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Abstract

Federal and state governments in many countries subsidize the early adopters of electric vehicles
(EVs). These programs often use quotas or deadlines to phase out the subsidies, which can create
dynamic incentives for car manufacturers. Since most of the literature studies the effect of intro-
ducing subsidies on market outcomes in static settings, little research has addressed the dynamic
effects of subsidy-capping designs. This paper explores those effects in the US vehicle market. I
develop a structural model of consumers’ vehicle choices and manufacturers’ pricing decisions in
the US automobile industry. I then estimate the model using comprehensive data on new vehicle
registrations, prices, characteristics, and subsidies in 30 states between 2011 and 2017. Based on
the primitives generated from the model, I conduct counterfactual simulations to compare three
designs: a marketwide deadline, a per-manufacturer deadline, and a per-manufacturer quota. The
simulations show that for a given government expenditure, the quota leads to up to 18 percent lower
EV sales than the deadlines. Moreover, each design influences the sales of conventional vehicles,
consumer surplus, manufacturer profits, and liquid fuel consumption differently.
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1 Introduction

Consumer subsidies and rebates are a popular means to promote advanced technology vehicles in
several countries, such as the United States, Canada, China, and Norway (Beresteanu and Li 2011;
Chandra, Gulati, and Kandlikar 2010; Jenn, Azevedoa, and Ferreira 2013). Policymakers typically
use provisions such as quotas and deadlines to cap these subsidies. Despite this wide use, little work
has been done to understand their effect on market outcomes. This paper extends the literature by
considering the dynamic effects of such provisions. I show that different provisions have different
effects that can reinforce the intended policy objectives or create unintended consequences that
partly undo the benefits of the subsidy.

Policymakers subsidize plug-in electric vehicle (EV) purchases to address various externalities.
EV adoption has a positive environmental externality due to zero tailpipe emissions.1 It can enhance
the energy security of oil-importing countries by not relying on gasoline. It has information spillovers
to the extent that EV consumers help spread information about it. It also makes entry attractive
for charging stations, which is crucial for developing a charging network and further encouraging
demand. In addition, a policy goal may be to integrate EVs into the automobile industry by
overcoming the most significant barrier to their adoption—high up-front cost—by making EVs price
competitive with conventional vehicles.

The traditional Pigouvian solution to externalities is to subsidize the externality-generating ac-
tivity equivalent to the marginal external benefit at the optimal quantity. Policymakers typically
allow these subsidies to end after a certain period, with several possible reasons for doing so. First,
subsidies can be prohibitively expensive if sales surge due to higher budgetary requirements, admin-
istrative costs, or other political reasons. Second, marginal gains from informational spillovers are
likely to fade as EVs integrate into the automobile industry. Finally, the marginal cost, and therefore
the price, is likely to come down as manufacturers find cheaper ways to produce the battery.

Policymakers worldwide use different strategies to cap the subsidies, such as limiting the total
expenditure, imposing a deadline, or combining both. For instance, in 2012, Norway planned to
remove financial incentives for EVs after 2018 or once there were 50,000 such vehicles on the road
(Steinbacher, Goes, and Jörling 2018).2 In 2020, China planned to cut EV subsidies progressively
between 2020 and 2022, with complete expiration in 2022.3 The US federal EV tax-credit program
initiated by the Energy Improvement and Extension Act of 2008 capped the incentives by giving
each manufacturer a quota of 200,000 vehicles, after which its credit phased out. The Inflation
Reduction Act of August 2022 (IRA) replaced this cap with a single deadline for purchase subsidies.
Vehicles produced by all EV manufacturers now qualify for the subsidy until 2032 (provided they
meet some additional requirements).

1. Questions have been raised in the literature on the environmental benefits of driving EVs because charging the
battery increases pollution at the power plant (see Babaee, Nagpure, and DeCarolis (2014), Archsmith, Kendall, and
Rapson (2015), Holland et al. (2016), and Buekers et al. (2014)). The cleaner the grid, the greater the environmental
benefits of replacing a gasoline vehicle with an EV.

2. Although the 50,000 target was reached early in 2015, Norway later extended the incentives.
3. See https://www.globaldata.com/data-insights/automotive/china-will-end-ev-subsidies-after-30-cuts-in-2022/.
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For a given level of expenditure, are these designs equally effective in raising EV penetration?
What are their implications for market outcomes such as consumer surplus, EV manufacturers’
profits, and overall gasoline consumption? This paper takes a step toward answering these questions.

I focus on the US federal EV tax-credit program, which provides nonrefundable income tax
credits of up to $7,500 to EV consumers.4 Before the IRA, the program had a unique subsidy-
capping design (see Figure 1). The phaseout was triggered when a given manufacturer delivered the
200,000th subsidy-qualifying vehicle. In that quarter and the next, the per-vehicle subsidy remained
unchanged. It then reduced to half for that manufacturer’s vehicles for the next two quarters, one-
fourth for another two quarters, and then zero. Given the timing component in this design, pushing
the sale of the 200,000th vehicle to the following quarter (e.g., in July instead of June) could delay
the phaseout by a quarter.

I examine the short-term dynamic incentives created by this design. To do that, I break the
design into two components. The first is a per-manufacturer quota, in which each manufacturer
faces a separate quota on the total number of qualifying vehicles. Similar to the actual US design, if
the manufacturer sells fewer EVs than its quota in any period, then all EVs that it sells in the next
period also qualify for the subsidy. The second component is a per-manufacturer deadline, where
each manufacturer faces a separate deadline. The actual design in the program can be considered
as a combination of a per-manufacturer quota of 200,000 vehicles and three per-manufacturer dead-
lines corresponding to the 50%, 75%, and 100% subsidy cuts. I compare these components with a
marketwide deadline as instituted by the IRA.5 Comparing these different designs helps understand
the dynamic implications of replacing the earlier design with a marketwide deadline.

I first use a stylized two-period monopoly model to illustrate how this quota can potentially in-
centivize manufacturers to reduce their EV sales as they get close to the quota, thereby undermining
the effectiveness of the subsidy. The incentive arises because by staying below the quota in a given
period, the manufacturer can ensure that all EVs sold in the following period also qualify. Because
the manufacturer has market power, it can retain some benefits of the subsidies. As a result, it can
earn higher profits from all the EV sales made during an additional period. In contrast, capping
the subsidy using a deadline does not create this incentive because the manufacturer cannot control
when the subsidy expires.

Next, to quantify the effects of each design, I develop and estimate a structural model of the
US automobile industry. The demand side follows a discrete-choice framework, where consumers
choose a vehicle among all available fuel types. Because the EV market is still nascent, adoption
may depend on information gains from early adopters and mobility gains from the development
of a charging network (Kalish and Lilien 1983; Heutel and Muehlegger 2015; Springel 2021; Li et
al. 2017). I capture this network effect in the model by allowing consumers to care about the number
of EVs previously sold in their local geographic area. In contrast, the supply side is an oligopoly

4. Starting in 2024, the subsidy will be available as a "point-of-sale rebate" rather than a tax credit.
5. The IRA also made other changes to the program. For instance, it added a final assembly requirement, whereby

the subsidy is only available for EVs that were assembled in North America, and a price cap, an income cap, and
restrictions on sourcing critical battery minerals. Because my focus is on understanding the effect of the subsidy-
capping designs, I do not consider these other changes.
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with product differentiation where car manufacturers compete in prices.
The model’s key feature is that, in addition to current profits, it allows manufacturers to care

about the following year’s profits when choosing vehicle prices. Such two-period pricing captures
manufacturers’ responses to the dynamic incentives induced by the subsidy caps, which a static
model would miss. The two-period model also allows manufacturers to internalize the demand-side
network effect. Given a per-manufacturer quota, the network-effect-induced incentives work in the
opposite direction to quota-induced incentives. On the one hand, exhausting the quota shrinks the
future EV demand by eliminating the subsidy; on the other hand, attracting early adopters increases
the future EV demand due to the network effect. Thus, the manufacturer’s pricing response is a
priori ambiguous and depends on market parameters such as own- and cross-price elasticities and
the network effect.

Next, I estimate these demand parameters using product-level data on vehicle registrations,
characteristics, and federal and state-level subsidies in 30 states between 2011 and 2017. Based on the
estimated demand parameters and the first-order conditions of the manufacturers’ profit functions,
I then recover the vehicle markups and marginal costs in 2017. Finally, based on these primitives,
I recompute pricing equilibria under three counterfactual designs: a marketwide deadline, a per-
manufacturer deadline, and a per-manufacturer quota. I compare these designs with a counterfactual
with no subsidy.

The simulations show that even though all subsidy-capping designs boost the EV market pen-
etration, there are not equally effective. For a given government expenditure, a per-manufacturer
quota can lead to much lower EV sales compared to the deadlines. In my experiments, the per-
manufacturer quota reduces EV sales by up to 18 percent compared to the deadlines. Two factors
drive this result. First, staying below the quota in any period allows a manufacturer to qualify for
the subsidy on all EVs it sells in the following period, which allows it to earn higher profits. Second,
because the subsidy is only eliminated for manufacturers that exhaust the quota, not doing so pro-
tects manufacturers from competition from manufacturers below the quota. In contrast, as deadlines
do not allow manufacturers to control when the subsidy expires, they can be more cost-effective in
increasing EV market penetration. These results suggest that, all else equal, replacing the earlier
design with a marketwide deadline will likely boost the EV market penetration closer to subsidy
expiration.

In addition to the effect on market penetration, the subsidy-capping designs can have spillover
effects on conventional vehicles’ sales and can affect consumer surplus, manufacturers’ profits, and
liquid fuel consumption. They also affect profit distribution across manufacturers. Compared to a
marketwide deadline, a per-manufacturer deadline shifts profits away from the manufacturers that
face the limit. A per-manufacturer quota does not necessarily do so, because it allows them to
control when the subsidy expires. This finding sheds light on the argument made by the dominant
EV manufacturers, such as Tesla, General Motors (GM), and Nissan, which have claimed that the
per-manufacturer cap put them at a competitive disadvantage compared to newly entering rivals.
EV subsidies became a topic of vigorous debate during the tax reform of 2017 partly because of this
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cap; the dominant manufacturers and other supporters formed an EV-drive coalition and argued
(among other reforms) to remove the cap. After the original design survived that tax reform, the top
EV manufacturers that initially lobbied to preserve these incentives started favoring their removal
altogether (Lambert 2018). The results suggest that, all else equal, replacing the earlier design with
a marketwide deadline is likely to impact the distribution of profits and other market outcomes
mentioned above.

The paper adds to multiple strands of the literature. First, it contributes to the growing eco-
nomic literature on the role of government policies in decarbonizing transportation. According to the
Paris Agreement, many governments from different countries have set a target to achieve net-zero
emissions by 2050. Transitioning from conventional vehicles to EVs is essential to this goal (Williams
et al. 2012). Some papers, such as DeShazo, Sheldon, and Carson (2017), Jenn, Springel, and Gopal
(2018), and Clinton and Steinberg (2019), analyze the effectiveness of incentives in encouraging con-
sumer adoption of EVs and generally find that consumers respond to subsidies and other incentives.
Other papers, such as Li et al. (2017), Li (2018), and Springel (2021), explore the positive feedback
loop between EV purchases and charging infrastructure. This body of literature suggests an indirect
network effect that is important for policy design. Yet other papers, such as Aghion et al. (2016),
Jacobsen (2013), and Gillingham (2022), model vehicle manufacturers’ responses to environmental
regulation. I contribute by analyzing how the subsidy design can help improve EV market penetra-
tion, accounting for manufacturers’ responses to the dynamics of subsidy elimination. Comparing
the market outcomes under different designs allows for systematic policymaking—based on array-
ing alternative designs and comparing the advantages and disadvantages of each. Recognizing the
importance of the network effect on manufacturers’ pricing decisions, I internalize it by allowing
consumers’ utility to depend on previous EV purchases in their geographic area.

More broadly, the paper contributes to the literature investigating the role of government in-
centives in promoting green technology. Examples include Beresteanu and Li (2011), Gallagher
and Muehlegger (2011), and Jenn, Azevedoa, and Ferreira (2013) on hybrid vehicles, Van Benthem,
Gillingham, and Sweeney (2008), Crago and Chernyakhovskiy (2017), and Langer and Lemoine
(2022) on solar power, and Hitaj (2013) on wind power development. Most papers study the effect
of introducing subsidies on prices and welfare in a static equilibrium but ignore the dynamics of
subsidy elimination. For instance, Beresteanu and Li (2011) build an equilibrium model of the new
car market and estimate that federal income-tax credits for hybrid vehicles accounted for about 20
percent of such sales in 2006. My paper adds to the literature by explicitly modeling the responses of
forward-looking vehicle manufacturers to the subsidy-capping designs in a microfounded model. The
analysis is relevant for other countries, as well as other environmentally friendly products, such as
fuel-cell vehicles, solar panels, small wind turbines, and geothermal heat pumps, where policymakers
use similar subsidy-capping designs.

Finally, my paper adds to the literature on the incidence effects of subsidy programs. Some
papers on US clean energy subsidies include Sallee (2011), Borenstein and Davis (2016), Gulati,
McAusland, and Sallee (2017), and Pless and Van Benthem (2019). Examples from other subsidy
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contexts include Cabral, Geruso, and Mahoney (2018) on health insurance, Polyakova and Ryan
(2019) on the Affordable Care Act, and Fan and Zhang (2022) on cellphones. This paper adds to
the incidence literature by highlighting that, for a given value of the subsidy, the incidence depends
on program design. I take a structural approach that allows for a detailed analysis of mediating
factors and a simulation of market outcomes under the counterfactual subsidy-capping designs.

The rest of the paper is organized as follows. Section 2 provides a brief background of the US
plug-in EV industry. Section 3 describes an illustrative example to provide economic intuition and
identifies the key parameters governing manufacturers’ responses to the subsidy-capping designs.
Section 4 outlines the utility specification and the supply-side problem. Section 5 reports data and
summary statistics. Section 6 discusses identification, estimation, and results. Section 7 describes
the counterfactual experiments and discusses the findings. Section 8 concludes.

2 Industrial Background

This section begins with a brief description of the US plug-in EV market and the federal tax-credit
program that is the focus of this paper. It then describes the key mechanisms of interest in the
federal program. Finally, it describes other regulations that have influenced EV development.

2.1 Plug-In EV Market and Federal Tax Credits

Plug-in EVs are road vehicles powered by batteries that can be recharged by plugging into the electric
grid. They come in two varieties: (i) battery EVs (BEVs), which are powered exclusively through
electricity, and (ii) plug-in hybrid EVs (PHEVs), which use an electric motor as the primary power
source and the internal combustion engine as a backup. Both differ from fuel-cell EVs (FCEVs),
such as the Honda Clarity, and conventional hybrids (HEVs), such as the Toyota Prius, neither of
which can be plugged into an electric grid.

The US plug-in EV market mostly developed after Nissan introduced the Leaf in late 2010.
With fuel efficiency and environmental regulations becoming increasingly stringent, most US vehi-
cle manufacturers have added plug-ins to their portfolios. As of 2023, Tesla is the highest-selling
manufacturer, followed by GM and Nissan.

The US federal government started a tax-credit program for PHEVs and BEVs under the En-
ergy Improvement and Extension Act of 2008. The program offered nonrefundable tax credits for
purchases made after December 31, 2009 (IRS 2009). The credit varied by car model and was worth
$2,500 plus $417 for each kilowatt-hour of battery capacity over 4 kWh, capped at $7,500.6 BEVs
qualify for a higher credit than PHEVs due to their larger battery capacity. Popular BEVs, such as
all Tesla models and Chevrolet Bolt, qualified for the full $7,500 subsidy.

Until 2022, the US program used a unique phaseout provision. As summarized in Figure 1, the
phaseout triggered for a manufacturer once it sold 200,000 subsidy-qualifying cars for US use after

6. A consumer’s purchase needed to meet specific requirements to be eligible. See Internal Revenue Code Section
30D for details.
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December 31, 2009. The credit was unchanged in the quarter when the manufacturer delivered
the 200,000th vehicle and the next quarter. It reduced to 50 percent for the next two quarters,
25 percent for the next two quarters, and then zero. All eligible plug-in vehicles sold during the
phaseout period qualified for the credit.

This design followed the tax-credit program for conventional hybrid vehicles (Energy Policy Act,
2005), allegedly designed to prevent dominant foreign manufacturers, such as Toyota and Honda,
from benefiting more than domestic manufacturers over the program’s life (Lazzari 2006; Leonhardt
2006). The first two manufacturers that hit the threshold (Tesla and GM) are American. Tesla
delivered the 200,000th qualifying vehicle in July 2018; Tesla cars qualified for a $7,500 credit
July–December 2018, $3,750 January–June 2019, and $1,875 July–December 2019 (IRS 2018). GM
delivered the 200,000th qualifying vehicle in November 2018 and faced the subsidy expiration in
April 2020 (IRS 2019). The IRA replaced this phaseout design with a marketwide deadline of 2032.
All manufacturers, including the ones with the 200,000th vehicle before 2022, are eligible until 2032,
provided their vehicles meet additional requirements, such as domestic assembly.7

Because only two EV manufacturers have faced the elimination of purchase subsidies, I rely on
structural methods to understand the implications of different subsidy-capping designs. Specifically,
I develop and estimate a structural model of the US automobile industry, explicitly accounting for
consumers’ and manufacturers’ decisions. I use the estimated market parameters to simulate pricing
equilibrium under the counterfactual designs and compare market outcomes across different designs.
Appendix A shows time-series evidence that EV sales responded differently to the per-manufacturer
quota and the per-manufacturer deadline, based on Tesla and GM’s experiences.

In contrast to the EV tax-credit program studied here, the conventional hybrid tax-credit pro-
gram initiated by the Energy Policy Act (2005) would allow better data availability during and after
the subsidy elimination because the program expired in 2010. Nonetheless, I focus on the plug-in EV
tax-credit program for two reasons. First, in contrast to plug-in EVs, conventional hybrids compared
better than the dominant alternatives from a consumer’s perspective, as they combine the benefits
of gasoline engines and electric motors. As a result, hybrids were already in high demand before the
tax credits started. Second, the hybrid program offered tax credits only up to $3,150 with a much
lower per-manufacturer cap of 60,000. Toyota exhausted the quota within a few months (IRS 2006).
Due to these reasons, vehicle manufacturers are more likely to care about the consumer subsidies in
the EV market and, hence, more likely to respond to their elimination.

7. See IRS (2023) for details.
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Figure 1: Subsidy-Capping Design Adopted in the United States
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Notes: Panel (a) explains how the subsidy would evolve if the manufacturer exhausted the 200,000
threshold at the end of quarter Q1. The phaseout is triggered in the second quarter after the
electric vehicle (EV) manufacturer delivers the 200,000th subsidy-qualifying vehicle (Q3). In the
first six months of the phaseout, a qualifying vehicle from that manufacturer receives 50 percent of
the original subsidy. In the second six months, the subsidy reduces to 25 percent. It is eliminated
thereafter. The number of vehicles that can receive subsidies during the phaseout period is unlimited.
Panel (b) shows the subsidy evolution if the manufacturer hit the threshold at the beginning of Q2
instead, indicating a substantial incentive to reduce EV sales at the end of Q1 because doing so
prolongs the subsidy for another quarter.

2.2 Key Features of the Federal Subsidy Design

The design in Figure 1 is a combination of a per-manufacturer quota of 200,000 vehicles and three
per-manufacturer deadlines. The first two reduce the value of the credit, and the final deadline
eliminates it. Compared to the per-manufacturer deadline, the quota incentivizes manufacturers to
reduce their EV sales for two reasons. First, the quota holds up the first deadline. The subsidy
reduces to half in the second quarter after the 200,000th subsidy-qualifying EV is delivered. Thus,
pushing the sale of that vehicle to the next quarter can delay the phaseout by three months. Second,
the subsidy is eliminated only for those manufacturers who exhaust the quota; doing so before
others exposes an EV manufacturer to increased competition because other manufacturers continue
to qualify. By reducing the sales of subsidy-qualifying vehicles, EV manufacturers can avoid this
situation. On the other hand, the deadlines that followed the quota create no such incentive because
manufacturers cannot control when the subsidy expires.
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Figure 2: Network Effect

Charging Infrastructure EV Adoption Consumer learning

Notes: The figure depicts the positive feedback effect (or the network effect) of electric vehicle (EV)
adoption on future demand through two independent channels. Adoption allows potential consumers
to experientially infer the quality of plug-in EVs, which increases future adoption. Similarly, it makes
entry more appealing for charging stations, and more charging stations allow more consumers to
purchase an EV.

An EV manufacturer’s response to the per-manufacturer quota can be more complex if it an-
ticipates gains from selling early. Such gains may arise due to multiple reasons. On the demand
side, early sales may create a network effect that encourages later sales through two mechanisms
described in Figure 2. The first mechanism is consumer learning, whereby “word of mouth” effects
mitigate the uncertainty in product quality (Kalish and Lilien 1983; Heutel and Muehlegger 2015)
for future car buyers. When buyers see more EV adoption, their exposure to this new technology
increases, which may increase their willingness to purchase EVs instead of conventional vehicles. As
a result, early sales can shift the future EV demand to the right. This, in turn, can lead to more
consumer learning and even higher adoption.

The second mechanism is developing charging infrastructure, which creates a similar feedback
effect: more EVs on the road make entry more appealing for charging stations, and more charging
stations allow more consumers to adopt EVs. Thus, early sales can shift the future EV demand to
the right by facilitating the entry of charging stations. The role of charging infrastructure may not
seem obvious, considering that consumers can plug EVs into an ordinary electric outlet. However,
that process is very slow and not viable for traveling long distances that would exceed the’s battery
capacity. Fast-charging infrastructure is crucial to ensure mobility, especially for BEVs, because they
do not have a gasoline backup. In addition to these demand-side gains, early sales may offer supply-
side gains by helping manufacturers reduce costs through innovation and self-perfection (learning
by doing).

Given such gains, a per-manufacturer quota creates two conflicting forces. On the one hand,
surpassing the quota means forgoing future subsidies. On the other hand, staying below it means
forgoing the network gains from additional sales. As a result, the response would depend on the
relative strengths of the two channels. I discuss this mechanism further in Section 3 and account for
the network effect in my model by allowing consumer utility to depend on the previous EV sales by
the manufacturer. For simplicity, I do not model the supply-side gains separately.
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2.3 State-Level Subsidies and ZEV Mandates

Some state and local governments also offer monetary or nonmonetary incentives. Monetary incen-
tives are up to $5,000 per consumer (on top of the federal tax credits) in states such as California.
Nonmonetary incentives include access to carpool lanes and free meter parking.

California’s ZEV program has also significantly influenced the development of the plug-in EV
market. Designed by the California Air Resources Board in the 1990s to achieve the state’s long-
term emission reduction goals, the program requires a growing percentage of manufacturers’ overall
sales to have low emissions. Nine other states (collectively called “ZEV states“) also adopt the ZEV
regulations and, together with California, represent nearly 30 percent of the US car market.

Although ZEV mandates do not affect consumer decisions, they affect manufacturers’ profit func-
tion. The program works through a credit system, where each manufacturer must show ZEV credits
as a percentage of vehicle sales in the ZEV states in each model year. Manufacturers with a shortfall
can use credits accumulated in other years or buy credits from other manufacturers. Conversely,
manufacturers that exceed their credit requirements can bank credits for later years or sell them. For
instance, Tesla and Nissan sold relatively higher BEV volumes than other manufacturers starting in
2012 and sold credits to others. I discuss the ZEV program further in Section 4 and incorporate it
into my model by including the value of ZEV credits in the firms’ profit functions.

3 An Illustrative Model

This section demonstrates the effect of subsidy-capping designs on EV sales using a monopoly exam-
ple. Although the full model involves an oligopoly with strategic interactions, this simple example
provides economic intuition and identifies the key parameters governing the designs’ effect. Section
4 generalizes to the full oligopoly model, which I estimate and use for counterfactual experiments.

Consider a monopolist that maximizes the sum of profits across two periods. The market demand
in the first period is linear in the consumer price:

Q1(P1) = A−BP1,

where A and B are positive scalars. The market demand in the second period is similar but depends
on the first-period adoption to account for the network effect:

Q(P1, P2) = (A−BP2) + ηQ1(P1).

Here, η represents the network effect. The higher its value is, the more valuable the early adopters
are. As described in Section 2, such a network effect may be relevant for new technologies due to
consumer learning or charging network development.

Let λt denote the purchase subsidy in period t. The consumer price is the difference between
the manufacturer-set price pt and the subsidy λt. The firm produces at a constant marginal cost c
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in both periods and chooses the prices p∗1 and p∗2 to maximize the sum of profits in both periods:

(p∗1, p
∗
2) = argmax

p1,p2
(p1 − c)Q1(p1 − λ1) + (p2 − c)Q2(p1 − λ1, p2 − λ2).

Consider two subsidy-capping designs inspired by the current US phaseout. The first design
introduces a deadline so that only the first-period buyers qualify for the subsidy:

λt =

s, if t = 1

0, if t = 2.

In contrast, the second design introduces a cap Γ on the number of qualifying sales. All first-period
buyers are eligible. Second-period buyers qualify only if first-period sales fail to exceed the quota Γ:

λt =

s, if t = 1

sI[Q1(p1 − s) < Γ], if t = 2.

The crucial distinction between the two designs is that the latter grants the firm control over
the second-period subsidy. Correspondingly, the privately optimal responses would differ. For the
exposition, Figure 3 plots the optimal first-period sales under the deadline and quota designs as a
function of quota Γ under different hypothetical parameter values. Panel (1) uses parameter values
A = 300, B = 12, c = 20, and η = 0. The first-period sales can vary substantially under the quota
or deadline. The firm sells 90 vehicles in the first period when facing a deadline. When facing a
quota Γ < 90, it sells only Γ cars in the first period to secure the subsidy in the second period.

The difference in the privately optimal prices and sales across the two designs depends on the
underlying parameters, such as price sensitivity B and network effect η. Panels (2) and (3) demon-
strate this by varying B and η. In Panel (2), I reduce the price sensitivity to B = 10 while keeping
the network effect as 0, as in Panel (1). The effect of the subsidy on consumer demand is lower
compared to Panel (1) due to the lower price elasticity of demand. As a result, the firm facing a
quota stays below it only if Γ > Γ∗. When Γ < Γ∗, the firm behaves as if facing a deadline, and the
two designs produce equivalent market outcomes.

In Panel (3), I increase the network effect η to 0.2 while keeping the price sensitivity as in Panel
(2). Because of the network effect, the firm facing a deadline sells more EVs in the first period than
in Panels (1) and (2). The firm with a quota now faces a nontrivial dilemma: exhausting the quota
shrinks the second-period demand due to reduced subsidy, but attracting adopters in the first period
increases second-period demand due to the network effect. Although Γ∗ is the same as in Panel (2),
the difference in sales between the deadline and quota is larger.

Several lessons emerge from this simple analysis. First, a per-manufacturer quota can incentivize
manufacturers to sell fewer EVs. In the monopoly example, this incentive arises because by staying
below the quota in a given period, the manufacturer can ensure that all EVs sold in the following
period also qualify. This incentive will be reinforced in an oligopoly because staying below the quota
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also protects the firm from competition from other manufacturers. Second, the effect of the subsidy-
capping designs on market outcomes depends on parameters such as own-price elasticity and the
network effect. In an oligopoly, market outcomes, such as profit distribution, will also depend on
the cross-price elasticities. By recovering the key parameters, I can answer how the designs affect
market penetration, gasoline consumption, consumer surplus, and firms’ profits.

4 Full Model

I now describe the complete model with the consumer and manufacturer decision problems in the
US automobile industry. I observe new vehicle sales in M geographic markets (indexed by m =

1, 2, . . . ,M) over T years (indexed by t = 1, 2, . . . , T ). Each year has a fixed set of firms that
produce an exogenous set of products.

The demand specification follows the discrete-choice framework of Berry, Levinsohn, and Pakes
(1995), where consumers choose a single vehicle from all available fuel types. Including all fuel types
allows for simulating what happens to the entire market of automobiles under the counterfactual
scenarios. To ease computation, I assume that consumers are myopic in that they do not consider the
future evolution of prices or infrastructure and only purchase if the vehicle serves their present driving
needs. In contrast, the supply side is an oligopoly with product differentiation where manufacturers
choose prices for all vehicles in their portfolio. I use the estimated demand elasticities to recover
the marginal costs in 2017 and investigate what would have happened if the subsidy elimination
began in 2017 under different subsidy-capping designs. In practice, the subsidy elimination began
in 2018. However, as discussed later, I avoid this year in the estimation to ensure that the demand
elasticities are not influenced by intertemporal substitution. Although the 2017 data are imperfect
to directly inform the effect of the actual subsidy-capping design, it allows examining the dynamic
trade-offs highlighted in Section 3 and predicting the effect that different designs would have had
during 2017. I elaborate on consumer demand and manufacturers’ decision problems next.

4.1 Demand

Each period, consumers arrive at the market. The products available in market m in model year t

are indexed by j ∈ Jmt. Consumer i’s indirect utility from choosing vehicle j is a function of vehicle
and individual characteristics:

Uijmt = −αipjmt + xjtβi +Njmtη + ξjmt + ϵijmt, (1)

where pjmt represents the consumer price and equals the manufacturer’s suggested retail price
(MSRP) minus all purchase incentives:

pjmt = MSRPjt − RDjt
Retail discount

− λ0
jt

Federal subsidy
− λjmt

local subsidy
.

In equation 1, xjt is a K × 1 vector of vehicle attributes, including size, performance, cost of
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Figure 3: Deadline vs. Quota in a Monopoly

Notes: This figure shows the first-period sales as a function of quota Γ in three different situations.
Each panel fixes c = 20 and A = 300 but changes either the price coefficient B or the network effect η.

Panel (1): The price coefficient B = 12, and the network effect η = 0. When facing a
quota, the firm always stays below the quota to secure the future subsidy, which may result in fewer
sales compared to a deadline.

Panel (2): The network effect is as in case (1), but the price coefficient is lowered to B = 10. The
firm reduces the first-period sales only when the quota is higher than Γ∗.

Panel (3): The price coefficient remains as in case (2), but the network effect is raised to
η = 0.2. As in case (2), the firm reduces the first-period sales only when the quota is higher than
Γ∗. However, the network effect leads to a larger difference in first-period sales between deadline
and quota compared to case (2).
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driving, battery range, fuel type indicators, and 14 vehicle segment indicators based on market
orientations. αi denotes the marginal utility from price, assumed to follow a log-normal distribution
with parameters α and σα. In other words, log(αi) = α+σαviα, where viα follows a standard normal
distribution. βi is a K × 1 vector of taste coefficients, assumed to follow a normal distribution with
parameters β and σβl for the lth dimension of βi. Njmt indicates a vector of the network effect
variables and includes the interaction of BEV and PHEV indicators with the log cumulative EV
sales by the manufacturer of vehicle j in market m up to year t − 1, along with the interaction
of BEV and PHEV indicators with the log cumulative EV sales by all manufacturers whose EVs
use the same type of Level 3 charger in market m up to year t − 1. ξjmt represents the average,
or common, utility from the attributes of vehicle j in market m and year t that is unobservable
to the researcher but known to consumers and producers; these may include quality, promotional
activity, or systematic demand shocks. I model ξjmt = ξm + ξt + ∆ξjmt. Econometrically, ξm is
captured by market-specific dummies that control for time-invariant market-level variations, such
as the quality of public transit or local inclinations to be green. ξt is captured by time dummies
that control for national factors that do not vary across markets, such as national macroeconomic,
climate, and global fuel price shocks. ∆ξjmt is left as an econometric error term. Finally, ϵijmt

represents idiosyncratic tastes assumed to follow i.i.d. type-I extreme value distribution.
The specification incorporates the network effect in a reduced-form fashion by allowing consumer

utility from an EV to depend on the cumulative EV sales from the same manufacturer until the
previous period and the cumulative EV sales from all manufacturers with compatible Level 3 chargers
until the previous period.8 The rich dataset includes car registrations since the recent development
of the US plug-in EV market. It allows me to calculate the cumulative EV sales in each geographic
market precisely. The rationale for including previous adoption of EVs from the same manufacturer
is that adopters help spread information about that manufacturer’s EVs among the new consumer
pool. When car buyers observe more EVs produced by a given manufacturer, they may be more
willing to buy its EVs. Therefore, the signs of these network-effect variables are expected to be
positive. The rationale for including the previous adoption of all EVs that use a compatible Level 3
charger is that it is associated with the available charging infrastructure network vital to guarantee
drivers’ mobility. However, previous adoption of EVs produced by competing manufacturers also
increases consumers’ exposure to competing EVs, which may induce them to purchase those vehicles
instead. Therefore, the signs of these network-effect variables are theoretically ambiguous.

Modeling the vehicle purchase decisions as static is reasonable for buyers of conventional gasoline-
powered vehicles, as these do not evolve substantially over time. However, EV buyers may also time
their purchases to take advantage of better prices. For instance, if they believe that subsidies
will expire, they may buy earlier. To ensure that the demand parameters reflect actual purchase
choices and not an intertemporal substitution, I estimate the demand model using data unaffected

8. Although Level 1 and Level 2 charging standards are uniform across all vehicle brands, Level 3 charging stations
were offered through three incompatible standards during the sample period. Tesla used its own Supercharger network.
Nissan, Mitsubishi, Kia, and Toyota used the Japanese-developed CHAdeMO standard. FCA, GM, Ford, Volkswagen,
and BMW used the SAE International Combo standard.
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by the subsidy changes (2011–2017). The static choice framework is a good approximation for EV
purchasing decisions during these years because the federal price incentives were put in place in
2009—well before the start of the EV market—and did not phase out until 2018. As a result, the
subsidy-induced timing effects are unlikely to be relevant, and the elasticities will likely reflect the
actual changes in vehicle choice. Although eliminating subsidies may induce changes in purchase
timing, it is unlikely to affect the true parameters governing vehicle choice behavior. As a result, I can
apply the demand parameters estimated from the 2011–2017 data in the counterfactual experiments.

EV buyers may also care about the timing of their purchases if they believe that the charging
network or quality will improve. The static assumption imposes that car purchase behavior is
governed by present driving needs, which is reasonable because consumers may be limited in changing
their residence or workplace location in the short run. Moreover, as discussed in Section 5.2, the
improvements in battery range have been slow, suggesting that consumers would have to wait for a
long time for significant upgrades.

Consumers make their purchase by maximizing their utilities across all vehicle options with the
outside option of purchasing a used vehicle or nothing. As they are myopic, the outside good does
not include purchasing the vehicle in the future. The utility from choosing the outside choice is

Ui0mt = ξ0mt + ϵi0mt.

The mean utility of the outside good is not identified, so I normalize ξ0mt = 0. Consumer i chooses
a model j if and only if

Uijmt ≥ Uij′mt, ∀j′ ̸= j.

The choice probability is

Prijmt =

∫
I(ϵ|Uijmt ≥ Uij′mt ∀j′)dF (ϵ)

=
exp(−αipjmt + xjtβi +Njmtη + ξjmt)

1 +
∑

j′∈Jmt

exp(−αipj′mt + xj′tβi +Nj′mtη + ξj′mt)
.

Correspondingly, the share of vehicle j in the market market m and period t is

sjmt =

∫
exp(−αipjmt + xjtβi +Njmtη + ξjmt)

1 +
∑

j′∈Jmt

exp(−αipj′mt + xj′tβi +Nj′mtη + ξj′mt)
dF (αi, βi).

Let Hmt denote the number of households in market m and period t. The demand for vehicle j in
market m and period t is Qjmt = Hmtsjmt.

4.2 Supply

I model the market as served by a multifirm, differentiated-product industry where firms engage
in Bertrand price competition. Given the market primitives, each firm f chooses prices for all
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vehicles in its portfolio to maximize the sum of profits in the current and following year across all its
products in all the geographic markets, assuming that product offerings, marginal costs, state-level
subsidies, and demand shocks stay as in period t. Vehicle characteristics other than the price evolve
exogenously, which is reasonable because manufacturers typically make product decisions over a
longer horizon than pricing decisions. The profit for firm f is

Πft =
∑
m

∑
j∈Jft

[ (pjt − cjt + hjmt)Qjmt(p.t) + (pj,t+1 − cjt + hjmt)Qjm,t+1(p.t, p.t+1)] . (2)

The price pjt is uniform across all markets and equals the MSRP minus retail discounts:

pjt = MSRPjt − RDjt
Retail discount

.

MSRPs and retail discounts are constant across markets within a model year. I do not observe and
therefore do not consider market-specific discounts. cjt is the marginal cost, and hjmt is the value
of ZEV credits for model j in market m. For non-ZEV states, hjmt takes the value 0. For ZEV
states, hjmt is the product of the value of the credit for model j and the price of ZEV credit. In
2017, battery EVs, plug-in hybrids, and hydrogen fuel-cell vehicles earned credits depending on their
battery charge time and range. Vehicles with a range of fewer than 50 miles earned one credit; those
with a range of more than 300 miles and a recharge time of fewer than 15 minutes earned nine credits.
In addition, conventional hybrids, such as the Honda Civic and Toyota Prius (AT-PZEV), earned up
to 0.8 of a credit, and gasoline vehicles with lower emissions (PZEV) than federal standards earned
up to 0.2 of a credit. Although the ZEV credit market does not have price transparency, literature
has backed out prices from the revenues reported by the manufacturers. Following McConnell and
Leard (2021), I assume that the value of ZEV credits in 2017 was USD 2,218.

A two-period pricing model is vital to examine how firms respond when the dynamics of subsidy
elimination become relevant. For instance, firms facing a per-manufacturer quota may increase EV
prices to delay exhausting it. A static model will fail to capture such adjustments. The two-period
model is also crucial for the firms to internalize the network effect and react strategically to the
subsidy elimination based on their expectations of how current prices affect future EV demand. For
instance, the model allows the firms facing a per-manufacturer quota to keep prices low and surpass
the quota if they believe that raising prices would diminish their future profits. Although the two-
period assumption is guided by computational simplicity, it is not restrictive, because if firms care
about a longer horizon, that is similar to solving the same problem with a lower discount factor.

The prices chosen in period t affect the profits in period t+1 by influencing only a set of commonly
observed state variables: the subsidy value and network effect. Given these state variables, all firms
simultaneously choose prices for all the products in period t+ 1. I derive the optimality conditions
using backward induction. Given p.t, the optimal price vector p∗.t+1(p.t) in period t+1 is the solution
to the system of J first-order conditions:
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∑
m

Qjm,t+1 +
∑
k∈Jft

(
(pk,t+1 − ckt + hkmt)

∂Qkm,t+1

∂pj,t+1

) = 0.

The optimal price vector p∗.t+1(p.t) can be used to simulate the optimal profit vector Π∗
f,t+1(p.t) as

a function of p.t. In period t, the vector of prices p.t maximizes

Πft =
∑
m

∑
j∈Jft

[(pjt − cjt + hjmt)Qjmt(p.t)] + Π∗
f,t+1(p.t).

In 2017, all EV manufacturers were far behind the quota. As a result, their profit maximization
problems in 2017 are not constrained by it, ensuring that Π∗

f,t+t(p.t) is differentiable in p.t. Therefore,
the necessary optimality condition in period t with respect to the price of product j is

∑
m

Qjmt +
∑
k∈Jft

(
(pkt − ckt + hkmt)

∂Qkmt

∂pjt

)+
∂Π∗

f,t+1(p.t)

∂pjt
= 0. (3)

These first-order conditions involve own and cross-price derivatives of the demand for each product,
calculated as the weighted sums of individual derivatives:

∂Qkmt

∂pjt
= Hmt

∂skmt

∂pjt
=

−Hmt

∫
sijmt(1− sijmt)αidF (αi, βi), if j = k

Hmt

∫
sijmtsikmtαidF (αi, βi), otherwise.

(4)

The derivatives
∂Π∗

f,t+1(p.t)

∂pjt
can be computed numerically. I use these first-order conditions to recover

the marginal costs for all products in 2017.
The model has some caveats. First, firms control sales only through short-run price changes. In

practice, firms can use more ways to reduce EV sales. For example, given a per-manufacturer quota,
they can lower the production of subsidy-qualifying vehicles; this would create an artificial shortage
and keep the sales below the quota. In the absence of data on vehicle inventories, I do not model
this mechanism. Such simplification affects how firms respond to the counterfactual subsidy-capping
designs, which I discuss further in Section 7. Second, throughout the analysis, I abstract from entry
and exit decisions. In practice, the designs may also affect firms’ entry into the EV market. Although
this concern was important when the subsidy was enacted in 2009, it is less relevant today because
most major vehicle manufacturers already have some EVs in their portfolio.

Finally, other overlapping regulations imposed on vehicle manufacturers, such as federal corpo-
rate average fuel economy (CAFE) and greenhouse gas (GHG) standards, also incentivize manufac-
turers to increase EV sales. CAFE and GHG standards influence the market on the supply side by
imposing limits on the average fuel economy and GHG emissions of the vehicles that a manufac-
turer sells each year. Both regulations grant extra credits to EVs, incentivizing manufacturers to
sell more EVs. For simplicity, I do not account for these regulations in the manufacturers’ profit
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function. One concern is that these incentives may interact with the dynamic incentives created by a
per-manufacturer quota. For instance, a manufacturer nearing its quota may want to sell more EVs
to offset CAFE liabilities, even if it means exceeding the quota and forgoing future subsidies. Such
concern is irrelevant to the estimation because it relies on the years before subsidy elimination. It
is also unlikely to be restrictive for counterfactual analysis because both CAFE and GHG programs
allow additional flexibilities, such as banking credits from overcompliance to use for compliance in
another model year. As a result, a manufacturer facing a quota on EV subsidies can use such flexi-
bilities to meet their CAFE and GHG requirements. Thus, ignoring these regulations still provides
a good approximation of the market outcomes under different subsidy-capping designs.

5 Data

5.1 Data Sources

The data for this paper come from various sources. The vehicle sales data were purchased from a
market research company and contain new light-duty vehicle registrations in 30 states during the
calendar years 2011–2017. The selected states captured the highest EV market share in 2016. I use
these states to define a geographic market. As the EV market primarily developed after 2010, the
data capture it from the outset. A vehicle is a unique model year, make, model, and fuel type. I
use registrations for all fuel types (except fuel cell) to account for substitution between fuel types.9

I exclude exotic vehicles, such as Ferrari and Lamborghini. For each market, I estimate its size
using the US Census Bureau’s state-level annual estimates of housing units and calculate the market
shares by dividing the state-level sales volume by the number of households in that year. The market
share of the outside good is the difference between 1 and the sum of inside goods market shares.

The distinction between a calendar year and a model year presents a technical issue in defining
the choice sets. A model year is a manufacturer’s annual production period, including January 1 of
the calendar year. It typically runs from October to September of the next year (e.g., 2016 models
were released around October 2015.) I define the choice sets based on model year, thus assuming that
all vehicles released in any model year sell in the same model year and that model years perfectly
align for each manufacturer. I do not observe the 2011 models sold in the 2010 calendar year, so I
use 2011 data to calculate cumulative EV sales in each market but not the demand estimation. The
sample comprises 62,186 observations of vehicle shares over 30 states during 2012–2017.

I obtain vehicle-level characteristics from the WARDS Intelligence Data Center and Environ-
mental Protection Agency and fill in missing values based on the information from Edmunds. Ad-
ditionally, I obtain market segmentation data from Automotive News. Although I observe vehicle
characteristics at the trim level, registrations are at the make-model-fuel level. Hence, I average
the characteristics across different trims to match the registrations. Vehicle characteristics include
MSRP, size-related measures (wheelbase and width), horsepower, curb weight, fuel type, fuel effi-

9. I drop fuel-cell vehicles from the sample, as I do not observe state-level hydrogen prices. These observations
comprise less than 0.01 percent of the total US sales during 2011–2017.
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ciency, and battery range (for EVs). The demand model allows consumer utility to depend on the
size, performance, cost of driving, and battery range. I measure size by the product of wheelbase
and width and performance by the ratio of horsepower and curb weight. For gasoline and diesel
vehicles, I calculate the cost of driving as the state-level fuel price per gallon divided by the vehicle’s
fuel economy; the fuel prices come from the US Energy Information Administration (EIA) and are
expressed in dollars per million British thermal units (Btu). I convert these into dollars per gallon
using the Btu content of each fuel.10 For BEVs, I calculate the cost of driving by dividing the elec-
tricity price per kW-hrs by the vehicle electricity consumption in kW-hrs/mile.11 Finally, I calculate
the cost of driving for PHEVs by assuming that they run 50 percent of the time on electricity and
50 percent on gas or diesel. It varies with two sources: fuel economy and market-level fuel prices.
Thus, a high gas price in a state raises the cost of driving all gasoline vehicles in that state.

Although average transaction prices are preferred in demand estimation, such data are not readily
available. Instead, I combine MSRP data with the manufacturers’ retail discounts from Automotive
News and federal and state-level subsidies from the US Department of Energy to approximate the
prices that consumers and firms face. Federal and state-level subsidies vary across models and time.
Given purchase subsidies, the price that enters the firms’ profit function differs from the consumer
price—it is the difference between MSRP and the average discounts provided by the manufacturer in
that year. The consumer price is the difference between MSRP and all purchase incentives, including
manufacturer discounts and federal and state subsidies. Federal subsidies are nonrefundable tax
credits, so in practice, the amount received by a consumer depends on their income-tax liability.
For simplicity, I assume that all consumers can claim the full tax credit. The justification is that
the new vehicle market is typically used by wealthy households with high income-tax liabilities. I
deflate all vehicle and fuel prices using the Bureau of Labor Statistics Consumer Price Index and
adjust them to 2015$.

Finally, I obtain the list of makes produced by each manufacturer from the annual EPA Auto
trend reports. Consistent with the regulatory definitions, I assume that different makes of the same
parent manufacturer belong to a single firm. For example, Buick, Cadillac, Chevrolet, and GMC
are all part of GM.

5.2 Summary Statistics

Table 1 summarizes the sales and sales-weighted average characteristics of vehicles in the sample.
The first column reports the model year, and the subsequent columns show the total models, the
real price (in thousands of dollars), total sales (in thousands of dollars), size (in thousands of in2),
performance (in HP per 10 lb), cost of driving (in dollars per mile), and battery range (in miles)
separately for plug-in EVs and other fuel-type vehicles. The available EV models rose from 9 in

10. See https://www.eia.gov/energyexplained/units-and-calculators/ for details on this calculation.
11. For BEVs, EPA reports fuel economy using an MPGe metric, calculated as 33.705 kWhrs/ gallon divided by

the vehicle electricity consumption in kW-hrs/mile. This measures the miles the vehicle can travel on an amount of
energy equal to that stored in a gallon of gasoline. I use these values to calculate the vehicle’s electricity consumption
(kW-hrs/mile) as 33.705 kWhrs/gallon divided by the EPA-reported MPGe values.
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2012 to 34 in 2017; their total sales in the sample states rose from 43,000 in 2012 to 207,000 in
2017. Models of other fuel types rose from 315 in 2012 to 348 in 2017; their total sales in the sample
states rose from 9.4 million in 2012 to 12.1 million in 2017. The average size of EVs remained fairly
stable across both types. The average performance for EVs increased from 0.32 Hp/10 lbs in 2012
to 0.42 Hp/10 lbs in 2017, but that of other fuel types remained stable at around 0.61 Hp/10 lbs.
The average cost of driving for EVs remained stable at around $0.05 per mile, but that of other fuel
types reduced from $0.16 in 2011 to $0.10 in 2017. The average cost of driving is much lower for
EVs due to high fuel economy and low electricity prices. Finally, the average battery range for EVs
rose from 53.98 miles in 2012 to 115.43 miles in 2017.

Table 1: New Vehicle Sales and Characteristics in the Sample States

Year Models MSRP Sales Size Performance Driving Cost Battery Range
($’000) (’000) (’0000 in2) (Hp/10lb) ($/mile) (miles)

EV Other EV Other EV Other EV Other EV Other EV Other EV Other
2012 9 315 43.11 30.47 43 9,407 0.75 0.81 0.32 0.61 0.04 0.16 53.98 0.00
2013 10 336 43.81 31.16 95 10,739 0.76 0.82 0.38 0.61 0.05 0.15 74.76 0.00
2014 20 349 45.63 31.88 98 10,975 0.75 0.83 0.44 0.61 0.05 0.14 78.94 0.00
2015 21 357 48.96 32.78 115 12,087 0.78 0.83 0.42 0.61 0.04 0.10 99.28 0.00
2016 27 343 60.26 32.85 124 11,685 0.84 0.83 0.52 0.61 0.05 0.09 123.24 0.00
2017 34 348 48.05 33.46 207 12,196 0.80 0.83 0.42 0.61 0.04 0.10 115.43 0.00

Notes: This table shows the evolution of key variables in the sample states between 2012 and 2017. Columns (6)–(9) show the sales-weighted
average vehicle characteristics. Size is wheelbase× width (in thousands of in2), performance is horsepower by curb weight (in Hp/10 lb), driving
cost is fuel cost (in dollars per mile), and battery range is the all-electric range (in 10 miles) for electric vehicles.

Figure 4 shows that the annual sales and share of both BEVs and PHEVs went up in the sample
states between 2012 and 2017; they represented 1.6 percent of domestic automobile sales in 2017.
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Figure 4: Sales and Share of New Light-Duty Plug-In EVs in the Sample States

Notes: The figure shows the evolution of the US plug-in electric vehicle (EV) industry between
2012 and 2017. The horizontal axis shows the model years. The left and the right axes show the
total plug-in EV sales and the share of plug-in EVs in total new-vehicle sales in the sample states,
respectively.

Figure 5 shows all EV manufacturers with their year of entry on the horizontal axis and the total
vehicles sold in the sample states between 2011 and 2017 on the vertical axis. Tesla and GM sold
around 150,000 EVs; Nissan sold around 110,000. Table 2 summarizes the plug-in models and the
nominal value of federal subsidies for each manufacturer in 2017. The subsidy ranged from $3,793
for PHEVs such as BMW I8 to $7,500 for BEVs such as Tesla Model 3. It remained unchanged for
all models during the sample period.
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Figure 5: Major Players in the Plug-In EV Industry

Notes: This figure shows the major US plug-in electric vehicle (EV) manufacturers. For each
manufacturer, the x-coordinate shows the year in which its first plug-in EV sale appears in the
sample. The y-coordinate shows the total plug-in sales between 2011 and 2017.

Table 2: Federal Subsidies for Plug-In EVs

Manufacturer Plug-in EV Models Subsidy Range (USD)
Bmw BMW 330, BMW 740, BMW I3, BMW I8,

BMW X5
3,793–7,500

Daimler Mercedes-Benz B-Class, Mercedes-Benz GLE,
Smart Fortwo

4,460–7,500

Fiat Chrysler Chrysler Pacifica, Fiat 500 7,500
Ford Ford C-Max, Ford Focus, Ford Fusion 4,007–7,500
General Motors Cadillac CT6, Chevrolet Bolt, Chevrolet Volt 7,500
Hyundai Hyundai Ioniq, Hyundai Sonata 4,919–7,500
Kia Kia Optima, Kia Soul EV 4,919–7,500
Mitsubishi Mitsubishi i-MiEV 7,500
Nissan Nissan Leaf 7,500
Tesla Tesla Model 3, Tesla Model S, Tesla Model X 7,500
Toyota Toyota Prius Prime 4,502
Volkswagen Audi A3, Porsche Cayenne, Volkswagen Golf 4,502–7,500
Volvo Volvo XC90 4,585

Notes: This table summarizes the plug-in electric vehicle models and federal consumer subsidies in 2017
for each manufacturer.

Table 3 summarizes the plug-in EV sales and regulations in all 30 states in 2017. Columns (1)
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and (2) list the total sales in each state and their share as a percentage of overall new-vehicle sales.
Sales are highest in California (3.67 percent) and lowest in Oklahoma (0.15 percent). Columns (3)
and (4) show purchase incentives and ZEV mandates. Six states provide some subsidies for plug-in
EVs, and eight have the ZEV requirement. States with subsidies or ZEV mandates have higher EV
sales.

Table 3: State-Level EV Sales and Incentives

Market Plug-In Percent of Plug-In ZEV
Sales Total Sales Incentives State

Arizona 10,374 0.68 -
California 350,563 3.67 Yes Yes
Colorado 12,527 1.10 Yes -
Connecticut 7,607 0.80 Yes Yes
Florida 25,983 0.43 -
Georgia 27,448 1.29 -
Hawaii 7,158 2.30 -
Illinois 14,553 0.49 -
Indiana 3,760 0.30 -
Maryland 11,575 0.76 Yes Yes
Massachusetts 14,060 0.77 Yes Yes
Michigan 14,064 0.46 -
Minnesota 4,691 0.39 -
Missouri 3,915 0.33 -
Nevada 3,766 0.57 -
New Hampshire 2,354 0.50 -
New Jersey 16,694 0.57 Yes
New York 30,238 0.57 Yes Yes
North Carolina 8,041 0.37 -
Ohio 8,166 0.27 -
Oklahoma 1,189 0.15 -
Oregon 14,869 2.00 Yes
Pennsylvania 11,883 0.35 -
Tennessee 4,266 0.34 -
Texas 21,619 0.30 -
Utah 4,368 0.87 -
Vermont 2,592 1.17 Yes
Virginia 9,849 0.51 -
Washington 27,804 2.05 -
Wisconsin 6,205 0.48 -

Notes: Columns (1) and (2) show the total plug-in electric vehicle
(EV) sales and their share as a percentage of overall new car sales
during 2011–2017 based on data for the 30 states in the sample. Col-
umn (3) and (4) shows the availability of state-level plug-in EV in-
centives and ZEV requirement.
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6 Estimation and Results

The next step is to estimate the structural model described in Section 4. I estimate the demand sys-
tem and recover marginal cost, assuming that the data are generated by Nash-Bertrand equilibrium
behavior. The benefit of sequential estimation is that demand estimation does not rely on supply-
side conduct. Section 6.1 describes the estimation and identification of the demand parameters, and
Section 6.2 reports the results from estimating the structural model.

6.1 Estimation and Identification

The fundamental issue that motivates demand estimation is the price endogeneity arising from
two sources. First, the model implies that price and quantity are determined in equilibrium, so
the price partly depends on the unobservable product characteristics ∆ξjmt. For instance, vehicle
characteristics, such as comfort, ride smoothness, and expected resale value, cannot be measured
directly. However, the price will likely reflect them if they are costly for the manufacturer or affect
demand. Similarly, advertisement efforts are unobserved but may be correlated with the pricing
discounts. Second, I do not observe the average vehicle transaction price and instead approximate
it using MSRP minus purchase incentives. As a result, variations in the vehicle transaction price
across markets enter ∆ξjmt in equation 1. Both cases result in price endogeneity.

Identification requires a set of exogenous instruments. Vehicle characteristics other than price are
valid instruments for themselves, as they are part of an exogenous development process. Appropriate
instruments for price include any factors that are correlated with the price but not with ∆ξjmt. I
follow Berry, Levinsohn, and Pakes (1995) and use the sum over the characteristics of firm’s other
vehicles and the sum over the characteristics of all the competing vehicles as instruments for price.
Specifically, for each vehicle characteristic k (constant, size, performance, driving cost, and battery
range), I include the following terms as instruments for price:

zkjmt = (xkjt,
∑

r ̸=j,r∈Jfmt

xkrt,
∑

r ̸=j,r /∈Jfmt

xkrt). (5)

Overall, there are 10 excluded instruments.
These instruments vary over vehicle models in each market and across time. They are relevant

because they proxy for the degree and closeness of competition that a brand faces, thus affecting
the firm’s markups. The rationale for separately including firms’ own vehicles and other firms’
vehicles is that when a firm prices its vehicles, it would treat the substitution with its own and other
firms’ vehicles differently, as consumers who will switch away to another of its vehicles following a
price increase do not represent as much of a loss. The identifying assumption is that the demand
unobservables ∆ξjmt are mean independent of the observed characteristics. The underlying timing
assumption is that car manufacturers do not observe ∆ξjmt when choosing vehicle characteristics.

The identification issues associated with including cumulative sales as a product characteristic are
similar to those involved in using a lagged dependent variable as a regressor. Specifically, consistent
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estimation of the network-effect parameters requires that demand unobservables are not serially
correlated. I assume that, conditional on the market and year fixed-effects, this is the case.

Following Berry, Levinsohn, and Pakes (1995) and Nevo (2000), I estimate the demand param-
eters using the simulated Generalized Method of Moments using the population moment condition
that is a product of the described instrumental variables and unobservable demand shocks ∆ξjmt.

6.2 Results

Table 4 shows the results from the estimating demand derived from the indirect utility specification
in Equation 1.12 The first eight rows show the coefficients measuring the mean parameters α and β.
Most coefficients are precisely estimated and have expected signs. Vehicle size and the horsepower-
to-weight ratio have positive coefficients, indicating that consumers value size and performance. The
negative coefficient on the cost of driving per mile implies that consumers prefer high fuel efficiency,
which reduces the cost per mile. The sign on the BEV indicator is negative, indicating that in the
absence of a network (i.e., zero cumulative EV sales) and ceteris paribus, BEVs are less preferred to
conventional models, possibly because they do not have a gasoline backup. Moreover, the coefficient
on the PHEV indicator is positive, indicating that consumers value vehicles with a gasoline backup.

The next two rows show the interactions between EV indicators and cumulative EV sales in
the state by manufacturer. These terms have positive signs, indicating that consumers gain more
utility from BEVs and PHEVs as the manufacturer’s network develops. The next two rows show the
interactions between EV indicators and cumulative sales of all EVs that use a compatible Level 3
charger in the state. Both coefficients are negative, possibly because the vehicle sales from competing
manufacturers induce consumers to buy those vehicles instead, thus shifting the vehicle’s demand
leftward. The subsequent rows show the estimates of six random coefficients that measure the
dispersion in households’ tastes.

Table 5 presents a sample of own and cross-price elasticities, markups (i.e., pjt−cjt), and marginal
costs implied by the demand estimates and the firms’ first-order conditions. Each row corresponds
to a different vehicle; the first four rows are the top four plug-in EV cars by sale in 2016, the
following three rows are the top conventional cars, and the bottom three rows are the top pickup
trucks. Each entry gives the percentage change in demand of the row vehicle associated with a 1
percent increase in the price of the column vehicle. Price elasticities differ across markets for each
product, but marginal costs are identical. Rather than presenting elasticities for a particular market,
I present the average across all markets in 2017. The cross-price elasticities are larger among similar
products. For instance, an increase in the price of the Chevrolet Silverado (pickup) shifts consumers
disproportionately to the Ford F-150 (pickup) compared to the Chevrolet Volt (car). Moreover, the
less elastic the demand is to the vehicle’s own price, the larger the ratio of the markup to price.

12. Appendix B provides the details of the first-stage estimation. The first-stage F-statistic for the excluded instru-
ments is 494.99.
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Table 4: Demand Estimates

Variable Coef SE
Mean Parameters α and β

Price (0000 USD) 0.282 0.235
Constant -12.663∗∗∗ 0.728
Size (0000 in2) 6.580∗∗∗ 0.754
Performance (Hp/10 lb) 5.976∗∗∗ 0.528
Fuel Cost ($/mile) -33.734∗∗∗ 8.090
Battery Range (10 miles) 0.009 0.022
BEV -1.826∗∗∗ 0.665
PHEV 2.823∗∗∗ 0.744

Network Effects
BEV × log(1+ Manufacturer EV Sales) 0.500∗∗∗ 0.062
PHEV × log(1+Manufacturer EV Sales) 0.529∗∗∗ 0.079
BEV × log(1+ Same-Charger EV Sales) -0.339∗∗∗ 0.067
PHEV × log(1+Same-Charger EV Sales) -0.580∗∗∗ 0.117

Std. Dev. Parameters σα and σβ
Price (0000 USD) 0.414∗∗∗ 0.141
Fuel Cost ($/mile) 4.560 11.550
Car 1.608 1.420
Van 0.013 26.081
Pickup 0.159 15.037
SUV 7.523∗∗∗ 1.057

Fixed Effects
State FE Yes
Time FE Yes
Segment FE Yes
Obs 62186

Notes: This table shows the estimates from the flexible logit model. A unit
of observation is a vehicle-state-year. Size is wheelbase×width (in thousands
of in2), performance is horsepower by curb weight (in Hp/10 lb), driving cost
is fuel cost (in dollars per mile), and battery range is the all-electric range (in
10 miles) for electric vehicles (EVs). The variable “Manufacturer EV Sales”
shows cumulative EVs sold by the vehicle’s manufacturer in the geographic
market until the previous year. The variable “Same-Charger EV Sales” shows
cumulative EV sales by all manufacturers with the same Level 3 charging
standard in the geographic market until previous year.

25



T
ab

le
5:

A
Sa

m
pl

e
of

O
w

n
an

d
C

ro
ss

-P
ri

ce
E

la
st

ic
it

ie
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

P
ri

ce
M

ar
ku

p
M

ar
gi

na
l

(U
SD

)
(U

SD
)

C
os

t
(U

SD
)

(1
)

Fo
rd

Fu
si

on
(P

H
E

V
)

-2
.9

51
0.

00
3

0.
00

6
0.

00
3

0.
03

3
0.

02
8

0.
02

6
0.

01
3

0.
01

6
0.

01
1

34
,7

97
9,

44
1

26
,1

55
(2

)
C

he
vr

ol
et

V
ol

t
(P

H
E

V
)

0.
00

1
-2

.6
93

0.
00

5
0.

00
3

0.
03

3
0.

02
9

0.
02

7
0.

01
2

0.
01

5
0.

01
0

34
,3

42
8,

19
9

27
,3

03
(3

)
T
es

la
M

od
el

S
(B

E
V

)
0.

00
1

0.
00

3
-5

.3
21

0.
00

2
0.

02
9

0.
02

2
0.

02
2

0.
01

9
0.

02
3

0.
01

4
85

,1
33

10
,6

82
75

,1
18

(4
)

T
oy

ot
a

P
ri

us
P

ri
m

e
(P

H
E

V
)

0.
00

1
0.

00
3

0.
00

5
-2

.4
62

0.
03

2
0.

02
9

0.
02

6
0.

01
1

0.
01

3
0.

01
0

28
,2

04
8,

84
2

20
,5

39
(5

)
H

on
da

A
cc

or
d

(G
as

)
0.

00
1

0.
00

3
0.

00
6

0.
00

3
-2

.7
52

0.
03

0
0.

02
8

0.
01

4
0.

01
6

0.
01

2
27

,9
52

9,
82

5
18

,1
27

(6
)

H
on

da
C

iv
ic

(G
as

)
0.

00
1

0.
00

3
0.

00
5

0.
00

3
0.

03
3

-2
.3

59
0.

02
8

0.
01

2
0.

01
4

0.
01

0
22

,4
65

9,
18

4
13

,2
82

(7
)

T
oy

ot
a

C
am

ry
(G

as
)

0.
00

1
0.

00
3

0.
00

5
0.

00
3

0.
03

5
0.

03
0

-2
.6

02
0.

01
3

0.
01

6
0.

01
1

25
,7

25
9,

75
3

15
,9

73
(8

)
Fo

rd
F

(G
as

)
0.

00
0

0.
00

1
0.

00
3

0.
00

1
0.

01
0

0.
00

8
0.

00
8

-3
.1

11
0.

02
8

0.
01

9
35

,7
86

11
,4

15
24

,3
72

(9
)

C
he

vr
ol

et
Si

lv
er

ad
o

(G
as

)
0.

00
0

0.
00

1
0.

00
3

0.
00

1
0.

01
0

0.
00

8
0.

00
8

0.
02

4
-3

.2
71

0.
02

0
38

,6
53

11
,8

08
26

,8
46

(1
0)

T
oy

ot
a

T
ac

om
a

(G
as

)
0.

00
0

0.
00

1
0.

00
3

0.
00

1
0.

01
0

0.
00

8
0.

00
8

0.
02

2
0.

02
6

-2
.8

71
31

,7
04

10
,7

86
20

,9
18

N
ot

es
:

C
ol

um
ns

(1
)–

(1
0)

re
po

rt
av

er
ag

e
cr

os
s-

pr
ic

e
el

as
ti

ci
ti

es
fo

r
10

ve
hi

cl
es

ac
ro

ss
al

l
sa

m
pl

e
st

at
es

in
20

17
,

ca
lc

ul
at

ed
fr

om
th

e
de

m
an

d
es

ti
m

at
es

in
T
ab

le
4.

E
ac

h
en

tr
y
(i
,j
),

w
he

re
i

is
th

e
ro

w
an

d
j

is
th

e
co

lu
m

n,
re

fe
rs

to
th

e
av

er
ag

e
pe

rc
en

ta
ge

ch
an

ge
in

de
m

an
d

fo
r

m
od

el
j

w
he

n
th

e
pr

ic
e

of
m

od
el

i
ch

an
ge

s
by

1
pe

rc
en

t
in

th
e

m
ar

ke
ts

w
he

re
bo

th
pr

od
uc

ts
ar

e
av

ai
la

bl
e.

C
ol

um
ns

(1
1)

,(
12

),
an

d
(1

3)
re

po
rt

th
e

pr
ic

es
,m

ar
ku

ps
an

d
m

ar
gi

na
lc

os
ts

,r
es

pe
ct

iv
el

y.

26



Table 6 summarizes the estimated elasticities, markups, and marginal costs for all 382 models
observed in 2017. Panel (a) summarizes these for all vehicles. The average own-price elasticity is
-3.97, which is within the range of the estimates in the literature (Berry, Levinsohn, and Pakes 1995;
Li 2018).13 The marginal costs range from $19,372 at the 25th percentile to $42,246 at the 75th
percentile. Panels (b) and (c) break the sample into plug-in EVs and conventional vehicles. The
average prices of plug-in EVs are higher, but the estimated average elasticities and markups are
similar.

Table 6: Marginal Cost Estimates

Variable Mean 25% Median 75% Std Dev Obs
Panel (a): All vehicles

Price before subsidy (USD) 45,984 28,204 38,061 54,086 270,679 382
Own-price elasticity -3.97 -4.66 -3.64 -2.94 1.46 382
Markup (USD) 10,584 9,004 10,470 11,798 2,521 382
Marginal cost (USD) 35,552 19,372 28,133 42,246 25,078 382
Panel (b): Plug-in EVs

Price before subsidy (USD) 51,990 31,527 38,886 73,496 294,074 34
Own-price elasticity -3.86 -5.32 -3.08 -2.54 1.76 34
Markup (USD) 9,061 7,088 8,940 10,838 3,732 34
Marginal cost (USD) 44,624 26,506 34,070 60,815 26,664 34
Panel (c): Conventional vehicles

Price before subsidy (USD) 45,397 27,473 37,800 53,307 268,019 348
Own-price elasticity -3.98 -4.64 -3.71 -3.05 1.43 348
Markup (USD) 10,732 9,189 10,554 11,805 2,325 348
Marginal cost (USD) 34,666 18,646 27,715 41,695 24,781 348

Notes: This table summarizes the price elasticities, markups, and vehicle marginal costs cal-
culated from the demand estimates in Table 4 and the first-order conditions of firms’ profit
maximization.

7 Counterfactual Experiments

The next step is to compare market outcomes under the different subsidy-capping designs. I examine
three designs: (1) a market-wide deadline where all manufacturers face the same deadline, (2)
a per-manufacturer deadline where each manufacturer faces a separate deadline, and (3) a per-
manufacturer quota where each manufacturer faces a separate quota on the number of subsidy-
eligible vehicles. In the last design, as in the actual US design, if the manufacturer sells fewer EVs
than its quota in any period, then all EVs it sells in the next period also qualify for the subsidy.

In each case, I use the parameter estimates from Section 6 to recompute the pricing equilibria
under the two-stage game from Section 7.2 and calculate the market outcomes of interest, assuming
that product offerings, marginal costs, state-level subsidies, and demand shocks stay at the 2017

13. Berry, Levinsohn, and Pakes 1995 estimate elasticities for the conventional vehicles in the range −3 to −6. Li
2018 finds average price elasticity of -2.7 for EVs.
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levels.

7.1 Counterfactual Subsidy-Capping Designs

1. Marketwide deadline: This design institutes a single deadline for all firms. Consumers who
purchase EVs up to the end of 2017 qualify for the subsidy:

λ
(1)
jt = λ0

j1(t ≤ 2017),

where λ0
j is the initial federal subsidy for vehicle j as observed in the data.

2. Per-manufacturer deadline: This design institutes a deadline for Tesla and GM. Consumers
who purchase up to the end of 2017 qualify. Consumers who buy other brands qualify in both
2017 and 2018. I discuss the rationale for this design below. The subsidy evolves as follows:

λ
(2)
jt =

λ0
j1(t ≤ 2017) if f ∈ {Tesla, GM}

λ0
j otherwise.

3. Per-manufacturer quota: This design gives each manufacturer a quota κ. All consumers
qualify in 2017. Consumers who purchase a vehicle in 2018 qualify if the manufacturer sells
fewer than κ subsidy-eligible vehicles between 2011 and 2017. The subsidy evolves as follows:

λ
(3)
jt = λ0

j

[ t−1∑
τ=2011

∑
j∈Jfτ∩JEV

Q
(3)
jτ ≤ κ

]
,

where JEV is the set of all EVs and
∑t−1

τ=2011

∑
j∈Jfτ∩JEV

Q
(3)
jτ is the manufacturer’s nationwide

cumulative EV sales between 2011 and t− 1.

Because I only observe annual vehicle sales, I allow counterfactual designs to affect the per-vehicle
subsidies yearly. In practice, the US phaseout design affected them quarterly. The per-manufacturer
deadline and quota are inspired by the US design, which combines both of these. The choice of Tesla
and GM for a per-manufacturer deadline is because these manufacturers had the highest cumulative
EV sales up to 2017, which allows for convenient comparison with the quota—a design that only
affects Tesla and GM in the simulations. In practice, policymakers could base the per-manufacturer
deadlines on year of entry, which can help raise market penetration by reducing the barriers to entry
and ensuring multiple suppliers in the new industry.

My analysis focuses on the short-term dynamic implications of the subsidy-capping designs on
the market outcomes. In the long term, these designs could affect market penetration differently
if they affect manufacturers’ entry. I do not model entry into the EV market because most major
manufacturers already had EVs in their portfolio by the time the subsidy began to phase out.

Table 7 summarizes the features of each design. Under a marketwide deadline, the subsidy is elim-
inated for all manufacturers simultaneously; no incentive to reduce EV sales exists in 2017 because
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firms’ actions do not affect whether they qualify for a subsidy in 2018. Under a per-manufacturer
deadline, the subsidy is eliminated for manufacturers according to their separate deadlines. As be-
fore, no incentive exists to reduce EV sales. Finally, under the quota, the subsidy is eliminated for
manufacturers based on when they exhaust it, creating an incentive to reduce sales in 2017.

Table 7: Features of Counterfactual Subsidy-Elimination Designs

Feature Marketwide Per-Manufacturer Per-Manufacturer
Deadline Deadline Quota

Differential elimination ✕ ✓ ✓
Incentive to reduce EV sales ✕ ✕ ✓

7.2 Computing Equilibrium Under a Per-Manufacturer Quota

Solving for the optimal price vector p∗.t under the quota introduces important computational chal-
lenges because Π∗

f,t+1(p.t) is not differentiable in p.t. This is because the subsidy in period t + 1

depends on firms’ actions in period t. I address this challenge using the following strategy to compute
the equilibrium.14 First, based on the observation that manufacturers other than Tesla and GM sold
very few EVs up to 2016, I conjecture that these manufacturers stay within the quota in 2017 in
the equilibrium. I then consider four scenarios, depending on Tesla and GM’s choice of crossing the
quota in 2017 (discussed next). Finally, I confirm my conjecture by verifying that cumulative sales
by other manufacturers stay below the quota. The conjecture holds in the counterfactual analysis.

When the conjecture holds, the original game can be reformulated as a two-player game repre-
sented in the normal form by the following payoff matrix:

Tesla/ GM Cross Don’t Cross

Cross (ΠTesla
CC ,ΠGM

CC ) (ΠTesla
CD ,ΠGM

CD )

Don’t Cross (ΠTesla
DC ,ΠGM

DC ) (ΠTesla
DD ,ΠGM

DD )

The payoff vector in each cell represents the sum of profits in periods t and t + 1 for Tesla and
GM. In each case, Tesla and GM solve a constrained maximization problem in 2017. For instance,
when Tesla plays “Don’t Cross,” it chooses prices to maximize the two-period profits subject to the
constraint that its cumulative EV sales stay below the quota in 2017.

max
pjt,j∈JTesla,t

∑
m

∑
j∈JTesla,t

[pjt − cjt + hjmt]Qjmt +Π∗
Tesla,t+1(p.t)

s.t.
2017∑

τ=2011

∑
j∈JTesla,t

Qjτ ≤ κ.

14. An alternative solution is to use grid-search algorithms. However, these algorithms tend to be very slow.
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In contrast, all other manufacturers solve for prices using Equation 3. The final equilibrium under
the per-manufacturer quota is the Nash equilibrium in this 2× 2 game.

Unlike per-manufacturer quota, Π∗
f,t+1(p.t) is still differentiable in p.t under the marketwide and

per-manufacturer deadlines because firms’ actions in period t do not affect the subsidies in period
t + 1. In these cases, I use a fixed point of Equation 3 to compute the new pricing equilibrium,
calculating the partial derivative ∂Qkt

∂pjt
using Equation 4 and

∂Π∗
f,t+1(p.t)

∂pjt
numerically.

7.3 Outcomes of Interest

The relevant market outcomes include government expenditure, consumer surplus, firm profits, sales
of electric and conventional vehicles, and total gasoline consumption.15 Government expenditure
in period t under the counterfactual c is

∑
j λ

(c)
jt Q

(c)
jt . As it changes across the experiments, I

report it to facilitate direct comparison between different elimination designs.16 Consumer surplus
represents compensating variation (McFadden et al. 1973; Small and Rosen 1981). For household i,
the compensating variation in any counterfactual scenario (c) from a comparison scenario is given
by

∆CSimt =
1

−αi

ln
∑

j∈Jmt

exp(δ
(c)
jmt + µ

(c)
ijmt)

−

ln
∑

j∈Jmt

exp(δ0jmt + µ0
ijmt)

 , (6)

where αi is household’s marginal utility of income. Given the compensating variation for a specific
household, the change in average surplus in market m is

∫
i∆CSimtdF (αi, βi). The total change

in consumer surplus is the sum of changes in all markets
∑

m

∫
i∆CSimtddF (αi, βi). Profits are

calculated using Equation 2. Finally, the total gasoline consumption from the vehicles sold in period
t under the counterfactual c is

∑
j

1
mpgj

×Q
(c)
jt ×VMTj where Q

(c)
jt is the total sales of vehicle j and

VMTj is the miles traveled during its lifetime. I assume that vehicles travel 12,000 miles per year
and have a life of 15 years.

7.4 Counterfactual Results

This section reports the market outcomes from simulating the alternative designs. Overall, the results
show that each design has different implications for market penetration, environmental impact, and
distribution of gains across consumers and manufacturers. I elaborate on the results next.

15. The sum of consumer surplus and manufacturer profits does not reflect welfare for two reasons. First, economic
agents do not internalize the environmental effects of EVs. Second, elimination designs are likely to have different
long-term impacts due to the network effect, which are not captured by aggregating the two-period outcomes.

16. Alternative strategies to compare the designs include fixing the government expenditure across the experiments
by changing the amount or duration of the subsidy. Both approaches have limitations. Changing the amount affects
consumer prices and, hence, purchase behavior, making it difficult to disentangle the effect of subsidy elimination.
Changing the duration requires modeling more than two periods, which complicates computation.
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7.4.1 EV Prices and Sales

Figure 6 shows the cumulative EV sales for Tesla, GM, and Nissan under a marketwide deadline,
a per-manufacturer deadline, and a per-manufacturer quota of 120,000.17,18 The blue bars indicate
total sales between 2011 and 2016, as observed in the data, and the orange and yellow bars indicate
sales in 2017 and 2018, respectively, under the recomputed equilibria.

Figure 6: Effect of Subsidy-Capping Designs on EV Sales

Notes: This figure shows the cumulative plug-in electric vehicle sales (in thousands) under different
subsidy-capping designs for the three dominant manufacturers. The blue bars indicate total sales
2011–2016, as observed in the data, and the orange and yellow bars indicate sales in 2017 and 2018,
respectively, under the recomputed equilibria.

For Tesla and GM, sales in 2017 remain the same under the marketwide and the per-manufacturer
deadlines because they cannot control the status of subsidies in 2018. In contrast, the quota acts
as a binding constraint for both manufacturers, and they remain below it to ensure the subsidy in
2018. Table 8 illustrates the mechanism behind this finding, showing that when facing the quota,
Tesla and GM lower EV sales in 2017 by raising the prices of EVs in 2017. For instance, compared
to the counterfactual with no subsidy (Column (1)), GM raises the price of the Chevrolet Volt by
$4,924 (Column (4)). Notably, for Tesla Model S, the increase in price is $13,500, which is even
higher than the actual subsidy of $7,500, implying a negative pass-through to consumers in 2017.

Such a striking effect of the quota on prices is partly a consequence of the modeling assumption
that firms control sales through price alone. In practice, manufacturers can also create an artificial
shortage of qualifying vehicles by lowering production and may not drastically increase prices. How-
ever, data limitations do not allow examining this mechanism. Even though the model specification
leads to an unconvincingly large increase in EV prices under the quota, it is valuable because it high-

17. Appendix Table 13 reports EV sales separately for all manufacturers.
18. I explore other values of the per-manufacturer quota in Appendix D.
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lights the strong incentive to reduce EV sales under this design that is robust to the specification.
Two factors drive this incentive: (1) staying below the quota in any period allows manufacturers to
qualify for the subsidy on all EVs in the next period, and (2) as the subsidy is eliminated only for
manufacturers that exhaust the quota, staying below it prevents exposure to increased competition
from manufacturers below it.

Unlike Tesla and GM, Nissan’s EV sales in 2017 remain unaffected because it is far below the per-
manufacturer quota in 2017. Although Nissan had comparable sales during 2011–2016, it sells much
less than Tesla and GM in 2017 under each counterfactual. This is because Tesla and GM introduced
new models, such as the Chevrolet Bolt and Tesla Model 3, in 2017, which gained popularity since
their introduction. In contrast, Nissan only sold a single model (the Leaf) in 2017.

Table 8: Effect of Subsidy-Capping Designs on Vehicle Prices and Sales in 2017

Vehicle Outcome No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (120,000)

Chevrolet Bolt (BEV) Price (USD) 40,157 39,041 39,026 44,905
Sales 8,208 21,594 21,634 10,826

Chevrolet Volt (PHEV) Price (USD) 35,774 35,006 34,992 40,698
Sales 15,300 32,864 32,897 18,929

Tesla Model S (BEV) Price (USD) 85,869 85,410 85,412 99,369
Sales 14,801 24,651 24,639 9,854

Toyota Prius Prime (PHEV) Price (USD) 29,050 28,656 28,202 28,215
Sales 18,775 30,205 31,661 31,714

Honda Accord (Gas) Price (USD) 27,959 27,952 27,952 27,958
Sales 330,695 329,571 329,491 329,994

Honda Civic (Gas) Price (USD) 22,474 22,466 22,466 22,471
Sales 341,661 340,506 340,423 340,911

Toyota Camry (Gas) Price (USD) 25,726 25,725 25,725 25,730
Sales 270,928 270,025 269,961 270,301

Ford F (Gas) Price (USD) 35,788 35,787 35,786 35,788
Sales 277,994 277,768 277,755 277,888

Chevrolet Silverado (Gas) Price (USD) 38,653 38,653 38,653 38,653
Sales 305,132 304,825 304,809 305,018

Toyota Tacoma (Gas) Price (USD) 31,707 31,705 31,705 31,708
Sales 220,559 220,273 220,253 220,391

Notes: This table shows the equilibrium prices (before subsidy) and sales across the 30 sample states in 2017
for a sample of vehicles using counterfactual simulations described in Section 7.
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Next, consider the effect of subsidy-capping designs on EV sales in 2018. As Tesla and GM do
not qualify under the marketwide or per-manufacturer deadlines, they sell almost the same number
of EVs under both. In contrast, they qualify in 2018 under the quota. As a result, they sell more
EVs in 2018 than under either of the deadlines, which partly offsets their low sales in 2017. For
instance, Tesla’s EV sales rise by 65 percent under the quota compared to the per-manufacturer
deadline. Nissan sells more EVs in 2018 under a per-manufacturer deadline and the quota than
under a marketwide deadline because it qualifies in the first two cases but not in the last.

7.4.2 Aggregate Market Outcomes

As market outcomes differ by manufacturer and over time, I report the aggregate market-level
outcomes in Table 9 using no subsidy as the benchmark counterfactual. As the total government
expenditure changes across these designs, I also report it for each design.

Panel (a) shows the aggregate market outcomes in 2017. Both the marketwide and per-manufacturer
deadlines lead to a similar boost in EV sales, as expected. Moreover, all other market outcomes
look similar under the two designs. In contrast, the outcomes under the quota are governed by Tesla
and GM trying to stay below it by charging higher prices. Because of these efforts, the subsidy-
induced EV sales are around 54 percent lower than the per-manufacturer deadline. Moreover, the
reduction in conventional vehicle sales is lower as consumers substitute from the high-priced EVs
toward lower-cost conventional alternatives in 2017. The subsidy-induced consumer surplus reduces
by 62 percent, the aggregate manufacturer profits increase by 23.5 percent, and the government
expenditure reduces by 29.4 percent.

Panel (b) shows the aggregate market outcomes in 2018. Those under the marketwide deadline
are close to the counterfactual with no subsidy because the subsidy expires for everyone in 2018.
However, EV sales are higher than in the counterfactual with no subsidy because of the network-
effect gains from the 2017 subsidies. This outcome shows that in the presence of network effect,
EV subsidies can have a long-term impact on market penetration. Specifically, by reducing the
up-front cost of EVs, purchase subsidies raise EV sales in 2017. And, because EV consumers care
about previous EV adoption, the demand for EVs shifts right in 2018. Compared to the marketwide
deadline, the subsidy-induced EV sales are substantially higher under a per-manufacturer deadline
because all manufacturers other than Tesla and GM qualify in 2018. Moreover, subsidy-induced EV
sales are even higher under the quota because all manufacturers, including Tesla and GM, qualify
in 2018.

Panel (c) shows the market outcomes summed over the two years. By construction, the mar-
ketwide deadline design only disburses subsidies in 2017. As a result, it requires the least government
expenditure and results in the lowest EV sales, consumer surplus, and manufacturer profits. The
per-manufacturer deadline requires additional government expenditure, as it also pays out in 2018.
It results in the greatest boost in EV sales and highest reduction in conventional vehicle sales and
gasoline consumption. Finally, the quota requires the highest government expenditure but results in
the least reduction in conventional vehicle sales, lowest consumer surplus, and highest manufacturer
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profits.

Table 9: Effect of Subsidy-Capping Designs on Aggregate Outcomes

Outcome Market Per-Mfr Per-Mfr
Deadline Deadline Quota (120,000)

Panel (a): 2017 Outcomes

∆ EV Sales 89,007 94,551 43,856
∆ Conv Sales -34,478 -35,974 -12,427
∆ Gas Consumption (Million Gallons) -2,546.11 -2,651.85 -853.45
∆ Consumer Surplus (Million USD) 1,066.84 1,135.19 428.01
∆ Total Profits (Million USD) 461.24 432.16 534.07
Govt Expenditure (Million USD) 1,219.41 1,250.22 881.56

Panel (b): 2018 Outcomes

∆ EV Sales 1,904 43,161 89,807
∆ Conv Sales -833 -12,464 -34,283
∆ Gas Consumption (Million Gallons) -64.4 -878.96 -2,535.68
∆ Consumer Surplus (Million USD) 35.93 560.97 1,109.05
∆ Total Profits (Million USD) 12.54 280.7 525.41
Govt Expenditure (Million USD) 0 511.75 1,200.88

Panel (c): Total

∆ EV Sales 90,911 137,712 133,663
∆ Conv Sales -35,311 -48,438 -46,710
∆ Gas Consumption (Million Gallons) -2,610.51 -3,530.8 -3,389.13
∆ Consumer Surplus (Million USD) 1,102.78 1,696.16 1,537.06
∆ Total Profits (Million USD) 473.78 712.86 1,059.48
Govt Expenditure (Million USD) 1,219.41 1,761.97 2,082.43

Panel (d): Total (Normalized)

∆ EV Sales 75 78 64
∆ Conv Sales -29 -27 -22
∆ Gas Consumption (Million Gallons) -2.14 -2 -1.63
∆ Consumer Surplus (Million USD) 0.9 0.96 0.74
∆ Total Profits (Million USD) 0.39 0.4 0.51

Notes: This table shows the change in aggregate market outcomes under the counterfactual
simulations discussed in section 7 compared to the counterfactual with no subsidies. Panel
(a) shows the market outcomes in 2017, Panel (b) shows the outcomes for 2018, Panel (c)
shows the aggregate outcomes over the two years, and Panel (d) shows aggregate two-period
outcomes normalized by government expenditure. All simulations assume that the subsidy
elimination began after 2017.

Panel (d) shows the aggregate two-period outcomes, normalizing the government expenditure at
$1 million. Because government expenditure is not held constant across different experiments, such
normalization is required to compare the cost-effectiveness of different designs. Panel (d) shows that
subsidies with a marketwide deadline sell around 75 more EVs and 29 fewer conventional vehicles
than the counterfactual with no subsidy. The program results in 2.14 million gallons of lower
fuel consumption, $0.9 million higher consumer surplus, and $0.39 million higher manufacturer
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profits. Similarly, subsidies with a per-manufacturer deadline sell around 78 more EVs and 27 fewer
conventional vehicles than the counterfactual with no subsidy. The program results in 2 million
gallons lower fuel consumption, $0.96 million higher consumer surplus, and $0.4 million higher
manufacturer profits. Finally, subsidies with a quota sell 64 more EVs and 22 fewer conventional
vehicles than the counterfactual with no subsidy. The program results in 1.63 million gallons higher
fuel consumption, $0.74 million higher consumer surplus, and $0.51 million higher manufacturer
profits.

In each case, consumers and manufacturers share the benefits unequally. However, the benefits
accrued to consumers are the lowest under the quota, indicating a substantial leakage of benefits to
manufacturers. This outcome is a result of Tesla and GM raising the prices of their EVs in 2017
to stay below the quota. As noted, the effect of the quota on prices is partly a consequence of the
model specification, whereby firms control EV sales only through prices. In practice, manufacturers
can also stay below the quota by lowering EV production. However, doing so would also lower the
consumer surplus compared to the deadline designs.

Overall, the results show that for a given government expenditure, a marketwide or per-manufacturer
deadline are almost equally effective at raising EV penetration in the short term and result in similar
benefits for consumers. Moreover, the quota is less effective at raising EV penetration compared to
the deadlines and results in the lowest benefits for consumers.

7.4.3 Profit Distribution Across Manufacturers

Table 10 decomposes the profits across manufacturers under different counterfactuals. Tesla earns at
least $237 million (or 32.6 percent), GM earns at least $208 million (0.5 percent), and Nissan earns
at least $17 million (0.08 percent) more profits from EV subsidies than the counterfactual with no
subsidy. Note that compared to GM and Nissan, EV subsidies have a much higher impact on Tesla
(as a percent of total profits) because it focuses exclusively on EVs.

Tesla and GM earn the lowest profits under the per-manufacturer deadline because they do not
qualify for subsidies in 2018, whereas others still do. They earn slightly higher profits under a
marketwide deadline when no manufacturer qualifies in 2018. They earn the highest profits under
the quota, as they qualify in 2018. For instance, Tesla’s profits rise by 9.6 percent compared to the
per-manufacturer deadline.

In contrast, other EV manufacturers, such as Nissan and Toyota, earn the least profits under
the marketwide deadline when they do not qualify for subsidies in 2018. They earn slightly higher
profits under a per-manufacturer deadline when they qualify in 2018, which allows them to have a
competitive advantage over Tesla and GM in 2018. Like Tesla and GM, they also earn the highest
profits under the quota. This is likely because they have a competitive advantage over Tesla and
GM in 2017, both of which must limit their EV sales in 2017 to qualify in 2018.
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7.4.4 Discussion

Overall, the results show a substantial incentive for manufacturers to reduce EV sales under a per-
manufacturer quota when it acts as a binding constraint, which can decrease the effectiveness of the
subsidy. This observation confirms the intuition from the monopoly example in Section 3. Although
the rise in EV sales in 2018 partially offsets the sales reduction in 2017, the combined normalized sales
over the two years are 18 and 14 percent lower compared to the per-manufacturer and marketwide
deadlines, respectively. This observation shows that deadlines are likely to be more cost-effective in
aiding EV market penetration compared to a binding per-manufacturer quota. Moreover, because
EV manufacturers are multiproduct oligopolists, the designs may also affect the prices and sales of
conventional vehicles. On aggregate, these designs affect consumer surplus, manufacturer profits,
and liquid fuel consumption. Finally, each design affects the profit distribution across manufacturers
differently. Compared to a marketwide deadline, a per-manufacturer deadline shifts profits away from
the manufacturers facing it. Thus, if the deadline is based on the year of entry, this would imply
more support for newer manufacturers. In contrast, a per-manufacturer quota does not necessarily
shift profits away from manufacturers facing it because it allows them to control when the subsidy
expires.

Before IRA, the EV subsidies were eliminated using a combination of a per-manufacturer quota
and per-manufacturer deadlines (see Figure 1). IRA replaced that design with a marketwide dead-
line. The results from the analysis indicate that a marketwide deadline is almost as cost-effective
as a per-manufacturer deadline. It is also at least as cost-effective as a per-manufacturer quota
when the quota acts as a binding constraint. Thus, all else equal, replacing the earlier design is
likely to positively affect EV market penetration and create a higher reduction in the liquid fuel
consumption closer to 2032, when the dynamics of subsidy elimination become relevant. Moreover,
the pass-through to consumers is also likely to be higher compared to the earlier design. However,
as the per-manufacturer quota and deadline have different implications for profit distribution, the
effect of replacing the subsidy-capping design on the profit distribution across EV manufacturers is
ambiguous.
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Table 10: Effect of Subsidy-Capping Designs on Profit Distribution

Manufacturer No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (120,000)

BMW 6,185 6,232 6,292 6,300
Daimler 6,073 6,064 6,066 6,069
Fiat Chrysler 24,814 24,821 24,861 24,867
Ford 29,028 29,046 29,088 29,099
General Motors 41,368 41,594 41,576 41,775
Honda 27,787 27,730 27,705 27,709
Hyundai 11,016 11,005 11,004 11,006
Jaguar Land Rover 2,417 2,410 2,408 2,410
Kia 7,398 7,398 7,409 7,410
Mazda 3,725 3,718 3,715 3,715
Mitsubishi 1,357 1,356 1,355 1,355
Nissan 20,052 20,069 20,105 20,108
Subaru 9,950 9,930 9,924 9,925
Tesla 726 964 963 1,056
Toyota 41,405 41,437 41,522 41,528
Volkswagen 11,784 11,781 11,794 11,800
Volvo 1,222 1,226 1,232 1,234

Notes: This table shows manufacturer-level profits (in million USD) during
2017–2018 from sales in the 30 sample states under the counterfactual simula-
tions.

8 Conclusion

This paper demonstrates the implications of the subsidy-capping provisions in purchase-subsidy
programs designed to promote infant green technologies. I focus on the US plug-in EV market,
which is important to understand given its potentially enormous environmental benefits. Using a
monopoly example, I first show that the provisions may aid or hinder the EV market penetration,
and the magnitude of the effect depends on structural primitives such as own- and cross-price
demand elasticities and the network effect. Next, to compare alternative provisions, I develop a
structural model of the automobile industry, where consumers choose vehicles to purchase among all
fuel types by maximizing utility, and firms choose prices for vehicles to maximize their profits. Then,
I estimate the demand-side parameters using product-level data on the newly registered vehicles,
prices, characteristics, and subsidies across 30 states in the initial years of the EV market that were
unaffected by eliminating subsidies. Using the demand parameters, I recover vehicle markups under
the assumption of static Nash-Bertrand equilibrium. Finally, I use the market primitives and a two-
stage pricing model to predict firms’ responses when they face three counterfactual subsidy-capping
designs: a marketwide deadline, a per-manufacturer deadline, and a per-manufacturer quota.

Overall, the results show that, all else equal, the quota, when binding, incentivizes manufacturers
to reduce EV sales compared to the deadline designs. Two factors drive this incentive: (1) staying
below the quota in any period allows manufacturers to qualify for the subsidy on all EVs in the next
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period, and (2) as the subsidy is eliminated only for those that exhaust the quota, staying below it
protects them from competition from other manufacturers below it. As a result, given government
expenditure, deadlines can be more cost-effective in increasing EV market penetration than the
quota. Because manufacturers have market power, this can also translate into lower pass-through
of subsidies to consumers compared to the deadline designs. In addition, because manufacturers
are multiproduct oligopolists, the designs affect the sales of conventional vehicles and, hence, the
consumer surplus, manufacturer profits, and liquid fuel consumption; they also affect the distribution
of profits across manufacturers.

These findings facilitate a deeper understanding of the role of policy in influencing technology
change in three ways. First, they elucidate the effect of the subsidy design on market penetration
in a theoretically motivated analysis. Because EVs offer a viable solution to fuel efficiency and
energy security, policymakers are eager to increase adoption. The US market share of EVs has
remained limited despite several incentive programs. Careful design is therefore crucial, especially
considering that EV tax incentives cost billions of dollars and receive much scrutiny. Second, the
paper sheds light on the impact of the subsidy design on consumer surplus and the distribution of
profits across manufacturers, which is helpful for targeting. For instance, compared to a marketwide
deadline, a per-manufacturer deadline shifts profits away from the manufacturers facing it. Despite
the penalty on dominant manufacturers, a per-manufacturer deadline may be justified if significant
barriers to manufacturers’ entry exist, because positive externalities from the entry appear in the
form of environmental benefits, innovation spillovers, and higher national energy security. Finally,
the implications from the plug-in EV market may also hold for other countries and sustainable
technologies, such as solar panels and wind energy.
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Appendix

A EV Manufacturers and Buyers Respond to Subsidy-Capping De-
signs

This section offers evidence that EV manufacturers and buyers respond to the subsidy-capping
designs based on Tesla and GM’s experiences. Tesla and GM surpassed 200,000 plug-in sales in July
and November 2018, respectively.

Figure 7 compares the monthly nationwide sales of Tesla’s most affordable model (Model 3) with
GM’s most popular plug-in hybrid (Chevrolet Volt) during March 2018–June 2019. Three obser-
vations are worth noting. First, the subsidy affects consumers’ purchase decisions, as evident from
the intertemporal bunching surrounding changes in the federal tax credit. The credit available for
Model 3 in January was half as generous compared to December, and January sales correspondingly
plummeted to 50 percent of the December sales volume. Such bunching does not appear for Chevro-
let Volt, which did not face a reduction in tax credits in January 2019, pointing to the possibility
that the changes in federal subsidy affected consumers’ buying decisions. This bunching conflates
the changes in purchase choice and purchase timing because some consumers aware of the looming
change may have bought earlier to take advantage of the more generous subsidy. Such timing effects
pose a challenge in estimating demand elasticities, which I discuss in Section 4. Second, deadlines
are effective in inducing car sales. Once Tesla exhausted the threshold, it faced a six-month deadline:
all vehicles delivered by December 2018 qualified for a $7,500 subsidy. Between July and December,
Tesla set new production and delivery records. Third, manufacturers likely respond to a quota by
reducing EV sales, as evident by the 130 percent spike in Model 3 sales in July 2018. If Tesla reached
the threshold in June instead of July, its subsidy would have reduced to half in October 2018 instead
of January 2019. The low sales volume in June is consistent with the incentive to push the delivery
of the 200,000th vehicle to July. Comparing the sales of the Chevrolet Volt shows that seasonality
in demand is not enough to explain the difference between the June and July sales volumes.

To quantify the effect of quota and deadlines on the quarterly sales volume, I also estimate the
following regression:

Salesjft = β0 + β1.t+ β2.I
D
ft + β3.I

Q
ft + δj + δqtr + ϵjft

where IDft takes value 1 if firm f faces a deadline within next two quarters; IQft is 1 if firm f has sold
less than 200,000 vehicles up to quarter t and is restricted by the quota. δjand δqtr indicate product
and quarter fixed effects. The coefficient β2 indicates the effect of deadline, and β3 indicates the
effect of quota on EV sales. The variation comes only from Tesla and GM because no other firm has
exhausted the quota yet. Controlling for product and quarter fixed effects, these firms, on average,
sell 3,000 more EVs under the two-quarter deadline and 3,000 fewer EVs under the quota of 200,000.

Although these findings inform us of the importance of the subsidy-capping designs, they do not
explain what happens with a marketwide deadline. Moreover, the variation is only driven by Tesla
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Figure 7: Tesla Model 3 and GM Chevrolet Volt Sales, 2017–2018

Notes: This figure plots the total nationwide sales of the Model 3 and Volt between March 2018
and June 2019 based on the monthly sales estimates by Automotive News Data Center. The black
vertical line indicates July 2018—when Tesla delivered the 200,000th qualifying vehicle. GM reached
this threshold in Nov 2018. The shades of grey indicate the value of Tesla’s federal subsidy; darker
shades indicate higher values. Tesla’s phaseout began in January 2019, and the subsidy for all its
models was reduced from $7,500 to $3,750. GM’s subsidy was reduced in April 2019.
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Table 11: Evidence: EV Sales Depend on the Subsidy-Capping Design

(1) (2) (3) (4)
VARIABLES Sales (1,000s) Sales (1,000s) log(Sales) log(Sales)

Approaching Deadline 2.797*** 5.171*** 0.432 0.593
(0.926) (1.011) (0.477) (0.498)

Quota Constrained -3.076*** 0.649 -0.240 -0.580
(0.876) (1.478) (0.451) (0.728)

trend 0.004 -0.007
(0.020) (0.010)

Constant 4.323*** 0.813 6.213*** 6.430***
(0.973) (1.410) (0.501) (0.694)

Observations 836 836 836 836
R-squared 0.376 0.425 0.266 0.380
Product FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
Firm-level trend Yes Yes

Source: WardsAuto US Light Vehicle Quarterly Sales
Notes: Standard errors are in parentheses. *** indicates 99 percent level of significance.
** indicates 95 percent level of significance. * indicates 90 percent level of significance.

and GM, as the subsidy was not eliminated for any other manufacturer. Therefore, to compare the
different subsidy-capping designs, I rely on structural methods in the paper.

B First-Stage Regression Results

Table 12 reports the results of the first-stage regression. IVs 1–5 are the sum over the character-
istics of firm’s other vehicles. IVs 6–10 are sums over the characteristics of competing vehicles.
Vehicle characteristics used to construct the excluded instruments include a constant, vehicle size,
performance, driving cost, and battery range.
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Table 12: First-Stage Regression Results

Dependent Variable: Price ($’0000)

Variable Coef SE
Included IV

Constant -8.447∗∗∗ 1.447
Size (0000 in2) 6.439∗∗∗ 0.143
Performance (Hp/10lb) 9.026∗∗∗ 0.065
Fuel Cost ($/mile) 6.797∗∗∗ 0.484
Battery Range (10 miles) -0.038∗∗∗ 0.009
BEV 2.778∗∗∗ 0.250
PHEV 2.927∗∗∗ 0.252
BEV × log(1+Manufacturer EV Sales) -0.000 0.028
PHEV × log(1+Manufacturer EV Sales) -0.187∗∗∗ 0.022
BEV × log(1+ Same-Charger EV Sales) -0.274∗∗∗ 0.036
PHEV × log(1+Same-Charger EV Sales) 0.036 0.037

Excluded IV

IV1 0.149∗∗∗ 0.034
IV2 -0.323∗∗∗ 0.037
IV3 0.165∗∗∗ 0.014
IV4 0.168∗∗∗ 0.020
IV5 0.009∗∗∗ 0.002
IV6 -0.035 0.033
IV7 0.042 0.036
IV8 0.003 0.013
IV9 -0.032∗∗∗ 0.010
IV10 -0.000 0.002

Obs 62186
R-squared 0.583
F test
F(66, 62119) 1,317.700
F test of excluded IV
F(10, 62119) 494.992

Notes: Size is wheelbase× width (in thousands of in2), performance is horsepower by curb weight
(in 10 lb), driving cost is fuel cost (in dollars per mile), and battery range is the all-electric range
(in miles) for electric vehicles (EVs). The variable “Manufacturer EV Sales” shows the total EVs
sold by the manufacturer in the geographic market until the previous year. The variable “Same-
Charger EV Sales” shows cumulative EV sales by all manufacturers with the same Level 3 charging
standard in the geographic market until the previous year. IVs 1–5 are the sum over the charac-
teristics of firm’s other vehicles. IVs 6–10 are sums over the characteristics of competing vehicles.
Vehicle characteristics used to construct the excluded instruments include a constant, vehicle size,
performance, driving cost, and battery range. *** indicates 99 percent level of significance. **
indicates 95 percent level of significance. * indicates 90 percent level of significance.
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C Counterfactuals

Table 13: Effect of Subsidy-Capping Designs on EV Sales

Manufacturer Year No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (120,000)

BMW 2011–2016 31,261 31,261 31,261 31,261
2017 9,592 16,304 17,298 17,436
2018 8,779 8,688 15,070 15,630

DAIMLER 2011–2016 8,485 8,485 8,485 8,485
2017 1,546 2,387 2,467 2,489
2018 1,401 1,348 2,119 2,179

FIAT CHRYSLER 2011–2016 18,031 18,031 18,031 18,031
2017 3,692 7,603 8,626 8,739
2018 4,009 4,264 9,518 9,856

FORD 2011–2016 68,414 68,414 68,414 68,414
2017 12,431 19,178 19,706 19,806
2018 11,309 10,756 16,681 17,323

GENERAL MOTORS 2011–2016 90,090 90,090 90,090 90,090
2017 23,642 54,687 54,761 29,910
2018 22,253 23,427 23,254 51,116

HONDA 2011–2016 857 857 857 857
2017 2 2 2 2
2018 2 2 2 2

HYUNDAI 2011–2016 1,320 1,320 1,320 1,320
2017 1,012 1,689 1,913 1,942
2018 958 1,004 1,810 1,882

KIA 2011–2016 3,571 3,571 3,571 3,571
2017 1,640 2,896 3,371 3,376
2018 1,679 1,850 3,603 3,595

MITSUBISHI 2011–2016 1,652 1,652 1,652 1,652
2017 4 11 11 11
2018 4 4 10 10

NISSAN 2011–2016 96,165 96,165 96,165 96,165
2017 4,430 9,966 10,212 10,237
2018 4,225 4,230 9,514 9,490

TESLA 2011–2016 103,550 103,550 103,550 103,550
2017 25,158 42,900 42,880 16,450
2018 25,197 25,721 25,647 42,567

TOYOTA 2011–2016 42,144 42,144 42,144 42,144
2017 18,775 30,205 31,661 31,714
2018 18,715 19,264 31,636 31,572

VOLKSWAGEN 2011–2016 18,084 18,084 18,084 18,084
2017 3,913 6,437 6,743 6,806
2018 3,537 3,430 5,740 5,944

VOLVO 2011–2016 1,979 1,979 1,979 1,979
2017 1,480 2,060 2,220 2,255
2018 1,400 1,382 2,025 2,109

Notes: This table shows the electric vehicle sales for each manufacturer. Sales in 2011–2016 are
reported as observed in the data. Sales in 2017 and 2018 are computed under the counterfactual
policy simulations discussed in Section 7.
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Table 14: Effect of Subsidy-Capping Designs on Vehicle Prices and Sales, 2018

Vehicle Outcome No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (120,000)

Chevrolet Bolt (BEV) Price (USD) 41,074 41,045 41,043 39,740
Sales 7,856 8,474 8,441 20,778

Chevrolet Volt (PHEV) Price (USD) 36,604 36,588 36,590 35,644
Sales 14,270 14,822 14,682 30,124

Tesla Model S (BEV) Price (USD) 86,362 86,363 86,372 85,850
Sales 14,853 15,164 15,111 24,510

Toyota Prius Prime (PHEV) Price (USD) 30,243 30,267 29,667 29,660
Sales 18,715 19,264 31,636 31,572

Honda Accord (Gas) Price (USD) 27,960 27,960 27,957 27,952
Sales 330,769 330,755 330,124 329,657

Honda Civic (Gas) Price (USD) 22,474 22,474 22,471 22,466
Sales 341,737 341,724 341,066 340,602

Toyota Camry (Gas) Price (USD) 25,726 25,726 25,730 25,726
Sales 270,967 270,949 270,359 270,043

Ford F (Gas) Price (USD) 35,788 35,787 35,787 35,786
Sales 277,998 277,994 277,872 277,758

Chevrolet Silverado (Gas) Price (USD) 38,653 38,653 38,652 38,653
Sales 305,136 305,127 304,998 304,816

Toyota Tacoma (Gas) Price (USD) 31,707 31,707 31,708 31,705
Sales 220,568 220,560 220,387 220,268

Notes: This table shows the equilibrium prices (before subsidy) and sales across the 30 sample states in 2018
for a sample of vehicles using counterfactual simulations described in Section 7.
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D Other Values of the Per-Manufacturer Quota

This section explores the effect of EV subsidies on the market outcomes under different values of the
per-manufacturer quota. Using the parameter estimates from Section 6, I recompute the equilibrium
for five different values of the quota and plot the resulting outcomes in Figure 8. In each case, I fix
the total EV sales between 2011 and 2016 as observed in the data.

Panel (a) shows the total EVs sold by Tesla and GM between 2011 and 2017. When the quota
is 110,000, Tesla chooses to exceed it in 2017, even if that sacrifices eligibility in 2018. When the
quota is between 120,000 and 140,000, both Tesla and GM choose to stay below the quota to ensure
subsidies in 2018. When the quota is 150,000, it is not binding for either manufacturer. In that
case, both manufacturers respond similarly compared to when they face a deadline.

Panel (b) shows the aggregate boost in EV sales across all manufacturers during 2017 and 2018
compared to the counterfactual with no subsidy, fixing the government expenditure at $1 million.
Although each policy increases EV sales, the boost depends on the value of the quota. The farther
the quota is from manufacturers’ privately optimal sales, the more they are incentivized to reduce
EV sales and the fewer EVs may be sold for the same level of expenditure. However, when the quota
is too small, some manufacturers may find it more beneficial to exceed it, even if it makes them
ineligible for future subsidies. Finally, when the quota is not binding, the outcomes are similar to
when manufacturers face a deadline.
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Figure 8: Effect of EV Subsidies on EV Sales Under Different Values of the Per-Manufacturer Quota

Notes: Panel (a) shows the cumulative electric vehicle (EV) sales (in thousands) by Tesla and GM
between 2011 and 2017 under the different values of a per-manufacturer quota. In each case, I fix
the sales between 2011 and 2016 as in the data and recompute the equilibrium in 2017. Panel (b)
shows the aggregate boost in EV sales due to subsidy between 2017 and 2018 compared to the
counterfactual with no subsidy, fixing the government expenditure at $1 million.
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