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Abstract 

Can automation complement economic incentives? We explore this question by randomly 
encouraging households to activate a feature on their existing smart thermostat that auto-
mates responsiveness to time-of-use electricity pricing. The feature reduces air-condition-
ing use during the highest-priced afternoon period, raising indoor temperatures above a 
household’s preferred temperature, primarily for customers who are typically home dur-
ing the day. Customers infrequently override the feature when they experience discomfort, 
suggesting that they are willing to trade off monetary savings for small increases in dis-
comfort. Automation thus enables low-cost changes in household energy use, with poten-
tially large electricity supply-cost reductions at scale. 
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1. Introduction 
 

Electricity demand and supply fluctuate greatly throughout the day. Economists tend to ad-
vocate for time-varying prices that incentivize load shifting (Borenstein and Holland 2005; Fowlie 
et al. 2021; Blonz 2022; Borenstein and Bushnell 2022). The widespread rollout of smart meters 
has made time-varying pricing a viable and attractive option to efficiently balance electricity sup-
ply and demand by shifting consumption from high-cost hours to lower-cost hours. The effi-
ciency gains from time-varying pricing are likely to grow over time with increased deployment 
of variable renewable resources, such as solar and wind (Borenstein 2019; Bushnell and Novan 
2021). However, several obstacles inhibit its widescale adoption, including political feasibility 
constraints (Borenstein 2007; Joskow and Wolfram 2012) and the relatively small financial benefits 
from responding to time-varying prices, which rational consumers may ignore if attention costs 
are high (Jessoe and Rapson 2014; Sallee 2014; Harding and Lamarche 2016).  

One potential solution to these roadblocks to widescale adoption of time-varying pricing is 
automation (Harding and Sexton 2017). Smart thermostats are being widely adopted by house-
holds interested in energy savings and smart devices.1 Although evidence suggests that smart 
thermostats alone may not generate energy savings (Brandon et al. 2022), recent research has 
found that automated thermostats can increase consumers’ responsiveness to time-varying prices 
(Gillan 2018; Bollinger and Hartmann 2020). However, automated smart thermostats may intro-
duce costs to users, including increases in household discomfort and changes in consumer be-
havior that avoid or undo the effects of automation.  

In this paper, we evaluate a randomized experiment implemented in partnership with 
Ecobee—a leading smart-thermostat company. Our experiment leverages the North American 
rollout of a suite of thermostat features, called “Eco+,” which includes an algorithm that can au-
tomate the household’s heating and cooling schedule if they pay time-of-use (TOU) electricity 
prices, which we refer to as the “Eco+ TOU feature” or the “TOU feature.” Thermostat-level data 
allows us to observe in 5-minute increments the average indoor temperature, how much the air 
conditioner runs (a proxy for energy usage), if the thermostat’s motion sensor detects that an 
individual is in the home, thermostat setpoint, and a variety of other outcomes. These detailed 
data allow us to characterize both the potential energy saving benefits and the costs of the auto-
mated TOU feature, which include discomfort (measured as deviations from a customer’s pre-
ferred temperature), and consumer responses to the feature’s operation. 

We demonstrate the effects of the Eco+ TOU feature on setpoints, cooling, and household 
discomfort. The TOU feature lowers energy usage over the course of a day primarily by moving 

 
1 Some utilities subsidize the installation of smart thermostats. Estimates of smart-thermostat penetration suggest that approxi-
mately 18.3 percent of US households with broadband internet will have smart thermostats by 2023, with projections that about 38 
million homes in the United States will have smart thermostats by 2026 (https://www.utilitydive.com/news/smart-thermostats-us-
slow-adoption-misses-energy-savings/630901/, last accessed April 20, 2023). 
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thermostat setpoints upwards, reducing compressor usage by around 44 minutes (88 percent) 
during the peak period (11 a.m. to 5 p.m.). However, the change in energy use comes at the cost 
of increasing discomfort, which we measure in two ways: (1) the hourly average “temperature 
wedge” between experienced and preferred temperatures (ATW), and (2) the maximum hourly 
temperature wedge (MTW) intended to capture potential nonlinearities in discomfort. We find 
that the TOU feature causes an average increase in discomfort of roughly 0.20–0.25 degrees dur-
ing the peak period in the posttreatment period. Results for MTW are similar to ATW, which 
suggests that experienced discomfort is relatively small even when accounting for nonlinearities. 
Notably, we find energy savings for all encouraged households, but the increases in discomfort 
are concentrated in homes where occupants are typically home throughout the day. These results 
imply that most customers (two-thirds of our sample) experience a win-win: reductions in energy 
use with no corresponding increase in discomfort. 

These overall findings capture the net effect of the automated Eco+ TOU feature, but they do 
not differentiate between the algorithmic effect of the TOU feature and the behavioral changes 
that households may make in response to treatment. Households might respond to the higher 
indoor temperatures caused by the Eco+ TOU feature in three main ways: First, occupants could 
leave the home and go to another air-conditioned space (e.g., the movies or the store), however, 
we find strong evidence that encouragement does not change thermostat motion sensor activa-
tion. Second, occupants could adjust their Eco+ settings or turn off the Eco+ TOU features, which 
would permanently change the way their thermostat responds to higher temperatures. However, 
we find limited evidence of such adjustment behavior.  

Finally, customers could temporarily override their thermostat by manually changing the set-
point to a level below their preprogrammed scheduled temperature. We identify these “thermo-
stat overrides” (TOs) empirically to explore how our discomfort measures relate to override be-
havior. Both ATW and MTW climb quickly in the time leading up to an individual overriding 
their thermostat, suggesting that these measures capture some element of discomfort that is cor-
related with an individual taking action to override their thermostat’s setting. On the relatively 
few days when TOs occur, customers offset the algorithmic energy savings and resulting discom-
fort. On days without TOs, the TOU feature reduces energy use by a similar amount to when we 
do not separately account for behavior. The tendency of customers to override their thermostats 
on occasion suggests that (a) the transaction costs to override a thermostat are not so high that it 
never happens and (b) the overall effect of TOs on the net benefits of the automated feature is 
small. These findings suggest that our results do not just reflect a default bias, but instead reflect 
a mix of the engineering specifications of the TOU feature and customer behavior. In the longer 
run, we find people do not disable the automation, which suggests that Eco+ will provide savings 
in subsequent summers.  

We elucidate the tradeoff between energy savings and discomfort in context by calculating 
the implied energy cost savings for customers. The reduction in compressor usage from the TOU 
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feature generates household-level savings of $0.22–$0.29 Canadian (C$) (or 1.6–2.2 kWh) on each 
day in the posttreatment period, where the range captures different assumptions about air-con-
ditioning system efficiency. These energy savings, while modest at the household level, can trans-
late into large savings when aggregated across a larger population of smart-thermostat owners. 
By applying the noncompliance rate and energy savings from our experiment to a stated govern-
mental policy of installing 100,000 smart thermostats at no cost to Ontario households, we would 
expect a roughly 33–44 MW reduction in electricity demand from 4 p.m. to 5 p.m. on an average 
summer day in Ontario, which is a bit less than the capacity of a small powerplant designed to 
meet peak demand. When extrapolated to a broader population, thermostat automation could 
offset meaningful amounts of peak-load generation, creating valuable energy savings for the grid 
(Blonz 2022).  

Our findings make several contributions to the literature on automation and energy policy. 
Previous studies have estimated the energy savings from replacing a simple non-scheduling ther-
mostat with a smart thermostat (List et al. 2018; Brandon et al. 2022); others have compared in-
formation with automation treatments in conjunction with the provision of new smart thermo-
stats to study participants (Harding and Lamarche 2016; Bollinger and Hartmann 2020). By con-
trast, households in our sample have had a smart thermostat in operation for at least 12 months 
and have faced TOU prices for an even longer period. Customers’ familiarity with the prices and 
hardware in our experiment, coupled with the widespread rollout of a real technology where 
consumers did not know they were being observed for an experiment, suggest a higher likelihood 
of the external validity of our results. 

Second, we estimate energy-saving benefits, changes in discomfort, and consumer reactions 
to smart features on a widely available smart thermostat and TOU pricing. Many studies have 
found that households reduce their energy use in response to time-of-use pricing, but they cannot 
compare the energy savings to changes in indoor comfort (e.g., Jessoe and Rapson 2014; 
Burkhardt et al. 2019; Prest 2020). Our results suggest that most households in our experiment 
receive a win-win: a reduction in energy costs without a corresponding increase in discomfort. 
Even for the small subset of households that do experience increases in discomfort, the magni-
tudes are small.  

Third, our setting and detailed data allow us to examine how individuals respond to an au-
tomated energy intervention. It is an open question to what extent consumers are willing to sac-
rifice some control over consumption decisions to produce private and social benefits. Our high-
frequency data allow us to disambiguate the algorithmic and behavioral effects to show how in-
dividuals engage with smart technologies. We show that behavior does not meaningfully erode 
the energy savings from automation. In the short run, overrides are relatively infrequent, and in 
the longer run, we find no change in the user settings governing the automation. Both behavioral 
margins are critical to consider when designing automation technology, and our findings suggest 
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that the TOU feature provides energy savings with a behavioral response that does not inhibit 
the long-run viability of thermostat automation.2  

Fourth, our results have important applications because algorithms like the one we study can 
be provided at scale at a low marginal cost to the millions of households that have already in-
stalled smart technologies. These devices could be easily programmed to respond effectively to 
TOU or other time-varying prices with low attention or economic costs. The continued rollout of 
smart thermostats and algorithmic features, like those studied here, suggests that time-varying 
pricing might produce larger responses than previously estimated in the literature (e.g., Wolak 
2011; Jessoe and Rapson 2015; Harding and Lamarche 2016; Gillan 2018; Fowlie et al. 2021; Blonz 
2022).  
 

2. Experimental Design 
 

2.1. Data Partner and Geographic Setting 
 

To understand how smart devices interact with time-varying prices, we study Ontario house-
holds equipped with smart thermostats. This province is an attractive region to study in this con-
text for two primary reasons: many households in Ontario already have Ecobee thermostats, and 
more than 90 percent of households already consume residential electricity on a TOU rate struc-
ture. Ontario households have been on TOU rates by default since 2012, although they continue 
to have the opportunity to opt out (Faruqui et al. 2015; Lessem et al. 2017). The TOU rates faced 
by customers in summer of 2019 are shown in Figure 1. There are three distinct prices based on 
the time of day when the electricity is consumed—peak, mid-peak, and off-peak.  

We partnered with Ecobee, an Ontario-based smart-thermostat company with a strong North 
American presence, to implement a randomized encouragement design with existing Ecobee 
thermostat owners in Ontario. Eligible households had previously volunteered to share their 
anonymized data as part of Ecobee’s Donate Your Data (DYD) program. The DYD program en-
courages Ecobee customers across the United States and Canada to allow Ecobee to share their 
high-frequency (five-minute-interval) thermostat data, as well as anonymized information about 
their homes and thermostats, with researchers. As of 2019, there were 106,253 DYD customers 
with a country code listed as United States, Canada, or Mexico. Of these, 14,045 were in Canada, 
and more than half of these customers (7,702) were in Ontario. When a customer agrees to partic-
ipate in the DYD program, all her data from the time the thermostat was initially installed are 

 
2 Relatedly, Brandon et al. (2022) find that behavioral overrides of first-generation smart thermostats dampen their effectiveness of 
delivering energy savings when customers pay time-invariant prices. Our paper studies a different context, where the presence of 
TOU pricing combined with automation shows that the current generation of thermostats that are being widely adopted can pro-
vide economically relevant energy savings even after accounting for both short- and long-run behavioral responses. 
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provided. DYD households in Ontario form the population from which we draw our experi-
mental sample.  

It is possible that the DYD population differs systematically from the general population of 
smart-thermostat customers.3 These selection concerns are worth noting, but they do not affect 
the internal validity of our conclusions due to our randomized design. The main concern about 
the generalizability of our results would be a correlation between signing up for DYD and either 
the occupancy rate of the home or the choice of temperature settings.  

In 2019, Ecobee introduced Eco+, a suite of algorithmic features designed to deliver energy 
savings without sacrificing in-home comfort. A main component of the Eco+ software upgrade in 
areas with time-varying electricity prices is the TOU feature, which aims to precool the home 
when electricity prices are lower and allows the indoor temperature to move higher when elec-
tricity prices are higher thereby reducing the time that the compressor will run.4 For the TOU 
feature to be active, households must both enroll in Eco+ and select information about their elec-
tric utility rate structure. Mechanically, the TOU feature reduces energy consumption for cooling 
by adjusting the thermostat’s preprogrammed setpoint. For example, if a household has pro-
grammed their home to be 72 degrees between 11 a.m. and 5 p.m., Eco+ may adjust that setpoint 
to be anywhere between 1 and 4 degrees higher based on the customer’s settings.  

The extent of the thermostat setpoint manipulation by Eco+ for enrolled customers is a func-
tion of how they set their “slider” scale, a numeric setting from 1 to 5 indicating how aggressively 
they want the algorithm to implement the TOU feature (with 1 being the weakest, and 5 the 
strongest). The extent to which the precooling and setbacks (adjustments to the temperature set-
ting during high-price periods) are implemented is also a direct function of the chosen comfort 
setting. During the Eco+ enrollment process, customers are prompted to set a slider level. The 
default setting is 4, but customers can change their setting at any point through the app or at the 
thermostat. Those who set the slider to 1, the least aggressive setting, experience no precooling 
or setbacks, essentially turning off the TOU component of Eco+. Customers who choose interme-
diate slider settings see progressively greater precooling and setbacks.5 
 

2.2. Randomized Encouragement Design 
 

 
3 Meier et al. (2019) compare the Ecobee DYD sample in the United States with the data collected by the Energy Information Admin-
istration in its 2015 Residential Energy Consumption Survey (RECS) and find that the Ecobee data tend to include more single-fam-
ily homes and fewer one-person households than the RECs sample, but otherwise, in housing characteristics (such as age and size) 
of the US single-family housing stock, both datasets are roughly comparable. 
4 The Eco+ software upgrade consists of five components, of which the TOU feature is one. Further details on the full suite of fea-
tures can be found in Appendix B.1. 
5 Further details on the TOU feature of Eco+ can be found on Ecobee’s website, https://support.ecobee.com/hc/en-us/arti-
cles/360035246672-eco-Frequently-Asked-Questions (last accessed April 20, 2023).  
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We partnered with Ecobee to randomly encourage eligible customers to enroll in the Eco+ 
feature update, while control households received no encouragement. Our experiment was built 
into Ecobee’s North American rollout of the Eco+ algorithm in summer 2019. Prior to the rollout, 
in spring 2019, Ecobee provided us a list of eligible thermostats that participated in DYD and 
associated metadata to perform the randomization. We applied our own set of filtering criteria 
(removing accounts with multiple thermostats, fewer than 12 months of data, and multistage 
cooling systems), randomly assigned households into an “encouraged” group of 2,445 thermo-
stats and held out the other 1,500 thermostats as a control group. After randomizing, we learned 
that 237 households had older-model thermostats that did not include motion sensing and that 
another 1,667 had a model for which motion sensors had to be installed separately, meaning that 
some households inevitably would not have motion sensor data, while others would have such 
data if they chose to install motion sensors. Because these data were critical for measuring one of 
our outcomes, discomfort, we removed from our analysis thermostats with no motion sensor 
data.6 Of the remaining thermostats, we were ultimately able to retrieve data on 2,133 thermo-
stats, 1,319 of which were in our encouragement group and 814 in the not-encouraged group.  

On August 6, 2019, Ecobee sent out the randomized encouragement. Figure 2 shows the series 
of prompts that customers saw on the Ecobee smartphone application at the time of the experi-
ment. Customers in the encouraged group were encouraged to enroll in Eco+ via email, and cus-
tomers who used the Ecobee smartphone app received notifications about signing up for Eco+ 
through their phones as well. After completing the series of prompts and agreeing to the terms 
and conditions, the household was enrolled in Eco+ and its features began to activate.7  

The encouragement into Eco+ had a high compliance rate: around 80 percent of encouraged 
households enrolled in Eco+ (and seven households discovered and enrolled in Eco+ despite not 
receiving any encouragement). Figure 3 shows the breakdown of encouragement acceptance and 
TOU feature activation for the thermostats for which we were able to collect data. Of the 80 per-
cent of encouraged customers who enrolled, only 62 percent provided information on their elec-
tricity provider. This step can be seen as the lower left image in Figure 2. Of those individuals 
that provided their utility, only 61 percent indicated that they were on the TOU rate, which was 
the 7th image of Figure 2. Both steps are needed to activate the TOU feature. The large amount of 
attrition is likely due to individuals not knowing this information during setup and ending the 
setup or skipping this step. This results in approximately 367 people who activated the TOU fea-
tures, who we call compliers, from the encouraged group (consumers who had TOU turn on at 

 
6 Randomization into encouraged and not-encouraged groups was balanced among these thermostats, and all results for our analy-
sis of compressor run-time are consistent among these thermostats as well. Table A.1 shows that observables are largely balanced 
for the full universe of thermostats for which we were able to recover data.  See Appendix B.2 for more details. 
7 The design can be considered a natural field experiment in that customers already had smart thermostats in their homes and did 
not actively know that they were part of an experiment (List 2007). This fact bolsters claims of external validity, as we can rule out 
customer knowledge of the experiment as a channel that could influence behavior. This is in contrast to much of the smart device 
literature, in which households must be recruited to join the experiment and install devices in their homes. 
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any point in the post-encouragement period) as shown in the rightmost grouping of Figure 3. 
Further details on our randomization, sample construction and sample attrition are presented in 
Appendix B.2. 
 
 

3. Data 
 

3.1.  Smart-Thermostat and Eco+ Data 
 

In our randomized encouragement design, we have two primary sources of data. The first is 
Ecobee’s DYD database, which provides smart-thermostat data in five-minute intervals for all 
DYD customers. We observe compressor run-time (our proxy for energy use), indoor and outdoor 
temperature and humidity levels, consumer heating and cooling setpoints, and motion detected 
in the home at the thermostat and at remote sensors that may be placed in other parts of the 
house. We focus our analysis on the warm months (July–September) of 2018 and 2019. We remove 
from the sample all observations on weekends and holidays when TOU rates are not in effect. We 
collapse our five-minute-interval data to the hourly level, with a thermostat-by-hour observation 
as the unit of analysis. This aggregation in time involves averaging setpoints and summing com-
pressor run-time and the amount of time per hour that smart-thermostat features like TOU are 
activated. Additionally, we calculate average hourly daytime and nighttime indoor and outdoor 
temperatures (Table 1).  

We also observe data on when consumers override their preprogrammed (or algorithmic) 
thermostat settings to affect cooling system operation. These data come from two sources.  The 
first source is the larger DYD dataset with observations for all households, both encouraged and 
control, included in the experiment. This information can be used to identify the time periods 
when customers manually adjust their thermostat setpoint down to override their prepro-
grammed settings during peak hours, thereby increasing air conditioning use in the interest of 
improving comfort.  We discuss this measure of behavior in more detail below in Section 3.4. The 
second data source documents consumers’ interactions with the Eco+ functions. For all house-
holds enrolled in Eco+, we observe daily data from the start of the experiment through January 
2020, including when the user accepted the Eco+ terms and conditions, the daily slider scale set-
ting for savings preferences, and daily dummy variables for which Eco+ features are enabled on 
that day. The daily slider setting allows us to observe the household’s interaction with the Eco+ 
feature although we do not observe this setting for non-Eco+ households. 
 

3.2.  Details on Randomization and Balance 
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Our ability to estimate causal effects rests in part on the integrity of the randomization. We 
explore the differences in pretreatment data between the encouraged and not-encouraged house-
holds in our sample for various home and thermostat features, as well as temperature readings 
and settings, in Table 1. The comparison suggests that the randomization performed well in terms 
of selecting households for encouragement into the experiment. The table shows no significant 
differences between the two groups for most of the house and thermostat characteristics included 
in the DYD database. There are, however, some minor differences in pre-encouragement 
nighttime compressor run-times. In our empirical analysis, we use a difference-in-differences re-
gression controlling flexibly for household-by-hour-of-week fixed effects to control for these 
small differences. 

The automated responses to intraday variations in electricity prices and the associated mon-
etary savings to consumers depend on how much the household is using its air-conditioning sys-
tem, which is a function of outdoor temperature.8 In Figure 4, we present average daily maximum 
outdoor temperatures from May through October 2019 in the pink dashed line. The graph shows 
that on many days, the maximum temperature exceeds 80 degrees F, and the maximum temper-
ature often exceeds 70 degrees. The average cooling setpoint in our sample for the months of July 
and August was 74–75 degrees, depending on the time of day. In September, both mean and 
average maximum temperatures fall, although we continue to observe days exceeding 80 degrees.  

The solid blue line in Figure 4 shows the number of thermostats for which the TOU feature 
activates each day. The TOU activation is a function of both the outdoor temperature and the 
TOU rate structure. The weekly dips in the blue line reflect no TOU prices on the weekends. As 
outdoor temperatures decline in October, the TOU feature does not activate because households 
are no longer air-conditioning their homes. The timing of our experimental treatment period, in-
dicated by the vertical dotted lines, extends from August 6th, when the encouragement was sent, 
to September 30, when temperatures begin to decline; we focus on weekdays only during that 
window.  

The operation of the air-conditioning system responds to variations in outdoor temperature 
over the course of the day and to the level of the thermostat setpoint. In panels A and B of Figure 
5, we present thermostat setpoints and average compressor run-time in minutes per hour over 
the course of a weekday in pre-encouragement (left column) and post-encouragement (right col-
umn) in 2019. The dashed vertical lines define the off-peak, mid-peak, and peak pricing periods. 
For the periods pre- and post-encouragement, we present setpoints and compressor run-time 
separately for households in the encouraged group and the not-encouraged group. The pre-en-
couragement period includes data from July 1st up to the day of encouragement (August 6th).  

As shown in the figure, average cooling setpoints exhibit a similar pattern over the course of 
the day across the three time periods and the setpoints for the encouraged and not-encouraged 

 
8 Despite Ontario’s relatively cool climate, all households in our sample have air-conditioning systems.  



   
 

10 
 

groups are aligned prior to treatment. After the launch of the experiment average cooling setpoint 
is higher for encouraged households then for the not-encouraged group during the peak pricing 
hours and lower for the encouraged group than for the not-encouraged group in the off-peak 
hours, providing evidence of precooling in the off-peak hours for the encouraged group.  Com-
pressor run-time results mirror the findings for setpoints. Minutes per hour of compressor oper-
ation were highest in July, the warmest month in our sample. Pretreatment compressor operation 
is very similar between encouraged and not-encouraged households, particularly during the peak 
pricing hours. After the experiment was launched, compressor run-time for the encouraged 
group exceeds that of the not-encouraged group in the off-peak and mid-peak hours and falls 
below the not-encouraged group in the peak hours. This separation throughout the post-encour-
agement period, despite lower overall compressor operation due to cooler temperatures in Sep-
tember.   
 

3.3. Discomfort  
 

We develop two related metrics that capture aspects of thermal discomfort that individuals 
experience in their homes. To do so, we rely on the deviation between an energy user’s preferred 
indoor temperature based on her past thermostat setpoints and her realized temperature (in de-
grees Fahrenheit) multiplied by an indicator for whether we observed motion within the home in 
a given hour. Formally, we construct an hourly measure of experienced discomfort—average 
temperature wedge (ATW)—from the 5-minute interval data for household i during hour-of-
sample t as follows:  
 
 

𝐴𝑇𝑊𝑖𝑡 =
1
12$

(|𝑇𝑖𝑞𝑡 − 𝑇𝑖𝑡
∗ |)

%&

𝑞=%

× 1[𝑀𝑜𝑡𝑖𝑜𝑛𝑖𝑡] (1) 

 
where 𝑇𝑖𝑞𝑡 is the average observed indoor temperature for household i in 5-minute interval q dur-
ing hour-of-sample t; 𝑇𝑖𝑡

∗  is the household’s average preferred indoor temperature for each hour; 
and 1[𝑀𝑜𝑡𝑖𝑜𝑛𝑖𝑡] is an indicator for whether motion was observed in the home at any point within 
the hour. We sum the absolute difference between actual and preferred temperatures at each 5-
minute increment and divide that quantity by 12 (the number of 5-minute intervals within the 
hour) to provide an hourly average that is zero if no motion is detected that hour. As an example, 
for a customer who prefers an indoor temperature of 72 degrees F but experiences a constant 74 
degrees for 60 minutes, we would assign an 𝐴𝑇𝑊𝑖𝑡 value of 2 degrees of discomfort for that hour. 

Average deviations in temperature provide an easily interpretable proxy for discomfort but 
may not capture potential nonlinearities in discomfort. For example, a 6-degree temperature de-
viation for 10 minutes, with no deviation in the other 50 minutes of an hour, results in 𝐴𝑇𝑊𝑖𝑡 =	1 
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degree. The experienced costs of this temperature pattern might be very different than experienc-
ing a constant 1-degree temperature wedge for the entire hour. As a result, we also define a max-
imum temperature wedge (𝑀𝑇𝑊𝑖𝑡) as the maximum across all 5-minute intervals in the hour: 
 

𝑀𝑇𝑊𝑖𝑡 = max(,𝑇𝑖𝑞𝑡 − 𝑇𝑖𝑡
∗ ,) × 1[𝑀𝑜𝑡𝑖𝑜𝑛𝑖𝑡]  ∀𝑞 = 1, … ,12 (2) 

 
This maximum temperature wedge captures the extremes in discomfort for any hour when mo-
tion is detected within the home.  

For both 𝐴𝑇𝑊𝑖𝑡 and 𝑀𝑇𝑊𝑖𝑡,	our measures of 𝑇𝑖𝑞𝑡 and 1[𝑀𝑜𝑡𝑖𝑜𝑛𝑖𝑡] are observed directly in our 
thermostat data. For preferred measures of indoor temperature 𝑇 𝑖𝑡

∗ , we assign a counterfactual 
setpoint schedule using household-by-day-of-week-by-hour-of-day mean temperature setpoints 
in July 2019 (prior to our experiment). That is, we assume that a customer’s scheduled setpoint 
on a Tuesday at 3 p.m. in July 2019 reflects her preferences at the same day-of-week and hour-of-
day in our posttreatment period, August and September 2019.9  

The resulting values of ATW and MTW over the course of the day in each month are displayed 
in panels C and D of Figure 5, separately for the encouraged and not-encouraged groups. Note 
that discomfort is, by definition, a function of occupancy and thus tends to increase in the evening 
when people are more likely to be at home. We see both the ATW and MTW measures of discom-
fort tend to be higher for the encouraged group than for the not-encouraged group in August 
during peak hours and also during the transition from off-peak to mid-peak periods in the early 
morning as precooling contributes to the wedge between desired and experienced temperatures.10 

 
 
3.4.  Thermostat Overrides  
 
Our high-frequency thermostat data allows us to observe how and when people interact with 

their thermostats, including when they override their thermostat’s programs and features.  We 
are particularly interested in when consumers override their thermostat to respond to discomfort 
experienced during peak pricing periods of the day, which also tend to be the hours when out-
door temperatures are the highest.  

We define a thermostat override (TO) as occurring when an individual overrides their ther-
mostat’s programming during the peak demand period between 11 a.m. and 5 p.m. To isolate 

 
9 We assume that these counterfactual set-points (𝑇 𝑖𝑡

∗ ) are constant throughout the hour to minimize the effect that idiosyncratic 
changes in the 5-minute data might have on our discomfort measures. Appendix B.3 describes the construction of our discomfort 
measure in further detail. Figure A.1 illustrates our counterfactual setpoints in addition to showing how the counterfactual substitu-
tion process affects setpoints in post-encouragement period. 
10 Figures A.2 and A.3 illustrate changes in the four primary outcome variables due to encouragement discussed here (setpoints, 
compressor run-time, and average and maximum temperature wedges), where we graph daily peak period averages of each varia-
ble by encouragement status separately for Summer 2018 and 2019 and pre/post encouragement. 
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behavior that happens in response to the Eco+ TOU feature, we limit TOs to times when hold was 
not engaged at 10 a.m. on the same day.11 In most cases, a TO happens when an individual adjusts 
their thermostat down a degree or two to turn on their air conditioner. A TO can either override 
their pre-scheduled setpoints or the Eco+ TOU feature, which allows us to define this variable for 
all households (encouraged and control) during the peak hours both in the pre-treatment and 
treatment periods. About 1,649 of the 2,133 households in our sample override their thermostat 
at some point. As shown in panel B of Figure A.4, these overrides happen more frequently when 
the weather is hot outside, but they are infrequent, in general. We see such overrides in about 5 
percent of the summer days in our sample window (see Table 1). That statistic exceeds 6 percent 
on days when the outdoor temperature exceeds 80 degrees and is only 2.8 percent of days when 
the temperature does not exceed 70 degrees. Thermostat overrides are somewhat equally distrib-
uted throughout the hours of the peak period, with the most (20%) happening between 4 and 5 
p.m.  

Figure 6 relates TOs to our measures of discomfort using an event study that displays the time 
before and after an individual engages a TO event in our 2018 pre-encouragement data. We split 
the hour for when each TO event takes place into the minutes before (shown as “Before override” 
in Figure 6) and the minutes after (shown as “After override”), which allows us to see what indoor 
conditions lead to a TO.12 The figure shows that individuals experience relatively low levels of 
discomfort in the hours before a TO. However, in the minutes proceeding an override, discomfort 
quickly climbs to high levels before the TO is initiated.13 Once the thermostat has been overridden, 
the air conditioning turns on and the indoor temperature and discomfort slowly begins to fall.  

In panels B and C of Figure A.4, we unpack these changes in discomfort by showing similar 
figures for indoor temperatures and motion. Indoor temperature (panel B) climbs monotonically 
up to the point of the override, decreases abruptly, then flattens out. Panel C shows that motion 
sensor activation also increases gradually, with a jump right before an override. Taken together, 
these figures suggest that overrides can partially be explained by people coming home to rela-
tively warm homes and overriding their thermostat settings to reduce indoor temperatures (thus 
producing more comfort). The increase in motion is not large enough to explain all overrides, 
suggesting that overrides are also driven by individuals that are home experiencing gradual in-
creases in indoor temperatures. 

Figure 6 (and Figure A.4) provides supporting evidence that (a) TOs are related to indoor 
conditions and (b) our measures of discomfort capture a disamenity that people take actions to 

 
11 Holds are generally temporary and expire when the next scheduled temperature starts, which is the default value for all Ecobee 
thermostats. Users can manually adjust their hold duration to be indefinite and to span time periods. Our approach of defining a TO 
as not having hold engaged at 10 a.m. allows us to focus on active engagement with the hold function during the peak time periods, 
which are most relevant for analyzing responses to Eco+ TOU control of the thermostat. 
12 On average, the Before and After override categories are approximately 30 minutes each, which suggests that the timing of a ther-
mostat override is unrelated to what minute it is within the hour.  
13 We find a similar pattern of increasing discomfort before a TO event when looking at the 5-minute raw thermostat data.  
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avoid using their air conditioning. Adjusting a thermostat on hot days is a relatively low-cost 
action that one can take to improve their comfort. Figure 6 shows that when ATW and MTW 
increase, regardless of the cause, individuals are observed taking measurable actions to improve 
their indoor environment.  
 

 
4. Empirical Framework 
 

In this section, we describe our empirical strategy to estimate the effect of the Eco+ TOU fea-
ture on our primary outcomes of interest. First, we estimate the intent-to-treat (ITT) effects from 
our experiment, focusing on setpoint temperatures, compressor run-time, and our two measures 
of discomfort as outcome variables. Next, we describe how we estimate local average treatment 
effects in the context of our experiment for both outcome variables during peak pricing periods. 
We then estimate the degree to which consumer behavior moderates the effectiveness of our al-
gorithmic treatment. 

 
4.1.  Estimating Intent-to-Treat Effects 

 
We estimate the effectiveness of the Eco+ TOU feature in a generalized difference-in-differ-

ence framework. We limit our sample to weekdays—when TOU pricing is in effect—from July 
through September in 2018 and 2019. We specify the following estimating equation: 
 
 

𝑌𝑖𝑚𝑑ℎ𝑡 =  $(𝛽𝑘
+

𝑘=%

× 𝐸𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒𝑑𝑖 × 𝑃𝑜𝑠𝑡𝑡 × 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘]) +𝑾′𝛾 + 𝛼𝑖𝑚𝑑ℎ + 𝜆𝑡 + 𝜀𝑖𝑚𝑑ℎ𝑡 (3) 

 
where 𝑌𝑖𝑑𝑚ℎ𝑡 is our outcome of interest for household i, in month m, on day of week d, during 
hour of day h, and hour of sample t. In our primary specifications, our outcome variables vary at 
the household (i)-by-hour (t) level. 𝐸𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒𝑑𝑖 is a dummy variable that takes the value of one 
for customers in the encouragement group, and 𝑃𝑜𝑠𝑡𝑡 is a dummy variable for the posttreatment 
period (treatment began on August 6, 2019). To measure the extent to which our encouragement 
affects our outcome variables over the day, we interact our encouragement indicator in the post-
treatment period with indicators for each of our four pricing periods, 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘], capturing 
separate treatment effects for off-peak, mid-peak a.m., peak, and mid-peak p.m. periods. 𝑾  is a 
vector of hourly outdoor weather controls, including maximum temperature and relative outdoor 
humidity. 𝛼𝑖𝑚𝑑ℎ is a household-by-month-of-year-by-day-of-week-by-hour-of-day fixed effect, 
which is a set of fixed effects that absorbs time-variant characteristics at a fine-grained temporal 
level within the household. It allows us to control for occupant behaviors, preferences, and 
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characteristics such as what hour an individual arrives home after work on Tuesdays in August. 
𝜆𝑡 is an hour-of-sample fixed effect that picks up weather and other common shocks in our sam-
ple.14 We two-way cluster all standard errors at the household and hour-of-sample level.  

With our rich set of fixed effects, our ITT estimates are identified using both within-household 
variation before and after encouragement and by the difference in outcomes between encouraged 
and not-encouraged households in a given hour of the day for a specific day of the week in the 
same month of two consecutive years. The hour-of-sample fixed effect absorbs common shocks 
(e.g., a sports game or weather event) within each hour of the sample. As an example, this setup 
compares the difference between an encouraged and not-encouraged household’s outcome on 
Tuesdays from 5 p.m. to 6 p.m. in August in 2018 (before encouragement) with the same Tuesday 
time window in 2019 (after encouragement), conditional on weather and household-specific time 
effects. This framework allows us to isolate the treatment effects while controlling for an individ-
ual household’s daily and weekly schedule. 

We focus on several outcomes of interest: thermostat setpoint (in degrees Fahrenheit), com-
pressor run-time (in minutes per hour), and our two discomfort variables: average and maximum 
temperature wedges (in degrees Fahrenheit multiplied by motion). This suite of outcome varia-
bles captures the full sequence of events that occur because of changes in thermostat settings, 
whether those changes were initiated by the Eco+ algorithm or household behavior. The thermo-
stat setpoint is the target indoor temperature, which can be changed instantaneously. This varia-
ble jointly captures the degree to which the Eco+ algorithm adjusts the setpoint to reduce energy 
use, the customer’s schedule of preprogrammed thermostat settings, as well as any manual 
changes to the setpoint that the customer makes. When the setpoint increases, the AC compressor 
will turn off until the house naturally warms up and the new setpoint temperature is reached. If 
the setpoint is decreased, the AC compressor may run to cool the house to that target temperature, 
which results in changes in discomfort (as measured by deviations from a counterfactual set-point 
schedule). 

 
4.2. Estimating Local Treatment Effects 
 

Our experiment tests the role of the automated TOU feature on setpoints, compressor activity, 
and in-home comfort. The feature is activated primarily during the peak period of the day, when 
electricity is most expensive (see Figure 5), although we explore its effects during all pricing pe-
riods. In this section, we describe our strategy to estimate local average treatment effects (LATEs) 

 
14 We explore alternative specifications to our econometric design in Tables A.2-–A.4, which shows how our results change when 
incorporating less comprehensive sets of fixed effects or limiting the sample to the post-encouragement period while controlling for 
mean outcomes in the pre-encouragement period (Hahn and Metcalfe, 2021). Those results are largely consistent with our primary 
specifications but with larger standard errors, which suggests that our 𝛼!"#$ term helps with the precision of our estimates. In addi-
tion, Figure A.5 displays a series of monthly ITT plots that show that parallel pre-trends hold for setpoints and compressor run-
time.  
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that measure the overall magnitude of our treatment effects for households that complied with 
the treatment. To do so, we estimate the following two equations via 2SLS: 
 
 

𝑌𝑖𝑚𝑑ℎ𝑡 = $ (𝛿𝑘 × 𝑇𝑂𝑈D 𝑖𝑡 × 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘])
+

𝑘=%
+ 𝑾 ′𝛾 + 𝛼𝑖𝑚𝑑ℎ + 𝜆𝑡 + 𝜀𝑖𝑚𝑑ℎ𝑡 (4a) 

  
𝑇𝑂𝑈D 𝑖𝑡 × 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘] = 𝜂𝑘 × 𝐸𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒𝑑𝑖 × 𝑃𝑜𝑠𝑡𝑡 × 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘] 

+𝑾 ′𝛾 + 𝛼𝑖𝑚𝑑ℎ + 𝜆𝑡 + 𝜀𝑖𝑚𝑑ℎ𝑡 for 𝑘 = 1,2,3,4 

 
(4b) 

 
Equation (4b) is the first stage and equation (4a) is the second stage. 𝑇𝑂𝑈D𝑖𝑡 is a dummy variable 
equal to one for any weekday in the posttreatment period after the TOU feature activates for the 
first time. 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘] is a dummy variable equal to one for each of the four pricing periods: off 
peak (7 p.m.–7 a.m.), mid-peak AM (7 a.m.–11 a.m.), peak (11 a.m.–5 p.m.), and mid-peak PM (5 
p.m.–7 p.m.). 𝑇𝑂𝑈𝚤𝑡D × 1[𝑃𝑒𝑟𝑖𝑜𝑑ℎ = 𝑘] is predicted in the set of four first-stage regressions (equation 
(4b)) using randomized encouragement interacted with the posttreatment period and the pricing 
period indicators as the instruments. All other variables are the same as defined in equation (3). 
In additional specifications, we estimate equations (4a) and (4b) with hourly indicators, rather 
than pricing-period indicators, but we estimate a separate regression for each hour of the day to 
reduce computational run time.   

The �̂�𝑘 coefficients are our LATE estimates of the Eco+ automated TOU feature on our out-
comes of interest (setpoints, compressor run-time, and discomfort) for compliers during each of 
the pricing periods. The instrument satisfies the exclusion restriction based on the random as-
signment of households to encouraged and not-encouraged groups. Our LATE estimates account 
for both (1) compliance with our randomized encouragement design and (2) customers who en-
abled Eco+ but did not provide the required electricity rate information for the TOU feature to 
activate. 80 percent of encouraged households complied with encouragement and approximately 
38 percent of those households supplied the requisite information about their energy utility’s rate 
structure (see Section 2.2 for a discussion of the enrollment steps). As a result, we expect first-
stage coefficients of approximately 0.3 (=80%×38%). In practice, we find that this estimate is 
slightly lower because not all customers complied with encouragement immediately, resulting in 
some “untreated” TOU days in the posttreatment period for compliers.15  
 
  
4.3. Estimating the Role of Behavior 

 
15 TOU activation happens relatively quickly, with the feature activating for 40% of compliers on the first day post encouragement, 
and for 82% of complier households within the first two weeks post-encouragement. The first instance of TOU feature activation took 
an average of 8 days for customers who eventually turned on the Eco+ TOU feature.  
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The LATE estimates in the previous section reflect the combined effects of the Eco+ program-

ming and the potentially mitigating behavior that individuals might adopt in response to the 
algorithmic treatment. The success of the automated TOU feature depends on the willingness of 
customers to let the program control their thermostat and the degree of in-home temperature 
changes. But customers may react to higher indoor temperatures in several ways. First, if custom-
ers are uncomfortable, they may choose to leave their home, perhaps to work in an air-condi-
tioned coffee shop or go to the movies. Second, customers may reduce the stringency or disable 
the TOU feature by adjusting the slider setting of Eco+. Third, customers may override the ther-
mostat’s features by adjusting the temperature, which places a “hold” on the indoor temperature 
setpoint and overrides any predetermined schedule or features that operate via Eco+. These ac-
tions take different levels of effort, ranging from high transaction costs for leaving the house to 
low transaction costs of overriding the thermostat via smartphone or the thermostat itself. We 
find that the latter is the most common way by which customers interact with their thermostat. 
We construct empirical tests of each of these actions to estimate the degree to which they change 
the effectiveness of TOU automation. 

We observe motion within the home through a motion sensor on the thermostat and any other 
sensors a user installs in their home. We use these motion readings to determine if the TOU fea-
ture causes individuals to leave their home, which would reduce measured motion. To do so, we 
estimate a version of equation (3) with motion as the dependent variable. Because we code motion 
as a dummy variable, we estimate this specification as a linear probability model. We expect dis-
comfort to be highest during the peak period and we also expect daytime hours to be the most 
flexible in terms of individuals being willing to leave their home. So, we focus on whether our 
randomized encouragement reduces motion during peak hours.16 

Second, we explore whether customers weaken, or disable, the Eco+ program. Recall that 
when enrolling in the Eco+ program, customers must choose a slider setting ranging from 1 to 5 
in unit increments, with a default value of 4 during the initial setup. Choosing a value of 1 func-
tionally disables the Eco+ features. We only observe daily slider settings for our encouraged 
households, so we cannot explore how slider settings change experimentally. Instead, we provide 
descriptive evidence on how encouraged households adjust their slider settings and the extent to 
which default effects persist throughout our sample.  

Lastly, we leverage our ability to measure thermostat overrides (TOs) to explore how low-
cost adjustment of the temperature setpoint reduces the effectiveness of the Eco+ TOU feature on 
hours when customers override their thermostat settings. Building on equations (3) and (4), we 
split the TOU indicator into periods when a TO is in effect and periods when it is not using the 
thermostat override variable described in Section 3.4. Specifically, we estimate: 

 
16 We explore the distribution of our motion variables further in Figures A.6–A.8. 
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 𝑌𝑖𝑚𝑑ℎ𝑡 =  𝜇 𝑇𝑂𝑈D 𝑖𝑡 × 𝟎[𝑇𝑂]𝑖𝑡 + 𝜋 𝑇𝑂𝑈D𝑖𝑡 × 𝟏[𝑇𝑂]𝑖𝑡  

+𝜈%𝟏[𝑇𝑂]𝑖𝑡 + 𝜈&𝟏[𝑇𝑂]𝑖𝑡  × 𝑃𝑜𝑠𝑡𝑡 + 𝑾 ′𝛾 + 𝛼𝑖𝑚𝑑ℎ + 𝜆𝑡 + 𝜀𝑖𝑚𝑑ℎ𝑡 
(5) 

 
where 𝟎[𝑇𝑂] is an indicator for the time in the peak period when there is not a thermostat override 
and 𝟏[𝑇𝑂] is an indicator for the time when a thermostat override is in effect.  We leverage our 5-
minute data to split the hour when a TO is enacted into two observations that represent the 
minutes before and the minutes after the override. For example, if a TO occurs at 9:15 a.m., then 
we create a new Y observation for the first 15 minutes of the hour (with 𝟎[𝑇𝑂] = 1) and a new 
observation for the latter 45 minutes of the hour (with 𝟏[𝑇𝑂] = 1).  Our approach allows us to 
separate the discomfort experienced before a TO, which could contribute to the override happen-
ing, from the discomfort experienced after the override goes into effect. To account for these split-
hour observations, we weight observations in the regression by the number of minutes each ob-
servation occupies, allowing us to interpret the regression coefficients as changes in Y per hour. 
In practice, this weighting has a minimal impact, because only approximately 1.5 percent of 
hourly observations are split.  

We interpret the 𝜇K coefficient as the hourly effect of being a TOU complier on outcome Y 
when there is not a TO, and the 𝜋K coefficient as the hourly effect of being a TOU complier on 
outcome Y when a TO is in effect. We include interactions for thermostat overrides captured by 
the �̂� coefficients. All other variables are the same as in equation (3), but the sample is restricted 
to the peak period. We estimate equation (5) in our LATE framework where we instrument for 
𝑇𝑂𝑈D 𝑖𝑡 with interactions between an indicator for encouragement and indicator for the posttreat-
ment period for hours with and without thermostat overrides. We are primarily interested in 
whether �̂� and 𝜋)  differ, which captures how thermostat overrides may mitigate the net effects of 
the Eco+ TOU feature. We explore the role overrides play for each of our outcome variables in-
troduced previously: setpoints, compressor run-time, and our two measures of discomfort. 
 
 

5. Results 
 

We now turn to our primary results on the net effects of automated responsiveness to TOU 
pricing on setpoints, energy use, and in-home discomfort. We then present results on the role that 
individual behavior in the form of thermostat overrides and slider settings plays in moderating 
the net effects.  

 
5.1. The Effect of Automation on Setpoints  
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First, we document in Table 2 how the randomized encouragement affects setpoints via esti-
mation of equation (3). In the first column, setpoints increase by approximately four-tenths of a 
degree on average across all encouraged households in the peak period. This ITT effect is a com-
bination of the change in setpoint driven by the Eco+ algorithm inclusive of any manual changes 
or overrides the customer makes during this period. There are no significant changes in setpoints 
in any other pricing period.  

Next, in column 1 of Table 3, we estimate LATE coefficients for setpoints obtained from esti-
mating equations (4a) and (4b), which better capture the changes that occur for LATE compliers 
in our experiment arising solely from the Eco+ TOU feature. The first-stage estimate for the peak 
period is 0.24, which accounts primarily for noncompliance with encouragement.  The instrument 
is strong, as evidenced by a first-stage F-stat larger than 100, and it satisfies the exclusion re-
striction by virtue of randomized encouragement status. These coefficients show that indoor tem-
perature setpoints increase by 1.68 degrees on average during the peak period, which is the av-
erage adjustment that the Eco+ TOU algorithm makes compared to household’s July 2019 coun-
terfactual setpoint. A change of 1.68 degrees is a nontrivial adjustment to in-home temperature 
settings and suggests that the algorithm is operating on margins that are large enough to change 
both energy use and discomfort. In all other pricing periods, the LATE estimate is small and in-
significant, confirming that the TOU feature operates primarily during the peak period. 

In panel A of Figure 7, we summarize these effects graphically over the course of the day by 
presenting hourly LATE coefficients. There is a notable and stable increase in setpoints through-
out the peak period, with no statistical differences from zero during other hours of the day. This 
result primarily captures the success of the algorithm in increasing setpoints, but also reveals that 
any potential behavioral reaction to the thermostat’s algorithm does not offset the algorithm’s 
effectiveness completely. 

 
5.2. The Effect of Automation on Compressor Run-Time 
 
We present ITT estimates of the effect of the TOU feature on compressor in column 2 of Table 

2. On average, encouraged households’ compressors run 1.73 fewer minutes per hour during the 
peak period than those of not-encouraged households. We also estimate reductions in energy use 
in the mid-peak p.m. period, suggesting some lingering effects that persist beyond the peak TOU 
period. Coefficients in the off-peak and mid-peak AM period are statistically similar to zero.17 

The ITT effects provide an estimate—averaged across the hours within each pricing period—
of how compressor run-time changes for households in our encouragement group, including 
those who did not activate Eco+. In column 2 of Table 3, we present LATE coefficients, along with 

 
17 Figures A.9 and A.10 show ITT results from a modified event study version of Equation 2 for the four primary outcomes, where 
weekly effects are estimated relative to the week prior to encouragement. Effects are strongest in August and begin to dissipate later 
into September with the arrival of cooler weather. 
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estimates of the first-stage coefficient, from estimating equations (4a) and (4b) for all pricing pe-
riods. The LATE coefficient in the peak period is –7.28, showing that compliers in our experiment 
ran their air conditioners for 7.28 fewer minutes during the typical peak-period hour in the post-
treatment period. Relative to the compressor run-time of control households, this effect translates 
to an 88 percent (=–7.3/8.25) reduction in run time. These energy savings spill over into the mid-
peak PM period in which we see smaller, but significant (p-value of 0.06), reductions in compres-
sor run-time (2.79 minutes per hour). We do not find evidence that the TOU feature significantly 
changes compressor run-time, on average, during other pricing periods.  

To highlight how the treatment effects evolve over the course of the day, we plot hourly LATE 
coefficients from estimation of equations (4a) and (4b) in panel B of Figure 7 with compressor 
run-time as our outcome variable. We observe two main results. First, compressor run-time in-
creases briefly, but sharply, at 6 a.m., the hour before the mid-peak pricing period, which is a 
precooling effect. We estimate a similar spike in the hour immediately before the peak period as 
well, although this effect is not statistically different from zero. Both peaks are also mirrored by 
small but statistically insignificant decreases in thermostat setpoints in panel A of Figure 7. Aside 
from the precooling effect observed at 6 a.m., all off-peak coefficients are close to zero and statis-
tically insignificant. Second, we estimate large reductions in compressor run time during the peak 
period that become larger later in the day. Each of these hourly coefficients is statistically different 
from zero at the p<0.01 level. This result is notable because our treatment effects are estimated 
relative to not-encouraged households, which have paid TOU prices for years and have the same 
type of smart and easily programmable thermostat. In other words, we anticipate that some not-
encouraged households are already optimizing their schedule for the prevailing TOU rates. The 
automated TOU feature facilitates additional adjustments on top of the behavior of relatively 
savvy energy consumers. Overall, the time profile in panel B of Figure 7 shows that the automated 
TOU feature in the Eco+ rollout can substantially reduce, and to a lesser extent shift, compressor 
usage throughout the day in response to the TOU rates.  
   

5.3. The Effect of Automation on Discomfort  
 

In addition to compressor run-time, we are interested in the extent to which changes in the 
time profile of energy use driven by automated TOU responsiveness affect in-home comfort, 
which aligns more closely with what consumers value than do measures of electricity use alone. 
We present ITT estimates for both measures of discomfort in Table 2. During the peak period, 
coefficients for ATW and MTW for all encouraged households are 0.049 and 0.059, respectively, 
suggesting increases in peak period discomfort. In off-peak and morning mid-peak periods, this 
effect is small and statistically similar to zero. In the evening mid-peak period, discomfort is sig-
nificantly positive and the coefficient is 0.049 for ATW and 0.079 for MTW.  
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The LATE coefficients for our measures of discomfort (and the corresponding first-stage re-
sults) are presented in Table 3, alongside the previously discussed results for setpoints and com-
pressor run-time. The results for discomfort mirror that of compressor run-time. During the peak 
period, we see increases of both ATW and MTW of approximately 0.21–0.25 degrees on average 
in the posttreatment period.18 Both coefficients are statistically significant. Although these esti-
mates are relatively small degree changes, these effects translate to an approximately 62% and 
61% increase in discomfort for average and maximum temperature wedges, respectively, during 
the typical peak hour for compliers. Additionally, these discomfort results are different from the 
average LATE for setpoints in the peak period (1.68 degrees) for a few reasons. First, both 
measures of discomfort are scaled by whether motion is observed in the home, which moderates 
this coefficient. Second, as shown in Figure 7, setpoints change immediately after the peak period 
begins at 11 a.m., but it takes about 3 hours on average for indoor temperatures to rise enough to 
produce discomfort.  

We also estimate that discomfort spills over into the mid-peak PM period despite setpoints 
returning close to normal in these periods. The coefficient is similar across the peak and mid-peak 
PM periods for ATW and slightly larger in the mid-peak PM period for MTW. The MTW effects 
are larger in the mid-peak PM period than in the peak period because the mid-peak PM period is 
only two hours compared to a six-hour peak period, and temperatures are high at 5 p.m. after 
limited air conditioning usage during the peak period.  

The increase in discomfort caused by the TOU feature can be seen with hourly detail in panels 
C and D of Figure 7. As shown, the time profile of average temperature wedges throughout the 
day largely mimics changes in energy use, although it moves in the opposite direction. During 
off-peak periods, the effect on discomfort is statistically similar to zero. During the mid-peak AM 
period, discomfort is positive, but in all cases, the 95 percent confidence intervals overlap with 
zero. During the peak period, discomfort starts to increase beginning at 11 a.m. and is statistically 
significant in the late-afternoon hours. These effects are similar, although slightly larger in abso-
lute magnitude, for our maximum temperature wedge also shown in Figure 7. The discomfort in 
the mid-peak PM period starts to decline after 5 p.m., and is statistically insignificant by 7 p.m. 

Overall, the algorithmic effects on discomfort are relatively modest. On average, customers 
that enabled the Eco+ TOU feature experience less than half a degree of deviation from their pre-
ferred temperature per hour. This statistic is only slightly larger when focused on maximum de-
viations from preferred temperatures. This result implies that the energy savings that occur as a 
result of the program come with relatively small discomfort costs. 

 
5.4. Occupancy heterogeneity 

 
18 Table A.5 shows that these coefficients are robust to the inclusion of previously dropped data due to potentially faulty motion 
sensor data. 
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We construct indicators of occupancy heterogeneity to explore what types of households see 

energy savings and/or experience discomfort. To do so, we separate households into one of the 
three groups—Often, Sometimes, and Hardly home customers—based on the tercile of motion 
observed within the home during the peak period in July 2019 before encouragement. We then 
estimate our primary LATE regressions on compressor run-time and our measures of discomfort 
and plot the resulting hourly coefficients in Figure A.11 in the appendix, with corresponding co-
efficients by rate period presented in Tables A.6 and A.7. We find that set points increase during 
the peak period for all occupancy groups during the peak period, with the largest increases for 
the Hardly Home group. For all occupancy types, we estimate nearly identical results to the full 
sample for compressor run-time: there is a brief increase before the beginning of the mid-peak 
a.m. and peak pricing period, with 5- to 10-minute-per-hour decreases in compressor run-time 
during the peak pricing period. There are no meaningful differences in how the TOU feature 
operates across the occupancy groups.  

For discomfort, however, we do observe differences across household types. First, Often 
Home households experience a statistically significant increase in discomfort of about 0.5 degrees 
per hour at 7 a.m. for ATW and MTW when prices increase. Second, we estimate increases in 
peak-period discomfort, which increases monotonically from 11 a.m. until 5 p.m. similar to the 
full sample, and we find that the magnitude of the ITT effect is substantially larger for the Often 
Home customers, averaging between 0.4 and 1.0 degrees per hour for both ATW and MTW. These 
increases in discomfort persist into the evening mid-peak period but decrease towards zero. In 
other words, Often Home households experience more discomfort during the peak periods than 
the full sample, in addition to some discomfort in mid-peak periods. For Sometimes Home and 
Hardly Home households, we observe no statistically significant changes in discomfort for any 
hour of the day. Because we continue to observe reductions in peak-period compressor usage for 
Sometimes Home and Hardly Home households, this result suggests that automation can save 
energy with little to no discomfort costs because these occupants are not home to experience 
them. Thus, although we estimate peak-period energy savings for all groups, the costs of discom-
fort are borne entirely by the customers who are typically home throughout the day. This result 
is somewhat mechanical because our measures of discomfort are scaled by observed motion. 
However, it provides insight that the Eco+ TOU algorithm can reduce energy consumption used 
to cool an empty house and that there are not significant discomfort costs when people return to 
a slightly warmer home. 

 
5.5. Does Behavior Erode the Effectiveness of Automation? 
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The previous sections estimate the net effects of encouragement to enable the Eco+ TOU algo-
rithm. The resulting effects on setpoints, compressor run time, and discomfort reflect both the 
automation of the Eco+ TOU feature and the behavior of the thermostat users. In this section, we 
disentangle the degree to which consumer behavior mitigates the effectiveness of the feature. We 
first focus on whether customers leave the home or disable the automated feature, providing ev-
idence that this channel of adjustment is inconsequential. Next, we provide evidence that ther-
mostat overrides do erode the impacts of the feature, but that these overrides are not frequent 
enough to mitigate the effectiveness of the algorithm in an appreciable way. 

First, in Figure 8, we present hourly results from estimating equations (4a) and (4b) with mo-
tion as the outcome variable. Because our previous results provide evidence that the TOU feature 
increases in-home discomfort during the peak period, we might expect customers to leave their 
home as a result of this discomfort. If this story were true, we would see a decrease in motion for 
encouraged households during the peak periods (and perhaps the evening mid-peak period). As 
shown, we observe no statistically significant changes in motion for the encouraged group (rela-
tive to the control group) throughout the day. The coefficients are tightly estimated in the 
nighttime, when occupants are likely sleeping and although there is more variation throughout 
the day, the magnitudes are small (at most, we see an approximately two-minute relative increase 
in motion per hour). We present LATE coefficients for each pricing period in Table A.8 for both 
the number of minutes motion is observed within the hour as well as an indicator for any motion 
observed within the hour. These results confirm the findings of Figure 8; we find no statistical 
changes in motion due to encouragement. This result is not surprising because the experienced 
temperature wedge is less than half of a degree (see LATE coefficients in Table 3) and leaving 
home is a relatively costly behavioral response. We suspect that experienced discomfort would 
have to be much greater to trigger customers to leave their home. 

Next, we explore whether customers simply disable the TOU feature by adjusting the fea-
ture’s settings. As mentioned previously, customers can adjust how strongly the feature oper-
ates, and they can effectively turn off the feature by choosing the lowest slider setting in the 
Eco+ settings as a result of discomfort. We explore changes in slider settings directly, but we 
only observe these values for customers in the encouraged group. In Figure A.12, we show the 
average slider setting across all customers enrolled in Eco+ TOU over the entire six-month pe-
riod for which we have slider data. We see virtually no change over time in the average slider 
setting (right axis), which is just below 4, the default setting. We also see that of the roughly 
1,100 households enrolled in Eco+ over this time horizon, typically fewer than 10 adjust their 
slider values on the average day, and roughly the same number of households adjust the values 
up (indicating a willingness to sacrifice even more comfort for savings) as adjust their settings 
down from August 2019 (the start of the experimental period) through January 2020. Our exper-
imental regression sample ends at the end of September, because temperatures become cool 
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enough to obviate the need for air conditioning, but we study slider settings through January 
2020 to explore longer-run behavioral responses to the Eco+ TOU feature. 

We present further evidence of changes in slider settings in Table A.9. This table is a transition 
matrix that shows how consumers adjusted or did not adjust their slider settings from their initial 
choices (when they signed up for the Eco+ program) relative to the last day we observe data (Jan-
uary 27, 2020). Most households are clustered along the diagonal, implying that 72 percent of 
consumers do not deviate from their initial slider values. For the 318 customers who do adjust 
their settings, 55 percent adjust the settings downward, opting for less savings and more comfort. 
The other 45 percent of the adjusters increase their slider settings, suggesting an even greater 
willingness to surrender control of the thermostat after having experienced its effects than they 
had when they initially signed up. Only 7 percent (76/1151) of households deactivated the Eco+ 
program by turning their slider settings to 1 during the experiment, while another 100 households 
effectively deactivated Eco+ during their enrollment (i.e., by choosing the lowest setting during 
setup).  

Finally, we explore the role of thermostat overrides, which is the behavioral adjustment with 
the lowest transaction costs. In Table 4, we present results from estimation of equation (5). These 
coefficients estimate what happens on hours with and without thermostat overrides during the 
peak pricing period.19,20 The coefficients for 𝑇𝑂𝑈D × 1[𝑇𝑂] captures the average hourly effect of 
being a complier when a thermostat override is in effect compared to the control group. The co-

efficients for 𝑇𝑂𝑈D × 0[𝑇𝑂] capture the average hourly effect of being a complier when a thermo-
stat override is not active.21 First, we see that on non-override hours, the encouraged group have 
thermostat setpoints that are 1.71 degrees higher than the not-encouraged group, which is similar 
to our primary coefficient in Table 2. On hours with overrides, however, this coefficient is -0.40 
and statistically similar to zero, suggesting that when encouraged household’s override their set-
tings in the peak period, they effectively offset the algorithm’s change in their setpoint degree-
for-degree. These coefficients are statistically different from each other (p-value of 0.04). The 
changes in setpoints on TO hours lead to similar differences in compressor run time. On non-
override hours, complier households have 7.26 fewer minutes of compressor run time, on aver-
age, while on override hours this same effect is 0.82 fewer minutes of run time. Despite the large 
difference in magnitude, these coefficients are not statistically different from each other (p-value 
of 0.22) due to the large standard error on the 𝑇𝑂𝑈D × 1[𝑇𝑂] coefficient. 

Because the air-conditioning system is running more frequently during override hours, we 
expect that discomfort will be mitigated. Of course, discomfort is likely a primary cause of 

 
19 We focus solely on the peak-pricing period for this analysis because of the way in which we define thermostat overrides (see Sec-
tion 3.4). 
20 We include, but do not interpret, the 𝟏[𝑇𝑂]𝑖𝑡 By Minute and 𝟏[𝑇𝑂]𝑖𝑡  × 𝑃𝑜𝑠𝑡𝑡 control coefficients in the table for completeness.  
21 The first-stage estimate for thermostat override days is 0.20, which is lower than the 0.24 on non-override days. The lower first 
stage is mechanical, because not everyone who turns on the Eco+ TOU feature will have an override day. 
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thermostat overrides, but also an outcome of the override, as demonstrated graphically in Figure 
6. In column 3 of Table 4, we estimate that during override hours our average temperature wedge 
is 0.12 degrees and not significant. On hours without overrides, the average temperature wedge 
is 0.20 degrees, which is almost identical to the results in Table 3 which do not take TOs into 
account. These coefficients are not significantly different from each other, however, due to the 
large confidence interval on the coefficient for override hours. Column 4 of Table 4 shows the 
results for maximum temperature wedge. The coefficients for thermostat override and non-over-
ride days are both about 0.25, although only the non-override day coefficient is significant. The 
TO coefficients are likely a similar magnitude because, on many override days, the maximum 
temperature typically climbs to a high level in the minutes before the thermostat is overridden.  

Overall, we explore three natural ways customers could mitigate the effectiveness of the au-
tomated TOU-responsiveness feature, all of which are important to understand the benefits and 
costs of scaling-up automated energy programs like these. First, we find that encouraged custom-
ers are no more likely to leave their home during the peak periods than not-encouraged custom-
ers. Second, among encouraged customers, we find no evidence that customers disable the fea-
ture during our study period. Lastly, we do find evidence that customers override their thermo-
stat settings temporarily and this margin of adjustment exactly offsets the effectiveness of auto-
mation in generating energy savings (and, as a result, increase the customers’ level of comfort). 
These override events, however, are relatively uncommon, which suggests that consumer behav-
ior will not substantively reduce the effectiveness of automated energy programs. 
 
 

6. Discussion 
 

In this section, we contextualize the results of our analysis and discuss some implications for 
energy policy. So far, we have focused on variables and units of measurement easily calculated 
using data collected by the smart thermostat. Setpoints, compressor run-time, and our derived 
discomfort measures, although reflective of the energy services consumers experience, are not 
standard units of measurement in the literature. To improve comparability with other studies, 
we convert compressor run-time to estimates of kWh usage and energy cost savings. We then 
conduct back-of-the-envelope calculations to characterize the energy savings–discomfort tradeoff 
that households experience and we perform additional analysis to put those results into context.  
 

6.1. Energy and Monetary Savings of Eco+  
 
In many ways, compressor run-time is a more intuitive unit of measurement than kWh usage 

for how much air-conditioning a household is using. Most people are aware of when their air 
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conditioner is running, but they may not know how that translates to electricity usage or their 
monthly utility bills. However, despite its salience, compressor run-time does not lend itself to 
cost-benefit analysis or comparisons with other studies. Unfortunately, we do not have utility 
bills or the data on each household’s air-conditioning unit that might allow us to directly calculate 
changes in energy use. Instead, we rely on back-of-the-envelope conversions based on survey 
data of Ontario air-conditioner characteristics. To convert compressor operation to energy con-
sumption, we use data from Canada’s National Energy Use Database (Natural Resources Canada 
2019) to generate a scaling factor that converts compressor runtime to kWhs based on different 
assumptions for the efficiency of air-conditioning units. We assume that the average size of air-
conditioners in the Eco+ experiment matches the averages of units across Ontario.22  

To perform this calculation, we estimate daily LATE coefficients for our preferred specification 
(equations (4a) and (4b)), which measures the average hourly effect of the automated TOU feature 
for compliers in the posttreatment period.23 Daily LATE coefficients are hourly averages across 
all hours of the day, inclusive of increases in run time due to precooling and decreases during the 
peak period, that can easily be scaled up to an aggregate daily effect by multiplying by 24. In 
panel A of Table 5, the daily LATE coefficient shows that the Eco+ TOU feature is responsible for 
reducing compressor run-time by 1.97 minutes per hour (or 47.3 minutes per day) in the post-
treatment period. Based on the characteristics of typical low- and high-efficiency air-conditioning 
systems in Ontario homes (corresponding to SEER ratings of 12 and 16, respectively), we calculate 
that the 1.97 minutes of compressor run-time saved by the automated TOU feature per hour cor-
responds to an average reduction of 2.18 kWh per TOU day for low-efficiency households and 
1.63 kWh for high-efficiency households. Multiplying those savings by the electricity rates that 
households pay during peak periods—where the majority of the energy conservation arises—
provides savings of C$0.29 per day for households with low-efficiency air conditioners and 
C$0.22 for households with high-efficiency air conditioners (Table 5, panel B). Summer 2019 in 
Ontario had 93 days hot enough for TOU to turn on for the average Eco+ household, which would 
result in a total summer savings ranging from C$20.36 to C$27.15 (Table A.11, panel A).24,25 These 

 
22 See Appendix B.4 for further details on the benefit-cost calculations. Additionally, Table A.10 outlines parameter values and as-
sumptions used in the benefit-cost calculations. 
23 Formally, these estimates follow our specification in equations (4a) and (4b) with hourly run time as the dependent variable, but 
we only estimate one coefficient for the day instead of separate coefficients for the four pricing periods. All controls and fixed effects 
remain the same. 
24 See Figure A.13 for a visual representation of summer TOU days. We define the start of the summer TOU day period by looking 
for the first instance when average hourly compressor run-times over the whole day went above one minute for two consecutive 
days. We define the end of the summer TOU day period as the instance when average hourly compressor run-times were under one 
minute for two consecutive days and never rose back above this threshold. Based on this definition, the summer TOU day period 
for 2019 was from May 26 to October 4. Counting only the weekdays during this range gives 93 days when TOU might turn on.  
25 The savings estimates are based on a private marginal cost of electricity to the thermostat owner. We use the private marginal cost 
in Table 5 because adoption of the Ecobee thermostat and Eco+ are primarily being driven by private cost-benefit analysis. An alter-
nate formulation could use the social marginal cost (SMC) of electricity. We consider scenarios where the social marginal cost is 
C$0.05, C$0.10, and C$0.15. Using our estimated reductions in aggregate energy use, the automated TOU feature would reduce 
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savings are larger than those in Fowlie et al. (2021), who found that households saved around $2 
per month on TOU pricing when they were not provided with smart thermostats.26 We also note 
that Ontario has a relatively mild summer climate, which means the savings are likely a lower 
bound on the savings that could accrue in a warmer region.  

 
6.2. Energy savings–comfort tradeoffs 
 
The energy savings from Eco+ come at the potential cost of discomfort. This is not unique to 

our setting. Many other energy-saving programs and technologies come with a discomfort trade-
off, but it is typically ignored in program evaluations because it is difficult to measure. For exam-
ple, the Opower household social comparison program has been shown to reduce household en-
ergy consumption by 1 to 2 percent at relatively low cost to the utility (e.g., Allcott 2011; Allcott 
and Rogers 2014) but likely also causes discomfort, which has not been included in cost-benefit 
analyses. Studies of time-varying pricing (e.g., Jessoe and Rapson 2014; Harding and Lamarche 
2016; Bollinger and Hartmann 2020) suffer from the same inability to measure the discomfort 
caused by reduced energy consumption, much of which likely comes from reduced air-condi-
tioning usage and higher indoor temperatures. Fowlie et al. (2018) come closest to measuring the 
indoor temperature effects of an energy-saving intervention: they use a one-time post-retrofit 
temperature measurement to explore changes in indoor temperature from weatherization. They 
find no changes after the weatherization but also acknowledge that they have a limited and se-
lected subsample. Our experiment, in contrast, gives us the ability to measure discomfort caused 
by the automated thermostat feature and better understand the trade-off between energy savings 
and indoor comfort: we can calculate a dollar value that reflects the trade-offs households are 
currently making between energy savings and indoor comfort.  

Similar to compressor run-time, we estimate daily ATW and MTW LATE coefficients. How-
ever, we limit our regression sample to the hours of 7 a.m. to 7 p.m., which is when we see the 
changes in discomfort (see Figure 7).27 In contrast to the peak period results in Table 3, these daily 

 
social costs by C$10.14, C$20.27, or C$30.41 for the average low-efficiency household for the entire summer (i.e., 2.18*93*SMC) or 
C$7.58, C$15.16, or C$22.74 for the average high-efficiency household for the entire summer (i.e., 1.63*93*SMC) for each of the as-
sumed social marginal costs.  
26 In addition to Fowlie et al. (2021), which is focused on TOU pricing and most comparable to our setting, there are a number of 
papers that examine critical peak pricing programs, which generally use day-ahead price alerts or nudges to encourage users to 
conserve electricity on the hottest days of the year. Burkhardt et al. (2019) find a welfare benefit of around $32 per household across 
a summer when consumers face 27 peak event days and a peak price of $0.64 per kWh. The similarity of the results in our paper 
shows that automation can provide a similar magnitude of benefits. Brandon et al. (2019) study the role that social nudges can play, 
finding that social nudges can cause a 4 to 7 percent reduction in peak demand.  
27 We estimate this regression following equations (4a) and (4b), although we only estimate one coefficient and we drop hours out-
side of 7 a.m. to 7 p.m. Note that we could estimate these LATE regressions for the full 24-hour period and scale them to the 7 a.m. 
to 7 p.m. period by dividing by 0.5 (i.e., 12/24). These approaches are functionally equivalent. Reporting LATE coefficients for the 7 
a.m. to 7 p.m. period allows us to avoid artificially attenuating our estimates by averaging in zeroes from the nighttime period. 
Moreover, we continue to report coefficients as hourly averages for the 7 a.m.–7 p.m. period because aggregating degrees of discom-
fort over time results in unintuitive units. 
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regressions capture the average hourly discomfort that occurs across this twelve-hour period. We 
present these results in panel C of Table 5. We split the results into two groups using the insight 
from Section 5.4 that changes in discomfort are only experienced by Often Home households. 
Hardly and Sometimes Home households do not experience meaningful discomfort from the 
Eco+ TOU feature. In other words, two-thirds of the households in our sample see no significant 
increase in discomfort from the automated TOU feature, but all household occupancy types ex-
perience a C$0.22–0.29 savings from reduced compressor run times, which means there is no ma-
terial trade-off for us to evaluate.28 This is a win-win: for a substantial portion of our sample, 
customers see energy savings without a corresponding decrease in comfort.  

Customers who are often home, however, experience an average hourly increase in indoor 
temperatures of 0.5–0.6 degrees above their preferred temperature during the 7 a.m. to 7 p.m. 
period on a typical day in the posttreatment period. These Often Home households trade this off 
for a savings of around C$0.22–0.29 per TOU day—a tradeoff of roughly 0.37–0.57 dollars per 
degree of discomfort within our experiment. The tradeoff includes household behavioral re-
sponses, which we showed in Section 5.5 consists of households manually adjusting their ther-
mostat temperature settings. The relative infrequency of thermostat overrides suggests that the 
transaction cost to avoid discomfort is relatively small and is not substantially influencing our 
estimated tradeoff between discomfort and monetary savings.  

 
6.3. Implications 

 
So far, we have shown that the automated TOU feature significantly reduces peak-period en-

ergy usage for treated customers in our sample. Some of those customers experience no discom-
fort costs, others are willing to bear small discomfort costs for energy savings, and consumer 
reactions to this discomfort does not appreciably erode the energy-savings benefits from the au-
tomated feature. The changes in electricity demand, although modest at the customer level, be-
come more noteworthy when aggregated across larger numbers of thermostat users. To extrapo-
late these energy savings beyond our sample, we note that in 2017, Ontario’s Environment and 
Climate Change minister initiated a $40 million program to install 100,000 smart thermostats at 
no cost to customers across the province through the Green Ontario Fund.29 Taking the 100,000-
thermostat target as given and applying the first-stage compliance rate from our experiment 
(24%) results in 24,000 eligible thermostats activating the TOU feature. Applying our LATE coef-
ficients to those thermostats would result in a reduction in electricity demand from 4 p.m. to 5 
p.m. of 33–44 MW, depending on assumptions about air-conditioning efficiency. This magnitude 

 
28 Figure A.11 shows that all three occupancy groups experience almost identical compressor run time savings. As a result, we did 
not break the energy savings in panel A of Table 5 into different occupancy groups because it would have produced the same result.  
29 Source: https://www.thestar.com/news/queenspark/2017/08/30/eligible-ontario-homeowners-to-get-smart-thermostats-under-
new-program.html (last accessed April 20, 2023). 
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is comparable to offsetting peak generation from a small natural gas peaker plant in Ontario 
(Blonz 2022). Policies that reduce frictions in enrolling in the program would generate larger sav-
ings. If compliance increased from 24% to 50%, then energy savings could increase to 68–91 MW 
per peak hour (Table A.11, panel B).  

Notably, these potential savings come from a software update designed to improve on an 
existing smart thermostat designed to help people save money through programming and opti-
mization of their cooling. Energy savings may have been realized when the smart thermostat was 
installed, and our estimated savings are additional.30 This software update could be pushed to 
hundreds of thousands of customers with very low marginal cost, which would increase the po-
tential benefits of widespread TOU pricing. 

Because the economic incentives for customers to adjust behavior can be small, TOU prices 
alone may have limited effects on electricity demand. Automation may provide an additional 
benefit by automatically adjusting household electricity use during peak periods without asking 
customers to bear large reductions in comfort. Those small reductions in energy use per house-
hold can translate to meaningful supply-side cost reductions at scale. 

 

7. Conclusion  
 
In this paper, we evaluate the large-scale rollout of a new smart-thermostat feature designed 

to automate consumers’ responsiveness to TOU pricing. Our randomized experiment and unique 
data on motion and indoor temperatures allow us to estimate causal effects of the automated 
TOU pricing feature on air-conditioner run-time, households’ thermal comfort, and consumer 
reactions to experienced discomfort. We find that the Eco+ TOU feature is effective at shifting 
load throughout the day by strategically adjusting thermostat setpoints and reducing compressor 
usage when electricity is most expensive. On average, households save C$0.22 to C$0.29 per sum-
mer day in the posttreatment period. The discomfort costs of this feature are borne primarily by 
people who are typically home during the peak pricing period. Those customers experienced 
average increases in discomfort less than a half-degree degree warmer than their revealed pref-
erence setpoint. Yet, for a large portion of the population, the automated feature delivers energy 
cost reductions with no increase in discomfort costs. Importantly, we show that behavioral 
change driven by these increases in discomfort does not inhibit the overall effectiveness of the 
algorithm. Electricity customers do not leave their house or disable the feature as a result of the 
encouragement (and resulting discomfort). We do see, however, that on relatively warmer days 
customers are more likely to override their thermostat settings, but these events are rare and do 

 
30 The energy savings from installing a smart thermostat depend on what thermostat it replaced. Our findings are not affected by 
those initial energy savings.  
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not undermine the effectiveness of the feature in delivering energy conservation in an appreciable 
way. 

The potential for the use of software to optimize the operation of electrical devices in response 
to time-varying electricity prices is large. TOU pricing continues to roll out across North America, 
and other devices, such as hot water heaters and pool pumps, could be adapted to optimize their 
operation in response to time-varying prices. Our work suggests that such programs could de-
liver important energy savings for customers and could be designed in a way that customers will 
not be averse to surrendering control of smart devices to a price-responsive algorithm that makes 
relatively small changes. Such automation could help pave the way for more widespread ac-
ceptance of time-varying electricity prices.  

Decarbonizing the electricity system to avoid the worst consequences of global climate change 
will require substantial reliance on variable and intermittent sources of renewable energy, such 
as wind and solar. In a renewables-abundant future, the efficiency gains from dynamic pricing 
for balancing demand and supply at each moment in time will be even greater than they are 
today. Smart devices that enable automated responses to time-varying prices can lower the cost 
of adjusting consumption and help overcome political opposition to more widespread implemen-
tation of time-varying and ultimately dynamic pricing of electricity. With federal and state energy 
policy targeting almost complete decarbonization of the electricity system in the next 15 years, 
smart technologies have the potential to be integral to achieving these goals at a reasonable cost.  
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Figure 1. Ontario TOU Rates by Hour in Summer 2019

Notes: TOU electricity rates (in Canadian dollars (C$)) by hour of day are presented for summer 2019. TOU hours and rates
presented here are for weekdays during May through October. The Mid and Peak TOU rate periods invert during the winter
months. Marginal TOU rates stayed largely constant between 2018 and 2019.
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Figure 2. Eco+ Encouragement Prompt through Phone Application

Notes: The figure presents a series of screenshots that customers in the encouraged group received upon beginning the process to
set up eco+ after receiving the randomized encouragement. Prompts include such screens as the selection of the comfort or slider
setting and associating the thermostat with the proper utility and time-of-use rate.
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Figure 3. Experimental Design and Sample Randomization

Notes: The figure presents a flow chart that documents the experimental design and ultimate compliance with the Eco+ encourage-
ment as well as TOU feature activation.
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Figure 4. Temperature and TOU Activation

Notes: Average daily maximum temperatures by thermostat are indicated by the dashed pink time series and the left vertical
axis. Daily counts of the number of thermostats experiencing a TOU event in 2019 (i.e., the TOU feature is observed at least once
throughout the course of the day) are indicated by the solid blue time series and the right vertical axis. The vertical dashed line
represent the date of encouragement (August 6th, 2019). The vertical bold solid lines bound the sample used in the primary analysis
for summer 2019 (July 1 - September 30, 2019).
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Figure 5. Hourly Profile of Outcome Variables by Encouragement Status

Notes: The figure presents average hourly outcomes by encouragement status. In each panel, average outcomes are presented
separately for the "pre-encouragement" and "post-encouragement" periods on the left and right, respectively. "Pre-encouragement"
refers to the period of July 1, 2019 up to August 6th, 2019, the date of encouragement. "Post-encouragement" refers to the period
from encouragement until the end of the experimental sample on September 30, 2019. The dashed lines indicate the TOU rate
periods. 7-11 is the a.m. mid-peak rate period, 11-17 is the peak period, 17-19 is the p.m. mid-peak period, and 19-7 is the evening
off-peak period.
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Figure 6. Dynamics of Thermostat Overrides

Notes: The figure plots the hourly average profiles of average and maximum temperature wedges in the hours up to and after a
thermostat override event in peak periods. The hour for when each TO event takes place is split into the minutes before (shown
as “Before override” in Figure 6) and the minutes after (shown as “After override”). On average, the Before and After override
categories are approximately 30 minutes each. Data represented is for summer 2018 only.
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Figure 7. Hourly LATE Estimates of Automated TOU Feature on Outcomes of Interest

Notes: The figure presents local average treatment effects of TOU feature activation on each of the primary outcomes of interest. 24
hour-specific variations of Equation 4 are run for each outcome variable, where T̂OU is instrumented for with encouragement status
in each hour: Encouraged × Post × Hour. 95% confidence intervals for the hourly coefficients are denoted by the shaded areas. TOU
electricity rate periods are denoted by the dashed lines. All specifications include household-by-month-by-day-of-week-by-hour-of-
day and hour-of-sample fixed effects. Standard errors are two-way clustered at the household and hour-of-sample level.
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Figure 8. Hourly LATE Estimate of Automated TOU Feature on Motion

Notes: The figure presents local average treatment effects of TOU feature activation on motion detection (min/hr). 24 hour-specific
variations of Equation 4 are run for motion detection, where T̂OU is instrumented for with encouragement status in each hour:
Encouraged × Post × Hour. 95% confidence intervals for the hourly coefficients are denoted by the shaded areas. TOU electricity
rate periods are denoted by the dashed lines. The specification includes household-by-month-by-day-of-week-by-hour-of-day and
hour-of-sample fixed effects. Standard errors are two-way clustered at the household and hour-of-sample level.
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Tables

Table 1. Balance on Observables in Preperiod

Variable Name Not encouraged Encouraged Difference
Household Characteristics

Floor Area (100 Sqft) 21.57 21.71 0.14
(9.26) (9.61) (0.42)

Number of Floors 2.61 2.56 -0.05
(0.73) (0.78) (0.03)

Home Age (Years) 32.56 31.30 -1.27
(31.86) (29.73) (1.39)

Household Size 3.07 3.02 -0.05
(1.18) (1.23) (0.07)

Model: Ecobee 3 0.67 0.67 -0.00
(0.47) (0.47) (0.02)

Model: Ecobee 3 Lite 0.20 0.21 0.01
(0.40) (0.41) (0.02)

Model: Ecobee 4 0.13 0.13 -0.01
(0.34) (0.34) (0.01)

Preperiod Daytime Characteristics
Cooling Setpoint (Deg. F) 75.29 75.23 -0.06

(4.04) (3.95) (0.14)
Compressor Run-Time (Mins/hr) 13.89 14.07 0.19

(20.40) (20.45) (0.39)
Avg. Temp. Wedge (Deg. F) 0.35 0.35 -0.00

(1.16) (1.13) (0.02)
Max. Temp. Wedge (Deg. F) 0.47 0.47 -0.00

(1.29) (1.27) (0.03)
Indoor Temp (Deg. F) 73.58 73.50 -0.08

(3.01) (3.05) (0.09)
Outdoor Temp (Deg. F) 73.63 73.61 -0.02

(8.07) (7.99) (0.06)
Hold (Mins/hr) 19.98 20.58 0.60

(28.05) (28.27) (0.95)
Thermostat Override 0.05 0.06 0.00

(0.23) (0.23) (0.00)
Preperiod Nighttime Characteristics

Cooling Setpoint (Deg. F) 74.10 74.00 -0.10
(3.65) (3.63) (0.13)

Compressor Run-Time (Mins/hr) 13.17 13.84 0.67
(19.71) (20.13) (0.37)

Avg. Temp. Wedge (Deg. F) 0.27 0.27 0.00
(1.02) (1.00) (0.01)

Max. Temp. Wedge (Deg. F) 0.37 0.37 0.00
(1.15) (1.14) (0.02)

Indoor Temp (Deg. F) 73.40 73.28 -0.12
(3.06) (3.08) (0.10)

Outdoor Temp (Deg. F) 67.11 67.16 0.05
(7.29) (7.25) (0.10)

Hold (Mins/hr) 20.60 21.00 0.40
(28.23) (28.38) (0.95)

Thermostat Override 0.05 0.05 0.00
(0.23) (0.23) (0.00)

Notes: Sample means and standard deviations (in parentheses) are presented for characteristics of the
randomized encouragement and control groups for the n=2,133 thermostats used in the primary anal-
ysis. The third column presents the coefficient from regressions of each characteristic on the treatment
indicator with the standard error below (in parentheses). Standard errors are clustered at the household
level.
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Table 2. Intent-to-Treat Estimates by Pricing Period

(1) (2) (3) (4)
Setpoint Comp. Run-Time Avg. Temp. Wedge Max. Temp. Wedge

Encouraged × Post × Mid-Peak AM 0.012 -0.123 0.028 0.035
(0.099) (0.175) (0.024) (0.026)

Encouraged × Post × Peak 0.398∗∗∗ -1.728∗∗∗ 0.049∗∗ 0.059∗∗

(0.103) (0.277) (0.023) (0.025)

Encouraged × Post × Mid-Peak PM 0.090 -0.661∗ 0.049∗ 0.079∗∗

(0.092) (0.348) (0.029) (0.032)

Encouraged × Post × Off-Peak -0.075 0.079 0.011 0.018
(0.081) (0.188) (0.014) (0.015)

Observations 6,037,377 6,037,377 5,884,617 5,884,617
Households 2,133 2,133 2,133 2,133
Pre-period Control Mean 74.7 13.5 0.32 0.43

Notes: The table presents intent-to-treat effects from estimating Equation 3 for four primary outcomes of interest: setpoints (in
deg. F), compressor run-time (in min/hr), and average and maximum temperature wedges (in deg. F). All specifications include
household-by-month-by-day-of-week-by-hour-of-day and hour-of-sample fixed effects. Standard errors are two-way clustered at
the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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Table 3. LATE Estimates by Pricing Period

(1) (2) (3) (4)
Setpoint Comp. Run-Time Avg. Temp. Wedge Max Temp. Wedge

T̂OU × Mid-Peak AM 0.053 -0.520 0.117 0.149
(0.416) (0.741) (0.100) (0.110)

T̂OU × Peak 1.678∗∗∗ -7.279∗∗∗ 0.205∗∗ 0.249∗∗

(0.431) (1.185) (0.096) (0.105)

T̂OU × Mid-Peak PM 0.378 -2.785∗ 0.208∗ 0.333∗∗

(0.390) (1.478) (0.122) (0.134)

T̂OU × Off-Peak -0.317 0.333 0.048 0.075
(0.343) (0.792) (0.057) (0.063)

Observations 6,037,377 6,037,377 5,884,617 5,884,617
Households 2,133 2,133 2,133 2,133
Peak Control Mean 75.3 8.25 0.33 0.41
Peak First Stage Coefficient 0.24 0.24 0.24 0.24
Peak First-Stage F Stat 103.5 103.5 99.4 99.4

Notes: The table presents local average treatment effects from estimating Equations 4a and 4b for four primary out-
comes of interest: setpoints (in deg. F), compressor run-time (in min/hr), and average and maximum temperature
wedges (in deg. F). T̂OU is a binary variable that takes a value of 1 for a given household in all hours and on all days
after the household experiences its first Eco+ TOU event. All specifications include four endogenous variables: the
interactions of T̂OU with the four pricing periods: T̂OU × Period. In the first-stage, these variables are instrumented
for with randomized encouragement status interacted with the four pricing periods: Encouraged × Post × Period. All
specifications include household-by-month-by-day-of-week-by-hour-of-day and hour-of-sample fixed effects. Stan-
dard errors are two-way clustered at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p <
0.1
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Table 4. LATE Estimates of Thermostat Override Behavior

(1) (2) (3) (4)
Setpoint Comp. Run-Time Avg. Temp. Wedge Max Temp. Wedge

T̂OU × 1[TO] -0.398 -0.816 0.115 0.252
(1.042) (5.372) (0.182) (0.219)

T̂OU × 0[TO] 1.707∗∗∗ -7.261∗∗∗ 0.204∗∗ 0.246∗∗

(0.434) (1.177) (0.096) (0.106)

1[TO] By Minute -1.247∗∗∗ 9.523∗∗∗ 0.333∗∗∗ 0.449∗∗∗

(0.064) (0.403) (0.019) (0.021)

1[TO] × Post 0.086 0.724 -0.298∗∗∗ -0.390∗∗∗

(0.148) (0.857) (0.031) (0.036)
Observations 1,514,598 1,514,598 1,476,379 1,476,379
Households 2,133 2,133 2,133 2,133
Control Mean 75.3 8.14 0.33 0.41
0[TO] First Stage Coefficient 0.24 0.24 0.24 0.24
0[TO] First-Stage F Stat 206.0 206.0 199.3 199.3
1[TO] First Stage Coefficient 0.20 0.20 0.20 0.20
1[TO] First-Stage F Stat 39.5 39.5 36.9 36.9

Notes: The table presents local average treatment effects from estimating Equation 5 for four primary outcomes of
interest: setpoints (in deg. F), compressor run-time (in min/hr), and average and maximum temperature wedges (in
deg. F). T̂OU is a binary variable that takes a value of 1 for a given household in all hours and on all days after the
household experiences its first Eco+ TOU event. In the first-stage, T̂OU × 1[TO] and T̂OU × 0[TO] are instrumented for
with randomized encouragement status interacted with override status: Encouraged × Post × TO. All specifications
include household-by-month-by-day-of-week-by-hour-of-day and hour-of-sample fixed effects. Standard errors are
two-way clustered at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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Table 5. Private Benefits and Costs of Eco+ TOU Feature

Panel A: Private benefits (kWhs) Hourly run-time LATE (min/hr) Daily change (kWh/day/hh)

Changes in energy use -1.97 Low efficiency -2.18
(-3.04, -0.90) (-3.36, -0.99)

High efficiency -1.63
(-2.52, -0.75)

Panel B: Private benefits ($) Daily change ($/day/hh)

Changes in energy costs Low efficiency -$0.29
(-$0.45, -$0.13)

High efficiency -$0.22
(-$0.34, -$0.10)

Panel C: Private costs (discomfort) Hourly discomfort (deg/hr)

Avg. temp. wedge Sometimes/hardly home 0.01
(-0.17, 0.19)

Often home 0.51
(0.21, 0.81)

Max. temp. wedge Sometimes/hardly home 0.05
(-0.14, 0.24)

Often home 0.59
(0.26, 0.92)

Notes: The table presents estimates of the private benefits and costs of the Eco+ TOU feature. 90% confidence intervals are presented below
coefficient estimates in parentheses. Discomfort LATE estimates in panel c are estimated on only the mid-peak and peak samples combined.
Further assumptions underlying these calculations are detailed in Appendix Table A.10.
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A Additional Results

A.1 Additional Figures
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(b) Effect of Setpoint Counterfactual Substitution

Figure A.1. Counterfactual Setpoints

Notes: The figure illustrates the counterfactual cooling setpoints used to create the temperature wedge variables. Panel a shows
the counterfactual setpoints by occupancy group. Panel b shows the effect of replacing the household’s observed setpoints with the
counterfactual setpoints in August 2019, when Eco+ has begun to directly affect setpoints for encouraged households. The observed
and counterfactual lines lie over each other in July 2019 because no substitution takes place: Eco+ is not changing setpoints at that
time, so no substitution is necessary.
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Figure A.2. Daily Peak Period Averages by Encouragement Status

Notes: The figure presents daily averages during the peak period for setpoints and compressor run-time. These daily averages are
characterized by three differences: before and after the encouragement date (8/6), by encouragement status, and by year (2018 vs.
2019).
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Figure A.3. Daily Peak Period Averages by Encouragement Status

Notes: The figure presents daily averages during the peak period for average and maximum temperature wedges. These daily
averages are characterized by three differences: before and after the encouragement date (8/6), by encouragement status, and by
year (2018 vs. 2019).
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Figure A.4. Dynamics of Thermostat Overrides, Temperature, and Motion

Notes: The figure examines relationships between thermostat overrides and indoor and outdoor temperatures, as well as motion.
Panel a presents the share of days in summer 2018 with an override event plotted in a series of 2 deg. F max outdoor temperature
bins. Panels b and c present an equivalent plot to Figure 6 in the main text, where the profiles of indoor temperature and any
observed motion in the hour are plotted in the hours leading up to and after an override event.
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Figure A.5. Check for Parallel Pre-Trends in Setpoints and Compressor Run-Time

Notes: The figure presents a series of monthly intent-to-treat coefficient plots for setpoints (in panel a) and compressor run-time (in
panel b) investigating parallel pre-trends in these outcomes. Trends are assessed separately for the base experimental sample, all
thermostats including those dropped for not having motion sensor data, only those who experience TOU events ("Compliers"), and
only those that do not experience TOU events ("Non-Compliers"). Regressions underlying these coefficient plots estimate monthly
treatment effects relative to July 2019, the month before Eco+ was introduced. All specifications include household and hour-of-
sample fixed effects. Standard errors are two-way clustered at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *:
p < 0.1
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Figure A.6. Hourly Profile of Motion by Encouragement Status

Notes: The figure presents average hourly motion by encouragement group in a similar fashion to Figure 5. "Pre-encouragement"
refers to the period of July 1, 2019 up to August 6th, 2019, the date of encouragement. "Post-encouragement" refers to the period
from encouragement until the end of the experimental sample on September 30, 2019. The dashed lines indicate the TOU rate
periods. 7-11 is the a.m. mid-peak rate period, 11-17 is the peak period, 17-19 is the p.m. mid-peak period, and 19-7 is the evening
off-peak period.
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Figure A.7. Hourly Average Motion by Occupancy Group in July 2019

Notes: The figure presents average motion profiles for each of three defined occupancy groups (Often, Sometimes, and Hardly
home). Occupancy groups are defined by average motion detection during the peak period in July 2019. Customers were sorted into
classes by cutting each group at the 33rd and 66th percentile of motion detection, respectively.
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Figure A.8. Motion Histograms by Occupancy Group during Peak Period in July 2019

Notes: The figure displays the distributions of average hourly motion detection during the peak period for each of the three
occupancy groups in July 2019.
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Figure A.9. Event Study ITT Effects by Week of Sample

Notes: Coefficients from an event study regression (modified from Equation 2) of the effect of encouragement on cooling setpoints
and compressor run-time are presented relative to the week before encouragement. Effects for each rate period are presented
separately here. Data for both summer 2018 and summer 2019 are included, and the estimated specification includes household-by-
month-by-day-of-week-by-hour-of-day and hour-of-sample FEs. Standard errors are clustered at the household and hour-of-sample
level. 95% confidence bands are represented by the shaded areas surrounding the point estimates.
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Figure A.10. Event Study ITT Effects by Week of Sample

Notes: Coefficients from an event study regression (modified from Equation 2) of the effect of encouragement on average and
maximum temperature wedges are presented relative to the week before encouragement. Effects for each rate period are presented
separately here. Data for both summer 2018 and summer 2019 are included, and the estimated specification includes household-by-
month-by-day-of-week-by-hour-of-day and hour-of-sample FEs. Standard errors are clustered at the household and hour-of-sample
level. 95% confidence bands are represented by the shaded areas surrounding the point estimates.
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Figure A.11. LATE Effects by Occupancy Group

Notes: The figure presents local average treatment effects of TOU feature activation on each of the four primary outcomes of
interest, also broken out by the occupancy heterogeneity groups. 24 hour-specific variations of Equations 4a and 4b are run for each
outcome variable in each occupancy group separately, where T̂OU is instrumented for with encouragement status in each hour:
Encouraged× Post× Hour. 95% confidence intervals for the hourly coefficients are denoted by the shaded areas. TOU electricity
rate periods are denoted by the dashed lines. All specifications include household-by-month-by-day-of-week-by-hour-of-day and
hour-of-sample fixed effects. Standard errors are two-way clustered at the household and hour-of-sample level.

A.11



1
2

3
4

5

Sl
id

er
 S

et
tin

g

0
5

10
15

20
25

D
ai

ly
 C

ou
nt

 o
f T

he
rm

os
ta

ts

8/6 9/1 10/1 11/1 12/1 1/1

Post-encouragement Date

Increased Slider (left axis)
Decreased Slider (left axis)
Slider Setting (right axis)

Figure A.12. Mean Daily Slider Values and Thermostat Changes

Notes: Averages of slider settings and daily counts of thermostats that changed slider settings from the previous day are presented
here as seven-day moving averages. The vertical dashed line represents the end of the experimental analysis period on September
30, 2019. We continue to observe slider data until January 27th, 2020.
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Figure A.13. Defining the Summer TOU Day Period

Notes: Average daily outdoor temperatures are indicated by the dashed pink time series and the left vertical axis. Average daily
compressor run-times are indicated by the solid blue time series and the right vertical axis. The vertical dashed lines represent the
start and end of the assumed "summer TOU day period" (May 26, 2019 to October 4, 2019). The start of the summer TOU day
period is defined by the first instance when average hourly compressor run-times over the whole day went above one minute for two
consecutive days. The end of the summer TOU day period as the instance when average hourly compressor run-times were under
one minute for two consecutive days and never rose back above this threshold. Counting only the weekdays during this range gives
93 “summer TOU days.”
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A.2 Additional Tables

Table A.1. Balance on Observables in Preperiod Using All Thermostats

Variable Name Not encouraged Encouraged Difference
Household Characteristics

Floor Area (100 Sqft) 20.35 20.85 0.50
(10.24) (9.96) (0.36)

Number of Floors 2.61 2.59 -0.02
(0.73) (0.75) (0.03)

Home Age (Years) 31.08 30.06 -1.02
(30.95) (29.42) (1.07)

Household Size 3.06 3.05 -0.00
(1.21) (1.25) (0.06)

Model: Ecobee 3 0.43 0.42 -0.00
(0.49) (0.49) (0.02)

Model: Ecobee 3 Lite 0.44 0.43 -0.01
(0.50) (0.50) (0.02)

Model: Ecobee 4 0.09 0.08 -0.00
(0.28) (0.28) (0.01)

Preperiod Daytime Characteristics
Cooling Setpoint (Deg. F) 75.32 75.21 -0.10

(4.09) (4.06) (0.12)
Compressor Run-Time (Mins/hr) 13.90 14.33 0.42

(20.49) (20.65) (0.31)
Avg. Temp. Wedge (Deg. F) 0.23 0.22 -0.00

(0.95) (0.93) (0.02)
Max. Temp. Wedge (Deg. F) 0.30 0.30 -0.00

(1.06) (1.05) (0.02)
Indoor Temp (Deg. F) 73.80 73.67 -0.12

(3.10) (3.10) (0.07)
Outdoor Temp (Deg. F) 73.63 73.63 -0.00

(8.05) (7.97) (0.05)
Hold (Mins/hr) 23.48 23.31 -0.16

(29.07) (29.05) (0.79)
Thermostat Override 0.05 0.05 -0.00

(0.23) (0.22) (0.00)
Preperiod Nighttime Characteristics

Cooling Setpoint (Deg. F) 74.24 74.02 -0.21
(3.76) (3.75) (0.11)

Compressor Run-Time (Mins/hr) 12.43 13.23 0.81
(19.45) (19.89) (0.29)

Avg. Temp. Wedge (Deg. F) 0.18 0.18 0.00
(0.83) (0.82) (0.01)

Max. Temp. Wedge (Deg. F) 0.24 0.24 0.00
(0.94) (0.94) (0.01)

Indoor Temp (Deg. F) 73.56 73.39 -0.17
(3.12) (3.12) (0.08)

Outdoor Temp (Deg. F) 67.15 67.21 0.06
(7.28) (7.23) (0.08)

Hold (Mins/hr) 24.09 23.74 -0.35
(29.19) (29.12) (0.78)

Thermostat Override 0.05 0.05 -0.00
(0.22) (0.22) (0.00)

Notes: Sample means and standard deviations (in parentheses) are presented for characteristics of
the randomized encouragement and control groups for all experimental thermostats, including those
dropped from the primary sample (n=3,402). The third column presents the coefficient from regressions
of each characteristic on the treatment indicator with the standard error below in parentheses. Standard
errors are clustered at the household level.
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Table A.2. ITT Fixed Effects Robustness Checks for Setpoints and Compressor Run-Time

Setpoint Comp. Run-Time

(1) (2) (3) (4) (5) (6)
From Paper HH FE No α From Paper HH FE No α

Encouraged × Post × Mid-Peak AM 0.012 0.081 0.011 -0.123 -0.341 0.138
(0.099) (0.091) (0.157) (0.175) (0.273) (0.205)

Encouraged × Post × Peak 0.398∗∗∗ 0.435∗∗∗ 0.370∗∗ -1.728∗∗∗ -2.005∗∗∗ -1.525∗∗∗

(0.103) (0.099) (0.166) (0.277) (0.286) (0.360)

Encouraged × Post × Mid-Peak PM 0.090 0.195∗∗ 0.128 -0.661∗ -0.564 -0.083
(0.092) (0.090) (0.149) (0.348) (0.345) (0.478)

Encouraged × Post × Off-Peak -0.075 -0.039 -0.111 0.079 0.178 0.658∗∗

(0.081) (0.081) (0.144) (0.188) (0.228) (0.276)
Observations 6,037,377 6,037,906 6,037,906 6,037,377 6,037,906 6,037,906
Households 2,133 2,133 2,133 2,133 2,133 2,133
Pre-period Control Mean 74.7 74.7 74.7 13.5 13.5 13.5

Notes: The table presents robustness checks for intent-to-treat effects estimated from Equation 2 to the inclusion of different
levels of α, the household fixed effect term, for setpoints and compressor run-time. Columns 1 and 4 reproduce the estimates
using the household-by-month-by-day-of-week-by-hour-of-day fixed effect in Table 2. Columns 2 and 5 relax α to an overall
household fixed effect. Columns 3 and 6 present results omitting the α term entirely. All specfications include the common
hour-of-sample fixed effect. Standard errors are two-way clustered at the household and hour-of-sample level. ***: p < 0.01, **:
p < 0.05, *: p < 0.1
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Table A.3. ITT Fixed Effects Robustness Checks for Temperature Wedges

Avg. Temp. Wedge Max. Temp. Wedge

(1) (2) (3) (4) (5) (6)
From Paper HH FE No α From Paper HH FE No α

Encouraged × Post × Mid-Peak AM 0.028 0.033 0.028 0.035 0.039 0.036
(0.024) (0.023) (0.027) (0.026) (0.025) (0.030)

Encouraged × Post × Peak 0.049∗∗ 0.027 0.023 0.059∗∗ 0.033 0.031
(0.023) (0.020) (0.026) (0.025) (0.022) (0.029)

Encouraged × Post × Mid-Peak PM 0.049∗ 0.021 0.017 0.079∗∗ 0.045 0.043
(0.029) (0.025) (0.033) (0.032) (0.028) (0.037)

Encouraged × Post × Off-Peak 0.011 0.013 0.009 0.018 0.020 0.017
(0.014) (0.015) (0.015) (0.015) (0.016) (0.017)

Observations 5,884,617 5,885,435 5,885,435 5,884,617 5,885,435 5,885,435
Households 2,133 2,133 2,133 2,133 2,133 2,133
Pre-period Control Mean 0.32 0.32 0.32 0.43 0.43 0.43

Notes: The table presents robustness checks for intent-to-treat effects estimated from Equation 2 to the inclusion of different
levels of α, the household fixed effect term, for average and maximum temperature wedges. Columns 1 and 4 reproduce the
estimates using the household-by-month-by-day-of-week-by-hour-of-day fixed effect in Table 2. Columns 2 and 5 relax α to
an overall household fixed effect. Columns 3 and 6 present results omitting the α term entirely. All specifications include the
common hour-of-sample fixed effect. Standard errors are two-way clustered at the household and hour-of-sample level. ***: p <
0.01, **: p < 0.05, *: p < 0.1
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Table A.4. ITT Robustness Checks Controlling for Pre-Period Hourly Averages

(1) (2) (3) (4)
Setpoint Comp. Run-Time Avg. Temp. Wedge Max. Temp. Wedge

Encouraged × Post × Mid-Peak AM 0.046 0.073 0.019 0.026
(0.081) (0.131) (0.020) (0.022)

Encouraged × Post × Peak 0.428∗∗∗ -1.641∗∗∗ 0.030 0.038∗

(0.086) (0.228) (0.019) (0.021)

Encouraged × Post × Mid-Peak PM 0.111 -0.401 0.038 0.064∗∗

(0.078) (0.302) (0.024) (0.027)

Encouraged × Post × Off-Peak -0.023 0.253 0.009 0.015
(0.069) (0.154) (0.011) (0.012)

Observations 1,867,602 1,867,602 1,867,059 1,867,059
Households 2,119 2,119 2,119 2,119

Notes: The table presents robustness checks for intent-to-treat effects estimated from Equation 2. For each outcome variable, pre-
period hourly averages of that outcome are included as a series of 24 covariates (omitted from the table), and the specifications
are estimated only on observations post-encouragement. All specifications include the common hour-of-sample fixed effect.
Standard errors are two-way clustered at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p < 0.1

A.17



Table A.5. LATE Estimates by Pricing Period, Keeping NA Flags

(1) (2) (3) (4)
Setpoint Comp. Run-Time Avg. Temp. Wedge Max Temp. Wedge

T̂OU × Mid-Peak AM 0.053 -0.520 0.105 0.139
(0.416) (0.741) (0.098) (0.108)

T̂OU × Peak 1.678∗∗∗ -7.279∗∗∗ 0.205∗∗ 0.251∗∗

(0.431) (1.185) (0.093) (0.102)

T̂OU × Mid-Peak PM 0.378 -2.785∗ 0.214∗ 0.342∗∗∗

(0.390) (1.478) (0.117) (0.130)

T̂OU × Off-Peak -0.317 0.333 0.052 0.082
(0.343) (0.792) (0.056) (0.061)

Observations 6,037,377 6,037,377 6,037,113 6,037,113
Households 2,133 2,133 2,133 2,133
Peak Control Mean 75.3 8.25 0.33 0.41
Peak First Stage Coefficient 0.24 0.24 0.24 0.24
Peak First-Stage F Stat 103.5 103.5 103.5 103.5

Notes: The table presents local average treatment effects from estimating Equations 4a and 4b for four primary
outcomes of interest: setpoints (in deg. F), compressor run-time (in min/hr), and average and maximum temperature
wedges (in deg. F). T̂OU is a binary variable that takes a value of 1 for a given household in all hours and on all days
after the household experiences its first Eco+ TOU event. All specifications include four endogenous variables: the
interactions of T̂OU with the four pricing periods: T̂OU× Period. In the first-stage, these variables are instrumented
for with randomized encouragement status interacted with the four pricing periods: Encouraged × Post × Period.
Observations that were removed for potentially faulty motion sensor data are added back to the temperature wedge
specifications in Columns 3 and 4. All specifications include household-by-month-by-day-of-week-by-hour-of-day
and hour-of-sample fixed effects. Standard errors are two-way clustered at the household and hour-of-sample level.
***: p < 0.01, **: p < 0.05, *: p < 0.1
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Table A.6. Setpoint and Compressor Run-Time LATE Effects by Occupancy Group

Cooling Setpoint Comp. Run-Time

(1) (2) (3) (4) (5) (6)
Often Sometimes Hardly Often Sometimes Hardly

T̂OU × Mid-Peak AM -0.073 -0.511 0.748 -0.695 0.806 -1.526
(0.696) (0.615) (0.848) (1.254) (1.176) (1.396)

T̂OU × Peak 1.544∗∗ 1.182∗ 2.332∗∗∗ -6.629∗∗∗ -6.370∗∗∗ -8.803∗∗∗

(0.683) (0.666) (0.877) (2.010) (1.852) (2.113)

T̂OU × Mid-Peak PM 0.775 -0.379 0.773 -4.710∗∗ 0.027 -3.591
(0.635) (0.548) (0.770) (2.393) (2.366) (2.567)

T̂OU × Off-Peak 0.317 -1.185∗∗ -0.132 -0.169 1.759 -0.493
(0.590) (0.503) (0.691) (1.365) (1.296) (1.460)

Observations 2,011,880 2,014,498 2,010,999 2,011,880 2,014,498 2,010,999
Households 711 711 711 711 711 711
Peak Control Mean 74.7 74.9 76.3 9.70 8.21 6.87
Peak First Stage Coefficient 0.24 0.25 0.22 0.24 0.25 0.22
Peak First-Stage F Stat 36.2 38.9 31.5 36.2 38.9 31.5

Notes: The table presents local average treatment effects from estimating Equations 4a and 4b for two primary
outcomes: setpoints (in deg. F) and compressor run-time (in min/hr). Effects are estimated separately for each of
the occupancy group categories (Often, Sometimes, and Hardly Home households). T̂OU is a binary variable that
takes a value of 1 for a given household in all hours and on all days after the household experiences its first Eco+
TOU event. All specifications include four endogenous variables: the interactions of T̂OU with the four pricing
periods: T̂OU × Period. In the first-stage, these variables are instrumented for with randomized encouragement
status interacted with the four pricing periods: Encouraged× Post× Period. All specifications include household-
by-month-by-day-of-week-by-hour-of-day and hour-of-sample fixed effects. Standard errors are two-way clustered
at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p < 0.1

A.19



Table A.7. Temperature Wedge LATE Effects by Occupancy Group

Avg. Temp Wedge Max Temp Wedge

(1) (2) (3) (4) (5) (6)
Often Sometimes Hardly Often Sometimes Hardly

T̂OU × Mid-Peak AM 0.364∗∗ -0.061 0.031 0.396∗ -0.043 0.082
(0.185) (0.176) (0.154) (0.205) (0.193) (0.165)

T̂OU × Peak 0.589∗∗∗ -0.040 0.028 0.664∗∗∗ -0.007 0.048
(0.193) (0.160) (0.133) (0.213) (0.176) (0.145)

T̂OU × Mid-Peak PM 0.587∗∗∗ 0.037 -0.053 0.741∗∗∗ 0.164 0.038
(0.224) (0.206) (0.191) (0.250) (0.225) (0.208)

T̂OU × Off-Peak 0.168∗ -0.023 -0.017 0.189∗ 0.010 0.010
(0.098) (0.095) (0.103) (0.108) (0.104) (0.112)

Observations 1,995,852 1,975,716 1,913,049 1,995,852 1,975,716 1,913,049
Households 711 711 711 711 711 711
Peak Control Mean 0.47 0.35 0.18 0.59 0.44 0.21
Peak First Stage Coefficient 0.24 0.25 0.22 0.24 0.25 0.22
Peak First-Stage F Stat 35.8 37.1 29.3 35.8 37.1 29.3

Notes: The table presents local average treatment effects from estimating Equations 4a and 4b for two primary
outcomes: average and maximum temperature wedges (in deg. F). Effects are estimated separately for each of
the occupancy group categories (Often, Sometimes, and Hardly Home households). T̂OU is a binary variable that
takes a value of 1 for a given household in all hours and on all days after the household experiences its first Eco+
TOU event. All specifications include four endogenous variables: the interactions of T̂OU with the four pricing
periods: T̂OU × Period. In the first-stage, these variables are instrumented for with randomized encouragement
status interacted with the four pricing periods: Encouraged× Post× Period. All specifications include household-
by-month-by-day-of-week-by-hour-of-day and hour-of-sample fixed effects. Standard errors are two-way clustered
at the household and hour-of-sample level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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Table A.8. LATE Effects for Motion Detection

(1) (2)
Motion Minutes Motion Indicator (0/1)

T̂OU × Mid-Peak AM 0.499 0.026
(1.202) (0.034)

T̂OU × Peak 0.754 -0.002
(1.229) (0.036)

T̂OU × Mid-Peak PM 0.245 -0.006
(1.386) (0.034)

T̂OU × Off-Peak 0.498 0.005
(0.532) (0.018)

Observations 5,884,617 5,884,617
Households 2,133 2,133
Peak Control Mean 12.2 0.49
Peak First Stage Coefficient 0.24 0.24
Peak First-Stage F Stat 99.4 99.4

Notes: The table presents local average treatment effects from estimating Equa-
tions 4a and 4b for two primary outcomes: motion detection (min/hr) and a
binary motion indicator for any motion within the hour. T̂OU is a binary vari-
able that takes a value of 1 for a given household in all hours and on all days
after the household experiences its first Eco+ TOU event. All specifications in-
clude four endogenous variables: the interactions of T̂OU with the four pricing
periods: T̂OU × Period. In the first-stage, these variables are instrumented for
with randomized encouragement status interacted with the four pricing periods:
Encouraged× Post× Period. All specifications include household-by-month-by-
day-of-week-by-hour-of-day and hour-of-sample fixed effects. Standard errors
are two-way clustered at the household and hour-of-sample level. ***: p < 0.01,
**: p < 0.05, *: p < 0.1
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Table A.9. Transition Matrix of Chosen
Slider Setting Values over Time

End Choice
Start Choice 1 2 3 4 5 Total
1 100 5 5 13 19 142
2 5 13 1 1 1 21
3 10 7 46 4 4 71
4 47 29 40 459 89 664
5 14 2 7 15 215 253
Total 176 56 99 492 328 1151

Notes: This transition matrix shows user-chosen slider
setting values by thermostats on the first day for which
we observe data for each thermostat, as well as on the fi-
nal day for which we observe slider data (January 27th,
2020). Movement toward the bottom-left corner repre-
sents users’ “throttling down” settings of the algorithm
(towards 1), whereas movement toward the top right
corner represents users’ adopting more aggressive set-
tings (toward 5). 1,151 unique thermostats are repre-
sented in the matrix.
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Table A.10. Benefit-Cost Analysis Parameters

Parameter Value Calculation Source

Assumptions
(1) Unit Capacity Ratio (BTU/hr) 33202 - NEUD Table 27
(2) SEER, Low (BTU/W*hr) 12 - NEUD Table 27
(3) SEER, High (BTU/W*hr) 16 - NEUD Table 27
(4) Peak Electricity Price (C$) .134 - OEB 2019
(5) Number of Summer TOU Days 93 - ecobee data
(6) Scaling: New thermostats 100000 - Authors’ assumptions
(7) Scaling: Observed TOU compliance rate .24 - Authors’ calculations
(8) Scaling: Hypothetical TOU compliance rate .5 - Authors’ assumptions

Calculations
Run-time to kWh conversion, Low 2.767 (1) / (2) * .001 Authors’ calculations
Run-time to kWh conversion, High 2.075 (1) / (3) * .001 Authors’ calculations
Scaling: New compliers 24000 (6) * (7) Authors’ calculations
Scaling: Hypothetical new compliers 50000 (6) * (8) Authors’ calculations

Notes: The table presents underlying assumptions and calculations that are used to construct Table
5 and Table A.11. The source link for (1)-(3) is found here: https://oee.nrcan.gc.ca/corporate/
statistics/neud/dpa/showTable.cfm?type=CP&sector=res&juris=on&rn=27&page=0. The source link for
(4) is found here: https://www.oeb.ca/consumer-information-and-protection/electricity-rates/
historical-electricity-rates
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Table A.11. Aggregate Benefits and Costs of Eco+ TOU Adoption

Panel A: Agg. summer impacts Change in kWh per hh Change in $ per hh

Low efficiency -202.59 -$27.15
(-312.75, -92.40) (-$41.91, -$12.39)

High efficiency -151.92 -$20.36
(-234.54, -69.31) (-$31.43, -$9.29)

Panel B: Scaling impacts Peak demand reduction (MW) Peak demand reduction (MW)
(Compliance rate = 0.24) (Compliance rate = 0.5)

Low efficiency 43.52 90.67
(29.47, 57.58) (61.39, 119.96)

High efficiency 32.64 68.00
(22.10, 43.18) (22.10, 43.18)

Notes: The table presents estimates of aggregate benefits and costs of the Eco+ TOU feature at scale under varying as-
sumptions. 90% confidence intervals are presented below coefficient estimates in parentheses. Further underlying parameter
assumptions (including with respect to Low and High efficiency cases) are found in Appendix Table A.10.
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B Experimental Details and Data Construction

B.1 Details on the Eco+ Software

Ecobee’s proprietary "Eco+" software is a suite of algorithmic features designed to preserve com-
fort while increasing energy efficiency. Eco+ includes five distinct features: Feels Like, Time of
Use (TOU), Community Energy Savings, Smart Home & Away, and Schedule Assistant. We dis-
cuss the TOU feature in depth in the paper. We describe each of the other four features in further
detail here.1

The "Feels Like" feature attempts to account for the effect of humidity on indoor temperatures
by averaging over the past 10 days of humidity data collected by the thermostat. On particularly
humid days in the summer, the thermostat will cool longer than it normally would to ensure that
the temperature experienced in the home is representative of the preferred temperature setting.
If humidity is far lower than the rolling average, then the compressor will not run as long as it
normally would at that temperature setting.

The Community Energy Savings feature attempts to link thermostat schedules to demand re-
sponse events announced by local utilities. For this feature to activate properly, users must
properly associate their thermostat with the utility that serves them when setting up Eco+, and
must be served by a utility that offers such a program. This process is illustrated by the sixth
screen in Figure 2. If these conditions are met, on days when demand response events are called,
the feature will precool the home by adjusting setpoints and then implementing a setback to raise
setpoints and prevent compressors from running during the high-price demand response period.
These precool and setback schedules are dependent on slider settings and tailored around the
announced times of the demand response event. Demand response events are rare in our data,
occurring only on roughly 0.5% of thermostat-days in the sample.

Smart Home & Away are features that predate the development of the Eco+ algorithm but have
been rolled into the Eco+ algorithm. The essence of these features is to rely on motion detection
to help the thermostat adapt to times when presence in the home does not match scheduled
home/away times. For example, if motion is not detected during a scheduled "home" period,
then Smart Away will kick in. Set points are allowed to hover 1 to 4 degrees away from the
customer’s preferred set point during home periods so that the preferred temperature can be
quickly recovered if motion is indeed detected. The amount of time it takes to trigger Smart
Away depends on the customer’s chosen slider setting when setting up Eco+. For the least ag-
gressive slider setting (1), it takes two hours of no motion detection during a scheduled Home
period for Smart Away to trigger, while at the most aggressive slider setting (5) it only takes one

1Ecobee periodically releases software updates that may make changes to the way these features operate in practice.
The descriptions offered here are our best attempt to describe the features as they operated during our experiment
in summer 2019. For information on Eco+ directly from Ecobee, see: https://support.ecobee.com/hc/en-us/
articles/360035246672-eco-Frequently-Asked-Questions. (last accessed April 20, 2023).
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hour of no motion for Smart Away to trigger. Smart Home is unaffected by the slider setting
and is turned on when motion is detected after the away setting has been active for an hour and
Smart Home has not been previously activated in the past two hours.

The Schedule Assistant feature takes advantage of the motion sensor capabilities to assess whether
a household’s motion detection schedule matches up with the setpoint schedule that the house-
hold has selected. For example, if a household’s existing schedule indicates that they are "home"
during a certain portion of the day, but no motion is ever detected by the thermostat during
those hours, an automated email is sent to the household with suggestions for new temperature
schedules that they can adopt.

B.2 Details on Randomization and Experiment

We worked in conjunction with Ecobee to develop and implement the randomized encourage-
ment design for Ontario households in spring and summer 2019. Ecobee provided us with an
initial list of 5,147 thermostats in their Donate Your Data database for Ontario. We then applied
a series of filtering criteria to these thermostats in order to create the sample of thermostats in-
cluded our initial randomized encouragement sample.

First, we drop any users that have multiple thermostats, which drops 671 thermostats. We then
drop households with multistage cooling systems, which drops 127 thermostats. We then drop 1
thermostat that was flagged with a non-Canadian country code. We then drop any households
who had their Ecobee thermostat for less than a full year at the time of randomization, which
drops another 345 thermostats. Finally, there were some cases of duplicate thermostat identifiers
in the file. We address this by keeping the first record of any duplicate thermostat identifier,
which drops 58 more thermostats from the file. This leaves us with 3,945 unique thermostat ob-
servations in our randomized encouragement sample. We then implemented the randomization.
We created an encouragement group of 2,445 thermostats and held out a control group of 1,500
thermostats that were not encouraged to sign up for Eco+.

We then returned this finalized sample to Ecobee to implement the experiment. Ecobee sent out
the randomized encouragements on August 6, 2019. This date coincided with Ecobee’s larger
rollout of Eco+ across North America. Thermostats in the encouraged group were presented
with a series of prompts asking them to sign up for Eco+, configure their TOU rate settings with
their local utility, set their comfort slider setting, and accept the Eco+ terms and conditions.

We received two primary experimental report files back from Ecobee. The first was a decoder
file that contained the identifiers of the thermostats that we included in our experiment as they
appeared in the DYD database, so that we could retrieve the exact thermostat-level files for only
those thermostats included in the experiment. After cleaning this file according to the same pro-
cedure as the original file, we are left with 3,403 thermostats: 2,101 thermostats in the encouraged
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group and 1,302 in the control group. Of these 3,403, we are able to retrieve thermostat-level data
files from the DYD database for 3,402 thermostats in 2019 and 3,396 thermostats in 2018.2 We
aggregate these thermostat-year files together to form the summer 2018/2019 panel that we use
as our primary analysis dataset, the first data source described in Section 3.1.

The second experimental file provided to us by Ecobee is a set of daily data for thermostats that
accepted the Eco+ encouragement. These data include information like the date of acceptance
of the Eco+ terms and conditions, daily data on slider settings, and indicators for whether each
feature of Eco+ was turned on or off by day through the end of January 2020. These data are the
second data source described in Section 3.1. We have data on 3,834 thermostats in this file, much
closer to our original randomization file. 2,007 of these thermostats have the more detailed daily
data, 2,001 of which are in our randomized encouragement group. This indicates that only a
few thermostats in the control group discovered and signed up for Eco+ on their own. However,
when testing for the presence of these thermostats in Ecobee’s DYD database we are left again
with 3,396 thermostats in 2018 and 3,402 in 2019, as indicated by the original decoder file.

After randomization and upon beginning our analysis, we discovered that older Ecobee ther-
mostat models that did not have motion sensor capabilities were included in the randomization
sample. Additionally, some Ecobee models that do have motion sensor capabilities but require
users to purchase and install separate motion sensors were included in the randomization sam-
ple as well. Data reported from these thermostats are valid for outcomes such as setpoints,
compressor run-time, etc, but if no motion sensors are installed then the data are lacking the
key motion variable that we need to calculate temperature wedges. We further trim the 3,402
thermostats down to exclude thermostats missing the motion sensor data entirely. We also re-
strict our data to only keep thermostats with motion sensor data in July 2019, the month before
Eco+ encouragement took place (used to define our occupancy groups). Imposing these sample
restrictions trims the sample to the n=2,133 thermostats sample size used in the primary analysis.

Dropping these thermostats from our sample did not significantly impact the randomization
component of our experiment. The percentage of thermostats that we had to drop was nearly
identical in each of the encouraged and not encouraged groups. Of the 2,133 thermostats in-
cluded in the primary analysis, 62 percent (1,319) of thermostats were encouraged to sign up
for Eco+ and 38 percent were not encouraged. Of the thermostats that we drop due to a lack of
motion sensor data entirely, 62 percent (757) were encouraged and 38 percent were not encour-
aged. In addition to the balance table for the primary sample (Table 1), we also present a balance
table for the full sample of thermostats. Table A.1 illustrates that statistical balance continues to
hold for key variables of interest in the sample that includes the previously dropped thermostats.

2There are multiple potential reasons why we observe attrition from the original sample of 3,945 thermostats to
the new sample of 3,402 thermostats. For one, thermostats may have decided to withdraw from DYD between the
time we conducted the randomization in June and the time we received access to the thermostat-level data initially in
November 2019. It is also possible that some non-DYD thermostats were allowed into the sample provided to us, so
their data would never have appeared in DYD in the first place.
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B.3 Construction of Discomfort

Equations 1 and 2 in the paper define our measures of average and maximum temperature
wedges that we use to characterize experienced household discomfort. There are two core com-
ponents of the equation: how we define motion and how we define the motion-unadjusted
temperature wedge itself.

The first primary component of the discomfort definition is the construction of the dummy vari-
able for whether motion is observed within the hour or not: 1[Motionit]. Motion is provided
to us in the DYD data as a series of dummy variables for whether motion is observed at the
5-minute level across a number of sensors as well as at the thermostat itself. There are data
on motion sensors available for up to ten separate motion sensors plus the motion sensor it-
self. Given computational constraints, we keep data from the first five motion sensors as well
as the thermostat itself, which covers essentially all motion sensors available to us in the raw data.

Our ability to construct our measure of temperature discomfort necessarily depends on the ac-
curacy of the thermostat-level motion sensor data that we obtained from the DYD database.
Although we could still calculate the unadjusted measure of temperature wedges, we cannot
complete the calculation without accurate motion sensor data. When cleaning the five-minute-
level readings to construct our panel used in the analysis, we did not assume that a missing
motion sensor reading indicated no motion. As described in Appendix B.2, we remove ther-
mostats from our sample that do not have motion sensor readings in the DYD database. In order
to further screen for potentially unreliable motion sensor readings, we drop motion sensor read-
ings for thermostat-days where motion is triggered for more than 70% of the day, or if motion is
triggered for more than 7.5% of the 1–4 a.m. overnight time block. In this case, we treat the final
value of the motion variable as missing, rather than imputing a 0/1 value. This is the primary
reason for the small difference in sample sizes between compressor run-time and temperature
wedge regressions presented in the paper, such as in Tables 2 and 3.

The second primary component of the discomfort definition is the relevant indoor temperature
wedge between actual and preferred temperatures: |Tiqt − T∗it|, referenced in Section 3.3 in the
paper. We cannot simply use the customer’s observed setpoint as their measure of "preferred"
temperature, because Eco+ makes direct changes to the thermostat’s setpoints when the TOU
feature is operating. Therefore, to construct our measure of preferred temperature, we take a
household’s day-of-week-by-hour-of-day average setpoint in July 2019 (before Eco+ was pushed
to our encouraged group). We then substitute in this average for the equivalent hours in August
and September 2019. Expanding the example given in Section 3.3, say one observes a given
household on four Tuesdays at 3 p.m. in July 2019. The household’s setpoint during these four
hours are 73, 74, 74, and 73 degrees F., respectively. We average these four observations (73.5), and
use this value as our measure of preferred temperature. If we did not make this substitution, and
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the household accepts Eco+, then we might mistakenly conclude that the household’s preferred
temperature during this time of the day is, say, 76 degrees, if the TOU feature raises setpoints
by 2-3 degrees during the peak period. Figure A.1 displays how this counterfactual substitution
process works to smooth out the impact of Eco+ on setpoints. In panel B, one can see that there
is no impact of the substitution process in July 2019, because Eco+ is not yet working to directly
change setpoints. This is illustrated by the fact that the observed and counterfactual lines for
both the encouraged and not encouraged groups lie on top of one another. In August 2019,
the counterfactual setpoint for the encouraged group falls below the observed setpoints in the
data, which shows clear signs of algorithmic manipulation (pre-cooling drop followed by spike
up during the peak period). By using the counterfactual setpoints as our measure of "preferred"
temperature, we ensure that the algorithmic manipulation of setpoints is not biasing our measure
of “preferred" indoor temperature.

B.4 Electricity Conversion Calculations

In Section 6, we consider the private benefits and costs of Eco+ adoption and calculate the energy
savings/discomfort tradeoff that such households make. To do this, we must convert from com-
pressor run-times that we observe in the DYD data to electricity consumption (in kWh). Table
A.10 outlines the various assumptions we make when undergoing these conversions.3

First, we need a value for a unit capacity ratio (in BTU/hour) to convert compressor run-times
into electricity consumption. We take the 2019 estimate from Canada’s National Energy Use
Database (NEUD) for central air-conditioning units: 33,202 BTU/hr (Natural Resources Canada
2019). Next, we need an assumption about the energy efficiency performance of the compressors
in our sample. From NEUD, we observe average seasonal energy efficiency ratios (SEER) by year
(expressed in terms of BTU/W*hr). For a lower-bound assumption on Ontario-specific SEERs,
we select a value of 12, as this is below the average SEER value for central air-conditioning sys-
tems in Ontario in recent years (12.5 in 2018, 12.7 in 2019). For an upper-bound estimate, we
select a SEER value of 16, which is above the required SEER of 13 for new AC systems in Canada
and also higher than the 14.5 SEER required to be considered “efficient".4

Dividing the unit capacity ratio by the appropriate SEER and adjusting for units (W*hr to kWh)
yields a conversion factor that we use to convert compressor run-times to kWh. These are pro-
vided in the first two lines under the "Calculations" panel of Table A.10. For sensitivity, we
present results for both SEER assumptions as the "Low efficiency" (12 SEER) and "High effi-
ciency" (16 SEER) cases in Table 5 in the main paper and for aggregate impacts presented in
Table A.11.

3Table A.10 also presents a number of parameter values vital to our calculation of aggregate summer impacts, as
well as hypothetical peak demand reduction impacts of scaling up Eco+, which we present in Table A.11 and discuss
in Sections 6.1 and 6.3, respectively.

4Source: https://www.hrai.ca/consumer-tip/what-exactly-is-seer-rating-. (last accessed April 20, 2023).
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