates serve as an important contrast to estimates in the

literature, which largely rely on stated-preference surveys.

Our analysis provides several directions for future research. First, our data are limited

because we do not observe individual household-level exposure to power outages or the

universe of all averting expenditures. Rather, we use zip-code-level information on the

difference between solar-only and solar-plus-battery to infer responses to power outages.
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Individual household-level data would allow additional evaluation of heterogeneous effects

by household characteristics, and observing an array of averting expenditures would increase

our lower-bound estimate. Second, our VoLL estimates include various frictions, such as

credit constraints, that may limit lower-income households from adopting solar-plus-storage.

Consequently, regulators should not extrapolate our estimates to implement broad strategies

such as curtailing residential customers with lower VoLL estimates during periods of scarce

supply. More direction in how to use VoLL estimates in curtailment decisions is warranted

from future research.
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Appendix

A.1 Recent Estimates of Value of Lost Load (VoLL) in

the Literature

Surveying the most recent papers, Table A1 summarizes VoLL estimates from papers published

between 2015–2022. For earlier papers: Schröder and Kuckshinrichs (2015) provide a survey of

Value of Lost Load (VoLL) estimates from papers published 2004–2014 and Gorman (2022) provides

a survey of meta-analyses that cover papers published 1948–2014.
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Table A1: Summary of Residential VoLL Estimates in the Literature, 2015-2022

Study Country VoLL Estimate Method
(2020 USD/MWh)

Woo et al. (2014) Hong Kong 21,834–109,169 Contingent Valuation

Kim et al. (2015) South Korea 2,023–2,535 Contingent Valuation

Sullivan et al. (2015) United States 1,444–6,555 Meta-Regression Analysis

Abrate et al. (2016) Italy 20,693–56,155 Stated Choice Experiment

Castro et al. (2016) Portugal 11,702 Production Function

Cohen et al. (2016) EU 170–7,549 Stated Choice Experiment

Ozbafli and Jenkins (2016) North Cyprus 370–1,418 Stated Choice Experiment

Wolf and Wenzel (2016) Germany 10,332–23,799 Production Function

Shivakumar et al. (2017) EU 4,723–24,041 Production Function

Giaccaria et al. (2018) Greece 8,474–19,693 Contingent Valuation

Hämäläinen (2018) Finland 4,655–23,632 Contingent Valuation

Morrissey et al. (2018) England 856–7,511 Stated Choice Experiment

Longo et al. (2019) The Netherlands 728–29,802 Stated Choice Experiment
Portugal 704–31,091
Estonia 406–22,856

Alberini et al. (2022) Nepal 50–149 Contingent Valuation

Broberg et al. (2021) Sweden 49,541–74,311 Contingent Valuation

Carlsson et al. (2021) Sweden 573–810 Contingent Valuation

Harris (2023) United States 500–2,510 Revealed Preference

Notes: VoLL estimates were adjusted by first converting to USD using the appropriate average
exchange rate in the given reference year at https://www.exchangerates.org.uk/, then adjusting
for inflation using the All Items in US City Average CPI Series (Seasonally Adjusted) from FRED.
Estimates reported in dollar amounts per hour of outage were adjusted using an average hourly
electricity consumption of 0.78 kW by households in any given hour. The Contingent Valuation and
Stated Choice Experiments reflect stated-preference survey estimates. Production Function methods
are macroeconomic models that assume that electricity is an essential input into production. The
revealed-preference estimate uses purchases of portable generators.
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A.2 Constructing Outage Intensity by Population

Weights

Our primary treatment variable aims to capture the intensity at which a zip code was exposed to

outage events. We use a measure that captures the residential-person-outage hours in each zip code

and month. Figure 3 provides an illustration of our data and methods. We overlay the geospatial

data of PG&E’s ICA distribution feeders (blue lines) with the Census’s Zip Code Tabulation Areas

(ZCTAs) (black lines).35 We then match the PSPS outage events provided at the distribution feeder

level to zip code level. This matching is complicated because a feeder can pass through multiple zip

codes. For example, the red line highlights an individual distribution feeder that was on an outage.

Consequently, for each feeder, we must establish a method to allocate residential-person-outage

hours to each zip code it intersects.

Although we know the number of customers affected by an outage on each feeder, we do not

know exactly where these customers are located along it. We employ a method from the geography

literature that uses machine learning algorithms to project aggregated population measures to

high-resolution geospatial data. We use the 2020 WorldPop gridded population dataset to project

the population distribution across California on a 500-meter by 500-meter square grid (WorldPop,

2020). WorldPop uses the most granular census population data (i.e., block groups), projects

additional land cover topology layers (rivers, elevation, forests, roads, etc.), the geography literature

research on where humans live by land use type, and random forest machine learning models to

project the census population onto a more granular scale.36,37

The gray shaded squares in Figure 3 presents the 500-by-500 meter square grid of population

estimates, where each square has a WorldPop cell estimate on population density. We use this data

to allocate outage intensity to zip codes as follows. Suppose feeder i passes through j = 1, 2, ..., N

WorldPop cells and z = 1, 2, ..., Z zip codes. Denote wj as the population weight of a specific

WorldPop cell. Let Lijz denote the length of feeder i in WorldPop cell j in zip code z. For feeder

i, we assign the following residential customer weight to zip code z:

Wiz =

∑N
j=1 wj Lijz∑Z

z=1

∑N
j=1 wj Lijz

.

35We crosswalk postal zip codes in the Go Solar data set to ZCTAs and find that only 0.3 percent of zip
codes do not match their corresponding ZCTA counterpart.

36More specifically, we use the 2020 unconstrained top-down 1km resolution WorldPop data. These data
provide an estimate on the population density as a point every 1,000 meters across California. We project
the point-based data into a spatial measure using QGIS’s Inverse Distance Weighting (IDW) Interpolation
methodology to fill in the gaps between the points in order to assign a population weight to all locations in
California. Using IDW Interpolation, population density at any location reflects a weighted average of nearby
WorldPop population density points, where the weight is declining in distance. Using this methodology, we
are able to establish a 500-meter by 500-meter spatial grid that allocates a population per pixel number to
all locations in California.

37For additional details, see Sorichetta et al. (2015), Gaughan et al. (2016), and Lloyd et al. (2017).
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For each feeder i, this method places more weight on zip codes with a higher WorldPop gridded

population estimate along cells intersected by the distribution feeder. The weighting method equals

1 when it is summed across all z zip codes a feeder intersects. For each PSPS outage event and zip

code in PG&E’s territory, the feeder weight is used to allocate the number of residential customers

affected and the number of residential-person-outage hours (i.e., residential customers affected

times the number of outage hours). We use these measures to capture the intensity of outage

event a zip code is exposed to in any given month.38 Finally, we match this zip-code-based PSPS

outage data set to the Go Solar California’s (2020) data set that provides information on solar and

solar-plus-storage adoption.

A.3 Different Outcomes of Interest

Figure A1 presents estimates from Equation (1) but with different outcome variables: (a) solar

capacity from the adoption of solar-only systems, (b) solar capacity from the adoption of solar-

plus-storage systems, (c) storage capacity from the adoption of solar-plus-storage systems, and (d)

storage capacity added onto existing solar systems. Although solar is much more prevalent than

storage (as seen by the capacity in watts), evidence is limited of a distinct systematic increase

in solar-only adoption in zip codes that experience outage events. The point estimates in the

regression of storage add-on capacity are noisier after the outages, with a statistically significant

positive coefficient six months after an outage event.

38We also employ weighting methods that allocate customers along a feeder based on the percentage of a
feeder’s line length in each zip code it intersects. This assumes a uniform distribution of customers along a
feeder. Our results are robust to this alternative specification, as shown in Table A3.

A-4



Figure A1: Impact of Outage Intensity on Solar and Storage Capacity (Watts)
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Notes. The dependent variables reflect watts of installed capacity for (a) solar capacity on solar-only
systems, (b) solar capacity on solar-plus-storage systems, (c) storage capacity on solar-plus-storage
systems, and (d) storage capacity added onto existing solar systems. The coefficients are reported
in the solid lines and are the estimates of β from our specification in (1) with quadratic zip-code-
specific time trends. The shaded region reflects the 95 percent confidence intervals.
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A.4 Robustness of Event Study to Different Time

Trends

Figure A2 presents the results of our specification in (1) with (a) no trend, (b) a linear trend, and

(c) a quadratic zip-code-specific time trends. In each case, the distinct positive and statistically

significant posttreatment effect persists. As we remove the flexible zip-code-specific trend, we

observe a small pretreatment trend 8–12 months prior to the treatment. However, this effect is

small in magnitude.

Figure A2: Impact of Outage Intensity on Storage Capacity (Watts)—Zip Code Time Trend
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Notes. The dependent variables reflect watts of installed storage capacity. The coefficients are
reported in the solid lines and are the estimates of β from our specification in (1) with (a) no trend,
(b) a linear trend, and (c) a quadratic zip-code-specific time trends. The shaded region reflects the
95 percent confidence intervals.
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A.5 Heterogeneity by Different Subsamples

In the main paper, we examined subsamples by a zip code’s median income. In Figure A3, we

present results broken out by an Environmental Justice Index. We use California OEHHA’s (2018)

CalEnviroScreen 3.0 EJ metric that is calculated using 20 socioeconomic, demographic, health,

and environmental indicators grouped into two categories: (1) pollution burden and (2) population

characteristics.39,40 The EJ measure ranges from 0 to 100, where a higher number reflects a

more disadvantaged community. Despite a statistically significant effect at various quartiles of

the Environmental Justice metric distribution, Figure A3 illustrates that the treatment effect of

PSPS outage events is largest in zip codes with the lowest EJ concern (i.e., lowest CES scores).

Table A2 presents the coefficient estimates for the main specification in equation (1), the results

by income quartile shown in Figure 5, and the results for the CES EJ measure in Figure A3.

Table A2: Event Study Regression Main Results and Heterogeneous Treatment Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Full Income Quartiles CalEnviroScreen Quartiles

Sample Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Month ≤ -12 -0.0020 -0.0019∗ -0.0006 -0.0011 -0.0090∗∗ -0.0024 -0.0024 -0.0022 -0.0011

(0.0013) (0.0010) (0.0015) (0.0021) (0.0043) (0.0026) (0.0025) (0.0015) (0.0013)

Month -7 to -11 -0.0019 -0.0016 -0.0008 -0.0011 -0.0078∗∗ -0.0024 -0.0021 -0.0021 -0.0006
(0.0012) (0.0015) (0.0015) (0.0020) (0.0035) (0.0021) (0.0023) (0.0018) (0.0013)

Month -2 to -6 -0.0015 -0.0005 -0.0005 -0.0009 -0.0074∗ -0.0034 -0.0009 -0.0017 0.0007
(0.0011) (0.0007) (0.0011) (0.0016) (0.0044) (0.0021) (0.0022) (0.0010) (0.0008)

Month 0 to 2 0.0035∗∗ 0.0014 0.0015 0.0044 0.0043 0.0050∗∗ 0.0030 0.0014 0.0018∗

(0.0018) (0.0014) (0.0015) (0.0031) (0.0047) (0.0020) (0.0039) (0.0019) (0.0011)

Month 3 to 5 0.0102∗∗∗ 0.0034∗∗∗ 0.0034∗ 0.0111∗∗∗ 0.0244∗∗∗ 0.0145∗∗∗ 0.0091∗ 0.0046∗∗∗ 0.0076∗∗∗

(0.0025) (0.0009) (0.0019) (0.0042) (0.0068) (0.0032) (0.0050) (0.0016) (0.0022)

Month ≥ 6 0.0025∗ 0.0002 0.0022 0.0033 0.0046 0.0034∗∗ 0.0025 0.0008 0.0026
(0.0014) (0.0014) (0.0015) (0.0025) (0.0042) (0.0016) (0.0033) (0.0014) (0.0025)

Observations 68,094 16,692 16,614 16,692 16,614 17,004 17,004 17,004 17,004
R2 0.4927 0.2877 0.3043 0.5152 0.5229 0.5376 0.4990 0.4257 0.3751
F-Stat 12.41*** 10.44*** 2.90* 8.79*** 6.04*** 6.62*** 7.13*** 6.04** 56.90***

Notes: Models presented are estimates of Equation (1) with quadratic zip-code-specific time trends. We bin the
individual event month indicator variables, 1(t − T ∗z = k), into 6 groups: (i) k ≤ −12, (ii) −11 ≤ k ≤ −7, (iii)
−6 ≤ k ≤ −2, (iv) 0 ≤ k ≤ 2, (v) 3 ≤ k ≤ 5, and (iv) k ≥ 6. We bin the treatment effects 6 months and
after into a final group because this indicator variables coincide with the start of the Covid-19 pandemic for the
largest PSPS outage events in September and October 2019. This partitioning allows us to clearly separate out
the likely confounding effects of the pandemic on storage adoption. Column (1) reflects the binned coefficient
estimates of the full sample. Columns (2)–(5) and (6)–(9) are the binned coefficient estimates on subsamples
broken down by income and CalEnviroScreen (CES) quartiles, respectively. Cluster robust standard errors at
the zip code are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

39The pollution burden measures exposure to ozone, PM2.5, diesel PM emissions, drinking water
contamination, pesticides, toxic releases, traffic density, cleanup sites, groundwater threats, hazardous waste,
impaired water bodies, and solid waste sites. The population characteristics measure educational attainment,
housing burden, linguistic isolation, poverty, unemployment, asthma emergency room visits, cardiovascular
disease emergency room visits, and percent low-birthweight births (California OEHHA, 2018).

40We use the US census’s crosswalk data file to crosswalk the CalEnviroScreen census tract-level data to
the zip code level based on population weighting.
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Figure A3: Impact of Outage Intensity on Storage Capacity by CalEnviroScreen Quartiles
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(b) Second CalEnviroScreen Quartile
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(c) Third CalEnviroScreen Quartile
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(d) Fourth CalEnviroScreen Quartile

Notes. The dependent variables reflect watts of installed storage capacity. The coefficients are
reported in the solid lines and are the estimates of β from our specification in (1) with quadratic
zip-code-specific time trends, and the sample is separated by CalEnviroScreen quartiles. The
shaded region reflects the 95 percent confidence intervals. We use California OEHHA’s (2018)
CalEnviroScreen 3.0 environmental justice metric.
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A.6 Additional Robustness Specifications

Table A3 presents several additional model specifications. For comparison purposes, column (1)

provides the results from our main specification over the full sample. Column (2) considers the

results of our analysis when we compare zip codes that were first and only subject to PSPS outage

events in October 2019 (reflecting 76 percent of treated zip codes) to never-treated zip codes. This

comparison focuses on the most intensely treated zip codes and does not have variation in treatment

timing.

Table A3: Event Study Regression Robustness Results

(1) (2) (3) (4)
Main Oct. 2019 Only Length Weights Outage Dummy

Month ≤ -12 -0.0020 -0.0024 -0.0021 -227.09
(0.0013) (0.0024) (0.0013) (280.65)

Month -7 to - 11 -0.0019 -0.0020 -0.0019 -276.53
(0.0012) (0.0020) (0.0012) (274.26)

Month -2 to -6 -0.0015 -0.0024 -0.0015 -313.48
(0.0011) (0.0022) (0.0011) (271.34)

Month 0 to 2 0.0035∗∗ 0.0057∗∗ 0.0035∗∗ 408.60
(0.0018) (0.0029) (0.0018) (288.57)

Month 3 to 5 0.0102∗∗∗ 0.0168∗∗∗ 0.0102∗∗∗ 1,615.33∗∗∗

(0.0025) (0.0044) (0.0025) (350.45)

Month ≥ 6 0.0025∗ 0.0037 0.0026∗ 452.22
(0.0014) (0.0029) (0.0015) (308.10)

Observations 68,094 58,032 68,094 68,094
R2 0.4927 0.4886 0.4920 0.4830
F-Stat 12.41*** 5.70*** 11.45*** 5.68***

Notes: Models presented are estimates of equation (1) with quadratic zip-code-specific time trends. We
bin the individual event month indicator variables, 1(t− T ∗z = k), into six groups: (i) k ≤ −12, (ii) −11 ≤
k ≤ −7, (iii) −6 ≤ k ≤ −2, (iv) 0 ≤ k ≤ 2, (v) 3 ≤ k ≤ 5, and (iv) k ≥ 6. Column (1) reflects the binned
coefficient estimates of the full sample. Column (2) reflects the results for the zip codes that were first and
only treated in October 2019 compared to never-treated zip codes. Column (3) reflects the setting where
outages at the distribution feeder level were allocated to zip codes based on the percentage of line length.
Column (4) reflects the setting where the continuous Outage Intensity treatment variable is replaced by
an indicator variable. Clustered robust standard errors at the zip code are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

Column (2) demonstrates that our key conclusions hold, with a positive and statistically

significant effect of the outage intensity measure on battery storage adoption in months 0–5 after

the October 2019 PSPS events. These effects are larger than those identified in Column (1). There

are no pretreatment trends. Our model predicts that this PSPS outage event increased storage

capacity investment in the zip codes exposed only to the October 2019 PSPS outage events by an

additional 106 percent compared to the setting where the October 2019 PSPS outage events did
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not occur. These results suggest that the October 2019 outage events and the affected zip codes

were a key source for our estimated outage-driven storage investments using the full sample.

Column (3) presents the results of our main specification when we use feeder-length-based

weighting to allocate distribution feeder-level outage data to zip codes rather than our WorldPop

weighting method. This approach assumes a uniform distribution of customers along a feeder.

Despite this simple approach, the results are closely related to those that arise using our population-

weighting estimates.

Column (4) presents the results of our analysis when we define our treatment variable to be

an indicator that equals 1 when a zip code has been exposed to a PSPS event. This specification

reflects a standard difference-in-difference (DID) with a discrete treatment variable. We continue

to find a positive and statistically significant treatment effect 3–5 months after the PSPS events,

and no evidence of pretreatment trends. We use the coefficient estimates to predict the amount of

storage capacity that was installed using the specification in Column (4). We compare this level to

the amount of storage capacity that would have been installed in treated zip codes absent the outage

events. Our model predicts that storage capacity in treated zip codes increased by approximately

55 percent as the result of PSPS outage events. We prefer our continuous treatment variable that

reflects residential customer-outage-hours because it captures the considerable heterogeneity in the

intensity of outage events over our sample.

A.7 Staggered DID

We revisit concerns that arise because our analysis has variation in treatment timing (see Table

1). Goodman-Bacon (2021) demonstrates that the staggered DID estimate is equivalent to the

weighted average of all possible two-by-two DID estimators. Unless potentially strong assumptions

are imposed on the nature of the treatment effects, it has been shown that this approach can lead

the DID regression model to be misspecified and fail to identify the average effect of the treatment

on the treated. In essence, this arises because already-treated units act as controls for groups

treated later in the sample (Baker et al., 2022).

Importantly, we demonstrate in Table A3 column (2) that our key conclusions are robust when

we compare zip codes that were first and only treated in October 2019 (76 percent of zip codes) to

never-treated zip codes. This comparison is not subject to the key critiques that arise as a result

of staggered treatment timing.

To understand the potential implication of the concerns raised in the literature on our main

specification, we use the diagnostic tests developed by Goodman-Bacon (2021). This method

isolates the DID estimate and weights for the two-by-two DID that uses already-treated zip codes

as a control group for zip codes treated later in the sample. We demonstrate that the possible biases

associated with using an already-treated zip code as a control group are minimal in our setting.

This likely arises because the majority of treated zip codes in our sample (76 percent) receive their
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first and only treatment in October 2019. Furthermore, the October 2019 outage events were the

largest in magnitude and duration.

Goodman-Bacon’s (2021) decomposition method focuses on the standard two-way fixed effects

DID absent covariates, which can be represented by augmenting equation (1) as follows:

Storage Capacityzt = γz + δt + βDzt + εzt (A.1)

where Dzt is the zero-one treatment variable that equals 1 if a zip code z has ever experienced

a PSPS outage and 0 otherwise. Although this does not reflect our fully dynamic event-study

framework with flexible zip-code-specific time trends and a continuous treatment variable, we

believe that the Goodman-Bacon decomposition approach is informative of the performance of

our analysis and which two-by-two DID estimators are driving our primary findings. Furthermore,

as shown in Column (4) in Table A3, our conclusions are robust to the use of a discrete DID

specification. Goodman-Bacon (2021) decomposes the staggered DID estimate into three groups:

(i) never treated, (ii) early treated (e.g., October 2018), and (iii) late treated (e.g., October 2019).

Figure A4 provides the results of the Goodman-Bacon decomposition using the specification in

(A.1). The weights for each two-by-two DID comparison are provided on the x-axis, and each DID

estimate is provided on the y-axis. The red line represents the overall DID estimator.

Figure A4 demonstrates a two-by-two DID comparison between a treated and never-treated

group that receives considerable weight in the identification of the overall DID estimate. This

group reflects the October 2019 treated group compared to the never-treated zip codes. This is

consistent with the fact that the majority of the treated zip codes in our sample (76 percent)

were first (and only) treated in this month. Furthermore, these figures demonstrate that despite

variability in the size of the DID estimate, the treated versus never-treated comparisons are all

positive, as are their weights.

As documented by Goodman-Bacon (2021), the two-by-two estimators that can generate biased

results are the ones that compare the later-treated to the earlier-treated group (represented by the

triangles). Figure A4 demonstrates that these two-by-two DID estimates receive limited weight in

the overall DID estimator. This helps defend our analysis against the concerns over bias in two-way

fixed effects DID under heterogeneous treatment effects.

Table A4 provides detailed results of Goodman-Bacon decomposition. We present the average

DID estimates across each group and their relative weights to clearly quantify how these two-by-two

DID estimates contribute to the overall DID estimator. Table A4 demonstrates that the key driver

of the overall DID estimator is the comparison of the treated and never treated. The comparison

of concern, later versus earlier treated, receives only 2 percent of the weight of our DID estimator.

This raises our confidence that the possible biases documented by the econometrics literature is

not a key driver of our results.

We follow Goodman-Bacon (2021) and use the Decomposition Theorem to manually adjust the

DID estimator by subtracting the components of the DID estimator that introduce the bias (i.e.,
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subtract the later versus early treated comparisons). These results are presented in the Adjusted

DID Estimate column in Table A4 and further illustrate that these two-by-two DID comparisons

have a limited effect on our overall DID estimate.

Figure A4: Goodman-Bacon Decomposition—Discrete Two-Way Fixed Effects DID

Notes. This figure implements Goodman-Bacon’s (2021) Decomposition Theorem for the two-way
fixed effects DID specification in Equation (A.1). The x-axis provides the weights placed on each
two-by-two DID estimator, and the y-axis provides the corresponding DID coefficient estimate.

Table A4: Goodman-Bacon Decomposition—DID Estimates and Weights

Overall DID Average DID
Treated vs Earlier Treated vs. Later Treated vs. Adjusted DID

Never Treated Later Treated Earlier Treated Estimate
Storage Capacity 2,127.85 2,470.06 176.21 268.29 2,122.40
Weights 0.85 0.13 0.02
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A.8 Discrete Choice Model Data Inputs and Results

A.8.1 Representative Consumer Figures

Figure A5: Average Monthly and Annual Electricity Bills by Technology and Income Quartile
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Figure A6: Residential Rooftop Solar Average Cost, ITC Subsidy, and Net Costs Per KW
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Figure A7: Residential Battery Storage Average Cost, Subsidy, and Net Costs for Per KW
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Figure A8: Outage Hours Per Household
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Notes. The solid line represents the average outage hours per household across all zip codes at the
monthly level. The gray shaded area contains the 5th and 95th percentile of the distribution.

A.8.2 Parameter Estimates in the Dynamic Model

In the main paper, Table 3 shows estimates for our main parameter of interest, the VoLL, ϕ. Table

A5 provides the estimates of all parameters θ estimated in the discrete choice model.

First, we discuss the first five parameters in Table A5, θ2nd = {ϕ, γ2, γ3, γ1→2, γ1→3}, the

second-stage structural parameters found in the flow utility (Equation 2). These are estimated

by maximizing the partial likelihood function, Equation (6), with standard errors from the full

likelihood function, equation (8).

The VoLL, ϕ, as described in the main text, gives households the benefit of averting outages

from $2,477/MWh to $5,239/MWh. In addition to this parameter, we estimate that owning a

solar panel gives households a warm-glow benefit, γ2, of roughly $600 per year, and owning a

solar-plus-storage panel gives households a benefit, γ3, of roughly $1,000 a year. Switching from no

system to a solar system provides households with a one-time unobserved benefit, γ1→2, of roughly

$1,500-3,000, and switching to a solar-plus-storage system results in a one-time unobserved benefit

of $2,700-8,800. These unobserved shocks could also be driven by measurement error in the cost

to install a system; if we over predict the cost to adopt, the model will compensate by allowing a

positive benefit from adoption. The VoLL is identified through observing adoption decisions made
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under variation in experienced outages. The other parameters are identified through observing

adoption decisions under variation in the up-front costs over time and annual bills over time and

space.

Second, we discuss the remaining parameters, θ1st = {α0,s, α1,s, σs}, the first-stage parameters

those of the state transition matrices, for each state variable. These are estimates of Equation 4 and

estimated from maximizing the likelihood function 5 with standard errors from the full likelihood

(8). The time series of these variables are found in Figures A5 and A6.

In estimating the transitions, we found that using data from the full sample, not the quartile-

specific data alone, resulted in estimates that better fit the data. In the case of the annual bill

without technology, c1, the positive coefficient on the drift parameter α1,c1 suggests expectations

that it will increase over time. This is the same for the annual bill with solar α1,c2 and the annual

bill with a solar-plus-storage system, α1,c3 , though solar-plus-storage has much more uncertainty

in the size of the shock, σc3 . The cost of installation of solar, C2, is expected to decrease over time,

with a coefficient less than 1, α1,C2 , but with large uncertainty, σC2 . The cost of installation of

solar-plus-storage, C3, is expected to increase over time, with a positive drift α1,C3 , but with even

more uncertainty, σC3 . Outages are also expected to decrease over time with a coefficient α1,Outage

less than one.

A.8.3 Model Fit

Table A6 compares the actual adoptions to the model-predicted adoptions. Although a Chi-squared

goodness-of-fit test suggests only the fourth quartile replicates the actual decisions, we nonetheless

think the model performs remarkably well. We are able to predict the adoptions with an error of

just a couple thousand across over 100 million month-household decisions.
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Table A5: All Parameter Estimates in the Dynamic Discrete Choice Model

Income Quartile Subsample
First Second Third Fourth

ϕV oLL ($/MWh) 2,476 4,301 5,151 5,239
(75) (125) (161) (75)

γ2 693.17 778.89 675.48 942.33
(0.6) (2.35) (0.64) (5.29)

γ3 966.29 839.89 1,089.42 270.43
(6.86) (8.07) (3.41) (1.05)

γ1→2 1,703.29 1,496.81 2,557 2,721.19
(5.72) (15.27) (1.92) (37.23)

γ1→3 2,762.66 4,527.02 3,305.43 8,876.85
(29.24) (31.66) (15.65) (36.19)

α0,c1 0.01 0.01 0.01 0.01
(0.001) (0.001) (0.001) (0.001)

α1,c1 1.13 1.13 1.13 1.13
(0.0003) (0.0003) (0.0003) (0)

σc1 4.48 4.48 4.48 4.48
(0.07) (0.07) (0.06) (0.07)

α0,c2 -0.14 -0.14 -0.14 -0.14
(0.006) (0.008) (0.005) (0.003)

α1,c2 1.38 1.38 1.38 1.38
(0.009) (0.011) (0.007) (0.004)

σc2 57.24 57.24 57.24 57.24
(0.8) (0.8) (0.8) (0.8)

α0,c3 -0.11 -0.11 -0.11 -0.11
(0.006) (0.011) (0.005) (0.002)

α1,c3 1.35 1.35 1.35 1.35
(0.011) (0.02) (0.009) (0.005)

σc3 43.58 43.58 43.58 43.58
(0.61) (0.61) (0.61) (0.61)

α0,C2 0.28 0.28 0.28 0.28
(0.01) (0.02) (0.01) (0.01)

α1,C2 0.97 0.97 0.97 0.97
(0) (0) (0.001) (0.002)

σC2 278.67 278.67 278.67 278.67
(3.82) (3.94) (3.53) (3.57)

α0,C3 0.18 0.18 0.18 0.18
(0.01) (0.02) (0.01) (0.01)

α1,C3 1.08 1.08 1.08 1.08
(0) (0) (0.001) (0.001)

σC3 290.24 290.24 290.24 290.24
(3.92) (4.19) (3.5) (3.65)

α0,Outage 11.76 11.76 11.76 11.76
(0.16) (0.3) (0.19) (0.04)

α1,Outage 0.92 0.92 0.92 0.92
(0.01) (0.03) (0.016) (0.001)

σOutage 34.63 34.63 34.63 34.63
(0.24) (0.25) (0.09) (0.14)

Note: This table is an extension of Table 3 from the main text, presenting all (first-
and second-stage) estimates from the dynamic discrete choice model. In parentheses are
standard errors from the square root of the diagonal of the inverse Hessian matrix of the
full log-likelihood function.
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Table A6: Actual Versus Model-Predicted Decisions, Household-Month Counts

Income Quartile Subsample
First Second Third Fourth

Actual
No adoptions 10,379,370 21,716,372 30,745,649 40,154,522
Solar-only adoptions 23,419 43,872 67,379 70,671
Solar-plus-storage adoptions 419 1,051 2,465 3,775

Predictions from main specification
No adoptions 10,379,884 21,717,042 30,748,677 40,154,345
Solar-only adoptions 22,940 43,684 66,139 70,776
Solar-plus-storage adoptions 384 569 677 3,847
χ2 p-value 0 0 0 0.47

Note: Actual compared to predicted adoptions by zip code quartile of income using the assumptions
in the main specification. The first panel contains the actual adoptions, the second panel contains
the adoptions predicted from the model.
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A.8.4 Structural Model Robustness

We consider alternative assumptions to determine the annual representative consumption profile

and solar and storage capacities.

A.8.4.1 Alternative Representative Consumer Approach: Uniform Bills

Our main analysis scales PG&E’s representative hourly residential consumption profile to consider

income-quartile-specific consumption profiles. Borenstein et al. (2022) reports annual electricity

consumption values by income for PG&E in 2019. As detailed in Section 5.3, we use these numbers

to scale the representative hourly load profile to the achieve the annual consumption levels for

each income quartile in their analysis. We scale the solar systems to achieve an average annual

solar output to consumption ratio of 60 percent for each income quartile reflecting values observed

in practice. Finally, we adjust the storage systems to reflect ratios of solar-to-storage capacity

observed in the data.

As an alternative approach, we take the observed mean solar and storage systems sizes in the

data and scale the representative consumption profile uniformly across each income quartile. The

average solar system in the data is 6.06 KWs, and the average battery system has an energy capacity

equal to 6.61 KWs.41 For electricity use, we continue to use PG&E’s 2017–2020 representative

hourly residential load profile (Pacific Gas & Electric, 2021b). This provides us with the demand

profile shape of a typical residential customer throughout the day and year. We scale up the demand

profile by a constant each hour to ensure the representative solar PV system (with capacity 6.06

kWs) yields an average annual output-to-consumption ratio of 60 percent, consistent with solar PV

system sizing that is observed in PG&E (Darghouth et al., 2011; Borenstein, 2017).42

All other features of the data inputs including the retail tariff, solar irradiance to calculate hourly

solar output, and battery operational decisions and efficiency characteristics remain unchanged.

The representative customer’s hourly electricity bill is aggregated to represent an annual electricity

bill. How the electricity bill changes as the households adopt solar-only and solar-plus-storage,

relative to the baseline with no technology, parallel those in the main analysis. We find that

the addition of rooftop solar reduces the electricity bill by approximately 54 percent on average.

A solar-plus-storage system reduces the electricity bill by 64 percent on average. The minimal

changes in the electricity bill from the main analysis arise because both scale the analyses to have

solar systems with an average annual output-to-consumption ratio of 60 percent. Furthermore, the

41We consider a battery system with a rated power capacity that equals two times the energy capacity
(i.e., we consider a 13.22 kWh/6.61 kW battery system). This is close to the residential battery specifications
in practice (e.g., Tesla’s Powerwall is a 14 kWh/7 kW system Tesla, 2019). Furthermore, when both the
kWh and kW rating of the battery system are reported in our data, the kWh rating is systematically 2 times
the kW rating of the residential battery systems.

42If we do not scale up PG&E’s representative load profile, the estimated solar output exceeds annual
consumption. This is inconsistent with observed solar sizing in practice. This result is likely because solar
PV adopters consume more electricity on average than the typical residential customer which includes renters
and owners and all housing types, such as apartments, condos, single-family homes.
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battery systems in our main analysis are scaled to reflect the observed solar-to-storage capacity

ratios observed in practice. Consequently, although the solar and battery systems differ in scale,

they are similar in terms of their proportion to the representative load profiles.

Table A7 reports the VoLL estimates under these alternative assumptions. The VoLL ranges

from $3,662/MWh to $7,055/MWh, with a mean value of $5,632. With these estimates, the

damages to residential electricity consumers from the wildfire prevention outages would total to

$459 million. The degree of spread across the estimates by quartiles is larger, but the spread is

also more likely to be over-estimated. To back out the VoLL, we make an assumption on the

kW of electricity a household uses per hour, that all households consume the representative load.

However, high-income households will consume more and low-income households less than average,

and so this version compensates with a larger range of estimates than our main specification, which

allows for differences in load across quartiles.43

Table A7: Value of Lost Load: Alternative Representative Consumer
Approach of Uniform Bills

Income Quartile Subsample Average

First Second Third Fourth

ϕV oLL ($/MWh) 3,662 5,145 6,666 7,055 5,632
(299) (160) (106) (55) (180)

Note: Value of Lost Load ($/MWh) is the estimated ϕ in the dynamic discrete

choice model. In parentheses are standard errors calculated from the Hessian

matrix of the full log-likelihood function. The other estimated parameters from the

discrete choice model are found in Table A5. The final column shows the average

across the four income quartiles with a standard error calculated from the average

of the variances.

A.8.4.2 Alternative Outage Expectations

The estimation requires an assumption on what households expect future outages to look like. In

our main specification, we are assuming that households with outages expect outages will progress

as they have in the past following a stochastic AR(1) process. In an alternative case, we show

the estimates when outages are assumed to remain the same as the current outage state (i.e., in

the month of decision, the outages they had in the last 12 months dictate future outages with

certainty). In this case, the transition matrix is simply an identity matrix of ones on the diagonal,

zeros elsewhere. The estimates (Table A10) and fit (Table A6) is similar to our main specification

with stochastic outages.

43Dividing a larger use of kWh from the high-income quartile’s WTP would lower its estimated VoLL
and dividing a lower use of kWh in the low-income quartile would raise its estimated VoLL.
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Table A8: Actual Versus Model-Predicted Decisions: Assuming Uniform Bills

Income Quartile Subsample
First Second Third Fourth

Actual
No adoptions 11,749,415 20,999,891 29,737,868 40,224,637
Solar-only adoptions 26,209 43,830 65,723 69,365
Solar-plus-storage adoptions 407 1,052 2,430 3,813

Predicted assuming uniform bills
No adoptions 11,749,026 21,000,011 29,737,101 40,206,731
Solar-only adoptions 26,335 43,767 67,037 90,445
Solar-plus-storage adoptions 670 995 1,883 639
χ2 p-value 0 0.2 0 0

Note: Actual compared to predicted adoptions by zip code quartile of income. The first panel
contains the actual adoptions, the second panel contains the adoptions predicted from the model.

We also examine the case in which households expect no outages in the future. Regardless of

current outages, households expect next period’s outages to be zero with certainty. In this case,

even with an estimate of VoLL that is much larger, we observe little adoption of batteries, differing

from the actual decisions. This extreme case highlights the need to include electricity reliability

when justifying the costly expenditure of residential battery storage today.

Table A9: Value of Lost Load: Alternative Assumptions on Expectations

Income Quartile Subsample Average

First Second Third Fourth

Outages expected to remain same, with certainty

ϕV oLL 1,731 3,404 6,385 6,728 4,562
(75) (125) (161) (75) (115)

Zero outages expected in future

ϕV oLL 18,366 7,046 17,292 42,757 21,365
(390) (436) (160) (59) (305)

Note: Estimates under different assumptions for expectations: that outages remain

the same in the future or revert to zero in the future. When households have no

expectation of future outages, then the WTP to avoid the current period’s outages

are large, but as show in Table A10, still unable to replicate the data.
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Table A10: Actual Versus Predicted: Alternative Assumptions on Expectations

Income Quartile Subsample
First Second Third Fourth

Actual
No adoptions 10,379,370 21,716,372 30,745,649 40,154,522
Solar-only adoptions 23,419 43,872 67,379 70,671
Solar-plus-storage adoptions 419 1,051 2,465 3,775

Outages expected to remain same, with certainty
No adoptions 10,379,512 21,717,010 30,748,657 40,154,447
Solar-only adoptions 23,170 43,367 66,554 70,695
Solar-plus-storage adoptions 526 918 282 3,826
χ2 p-value 0.00 0.00 0 0.71

Zero outages expected in future
No adoptions 10,380,909 21,718,595 30,749,849 40,164,791
Solar-only adoptions 22,296 42,645 65,516 64,145
Solar-plus-storage adoptions 3 55 128 32
χ2 p-value 0 0 0 0

Note: Actual compared to predicted adoptions by zip code quartile of income using alternative expectations.
The second is that outages remain the same as the current period, with certainty, and the third panel is the
expectation that the future will not have outages. The third panel demonstrates the importance of future outage
avoidance in explaining observed battery adoption.
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