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Abstract
Industrial energy consumption represents almost 40 percent of current global total 
final consumption and is still dominated by fossil fuels. In this paper, we present key 
decarbonization options—namely fuel switching and electrification, carbon efficiency, 
material efficiency, carbon capture and storage, and circular economy practices—and 
analyze their potential for decarbonization in six main energy-intensive industrial 
sectors: steel, cement, chemicals, light manufacturing, aluminum, and pulp and 
paper. We then develop a framework to distinguish among the different modelling 
approaches to industrial energy demand and emissions, with specific focus on the data 
challenges that constrain modelling and the difficulties of modelling innovation and 
technology diffusion. We present the most widely used models of industrial energy 
demand and emissions and classify them along three key dimensions: the analytical 
approach underlying each model, the methodology used to generate decarbonization 
pathways, and the granularity with which different industrial sectors be represented. 
By highlighting the strengths and weaknesses of available tools for industrial emission 
modelling, we point to necessary future model development efforts that would greatly 
improve the ability to develop deep decarbonization pathways for industry.
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1.  Introduction
Increasing carbon efficiency and switching to carbon-neutral technologies for 
industrial production are imperative to achieve deep greenhouse gas (GHG) emissions 
reductions and to address climate change, as well as to ease concerns regarding 
energy security and higher energy prices. Energy consumption by the industrial sector 
represents almost 40 percent of current global total final consumption and is still 
dominated by fossil fuels, in particular coal. In 2021, industry was the second-largest 
emitting sector, after power generation, and was directly responsible for emitting 
9.4 gigatonnes (Gt) of CO

2
. This estimate, which is equivalent to a quarter of global 

emissions, does not include indirect emissions from electricity used for industrial 
processes (IEA 2022c). Industrial energy and carbon intensities vary significantly 
across sectors as well as within sectors across different countries, with six sectors 
emerging as particularly energy- and emissions-intensive (see Section 2).

The aim of this paper is to describe the most common approaches to the modeling of 
industrial emissions, with a particular focus on the ability of available models to depict 
the different mitigation options relevant for energy-intensive industries. These options 
range from increasing energy efficiency to developing and deploying novel negative-, 
zero-, or low-emissions technologies. Importantly, producing quantitative forecasts 
of industrial energy demand and emissions is strongly dependent on the availability 
of past data for model calibration. Furthermore, different modeling approaches and 
methods are characterized by the capacity to provide more or less detailed scenarios 
in terms of geographic, sectoral, and technological detail. Understanding the strengths 
and weaknesses of available approaches and tools for industrial energy and emissions 
modeling provides the basis for developing and interpreting results that can be used to 
inform energy- and climate-related policymaking. 

We also describe the most promising deep decarbonization options in each sector and 
discuss whether and how these options are represented in industrial energy models. 
It is important to recognize that deep emissions reductions cannot be achieved by 
pursuing a single decarbonization strategy alone; rather, these reductions are more 
likely to be achieved through a combination of many mitigation options, as well as 
investment in and support for different technologies and subtechnologies. Conversely, 
ignoring some of these options and promoting only select ones reduces the likelihood 
of achieving deep decarbonization targets. Therefore, our assessment of the relevance 
of various mitigation options for industrial deep decarbonization should not be 
interpreted as suggesting that one option should be chosen over the others.
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The paper is organized as follows. Section 2 identifies and describes the energy-intensive 
sectors that account for the majority of industrial energy demand and emissions, the 
focus of this paper. Section 3 reviews the available strategies through which industrial 
energy emissions can be reduced. Section 4 illustrates more detailed and specific 
technological options in each of the key energy-intensive sectors. Section 5 provides an 
overview of the data available to measure industrial energy demand and emissions, which 
are critical inputs for model development and calibration. It also discusses the difficulty 
of obtaining data to model several of the decarbonization approaches that are relevant 
in industrial sectors for deep decarbonization, due to limited data coverage and detail. 
Section 6 presents a framework to distinguish among the different modeling approaches 
to industrial energy demand and emissions, while Section 7 summarizes common 
approaches to modeling innovation and technology diffusion. Section 8 looks at the key 
models that have been used in the literature to this end, and Section 9 concludes.

2.  Energy-Intensive Industry Sectors
While all industrial sectors rely on fossil fuels for their production activities, energy 
intensity varies significantly across them. The most energy-intensive sectors worldwide 
are steel, cement, chemicals, light manufacturing (as defined in Section 2.4), aluminum, 
and pulp and paper. Historically, these sectors accounted for about half of all industrial 
sectors’ delivered energy use (EIA 2016). The aim of this section is to justify our focus on 
a limited number of carbon-intensive sectors by describing their contribution to economic 
growth (output), energy demand, and CO

2
 emissions. To this end, we rely on the IPCC 

Sixth Assessment Report (IPCC 2022) for steel, cement, and chemicals and IEA reports 
(IEA 2022a,d,e) for light manufacturing, aluminum, and pulp and paper. It is important to 
note that in providing this overview, we take a global perspective and largely abstract 
from national specificities and intersectoral heterogeneity.

2.1.  Steel
Crude steel production rose globally by 41 percent between 2008 and 2020. Worldwide, 
around 40 percent of steel is used in buildings, 20 percent in industrial equipment, 18 
percent in consumption goods, 13 percent in infrastructure, and 10 percent in vehicles. 
Emissions associated with steel production1, primarily from the use of coke ovens 
and blast furnaces, are estimated at 3.7 to 4.1 gigatonnes of CO

2
 equivalent (GtCO

2
e), 

accounting for 20 percent of all worldwide direct industrial emissions in 2019 (IPCC 2022).

1 Percentages sum up to 101 percent. This is due to rounding in the original source of the data.
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2.2.  Cement
Since the mid-20th century, cement output has grown faster than world population , 
indicating an increase in the use of cement for infrastructure and buildings. In 2019, 
direct emissions from cement manufacturing were estimated at between 2.1 and 2.5 
GtCO

2
e, or 14 to 17 percent of total worldwide direct industrial GHG emissions, despite 

major advances in energy efficiency in this sector over the past two decades. Typically, 
about 40 percent of these direct emissions result from the combustion of fuels to 
produce the high temperatures needed in the manufacturing process, and the remaining 
60 percent occur during the decomposition of calcium carbonate (IPCC 2022).

2.3.  Chemicals
Chemical products include plastic, rubber, fertilizers, solvents, and other substances 
such as food additives and pharmaceuticals. In 2019, the chemical sector’s emissions 
were estimated at 1.1 to 1.7 GtCO

2
e, or 10 percent of total worldwide direct industrial 

emissions. Processes used to produce chemicals such as ammonia (used in the 
production of nitrogen fertilizers), methanol (used in the production of adhesives, resins, 
and fuels), and olefins and chlorine (essential components of plastics emissions) are 
very energy-intensive (IPCC 2022).

2.4.  Light Manufacturing
In 2019, light manufacturing accounted for 17 percent of total industrial emissions. 
Between 2010 and 2020, overall output from these industries increased, although 
emissions fell by around 2.3 percent over the same period (IEA 2022d). According to 
the IEA definition, light manufacturing includes a diversified set of industries: food 
production (14 percent of light manufacturing emissions), timber (1 percent), machinery 
(8 percent), vehicles (2 percent), textiles (3 percent) and other consumer goods (55 
percent), construction (9 percent), and mining (8 percent).

2.5.  Aluminum
In 2021, aluminum, a crucial input in several critical energy transition technologies, 
accounted for approximately 3 percent of the world’s direct industrial CO

2
 emissions. 

Over the past 10 years, the global aluminum industry’s direct emissions have been rising 
gradually as a result of rising production. Because of slight improvements in emissions 
intensity over time and leveling output in 2019, emissions decreased for the first time in 
10 years, but this trend subsequently reversed. The aluminum manufacturing process 
uses significant amounts of electricity, and the source of electricity is important in 
determining its overall emissions profile. In 2021, direct emissions from the sector were 
275 megatonnes (Mt), but overall emissions including indirect emissions from power 
consumption were substantially larger, at 1.1 Gt of CO

2
 (IEA 2022a).



Resources for the Future 4

2.6.  Pulp and Paper
In 2021, pulp and paper production reached 190 Mt of CO

2
 emissions, which is a historic 

high and accounts for nearly 2 percent of total industrial emissions. Paper output is 
expected to expand until 2030, and therefore improvements in the industry’s emissions 
intensity are required to reduce future emissions from pulp and paper. Future paper 
output is expected to rise slightly as a result of an increase in packaging and sanitary 
paper goods, particularly in developing economies, which more than compensates for 
the decline in printing-related paper production (IEA 2022e).

3.  Available Approaches for Industry 
Decarbonization
While industrial processes across and within sectors differ greatly, five high-level 
strategies can be identified to reduce industrial energy emissions: (1) fuel switching, 
including alternative feedstocks, and electrification of industrial production; (2) 
carbon efficiency improvements through more efficient or digital technologies 
(energy efficiency) or through zero-carbon technologies; (3) improvements in material 
efficiency, including through radically novel processes and business models; (4) 
deployment of carbon capture and storage technologies; and (5) circular economy 
practices based on the reduce, repair, refurbish, reuse, and recycle paradigm. Some 
of these strategies are more in line with deep decarbonization targets, while others 
represent more marginal improvements. In this section, we provide a broad definition of 
each of these approaches. In Section 4, we discuss the extent to which each approach 
is relevant for each sector and provide concrete and promising examples of specific 
technologies in each energy-intensive sector.

3.1.  Fuel Switching and Electrification
One way to reduce energy emissions is through fuel switching and electrification, 
which represent a move from a carbon-intensive energy carrier to one that has low 
or zero associated emissions. Fuel switching entails a shift away from coal, refined 
oil products, and natural gas toward sustainable energy sources such as biofuel, 
solar heating, geothermal, sustainable hydrogen or ammonia, nuclear, or net-zero 
synthesized hydrocarbon fuels. The ability of fuel switching to achieve drastic 
emissions reductions depends on the nature of the chosen fuel as well as on the 
specific industrial sector under consideration.

For instance, biofuels—namely, fuels from biogenic sources—are available in a variety 
of forms, some of which have properties similar to those of fossil fuels and the same 
uses. While biomethane, biomethanol, and bioethanol are available today at costs 
generally comparable with those of fossil fuels (IPCC 2022), the extent to which their 
use will lead to deep decarbonization is questioned in the literature: while their carbon 
cycle goes into and out of the atmosphere, they may not in fact be GHG-neutral 
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because of the way they are produced, which involves changes in land use, soil carbon 
depletion, and fertilizers (Hepburn et al. 2019). However, most biofuel, chemical, and 
biogas manufacturing techniques create considerable side flows of concentrated CO

2
, 

which can be easily absorbed when combined with carbon capture and storage and 
carbon capture and utilization (e.g., bioenergy with carbon capture and storage, or 
BECCS) and might represent a source of negative emissions (IPCC 2022).

Yet the use of biogenic carbon to achieve deep decarbonization across all sectors is 
challenging. Capturing carbon during a production process and using it as a feedstock 
would require large amounts of hydrogen to transform the CO

2
 into a variety of 

chemicals through a reaction process (IPCC 2022). Furthermore, the sustainable 
supply of biomass faces significant challenges, including the availability of land for 
bioenergy crops, water use needs by bioenergy crops, the necessity to adapt bioenergy 
crops to a changing climate, and the ability to transport and store large quantities of 
crops. All these challenges currently are not fully managed, nor are they likely to be in 
the near future (Harris et al. 2018: Bui et al. 2023).

Switching to solar energy, which has no associated GHG emissions, is more in line 
with deep decarbonization targets. Direct solar heating in industry, for instance, has 
an acknowledged potential, particularly in countries with high solar irradiance and 
industries with modest heat demands, such as food and beverage production, textiles, 
and pulp and paper (IPCC 2022). Major barriers to adoption for these technologies 
are location and application specificity, the need for energy storage technologies to 
compensate for intermittency (Asiaban et al. 2021), high capital costs, and the absence 
of standardized mass production for equipment.

Direct electrification is a switch from direct fuel use toward electricity and represents 
an important option to achieving industrial carbon neutrality (IPCC 2022). Electricity is 
a versatile energy carrier that can be produced from a variety of primary sources, with 
significant potential for process improvements in terms of end-use efficiency (Eyre 
2021), quality and process controllability, digitizability, and the absence of direct local 
air pollutants. The emissions reductions that can be achieved through electrification 
vary depending on the specific sector or subsector. For instance, they are higher in 
manufacturing, which uses fossil fuels as energy carriers, but lower in the chemical 
sector, which uses fossil fuels as feedstocks and not to generate energy or heat. 
Furthermore, the potential for emissions reductions depends on whether the electricity 
is produced using low-GHG-intensity primary sources (wind, solar, hydro, advanced 
geothermal nuclear, fossil fuels with capture and storage) (IPCC 2022). Roelofsen et 
al. (2020) estimate that almost half of the fuel consumed for energy can be electrified 
with technology that is already available. 
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As discussed in Section 4, important progress is being made in all industrial sectors; 
however, electrification is most easily achieved in light manufacturing sectors. For 
sectors with large needs of high-temperature heat (e.g., primary steel production), 
significant technological barriers still have to be overcome. Direct induction and 
infrared heating are options for higher temperature requirements, whereas steam 
boilers, curing, drying, and small-scale process heating are easily electrifiable from 
a technical point of view. Of course, electrification is economically attractive only if 
electricity prices are comparable to those of fossil fuel (IPCC 2022). Because of a 
variety of factors, electricity and fossil fuel prices vary by country, yet the EU average 
electricity price per kilowatt hour (kWh) has been consistently lower than that of gas 
since 2008 by a factor of three to five (Eurostat 2022).

3.2.  Energy Efficiency Improvements in Production 
Process
Increasing the energy efficiency of production processes is a second approach to 
reducing GHG emissions from the industrial sector. Energy efficiency improvements 
not resulting from fuel switching are an important, yet incremental, mitigation strategy, 
as they often do not entail radical technological changes. Energy efficiency can be 
achieved through two channels: advances in energy-saving best available technologies 
(BATs) and shifting industrial plants’ specific energy consumption to a more efficient 
technology, ideally a BAT (IPCC 2022). While improving energy efficiency in industrial 
processes has a high emissions reduction potential, energy efficiency alone will not 
lead to deep decarbonization in industrial sectors. For instance, combustion produces 
approximately 10 percent of global GHG emissions due to high-temperature heat 
in basic material manufacturing processes (Sandalow et al. 2019), yet until recently, 
efforts and investments to reduce carbon emissions in heat generation were relatively 
limited; consequently, technological approaches for decarbonizing industrial heat 
production are still far from maturity (ICEF 2020). There is still high potential for the 
use of non-high-temperature waste heat, particularly if coupled with high-temperature 
heat pumps to increase the temperature of the waste heat to the needed level 
(Nandhini et al. 2022). 

Another key method to improve energy efficiency is through digitalization. The 
development of technology including sensors, communications, analytics, digital 
twins, machine learning, virtual reality, and computing technologies enables future 
advances in process control and optimization. Smart energy solutions with real-time 
tracking enable the optimization of new technologies, energy demand responsiveness, 
and energy supply-and-demand balance, including pricing, product quality control, 
and forecasting and reducing unproductive time for humans and robots (IPCC 2022). 
Significant investments in digital solutions are being carried out in most industrial 
sectors, also as a result of public commitment to promote the transition toward 
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Industry 4.0 (see, e.g., EU 2020; ABI Research 2022; Verdolini 2023).2 Yet the potential for 
digital technologies to reduce emissions through increased efficiency is higher in non-
energy-intensive sectors and generally limited in energy-intensive sectors (IPCC 2022). 
Importantly, quantitative evidence is scarce regarding the impact of digital technologies 
on industrial energy demand and associated emissions. As a result, it is hard to inform 
models regarding the potential enabling role of digital technologies. Moreover, appropriate 
governance of digitalization will be required to ensure that the benefits of digital 
technologies are used “deliberate[ly] for the good” (Creutzig et al. 2022).

3.3.  Material Efficiency
Material efficiency, the supply of goods and services with less material, is increasingly 
recognized as a critical strategy to lowering GHG emissions in the industry (IEA 2019). 
Yet, similarly to energy efficiency, material efficiency is not sufficient to achieve the deep 
decarbonization of industry. Options for improving material efficiency exist at every stage 
of a material’s or product’s life cycle, such as by designing lightweight products, optimizing 
to preserve end-of-life service while reducing material use, and developing circular 
principles. The precise open physical mapping of current material supply chains allows 
material efficiency measures to be tracked down to where emissions are emitted, and these 
alternatives may be comparable to decarbonization and conventional energy efficiency 
techniques (IPCC 2022). Many material efficiency actions, such as designing lightweight 
items, result in direct GHG emissions savings in the short term; others also have long-term 
emissions reduction effects. For example, developing a product that can be reused or has 
a longer lifespan reduces emissions both today and in the future. While material efficiency 
is generally not well represented in climate-energy-economy models, the International 
Energy Agency developed a scenario in 2015 that projects a 17 percent decrease in 
industrial energy demand in 2040 (IEA 2015) due to increased material efficiency.

3.4.  Carbon Capture and Storage Technologies
Carbon capture and storage (CCS) and carbon capture and utilization (CCU) represent 
potential options to achieve deep decarbonization, but these technologies have not yet 
been proven at a commercial level, and there are concerns about the long-term storage of 
carbon. For instance, the most developed method for long-term CO

2
 storage in subsurface 

pore space is sequestration in sedimentary formations. Major potential hazards from CO
2
 

storage in subterranean pore space include leakage from wellbores or nonsealed cracks 
in the caprock, building of pressure in the reservoir that might result in caprock hydraulic 
fracturing, and pollution of drinking water. Induced seismicity may result from the injection 
of CO

2
 into subterranean reservoirs. Most studies believe that produced earthquakes carry 

a modest risk of causing fault displacements and compromising reservoir security, but 
others contend that even small- to moderate-magnitude earthquakes can damage the seal 
and undermine the integrity of sequestration reservoirs (Kelemen et al. 2019). 

2 Industry 4.0 refers to rapid improvements in industrial systems and product design, 
production, and maintenance as a results of what the literature has defined as the fourth 
industrial revolution (hence the 4.0), mostly promoted by the widespread diffusion of digital 
technologies (European Parliament 2015).
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CCS and CCU use similar capture technologies to collect concentrated flows of CO
2
 

from smokestacks; the main difference between the two is what occurs to the CO
2
 after 

it is captured. CCS involves the recovery and storage of CO
2
 from combustion, gases, 

and ambient air to the geosphere for thousands of years (IPCC 2022). CCU involves the 
capture of carbon from one process and its reuse for another, lowering emissions from 
the first process, yet potentially, but not inevitably, releasing carbon to the environment 
in subsequent operations (Tanzer and Ramirez 2019). The net potential impact of 
these technologies on carbon emissions is a source of debate in the literature. Their 
contribution to deep decarbonization scenarios depends on the initial source of carbon, 
fossil fuel or biomass, as well as the period of storage or usage, which can range from 
days to millennia (IPCC 2022). According to recent analysis, CCS can technically achieve 
near-zero CO

2
 emissions in applications where the CO

2
 can be captured during the 

production process, with highly variable partially negative emissions over the life cycle 
if the origin is biogenic fuels. Brandl et al. (2021), for instance, argue that capture rates 
up to 98 percent are technically feasible and result in negligible increase to the overall 
system costs. However, achieving net zero would require the indirect capture of residual 
emissions by complementary carbon dioxide removal technologies, such as afforestation, 
BECCS, or direct air capture with carbon storage (DACCS).3 A recent modeling analysis 
concludes that the contribution of CCS to emissions reductions is high in the sectors of 
steel, cement, and refineries, as well as the power sector to a lesser extent. The emission 
reduction potential of CCS varies however across different countries of the world and 
depending on the socio-economic pathway modelled. (Turgut et al. 2021).

3.5.  Circular Economy Approaches
Finally, industrial energy emissions can be lowered through circular economy (CE) 
approaches to the provision of goods and services. This would entail strategies to 
reduce, repair, refurbish, reuse, and recycle. CE practices can contribute significantly 
to emissions reductions, though alone they are not sufficient to achieve deep 
decarbonization targets in industrial sectors. Circularity entails closing material and 
energy flow loops in the provision of goods and services by implementing policies and 
procedures for more efficient energy, materials, and usage while generating the least 
possible amount of waste to the environment (IPCC 2022). This may be done through, for 

3 While not a mitigation option, direct air capture (DAC) could be used to offset both fuel and 
process emissions at industrial plants. DAC refers to chemical processes that separate CO

2
 

from the ambient air. The required energy to capture CO
2
 increases as the concentration 

of CO2 falls, so the energy requirement to remove a single ton of CO
2
 from the atmosphere 

is quite high. (The concentration of CO
2
 in the air is about 400 parts per million [ppm], 

compared with about 120,000 ppm in flues at coal-fired power plants.) The costs of DAC 
depend on the source of the energy, and estimated costs vary from $100 to over $1000 per 
ton (NASEM 2019). To date, investment in DAC facilities has been limited because of the 
highly uncertain future of this technology, which is for several reasons: DAC is generally 
considered to be among the more expensive carbon dioxide removal (CDR) pathways; most 
CDR pathways offer benefits besides CO

2
 removal, whereas DAC provides no cobenefits; 

and DAC requires large amounts of energy per ton of CO
2
 removed. More recently, funding 

and incentives have targeted the further technological development of this mitigation 
option, including in the United States and the European Union.
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instance, the production of durable items that can easily be fixed and whose parts can 
be reused, refurbished, and recycled, as opposed to a linear production mode (Wiebe 
et al. 2019). Given that CE encourages reduction, reusing, and recycling, a considerable 
proportion of energy- and GHG-intensive raw material demand and associated 
processing may be eliminated, resulting in considerable carbon emissions reductions. 
The extent to which circularity practices will result in lower energy demand (and 
associated emissions) has yet to be determined. In the case of recycling scrap metal, 
the resulting material is often of lower quality, with properties that differ from the raw 
metal, because the scrap metal is often made up of a variety of materials that are hard 
to separate. This is referred to as downcycling. Conversely, recycling and upcycling 
may be achieved, but at the cost of high energy use (IEA 2020). 

Circularity can be implemented at three levels: micro (inside a single firm), meso 
(involving three or more enterprises), and macro (cross-sectoral collaboration). Each 
level necessitates its own set of instruments and strategies, such as incentives and 
tax policies (macro level) and eco-design laws (micro-level) (IPCC 2022). At the micro 
level, more organizations, particularly multinational corporations, are implementing 
CE practices as a result of their advantages (D’Amato et al. 2019). Industrial parks, 
from a meso-level perspective, minimize infrastructure costs by clustering industrial 
operations in specified regions and are often established around big corporations. At 
this level, typical CE techniques and strategies include sustainable supply chains and 
industrial symbiosis, a collaboration among different industrial actors to optimize the 
use of resources and reduce waste generation (IPCC 2022). The primary advantage 
of industrial symbiosis is the reduction of both virgin materials and final waste, as 
well as avoided delivery costs from exchanges among firms, which could boost the 
competitiveness of small and medium-size enterprises. The macro-level approach 
aims to exploit the potential CE synergies that exist outside the confines of a single 
industrial park, expanding symbiosis to entire urban settings through the utilization of 
waste from municipalities as alternative energy sources (Sun et al. 2017).



Resources for the Future 10

4.  Demand Reduction and Energy 
Efficiency Potentials of Energy-
Intensive Sectors
This section discusses specific options for decarbonization in each of the six energy-
intensive sectors, providing details on which specific technologies and practices 
could be adopted to achieve emissions reductions by promoting fuel switching and 
electrification, increasing energy and material efficiency, deploying CCS and CCU, or 
implementing circular economy approaches. Table 1 provides a visual summary of this 
section, highlighting the relative importance of each strategy in each of the sectors. 
As clarified earlier, this section takes a global perspective and largely abstracts from 
national specificities and heterogeneity within sectors.

4.1.  Steel
Steel production may be classified into two categories: primary production from iron 
ore and secondary production from steel scrap. The blast furnace to basic oxygen 
furnace (BF-BOF) route is the most used primary production route worldwide, while the 
electric arc furnace (EAF) is the preferable procedure for secondary production through 
melting and alloying recycled steel waste, as it requires less energy and generates fewer 
emissions (IPCC 2022). An alternative but less common way to produce steel is using 
direct reduced iron (DRI) to reduce iron ore—thus replacing BFs—which is generally 
followed by an EAF (IPCC 2022). In 2019, approximately 73 percent of worldwide crude 
steel output was produced using BF-BOF technologies, while 26 percent was produced 
using the EAF method. Of the latter, about 5.6 percent is derived from DRI (World Steel 
Association 2021). Importantly, production processes vary geographically; for instance, 
the majority of US steel production is done through EAFs.
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There are several approaches to significantly reduce GHG emissions in the steel 
sector (IPCC 2022). First, potential energy efficiency improvements of primary steel 
production—that is, BF-BOF approaches—are estimated at 15 percent (IPCC 2022). 
Second, circular practices, promoting secondary rather than primary production, are 
another effective way to reduce emissions. This option, however, strongly depends on 
the accessibility of domestic and foreign scrap supplies and necessitates meticulous 
sorting and scrap management, particularly to get rid of copper contamination (Daehn 
et al. 2017). One important technology in circular practices is the electrowinning 
process, a low-temperature electrolysis method for extracting solid-state elemental 
iron from iron ore. The iron is then put into an EAF to produce liquid crude steel, which 
may also be mixed with scrap steel (Junjie 2018). 

Third, fuel switching and electrification, using carbon-free energy and feedstock 
sources as input, or carbon capture and storage technologies (IPCC 2022) could 
potentially reduce an estimated 80 percent of current emissions from primary steel 
production with today’s dominant technology, BF-BOF. The extent to which BF-BOFs 
can be retrofitted for capture is currently a matter of debate in the literature. Fan and 
Friedmann (2021) , who consider near-term options to rapidly reduce GHG emissions 
in steel production by examining technical options in terms of cost, viability, readiness, 
and ability to scale, argue that it would be challenging to retrofit BF-BOFs beyond 
50 percent capture; conversely, Hughes and Zoelle (2021), who perform a sensitivity 
analysis on the cost of capital for iron and steel retrofit, assume that retrofitting can 
achieve up to 99 percent capture. Note that BF-BOFs must have their furnaces relined 

Table 1.  Summary of Relevance of Different Mitigation Options by Sector

Fuel switching and 
electrification

Energy 
efficiency

Material 
efficiency

CCS/CCU/DAC
Circular 
economy

Steel High Medium High Medium High

Cement and 
concrete

Low Low High Medium Low

Chemicals High Low Medium High Medium

Light 
manufacturing

High High

Aluminum and  
non-ferrous metals

High Low Medium Low Medium

Pulp and paper High High Low Medium Low
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every 15 to 25 years (IPCC 2022); this costs from 80 to 100 percent more than building 
a new facility. For this reason, it is more economically viable to construct a new facility 
that is built for 90+ percent capture than to retrofit.

DRI with CCS using syngas based on methane can also be used to reduce emissions 
in the steel industry. Currently, the majority of DRI plants employ syngas of H2 and 
CO based on methane as a fuel and a reductant. Furthermore, hydrogen-based 
DRI (H-DRI) is being   developed on the widely used DRI technique but using only 
hydrogen. Iron ore reduction is frequently followed by an EAF for smelting.  This steel 
manufacturing method may be practically CO2 neutral if hydrogen is created using 
carbon-free sources (Vogl et al. 2018). Molten oxide electrolysis (MOE) is another 
method for extracting metal from its oxide source. The benefits of liquid metal 
production are the ease with which the manufactured metal may be collected and the 
capability to operate continuously. The use of electricity for metal extraction includes 
using renewable energy and the decoupling of metal production from CO2 emissions. 
As a result, if suitable for industrial scales of production, this technology will be of 
significant interest to the steel industry (Wiencke et al. 2019). 

Fourth, emissions in the steel sector can be dramatically reduced by increasing 
material efficiency (i.e., less steel usage per vehicle) as well as through circularity 
practices and demand-side options that would lower the demand for steel 
manufacturing or increase the intensity of product use (i.e., car sharing). In particular, 
the IEA estimates that stringent measures targeting material efficiency could 
realistically lower the demand for steel by 40 percent by 2060 (IEA 2019).

4.2.  Cement and Concrete
Available analyses suggest that the cement industry has limited mitigation options, yet 
some exist. One strategy is based on material efficiency; making stronger concrete 
via improved mixing, aggregate size, and dispersion is one of the easiest and most 
efficient methods to minimize cement and concrete emissions. Because cement is 
low cost, corrosion- and water-resistant, and easy to work with, architects, engineers, 
and contractors frequently overbuild with it. Buildings and infrastructure can be 
intentionally planned to limit the use of cement to its necessary applications and 
substitute other materials for nonessential uses. This might cut the use of cement 
by 20–30 percent (IPCC 2022). Indeed, while fuel switching and electrification do 
not appear to be viable options to minimize or reduce the CO2 emissions specifically 
associated with the typical Portland A cement manufacturing process (IPCC 2022), 
available assessments indicate that some countries have high clinker-to-cement ratios, 
with the United States having the highest. Decreasing these ratios would reduce 
emissions (Pascale et al. 2021; IEA 2022b; CTCN 2016). 

Second, fuel switching and electrification have the potential to lower emissions in 
specific phases of the production process. For instance, the use of bioenergy solids, 
liquids, or gases (IEA 2018), hydrogen, or electricity for producing the high-temperature 
heat needed at the calciner can also minimize the energy-related emissions of cement 
manufacture. Because of their different qualities of quick and slow combustion, co-
burning hydrogen and bioenergy may be beneficial in this respect. 
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Third, given limited other mitigation options, carbon capture and storage technology 
is frequently cited as a potentially significant component of an ambitious mitigation 
approach in the cement industry. CCS technology can capture only the process 
emissions or both the energy and process CO

2
 emissions. Several CCS techniques 

may be used, including post-combustion technologies like membrane-assisted CO
2
 

liquefaction and amine scrubbing, oxy-combustion in an atmosphere with little to zero 
nitrogen to generate a concentrated CO2 stream for capture and disposal, and calcium 
looping (Dean et al. 2011). 

Fourth, switching to different materials and production processes may be required 
to achieve deep decarbonization in this sector in the long run if material efficiency, 
improved mixing and aggregate sizing, and CCS with extra bioenergy are not viable in 
some places or at all to reach near-zero emissions. Among the successful strategies 
to reduce CO

2
 emissions in the global cement industry is the use of supplementary 

cementitious materials (SCMs) (Ayati et al. 2022), including from industrial and 
agricultural wastes, to replace part of the clinker in cement (Singh 2022). However, 
implementing this option at a large scale will be challenging due to the limited supplies 
of conventional SCMs, unless new types of SCMs become available (Scrivener et 
al. 2018). Limestone calcined clay cement (LC3), which is made by blending clinker, 
calcined clay, limestone, and gypsum, has been gaining considerable attention and 
investments as an important alternative to Portland cement because it reduces CO

2
 

by up to 40 percent, uses low-grade raw materials, and requires a lower calcination 
temperature for clay. It is cost-effective and does not require major modification in 
cement plants. In addition, alkali-activated materials and geopolymers, aluminate 
cements, magnesia-based cements, and gypsum-based materials represent promising 
alternative binders that can be produced with lower carbon footprints (Peng and 
Unluer 2023). Indeed, some of these alternative solutions to limestone-based ordinary 
Portland cement have been tested and used regionally and have given rise to partial 
savings (IPCC 2022), but they remain harder to implement as compared to accessing 
limestone resources (Material Economics 2019).

4.3.  Chemicals
A key characteristic of the chemical sector is the heterogeneity of its products, 
each of which has its own production process, distinct set of technologies, and 
mitigation options, making it challenging to model decarbonization in this sector. 
This is particularly true for some of the chemical production processes for which no 
technological options currently exist that allow production of certain chemicals to be 
decoupled from the use of a carbon source (IPCC 2022). The processes that consume 
the most energy in this sector are those for the production of high-value chemicals 
(such as ethylene or propylene, typically precursors to plastics), fertilizers, methanol, 
and some halogens such as chlorine (Worrell et al. 2000). 

Yet the literature suggests that the chemical sector offers several major mitigation 
options. There are several potential routes to lower emissions in the chemical sector. 
First, this sector has one of the highest potentials for electrification, suggesting the 
prospect of a rapid decrease in associated emissions (Madeddu et al. 2020). Indeed, 
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despite the industry’s consistent improvements in energy efficiency over the last few 
decades, the demand for heat and steam in the manufacturing of basic chemicals is 
responsible for a large share of emissions (Bazzanella and Ausfelder 2017). Most of this 
energy is now provided by fossil fuels; these in theory can be replaced with bioenergy, 
hydrogen, or electricity with minimal or no carbon emissions (IPCC 2022). 

Second, fuel switching can also significantly lower emissions; this is particularly the 
case for ammonia manufacturing, which accounts for around 30 percent of all CO

2
 

emissions in the sector (IPCC 2022). Nitrogen and hydrogen are combined to make 
ammonia through a catalytic process, with hydrogen most frequently produced 
through natural gas reforming (Material Economics 2019) or, in some areas, coal 
gasification, which has significantly higher related CO2 emissions. Future low-carbon 
alternatives for ammonia production include methane pyrolysis, which converts 
methane into hydrogen and solid carbon (Material Economics 2019), hydrogen 
produced by electrolysis using low- or zero-carbon energy sources, and natural gas 
reforming with CCS. Compared with conventional processes, electrifying ammonia 
would result in a reduction in the overall amount of primary energy used, although 
innovative synthesis procedures still have a substantial opportunity for efficiency 
improvement (IPCC 2022). Switching to synthetic feedstock also plays a crucial role 
in those chemical production processes for which no carbon-free options exist. For 
instance, a possible strategy is synergistic combination of low-GHG hydrogen and 
carbon obtained by direct air capture or from point sources for further valorization 
(Kätelhön et al. 2019). To replace the steam cracker (IPCC 2022) or a Fischer-Tropsch 
process that may manufacture synthetic hydrocarbons, low-carbon methanol can be 
produced and used in make to order/make to assemble processes to convert methanol 
to olefins and aromatics (IPCC 2022). Another strategy involves employing biomass 
resources (Isikgor and Becer 2015) or existing residual streams to process carbon 
from renewable sources in defined biotechnological processes at the beginning of a 
product’s life cycle (IPCC 2022). 

Third, the literature identifies a large number of new technologies relevant for 
mitigation in the chemical sector that have expected deployment dates ranging from 
now to 2025. However, their potential contribution to achieve deep decarbonization 
varies. Among those with the highest potential in this respect are various carbon 
capture methods and electrolytic hydrogen generation (IPCC 2022); conversely, 
methane pyrolysis, electrified steam cracking, and biomass-based ethanol-to-ethylene 
and lignin-to-BTX (benzene, toluene, and xylenes) pathways are considered medium 
in importance. While macro-level calculations demonstrate that large-scale usage 
of carbon circulation through CCU as a main approach is feasible in the chemicals 
industry, it would be highly energy-intensive, and the climatic effect would be heavily 
dependent on the source of CO

2
 and procedure for absorbing it (Kätelhön et al. 2019). 

CCS plays a particularly important role in those production processes for organic 
compounds that will continue to require a carbon source as an input (IPCC 2022). Yet 
the large-scale deployment of carbon dioxide removal technologies would require 
a complete reshaping of the chemical sector, with some industries dedicated to the 
production of sorbents, necessary to operate the technology. Sorbent production is 
currently only a by-product of processes in the chemical sector. Upscaling it would 
imply an increase in energy demand from the chemical sector, as these processes are 
very energy intensive (Realmonte et al. 2019). 
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Fourth, circularity practices are also relevant in the chemical sector. For instance, 
the pyrolysis of used plastics can produce both gas and naphtha pyrolysis oil, a 
portion of which might replace conventional naphtha as an energy source in the 
steam cracker (Honus et al. 2018). Catalytic cracking, hydrocracking, and polymer 
selective chemolysis are additional methods for chemical recycling (Ragaert et al. 
2017). Achieving near-zero emissions may require combining chemical recycling with 
CCS to reduce carbon losses and process emissions. Finally, achieving deep emissions 
reductions requires demand-side strategies such as efficient end use, material 
efficiency, and reducing demand growth, in addition to recycling whenever possible to 
minimize the requirement for primary production (IPCC 2022).

4.4.  Light Manufacturing
As previously discussed, light manufacturing comprises a diversified set of industries, 
each of which has specific production processes and technologies and, consequently, 
mitigation options. Process heat for applications such as drying consumes the most 
energy in the light manufacturing industry, and approximately 90 percent of the fossil 
fuels employed by the sector are used to generate process heat, whereas electricity 
is predominantly used to power motor-driven systems (IEA 2022d). As a result, fuel 
switching and electrification represent an important mitigation option, with high 
relevance for the achievement of deep decarbonization. For instance, current fossil-
based approaches for heating and drying may be replaced by low- or zero-GHG 
electricity via direct resistance, high-temperature heat pumps, mechanical vapor 
recompression, induction, infrared, or other electrothermal processes. Direct solar 
heating is feasible for low-temperature requirements (100°C), while concentrated solar 
heating is a viable option for greater temperatures. Heat pumps on the market can 
provide 100°C–150°C, although temperatures of up to 280°C are possible. Where high 
temperatures (>1000°C) are necessary, plasma torches powered by electricity can be 
employed, as well as hydrogen or biogenic or synthetic combustible hydrocarbons. 
Energy efficiency also plays an important role, particularly aimed at using waste heat, 
which can be transferred from plant to plant at progressively lower temperatures or 
distributed as low-grade steam or hot water, then increased as needed via heat pumps 
and direct heating (IPCC 2022). These geographic clusters also could allow for reduced 
infrastructure costs for hydrogen generation and storage, as well as CO

2
 collection, 

transportation, and disposal (IEA 2022d). Material efficiency, CCS, and circular 
economy practices are not discussed for this sector due to its heterogeneity.

4.5.  Aluminum and Nonferrous Metals
Primary aluminum is often produced in two stages, generally performed in the same 
location. In the first stage, the Bayer hydrometallurgical method is employed to 
separate aluminum oxide from bauxite ore; this requires temperatures of up to 200°C 
when sodium hydroxide is used to extract the aluminum oxide and up to 1000°C for 
kilning (IPCC 2022). In the second stage, the aluminum oxide is then electrolytically 
separated into oxygen and elemental aluminum using the Hall-Héroult method. 
This is by far the most energy-intensive phase of the aluminum production process. 
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In both stages, electrification has the potential to significantly lower emissions 
if the electricity is from low- or zero-carbon sources. Electrification also has high 
emissions mitigation potential in the production process of other nonferrous metals, 
such as nickel, zinc, copper, magnesium, and titanium, which generate lower total 
emissions (IPCC 2022). This is the case, for instance, for ore extraction technologies 
using low-carbon electricity rather than pyrometallurgy, which requires heat to melt 
and extract ore once it has been smashed. Other important mitigation options for 
nonferrous metals include higher material efficiency and circularity practices aimed 
at the recycling of existing stock. In the case of nonferrous metals, many of these 
decarbonization options are available and have been used on occasion in the past, but 
they have not been widely used because they are costlier than traditional techniques 
and, with low fossil fuel prices, are not economically attractive (IPCC 2022).

4.6.  Pulp and Paper
Pulp mills, integrated pulp and paper mills, and paper mills that use virgin pulpwood 
and other fiber sources, wastes and coproducts from wood product manufacture, and 
recycled paper as feedstock are all part of the pulp and paper industry (IPCC 2022). 
In chemical pulping operations, pulp mills often have access to bioenergy, which can 
supply most or all of their heat and electricity requirements. Mechanical pulping is 
mainly powered by electricity; hence decarbonization is dependent on grid emissions 
variables. Excluding the lime kiln in kraft pulp mills, temperature requirements are 
normally less than or equal to 150°C–200°C, mostly for heating and drying via steam. 
This indicates that this industry may be easily decarbonized by improvements in 
energy efficiency as well as fuel switching and electrification, including the use of 
high-temperature heat pumps. Electrification of pulp mills might, in the long run, make 
bioresidues now used for energy accessible as a carbon source for chemicals. The 
pulp and paper sector has the capability, resources, and knowledge to undertake these 
changes. Inertia in deploying low- or zero-carbon production options and technologies 
is primarily induced by equipment turnover rates and relative fuel and electricity prices. 
Pulp mills have been highlighted as prospective candidates for postcombustion carbon 
capture and storage, which may enable some net negative emissions (IPCC 2022).
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5.  Data on Industrial Energy Demand 
and Emissions
The availability, granularity. and comparability of industry-level data on energy demand 
and emissions across different countries constrain the ability to set up and calibrate 
models to explore possible pathways of industrial energy emissions reductions. That 
is to say, there currently is no detailed and comprehensive data source from which 
modelers can obtain information on energy demand and associated emissions by fuel 
type or by technology in the different industrial sectors in different countries over time. 
Several main challenges are present in this respect, and they often compound one 
another. These challenges are discussed in this section and can be observed in the 
detailed description of available databases, including data on industrial energy demand, 
presented in Appendix A. Note that these data-related challenges are additional to any 
difficulty linked with the modeling of diverse mitigation options across different sectors 
and different countries with the sufficient level of detail necessary to generate industry-
level decarbonization pathways (discussed in the next section).

5.1.  Lack of A Common Detailed Statistics 
Classification
There is currently no common detailed statistical classification of industrial sectors 
that is used worldwide to collect energy and emissions statistics. As a result, it is 
extremely challenging to collect data from different national statistical offices and 
compare them. The three most widely used approaches to classify industrial activities 
are the International Standard Industrial Classification of All Economic Activities 
(ISIC), the North American Industry Classification System (NAICS), and the Statistical 
Classification of Economic Activities in the European Community (NACE) (see Appendix 
B for details). These classifications are used by different countries and international 
institutions to gather specific data on industrial energy demand. While NAICS is used by 
the United States and Canada, NACE is the official classification of the EU, and ISIC is 
often used by international organizations such as the IEA.

5.2.  Lack of Comprehensive Data on Energy 
Demand of Different Energy Carriers
Information on energy demand at the sectoral level exists for the major world economies 
but is rarely accompanied by details regarding different energy carriers. This constrains 
the ability to explore the role of fuel switching in reducing energy emissions at the 
sectoral level. For instance, the World Input-Output Database (WIOD; Timmer et al. 
2015) November 2016 release consists of a series of databases covering 28 EU countries 
and 15 other major countries in the world for 2000–2014. The database provides energy 
and environmental accounts at the sectoral level but does not include details on the 
types of fuels used (e.g., different types of coal versus gas).
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5.3.  Lack of Detailed Sectorial Information on 
Energy Demand at the Level of Different Products
When detailed information is available at the energy carrier level, information on sectoral 
use or allocation is often lacking or dated. In the rare cases where this information is 
available, it cannot be broken down across the different products produced in a given 
sector. This constrains the ability to model sectoral specificities and thus to produce 
sectoral scenarios to deep decarbonization. For instance, the World Energy Balances 
database (IEA 2022f) contains detailed country-level statistics on all energy carriers but 
no sectoral breakdown.

5.4.  Limited Geographic and Time Coverage of 
Detailed Databases
Databases exist that provide detailed information regarding energy demand by energy 
carriers at the sectoral level, but their coverage is not comprehensive in time or space. 
This limits the ability to model different sectors across different countries—or to 
simply account for sectoral dynamics in foreign countries through calibration. This 
is particularly problematic in several energy-intensive sectors that are not concentrated 
geographically and whose dynamics are not necessarily driven by specific countries.

5.5.  Difficulty in Linking Data on Emissions and Fuel 
Inputs
Detailed databases providing information on GHG emissions exist, some of which 
include sectoral detail, but emissions data cannot easily be linked to data on fuel inputs. 
This means that overall emissions reduction pathways at the sectoral level may be 
modeled, but the drivers of emissions reductions at the sectoral level cannot be 
easily calibrated and studied. For instance, one would have to make assumptions as to 
whether emissions reductions come from fuel switching or from broader technological 
change dynamics. The IEA Air Emission Accounts provide data on 16 pollutants for up 
to 88 industrial sectors or subsectors for 40 countries (no data for the United States are 
available), but they do not include information on the energy carriers associated with 
the levels of emissions. A few privately owned databases on emissions by sector and 
country exist, but their reliability is often not clear, as they do not provide information on 
the specific energy inputs or details on how they are compiled.
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5.6.  Difficulty in Predicting Costs and Performance 
of Radically Novel Technologies
It is challenging to predict the cost and performance of radically novel technologies, as 
well as the speed of their diffusion once they have reached the market. This makes it 
hard to inform models regarding the prospects of technologies such as CCU, CCS, 
and other radically novel technologies, including promising technology options such 
as molten oxide electrolysis, new cement chemistries, or electric kilns. In this respect, 
several contributions have used expert elicitation methods to generate probabilistic 
forecasts of energy technology costs starting from the 1970s, focusing on nuclear 
and, more recently, on a set of low-carbon technologies including CCS (Verdolini et al. 
2018). Yet recent contributions in the literature have shown that expert estimates of 
future technology costs tend to be pessimistic, with realized cost decreases surpassing 
expectations for all those technologies for which we have both observed and expert 
elicitation data (Meng et al. 2021; Wiser et al. 2021). Nevertheless, the generality of 
these results for radically novel technologies such as CCU and CCS cannot be taken for 
granted. Furthermore, projections of future energy technology costs generated based 
on learning curves often fail to capture the true trajectory of subsequently realized 
technology costs for radically novel energy technologies (Meng et al. 2021).

5.7.  Lack of Comprehensive Data on Material and 
Energy Flows
A lack of detailed data on material and energy flows limits the ability to model 
circularity strategies and associated emissions reduction potentials. Researchers 
studying industrial metabolism have been developing methodological approaches to 
the modeling of circular practices relevant in the context of the provision of goods and 
services, but much work remains to properly integrate material efficiency measures into 
conventional climate change models. Efforts are being made to endogenize material 
efficiency methods within climate change modeling, assess the synergy effects and 
trade-offs between energy efficiency and material efficiency initiatives, and collect 
data for calculating the emissions saved from actual material efficiency actions. This 
necessitates analysts working in multidisciplinary teams and engaging with stakeholders 
throughout the whole material supply chain. A fruitful avenue of future research being 
pursued by several large-scale projects is the linking of models focused on material 
flows with models for the integrated assessment of energy, the economy, and carbon 
emissions, with a sufficient level of detail for industrial sectors (Haberl et al. 2019).

All known databases on industrial energy use and demand or emissions are plagued by 
at least one of these limitations (see Appendix A). Taken together, these limitations also 
imply that it is not possible to describe precisely and comprehensively all mitigation 
options available in the different sectors. For instance, scarcity of data on material greatly 
limits the ability to model some mitigation options, such as circularity. 
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Overall, the inability to precisely track over time and space how different energy 
technologies use different fuels with different carbon contents illustrates the trade-offs 
in modeling industrial energy demand. Modelers can focus on a single sector in a single 
country and, depending on the country of interest, potentially rely on detailed fuel and 
emissions data, or they can focus on modeling several sectors in one or more countries, 
without access to details on technological options or types of fuel.

6.  Approaches for Industrial Energy 
Demand Modeling
The literature includes several approaches to modeling climate mitigation, based on the 
specific purposes for which they were conceived. Although the criteria for classifying 
the modeling approaches may vary, three key dimensions emerge as particularly useful 
in this respect (Lopion et al. 2018): the analytical approach underlying each model, 
the methodology used to generate decarbonization pathways, and the granularity 
with which different economic sectors, including industry, can be represented. In 
each of these dimensions, modelers can choose among different approaches, each 
of which has pros and cons. Importantly, within large-scale, complex models, such as 
integrated assessment models of the economy, energy, and climate feedbacks, different 
approaches may be adopted in different modules or parts of the model. Therefore, the 
three dimensions discussed here should be understood as broad guiding principles 
by which to classify models and understand their founding principles and not a strict 
classification method.

6.1.  Analytical Approach: Bottom-up and Top-down 
Models
Models adopt either a bottom-up or a top-down analytical approach. Accordingly, 
the energy system would be described from either an engineering or an economic 
angle. Bottom-up models integrate a high level of technical information within the 
energy system modeling, as they give highly precise images of energy demand and 
supply technologies, quantifying the demand of energy and mass of each technology 
component (Herbst et al. 2012). Their key strength is the characterization of the 
interlinks between technology components based on the mutual dependencies of 
energy and mass flows. This feature enables them to provide in-depth analyses of 
sectoral strategies; however, it also determines their partial equilibrium nature, as 
bottom-up models ignore relationships between sectors. Disadvantages of bottom-
up modeling are related to data requirements and the exclusion of intersectoral 
feedbacks. Modelers are largely reliant on data availability and trustworthiness to 
model technology diffusion, investments, and operational costs. The main criticism of 
bottom-up modeling concerns the failure to account for program costs, the feedback of 
energy policy, and the lack of macro-effects of the assumed technology shift on general 
economic activity, structural changes, employment, and pricing (Herbst et al. 2012). 
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Top-down models describe technologies as a set of techniques by which inputs such 
as capital, labor, and energy can be transferred into useful outputs; therefore, they 
give an aggregated description of the energy system but lack detailed technological 
variability (IPCC 2022). They have a high level of endogenous modeling of social and 
economic behavioral relationships, such as those among welfare, economic growth, 
and employment. This type of modeling enables a full understanding of energy policy 
effects on the economy of a region or country (Herbst et al. 2012). A drawback is that 
because of their inadequate technological detail, they may be unable to provide an 
accurate picture of technical advances, nonmonetary hurdles to energy efficiency, 
or regulations for certain technologies. Top-down models are not suitable to portray 
credible technology prospects, especially as discontinuity would apply in the long 
run, when intrasectoral structural change would occur as a result of technological 
development and saturation (Herbst et al. 2012). Moreover, because top-down 
modeling approaches are based on the theory of efficiently allocating markets, 
they tend to underestimate the complex nature of barriers and their nonmonetary 
forms, such as a lack of knowledge, insufficient decision routines, or group-specific 
preferences of technology producers or wholesalers. Four key top-down approaches 
are input-output models, computable general equilibrium (CGE) models, econometric 
models, and system dynamics models.

Because of their inherent differences, these two approaches are useful in answering 
radically different questions. Bottom-up models are often used when there is a 
specific interest in producing decarbonization pathways for specific sectors, for 
which assumptions are made (and imposed on the model) regarding all other, more 
aggregate drivers of emissions. Top-down models are necessary if the focus of the 
analysis is modeling feedback loops between climate policies and welfare, employment, 
and economic growth. Finally, because of the complementarity between bottom-up 
and top-down models, hybrid approaches have been used where the macroeconomy 
interacts with an energy system module.

6.2.  Methodology: Simulation and Optimization 
Approaches
Models can adopt either a simulation or an optimization approach to generate 
decarbonization pathways; often, both approaches can be used in different parts of the 
same model. Simulation allows for reproducing a system via interpreting the principles 
of its operations. These models represent the key behaviors and characteristics of 
a given process (in our case, industrial energy demand), while the simulation allows 
the model to represent how the process evolves under different conditions over time. 
Simulation can be static, if it describes the current system as a snapshot, or dynamic, 
if the current output is affected by evolution from previous periods. Simulation models 
can shed light on the endogenous relationships between variables to reproduce real-
world systems, and although this may happen in a simplified fashion, they can also be 
rather complex. Typical applications of simulation models are exploratory analyses, 
where the modeler starts with realistic values for inputs and modifies them within 
reasonable ranges to determine what happens with the outputs. By tweaking the initial 
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conditions, the behavior of the simulated system changes and can be observed. A class 
of simulation models explores multiagent approaches, interpreting the  decisionmaking 
processes of key energy system players, which are suited to interpret market 
imperfections and consumer and firm heterogeneity (Hansen et al. 2019). 

Optimization is used to determine optimal system design or optimal choices. Unlike 
simulation models, optimization models provide the best solution for a given answer. 
They consist of three elements: the objective function, decision variables, and the 
constraints. Successful optimization depends on properly identifying the constraints 
placed on various parameters—for example, the maximum level of energy from a given 
energy source or emissions from a given source. 

Depending on the description of the energy system in a given model, optimization and 
simulation models can be demanding in terms of computing power and time and can 
implement sensitivity analyses to explore robustness of results at different levels of 
complexity. The distinction between optimization and simulation seems particularly 
relevant for the modeling of mitigation options that are novel and disruptive and affect 
the timing of when new technologies may enter the market. Optimization models 
apply typically intertemporal approaches, which means that availability and costs of 
all the technologies in the future are known from the start of the modeling. Simulation 
models are typically coupled with limited foresight, which means that information on 
technologies is limited at a certain time in the simulation. This is critical for modeling 
radically novel technologies, such as radical deep decarbonization strategies, where 
simulation models display more inertia toward novel technology diffusion than 
optimization models, which show an earlier market uptake. The introduction of novel 
technologies is, however, linked to the level of technological detail of an energy system, 
as well as to a complex set of parameters governing the technology capacity and 
growth in the market.

6.3.  Granularity of Sectoral Modeling
Finally, models differ with respect to the detail and granularity with which they depict 
the energy sector, its energy and emissions. Models can depict a single industrial 
sector, aggregating all production activities (typical of top-down models) or specifying 
a few key sectors of interest while lumping all other economic activities in the “other” 
category, or they can be very detailed and include a large number of sectors and 
subsectors (typical of bottom-up models). Several trade-offs are associated with the 
choice of aggregate versus detailed representation. The more sectorally detailed a 
model, the better it can depict differences among the various mitigation options within 
and across sectors. This can be achieved only if very detailed data are available to feed 
the mode and usually leads to long computing times to achieve a solution. 

The variation of models along these three dimensions has important implications for 
modeling industrial energy demand and emissions. Bottom-up, sectorally-detailed 
models are more likely to allow the study of the choices among the different sector-
specific mitigation options described in Section 4. Yet they often abstract from general 
equilibrium effects and are based on strong assumptions regarding the development 
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of macro-level variables and indicators. This limits the ability to model circularity 
practices that go beyond a specific sector or geography and understanding of the 
global implications of choosing different mitigation options in different sectors or 
countries. The opposite is true for top-down aggregated models. 

Given these trade-offs, over time a larger number of models have adopted a hybrid 
approach, including features of both top-down and bottom-up models. Sometimes 
models also combine optimization and simulation in different modules or portray 
certain aspects of the economy at an aggregated level while they detail specific 
sectors of interest. Integrated assessment models (IAMs), for instance, often use a 
hybrid approach for energy demand and emissions. 

An IAM is a specific type of model that combines data gathered from two or even 
more disciplines into a single framework i.e., the economy, the energy system, and the 
environment. Researchers in physical, biological, earth, economic, and social sciences 
have typically produced elements of these models autonomously. The need to study 
interdisciplinary interactions among these components, as in the case of climate 
change, has led to the development of cohesive and consistent frameworks that 
include several components to assess the status and implications of environmental 
change more accurately, as well as possible solutions (Bosetti 2021). Some energy-
intensive industries, such as iron and steel or cement, are included individually in most 
top-down IAMs, but few sector-specific technologies are expressly included. Instead, 
advances in energy efficiency in the industry sector and its subsectors are frequently 
dictated by exogenous assumptions or are a function of energy costs. Similarly, fuel 
switching is mostly caused by changes in relative fuel prices, which are affected by 
CO2 price trends (Pauliuk et al. 2017). Fuel switching can be regulated in IAMs that 
include specific technologies based on the features of those technologies, but in IAMs 
that lack technological detail, more generic limits of fuel switching in the industry 
sector are integrated. 

Most IAMs employ aggregated, top-down industrial sector models that are calibrated 
from long-term historical data, such as the introduction of new technologies or fuels. 
As a result, these models can implicitly reflect real-world constraints in the entire 
sector that bottom-up approaches may not completely explore. These constraints 
may result from factors such as infrastructure building delays or market participants’ 
insufficient understanding of new technology. Furthermore, because IAMs model the 
climate system, these models can mainly account for the effects of climate change 
on the growth and structure of economies (Pauliuk et al. 2017). However, top-down 
models are often limited in their portrayal of specific technologies and processes in 
the industry sector, especially of technology-driven structural change. This lack of 
technological information restricts the models’ utility in analyzing technology- and 
sector-specific mitigation methods and policies. Top-down models also feature a 
highly aggregated depiction of industrial energy demand, making it difficult to evaluate 
demand-side mitigation techniques such as recycling, product-service efficiency, and 
demand reduction choices (Pauliuk et al. 2017).
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7.  The Modeling of Innovation and 
Technological Change and Relevant 
Policies
This section provides a brief overview of the different approaches to portray 
technological change in low-carbon emissions technologies, including radically novel 
technologies, relevant for industrial sectors. As noted in the previous section, the different 
methodologies to model innovation may coexist in a given model. Another related key 
point regards the ability of models to mimic how specific policies and policy instruments 
affect the different phases of the innovation process. 

Innovation comprises stages ranging from basic R&D to prototyping, demonstration, 
and larger-scale market diffusion. How a model does or does not account for all these 
different stages affects the speed and depth of emissions reductions (Blanco et al. 2022).

In most models, a novel technology enters the market when its costs decrease and 
become equal to, or lower than, the costs of the dominant technology (van Sluisveld et 
al. 2020). Technology cost decrease can be calibrated using historical data or relying 
on expert estimates. The former relies on the learning curve approach: it assumes 
that costs decrease either as a function of R&D investment (learning-by-researching) 
or as a function of cumulative production or time (Nagy et al. 2013). Learning curve 
model parameters are derived from historical data and then used to project future cost 
decreases. The latter approach, which relies on expert estimates regarding the trajectory 
of future costs, has been used for radically novel technologies, for which historical data 
are not available (Verdolini et al. 2018). This was the case for the cost of nuclear power 
in the 1970s and the cost of CCS and other radically novel technologies more recently. 
Recent evidence has shown that both learning curve and expert-based approaches 
underestimate the cost reductions in several low-carbon technologies, with expert-based 
methods emerging as particularly pessimistic. Yet these results may not necessarily 
extend to more radical technologies. Moreover, no alternative approach exists in terms of 
informing the modeling of innovation (Meng et al. 2021).

Another important distinction between models is whether innovation is modeled 
exogenously or endogenously. In the former, technology costs are assumed to vary 
over time at some fixed rate, which can be derived from either historical data or expert 
estimates or by relying on marginal abatement cost curves derived elsewhere. In the 
latter, technology cost decreases are calibrated to historical values, but costs are a choice 
variable in the model, and agents can decide how much to invest in it (Krey et al. 2019; 
Mercure et al. 2016). For example, technology cost reductions can be assumed to follow 
a predefined (historically observed) pattern or can be modeled as a function of R&D 
investment, which can be chosen (as opposed to being imposed) in the model. Modeling 
innovation exogenously rather than endogenously generally underestimates future cost 
reductions; for instance, it ignores policy-induced carbon-saving technological change or 
spillovers. In any case, assumptions regarding the speed of innovation and technological 
change can be tested through sensitivity analysis (Blanco et al. 2022).
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Finally, most models rely on the assumption that when the cost of a new technology 
becomes competitive, the technology will naturally diffuse through the economy 
following a certain pattern, such as an S-shaped diffusion pattern (Hall 2006). This 
often results in an overestimation of the diffusion potential of many novel technologies, 
because diffusion is driven solely by cost in the models, and no consideration is 
given to other key barriers that may slow down deployment. These include noncost, 
nontechnological barriers or enablers regarding behaviors, society and institutions 
(e.g., path dependence or the coevolution of technology clusters over time), the risk 
aversion of users and capital markets, personal preferences and perceptions in a 
world of heterogeneous agents, network or infrastructure externalities, and a lack 
of supportive institutional frameworks (Iyer et al. 2015; Baker et al. 2015; Marangoni 
and Tavoni 2014; van Sluisveld et al. 2020; Napp et al. 2017; Biresselioglu et al. 2020). 
Ignoring these barriers generally leads to an overestimation of technology diffusion 
in such models. To address these issues, models can impose ad hoc restrictions on 
certain technologies, such as a ceiling to penetration. In addition, these barriers can be 
accounted for through scenario narratives, such as those in the Shared Socioeconomic 
Pathways (Riahi et al. 2017), in which assumptions about technology adoption 
span a plausible range of values. The literature also indicates that models tend to 
underestimate cost reduction potentials but to overestimate penetration rates. Careful 
calibration and sensitivity analysis are necessary to test the robustness of model 
results regarding technology innovation and diffusion (Blanco et al. 2022). 

Given the key role that policies play in the innovation process, it is paramount 
to understand how they can be modeled and accounted for. A large number of 
contributions have explored how different policy instruments influence the availability 
of novel technologies, cost decreases over time, and technology diffusion in the 
market. Policy instruments are traditionally categorized as supply-side policies, which 
target technology innovation directly in the form of R&D investments or subsidies 
for research, and demand-side policies, which include both command-and-control 
policies such as emissions limits and market-based policies such as taxes or permits 
(IPCC 2022). A general result emerging from this literature is that low-emissions 
innovation and technology diffusion can be effectively supported through policy 
packages tailored to national contexts and technological characteristics. Yet low-
emissions innovation can jointly achieve environmental, social, and economic benefits 
only if environmental policies are part of a broader, comprehensive and tailored policy 
package that addresses potential negative impacts and strengthens governance of the 
innovation system (Penasco et al. 2021; IPCC 2022). 

No available models are able to account for such complex policy instruments. First 
and foremost, models portraying innovation and technology diffusion exogenously can 
account for the impact of different policy instruments on cost and diffusion dynamics 
only through sensitivity analysis. Second, even models that represent innovation 
as an endogenous process include only a limited set of policy instruments: taxes or 
markets for permits, emissions limits, and emissions standards. The potential role of 
instruments such as public procurement, public-private partnership, voluntary industry 
standards, or the nuances of policy design that affect the effectiveness of the policy 
instrument cannot be studied in depth, and these instruments are  thus overlooked 
or implicitly assumed. Finally, a number of nonenvironmental policies, such as those 
targeting inflation or the ease of accessing capital, can influence innovation. These 
often are not appropriately accounted for in models of industrial energy demand.
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8.  Specific Models for Industry Energy 
Demand and Emissions
This section gives an overview of the most widely known models used to forecast industrial 
energy demand. Details are provided in Appendix C, where we classify each model based 
on the three criteria discussed in the previous section (top-down or bottom-up, simulation 
or optimization, and level of granularity of the industry module), describe the mechanisms 
through which the specific model represents industry energy demand and the main 
assumptions made, and note an application in the literature. Given the nature of this paper, 
we exclude models in which the entire industrial sector is portrayed as a single sector. The 
models analyzed for this paper and presented in Appendix C are as follows:

1. World Energy Model, International Energy Agency

2. National Energy Modeling System, US Energy Information Administration

3. Global Change Assessment Model, Pacific Northwest National Laboratory

4. Regional Model of Investment and Development, Potsdam Institute for Climate Impact 
Research

5. Modular Energy System Simulation Environment, Imperial College London

6. The Integrated MARKAL-EFOM System, Imperial College London, Grantham Institute

7. IMAGE, PBL Netherlands Environmental Assessment Agency 

8. Material Economics Modelling Framework, Material Economics

9. Energy-Environment-Economy Global Macro-Economic, Cambridge Econometrics

10. Industrial Sector Energy Efficiency Model for Iron and Steel, Lawrence Berkeley 
National Laboratory

11. Universal Industrial Sectors Integrated Solutions, US Environmental Protection 
Agency

12. Hybrid Technological Economic Platform, CENSE and College of William and Mary

13. FORECAST, Fraunhofer Institute for Systems and Innovation Research

A main result of this analysis relates to the granularity with which radical technologies 
are modeled. Many of the energy system models and the integrated assessment model 
described in Appendix C are not detailed enough to model separately some of the specific 
key mitigation options described in Section 4—such as the electrowinning process or 
molten oxide electrolysis—in different energy-intensive sectors. Many provide only high-
level details on the process of innovation and its direction. This is also true in the case of 
detailed sectoral models, which generally are not technology- or subtechnology-specific. 
Moreover, these models do not describe circularity practices, such as the difference 
between conventional and new types of SCMs, mostly because they do not model material 
flows but rather model the cost of a given technology or its energy demand and efficiency. 
Importantly, efforts are currently underway to integrate the modeling of GHG emissions 
with the modeling of material flows, yet this process has proven to be challenging, and no 
model is currently available that incorporates simultaneously attention to GHG emissions 
and the material side of the economy.
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9.  Conclusions
The aim of this paper is to improve the understanding of challenges linked with 
the modeling of emissions and energy demand in key energy-intensive industrial 
sectors, with a particular focus on the role that new low-carbon technologies can 
play in achieving deep mitigation targets. With the aim of highlighting the sectoral 
peculiarities of various emissions reduction strategies, we first discuss the relevance 
of different emissions reduction approaches—fuel switching and electrification, carbon 
efficiency, material efficiency, carbon capture and storage, and circular economy 
practices—for six high-energy-demand sectors: steel, cement, chemicals, light 
manufacturing, aluminum, and pulp and paper. To highlight the limitations of modeling 
industrial energy demand and associated emissions, we then detail the data limitations 
that constrain model calibration and describe the methodologies that characterize the 
most well-known integrated assessment models of industrial energy demand. 

Three key insights emerge from this analysis. First and foremost, models need to 
be further developed to appropriately capture industrial decarbonization options 
and the effects of policies. None of the widely used industrial energy and emissions 
models have the capacity to portray the adoption and diffusion of granular 
technological options for emissions reduction in energy-intensive sectors. No model 
can portray heterogeneous innovation and technology adoption dynamics due to firm 
characteristics (e.g., size or access to capital). Most available models, including those 
with relatively high sectoral detail, are not technology- or sub-technology-specific and 
rely on only a high-level representation of the innovation process. Moreover, available 
IAMs do not track material flows and consequently cannot describe circularity 
practices and their relevance for mitigation. While efforts in this respect are underway, 
much work remains ahead for the research community. In this respect, the soft or 
hard linking of available models with other technology-specific more detailed models, 
including agent-based models emerges as an important research avenue for the future. 

Data availability also represents a key barrier for model development. Data collection 
efforts are inadequate and need to be scaled up. However, marked firm heterogeneity 
both within and across sectors is a main barrier in this respect. Given the lack of a 
coordinated, state-driven effort to gather statistics on industrial energy demand and 
use, researchers have difficulty obtaining the necessary data. When entrepreneurs are 
willing to share, data are often limited and lack panel dimension or cannot be compared 
across countries and sectors because of a lack of precise collection standards. 
This situation could be partly resolved if policymakers create a framework aimed at 
facilitating the sharing of data regarding the environmental performance of small and 
medium-size enterprises or entrust national statistical offices with this task. This would 
allow researchers to rely on data whose consistency has been certified by numerous 
studies, and data harmonization would require less time than when performing the 
same operations multiple times on the same dataset.
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Last but not least, while a portfolio of different options is available in all industrial 
sectors to reduce energy demand, existing technologies are not sufficient to achieve 
deep decarbonization goals across industrial sectors. Nor is it possible to achieve 
these goals by relying on only one technological option. Thus R&D on relevant 
decarbonization technologies needs to be sped up to ensure the further development 
of additional low-carbon industrial technologies in all energy-intensive sectors and 
make available other decarbonization solutions that are not in use yet.
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Appendix A.  Available Datasets to 
Track Industrial Energy Demand and 
Emissions, and Their Limitations

Table A.1.  GTAP 11 and GTAP-E

Characteristic Definition

Content

GTAP 11 describes global bilateral trade patterns, international transport margins, and 
protection matrices that link individual countries or regions. For each country or region, 
the database presents values of production as well as intermediate and final consumption 
of commodities and services in millions of US$. GTAP-E provides carbon dioxide (CO

2
) 

emissions data, distinguished by fuel and user.

Spatial coverage
Both GTAP 11 and GTAP-E cover 141 countries and 19 aggregate regions of the world for 
each reference year.

Temporal coverage
Both GTAP 11 and GTAP-E provide a time series of snapshots of the global economy for 
each of five reference years: 2004, 2007, 2011, 2014, and 2017.

Industrial sectors Both GTAP 11 and GTAP-E represent 65 products and services.

Industry classification
Both GTAP 11 and GTAP-E sectors are derivable from the International Standard Industry 
Classification (ISIC). 

Strengths
For GTAP 11 high spatial coverage; for GTAP-E both high spatial coverage and distinction 
of CO2 emissions by fuels and by user.

Weaknesses

GTAP uses a sector classification derivable from the ISIC classification. The result is a 
product/service classification and not an industry sector classification. [Section 5.1]

Data are dated and presented as a snapshot for five years. [Section 5.4]

Source: Aguiar et al. (2023)



Resources for the Future 40

Table A.2.  GTAP 10 Database Sectors

# Code Sector

1 pdr Paddy rice

2 wht Wheat

3 gro Cereal grains nec

4 v_f Vegetables, fruit, nuts

5 osd Oil seeds

6 c_b Sugar cane, sugar beet

7 pfb Plant-based fibers

8 ocr Crops nec

9 ctl Bovine cattle, sheep and goats, horses

10 oap Animal products nec

11 rmk Raw milk

12 wol Wool, silk-worm cocoons

13 frs Forestry

14 fsh Fishing

15 coa Coal

16 oil Oil

17 gas Gas

18 oxt Other extraction (formerly omn); minerals nec

19 cmt Bovine meat products

20 omt Meat products nec

21 vol Vegetable oils and fats

22 mil Dairy products

23 pcr Processed rice

24 sgr Sugar

25 ofd Food products nec

26 b_t Beverages and tobacco products

27 tex Textiles

28 wap Wearing apparel

29 lea Leather products

30 lum Wood products
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# Code Sector

30 lum Wood products

31 ppp Paper products, publishing

32 p_c Petroleum, coal products

33 chm Chemical products

34 bph Basic pharmaceutical products

35 rpp Rubber and plastic products

36 nmm Mineral products nec

37 i_s Ferrous metals

38 nfm Metals nec

39 fmp Metal products

40 ele Computer, electronic and optical products

41 eeq Electrical equipment

42 ome Machinery and equipment nec

43 mvh Motor vehicles and parts

44 otn Transport equipment nec

45 omf Manufactures nec

46 ely Electricity

47 gdt Gas manufacture, distribution

48 wtr Water

49 cns Construction

50 trd Trade

51 afs Accommodation, food and service activities

52 otp Transport nec

53 wtp Water transport

54 atp Air transport

55 whs Warehousing and support activities

56 cmn Communication

57 ofi Financial services nec

58 ins Insurance (formerly isr)

59 rsa Real estate activities

60 obs Business services nec

61 ros Recreational and other services

62 osg Public Administration and defense

63 edu Education

64 hht Human health and social work activities

65 dwe Dwellings
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Table A.3.  EDGAR V7.0

Characteristic Description

Content
Provides emissions of the three main greenhouse gases (CO

2
, 

CH
4
, N

2
O) and fluorinated gases in kilotons (Kt) per sector and 

country.

Spatial coverage 210 countries.

Temporal coverage Time series for 1970–2021.

Industrial sectors 26 sectors.

Industry 
classification

EDGAR sector classification, derivable from the IPCC Guidelines 
sector classification. 

Strengths  High spatial and temporal coverage; data on three main GHGs.

Weaknesses

EDGAR uses a sector classification derivable from 2006 IPCC 
Guidelines sector classification [Section 5.1]

No data on energy demand. [Section 5.2]

Energy carrier is identified only by bio/fossil. [Section 5.3].

No data on material and energy flows. [Section 5.7]
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Table A.4.  EDGAR Database Sectors

# Code Sector

1 AGS Agricultural soils

2 AWB Agricultural waste burning

3 CHE Chemical processes

4 ENE Power industry

5 ENF Enteric fermentation

6 FFF Fossil fuel fires

7 IDE Indirect emissions from NO
x
 and NH

3

8 IND Combustion for manufacturing

9 IRO Iron and steel production

10 MNM Manure management

11 N2O Indirect N
2
O emissions from agriculture

12 PRO_COAL Fuel exploitation COAL

13 PRO_GAS Fuel exploitation GAS

14 PRO_OIL Fuel exploitation OIL

15 PRU_SOL Solvents and products use

16 RCO Energy for buildings

17 REF_TRF Oil refineries and transformation industry

18 SWD_INC Solid waste incineration

19 SWD_LDF Solid waste landfills

20 TNR_Aviation_CDS Aviation climbing & descent

21 TNR_Aviation_CRS Aviation cruise

22 TNR_Aviation_LTO Aviation landing & takeoff

23 TNR_Other Railways, pipelines, off-road transport

24 TNR_Ship Shipping

25 TRO Road transportation

26 WWT Waste water handling
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Table A.5.  World Input-Output Database (WIOD) 2016

Characteristic Description Environmental accounts

Content

World input-output tables (WIOTs) in 
current prices, denoted in millions of 
US$. A WIOT provides a comprehensive 
summary of all transactions in the global 
economy between industries and final 
users across countries.

Gross energy use (TJ), emissions-relevant 
energy use (TJ), and CO2 (kt).

Spatial coverage 43 countries 41 countries

Temporal coverage Time series for 2000–2014 Time series for 2000–2016

Industrial sectors 58 sectors 64 sectors

Industry classification ISIC Rev. 4* NACE Rev. 2 

Strengths
High temporal coverage; presents both emissions and energy use; twelve energy carriers 
for gross energy use; emissions-relevant energy use.

Weaknesses*
Data are dated; the time series ended in 2014. [Section 5.4]

There is no information about fuel inputs related to CO
2
 emissions. [Section 5.5]

*The first and second levels (sections and divisions) of ISIC Rev. 4 (UN 2008) are the same as those of NACE Rev. 2 (Eurostat 
2008). NACE Rev. 2 divides the third and fourth levels (groups and classes) of ISIC Rev. 4 in accordance with European 
standards. However, NACE Rev. 2 groups and classes can always be combined with the ISIC Rev. 4 groups and classes from 
which they were derived. The additional divisions in NACE Rev. 2 over ISIC Rev. 4 are intended to create a categorization that is 
better adapted to the economic systems of Europe.
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Table A.6.  NACE Rev. 2

# Code NACE Rev. 2

1 vA01
Crop and animal production; hunting and related service 
activities

2 vA02 Forestry and logging

3 vA03 Fishing and aquaculture

4 vB Mining and quarrying

5 vC10_12 Manufacture of food products, beverages, and tobacco products

6 vC13_15 Manufacture of textiles, wearing apparel, and leather products

7 vC16
Manufacture of wood and of wood and cork products, except 
furniture; manufacture of articles of straw and plaiting materials

8 vC17 Manufacture of paper and paper products

9 vC18 Printing and reproduction of recorded media

10 vC19 Manufacture of coke and refined petroleum products 

11 vC20 Manufacture of chemicals and chemical products 

12 vC21
Manufacture of basic pharmaceutical products and 
pharmaceutical preparations

13 vC22 Manufacture of rubber and plastic products

14 vC23 Manufacture of other nonmetallic mineral products

15 vC24 Manufacture of basic metals

16 vC25
Manufacture of fabricated metal products, except machinery and 
equipment

17 vC26 Manufacture of computer, electronic and optical products

18 vC27 Manufacture of electrical equipment

19 vC28 Manufacture of machinery and equipment nec

20 vC29 Manufacture of motor vehicles, trailers and semi-trailers

21 vC30 Manufacture of other transport equipment

22 vC31_32 Manufacture of furniture; other manufacturing

23 vC33 Repair and installation of machinery and equipment

24 vD35 Electricity, gas, steam, and air-conditioning supply

25 vE36 Water collection, treatment, and supply

26 vE37_39
Sewerage; waste collection, treatment, and disposal activities; 
materials recovery; remediation activities; and other waste 
management services 

27 vF Construction

28 vG45
Wholesale and retail trade and repair of motor vehicles and 
motorcycles

29 vG46 Wholesale trade, except of motor vehicles and motorcycles
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# Code NACE Rev. 2

30 vG47 Retail trade, except of motor vehicles and motorcycles

31 vH49 Land transport and transport via pipelines

32 vH50 Water transport

33 vH51 Air transport

34 vH52 Warehousing and support activities for transportation

35 vH53 Postal and courier activities

36 vI Accommodation and food service activities

37 vJ58 Publishing activities

38 vJ59_60
Motion picture, video, and television program production; 
sound recording and music publishing activities; programming 
and broadcasting activities

39 vJ61 Telecommunications

40 vJ62_63
Computer programming, consultancy, and related activities; 
information service activities

41 vK64
Financial service activities, except insurance and pension 
funding

42 vK65
Insurance, reinsurance, and pension funding, except 
compulsory social security

43 vK66 Activities auxiliary to financial services and insurance activities

44 vL68 Real estate activities

45 vM69_70
Legal and accounting activities; activities of head offices; 
management consultancy activities

46 vM71
Architectural and engineering activities; technical testing and 
analysis

47 vM72 Scientific research and development

48 vM73 Advertising and market research

49 vM74_75
Other professional, scientific and technical activities; veterinary 
activities

50 vN Administrative and support service activities

51 vO84 Public administration and defense; compulsory social security

52 vP85 Education

53 vQ Human health and social work activities

54 vR_S Other service activities

55 vT
Activities of households as employers; undifferentiated goods- 
and services-producing activities of households for own use

56 vU Activities of extraterritorial organizations and bodies

57 vTOTII_new Total industrial activities

58 vCONS_h_new Final consumption expenditure by households
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Table A.7.  Eora26

Characteristic Description

Content

Global multiregion input-output table (MRIO) documenting 
intersectoral transfers, environmental indicators covering 
GHGs emissions, labor inputs, air pollution, energy use, water 
requirements, land occupation, N and P emissions, and primary 
inputs to agriculture.

Spatial coverage 190 countries.

Temporal coverage Time series for 1990–2021.

Industrial sectors 26 sectors.

Industry 
classification

The Eora26 sector classification is based on common sector 
classifications, but no concordance matrix to or from other 
classifications is available. 

Strengths
High spatial and temporal resolutions; high number of 
environmental indicators.

Weaknesses

Eora26 classification is not derivable from other standard 
classifications. [Section 5.1]

No data on energy carriers for energy use. [Section 5.2]

No data on energy carriers for GHG emissions. [Section 5.5]
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Table A.8.  Eora26 Classifications

# Classification

1 Agriculture

2 Fishing

3 Mining and quarrying

4 Food and beverages

5 Textiles and wearing apparel

6 Wood and paper

7 Petroleum, chemical, and nonmetallic mineral products

8 Metal products

9 Electrical and machinery

10 Transport equipment

11 Other manufacturing

12 Recycling

13 Electricity, gas, and water

14 Construction

15 Maintenance and repair

16 Wholesale trade

17 Retail trade

18 Hotels and restraurants

19 Transport

20 Post and telecommunications

21 Financial intermediation and business activities

22 Public administration

23 Education, health, and other services

24 Private households

25 Others

26 Re-export and re-import
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Appendix B.  Classification of Industrial 
Sectors
To understand the different approaches to industrial modeling, it is necessary to 
understand industry classifications and the availability of sector-level data on energy 
demand and emissions. Table B.1 summarizes the characteristics of the different 
classification methods.

Table B.1.  Available Classifications of Industrial Sectors

Structure Code ISIC Rev. 4 NACE Rev. 2

Section Letter-based 21 sections 21 sections

Division 2-digit 88 divisions 88 divisions

Group 3-digit 238 groups 272 groups

Class 4-digit 419 classes 615 classes

Structure Code NAICS (OMB 2022)

Sector 2-digit 20 sectors

Subsector 3-digit 99 subsectors

Industry group* 4-digit 311 industry groups

NAICS industry 5-digit 709 NAICS industries

National industry 6-digit 1,057 national industries

*Represents the lowest level of compatibility among the United States, Canada, and Mexico.
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B.1.  The International Standard Industrial 
Classification of All Economic Activities (ISIC)
ISIC is the United Nations’ system for classifying economic activities based on a 
collection of ideas, definitions, guiding principles, and classification criteria that have 
been universally accepted (UN 2008). It provides a thorough framework for collecting 
and reporting economic data intended for use in economic analysis, decisionmaking, 
and policymaking. ISIC classifies productive activities into four levels of distinct 
hierarchical categories to make data collection, display, and analysis at specific 
economic levels easier and more uniform worldwide. Sections are the highest level 
of classification, with all forms of productive activity divided into major categories 
designated by letters. These are subdivided into ever more specific categories 
designated by numbers: two-digit divisions, three-digit groups, and four-digit 
classes. The criteria used to define the categories are based on “the inputs of goods, 
services, and factors of production, the process and technology of production, the 
characteristics of outputs, and the use to which the outputs are put” (UN 2008). 

The ISIC categories have been used to organize economic activities that meet these 
requirements. The economic activities’ process and technology have been prioritized 
for defining specific ISIC classes at the most granular level of categorization, especially 
in the categories related to services. Data may be used to investigate specific 
industries or industrial groups and evaluate the economy by disaggregating the data 
into various degrees of detail. Numerous factors, including the intended use of the 
classification, the accessibility of data, and the amount of aggregation considered 
influence the criteria used to define the categories at every level. Similarities between 
manufacturing processes are always considered when classifying activities at the 
sector level at high level of detail; undoubtedly, the more aggregate the sector, the 
more heterogenous are the processes bundled in the classification.

B.2.  The North American Industry Classification 
System (NAICS)
NAICS is a system for classifying organizations based on their economic activities. 
Its goals are to make it easier to gather, tabulate, display, and analyze data on 
businesses, as well as to improve uniformity and consistency in the analysis and 
presentation of statistical data about the USA, Canadian, and Mexican economy. 
By working together on NAICS, the Instituto Nacional de Estadística y Geografía 
of Mexico, Statistics Canada, and the US Office of Management and Budget have 
created a uniform framework that makes the industry statistics provided by the three 
nations comparable. NAICS is used by federal statistics organizations and policy 
analysts to gather and disseminate data by industry, and state agencies, academia and 
researchers, the business community, and the general public also make extensive use 
of the system. 
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NAICS is a hierarchical system in which enterprises are categorized from the broadest 
to the most granular levels and is the first industrial categorization system created 
using a single aggregation basis. It reflects recent technological advances as well as 
the increase and diversity of services. NAICS (2017) classification is highly comparable 
to the most current version of ISIC. Four principles influence NAICS development: (1) 
NAICS has a product-oriented framework, grouping together manufacturing units 
that employ the same or comparable production processes. (2) The system focuses 
on building production-oriented categories for new and emerging sectors, the service 
sector in general, and industries involved in high technology production. (3) Time-
series consistency is preserved to the highest degree possible. (4) The system seeks 
two-digit compliance with the ISIC classification.

B.3.  The Statistical Classification of Economic 
Activities in the European Community (NACE)
NACE is the European Union’s accepted system of categorizing productive economic 
activity, in which a code is assigned to a statistical unit for each activity. The acronym 
NACE (Nomenclature statistique des Activités économiques dans la Communauté 
Européenne) comes from the French name for the system and refers to the multiple 
statistical categories of economic activities in the European Union since 1970. 
NACE provides a framework for gathering and displaying a wide range of statistical 
data based on economic activities. An economic activity is defined by the input of 
resources, the manufacturing process, and the output of goods. When resources 
such as labor, capital goods, manufacturing processes, or intermediary items are 
combined to create certain commodities or services, that is considered an economic 
activity. An activity might be a single, straightforward process, or it might consist 
of a variety of smaller activities that are each classified in a distinct category. NACE 
originated from ISIC but is more detailed. ISIC and NACE include identical elements at 
the highest levels, with NACE being more granular at lower levels. NACE consists of a 
hierarchical structure as defined by the NACE regulations, introductory instructions, 
and explanatory notes (Eurostat 2008).

Statistics based on NACE are comparable at the European and global levels, and 
the usage of this classification system was made mandatory in the EU by member 
states, the European Commission, and the European Statistical System. To guarantee 
worldwide comparability, the criteria and rules defined for the use of NACE inside 
the EU are the same as those for ISIC. Statistics collected by the EU member states 
regarding economic activity categorization must be produced by NACE or a national 
categorization derived from it (Eurostat 2008). The NACE regulations permit member 
states to use a national version of the system for domestic reasons. Such national 
versions must comply with NACE’s hierarchical structure. Many member states have 
created their own versions, generally by adding a fifth digit to represent national needs.
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Appendix C.  Model Summaries

The International Energy Agency’s WEM is a large-scale simulation model that is 
updated annually; it has been developed over many years and focuses on energy use 
in 26 regions until 2050 (IEA 2021). For each region, it includes three main modules: 
final energy consumption (covering residential, services, agriculture, industry, 
transportation, and nonenergy use), energy transformation, and other transformation. 
The model’s outputs include energy flows by fuel, investment requirements and 
costs, CO2 emissions, and end-user pricing. WEM’s industrial sector is divided into 
six subsectors: nonferrous metals (including aluminum), iron and steel, chemicals and 
petrochemicals, nonmetallic minerals (including cement), pulp and paper, and other 
industries (transport equipment, machinery, mining and quarrying, food and tobacco, 
wood and wood products, construction, textile and leather, and nonspecified). Energy 
consumption in the industrial sector is driven by the manufacture of goods in the 
energy-demanding industries and by value added in the nonspecified industry sectors.

In each subsector, energy consumption is computed as the product of production 
forecasts and manufacturing process energy intensity. The energy intensity of new 
capacity is dependent on the use of energy-efficient technology and the level of 
energy costs, while the energy use per unit of production for existing infrastructure 
is rather stable. Each production method for aluminum, iron, steel, five primary 
product categories in chemicals and petrochemicals, cement, pulp and paper, and 
cross-cutting technologies in non-energy-demanding industries offers chances for 
technological efficiency. Energy-efficient technologies are adopted based on their 
prospective penetration rate and payback time frame, both of which vary depending 
on the circumstance. In addition to single-equipment efficiency, the industry sector 

Table C.1.  World Energy Model (WEM)

Type Simulation

Industry sectors

Nonferrous metals 
(aluminum)

Iron and steel

Chemical and 
petrochemical

Nonmetallic 
minerals (cement)

Pulp and paper

Other industry

Approach Hybrid

Spatial resolution Global (26 regions)

Temporal resolution Yearly to 2050
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model also includes choices for system optimization and process improvements. The 
WEM industrial model may reflect material efficiency techniques in addition to energy 
efficiency technology and measures, offering further energy savings. Energy-intensive 
industries often have more restricted opportunities to improve energy efficiency than 
less energy-intensive industries because energy costs contribute significantly to 
production costs. This strategy’s use is restricted to the material and energy needs 
of the corresponding industrial sectors. WEM does not examine the effects on energy 
use upstream, during mining or material transportation, or the impact on consumption 
downstream, nor does it include the possible energy savings from substitute materials.

WEM is used only to produce the IEA’s World Energy Outlook (WEO) and, to the best 
of our knowledge, is not available for use outside of the agency. For the WEO, WEM 
uses a scenario approach to look at potential changes in the energy sector based on 
the model. Four scenarios—the Announced Pledges, Net Zero Emissions by 2050, 
Stated Policies, and Sustainable Development Scenarios—were simulated in depth 
for the World Energy Outlook 2021. The scenarios include the most recent energy 
data, policy statements, investment patterns, and technological advances and are 
based on modeling and analysis. When examining figure developments, the WEO 
scenarios take into consideration the complete range of existing national conditions, 
resources, technology, and prospective policy options. WEM enables the assessment 
of the impact of certain policies and initiatives on energy consumption, production, 
trade, investment requirements, supply prices, and emissions. Policies and measures 
are derived by the WEO policy database and include initiatives addressing renewable 
energy, energy efficiency, and climate change.

Table C.2.  National Energy Modeling System (NEMS)

Type

Optimization/
simulation

Partial equilibrium

Industry sectors

Food

Paper

Chemicals

Glass

Cement and lime

Iron and steel

Aluminum

Approach Hybrid

Spatial resolution
Regional/national 
(United States)

Temporal resolution Yearly to 2050
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NEMS is a computer-based energy-economy modeling system for the United 
States developed by the US Energy Information Administration (EIA 2019). NEMS 
forecasts energy production, imports, conversion, consumption, and pricing based 
on assumptions about macroeconomic and financial aspects, global energy markets, 
resource availability and costs, behavioral and technical choice criteria, cost and 
performance characteristics of energy technologies, and demography. Thus, it provides 
a standardized framework to describe the interactions of the US energy infrastructure 
and its reaction to a wide range of different assumptions, regulations, and policy 
initiatives, as well as to measure the effect of new energy initiatives and regulations. 
The forecast time frame is around 30 years. NEMS can be used to assess the energy, 
economic, environmental, and security effects of existing and proposed government 
laws and regulations pertaining to energy production and use on the US energy system 
and the potential impact of advanced and innovative energy production, conversion, 
and consumption technologies. In addition, NEMS can assess the effect and cost of 
greenhouse gas control, the effect of increased use of renewable energy sources, the 
costs and benefits from increased energy efficiency, and the impact of regulations 
relating to the use of innovative or reformulated energy sources. Since energy supplies 
and costs, demand for specialized energy services, and other energy market features 
vary greatly across the United States, regional versions of the model can be used to 
account for different geologies and other characteristics and focus on key areas most 
relevant for policy analysis. 

Unit energy consumption (UEC) is estimated for each NAICS sector in the industrial 
demand module. The quantity of energy necessary to generate one dollar’s value of 
shipments or one unit of physical output is specified as UEC. Technological change 
in the manufacturing process allows for lower energy intensity; this is assumed to 
come about through a learning-by-doing process—that is, as experience is gained 
in the technology, production costs decrease. Industrial innovations can be selected 
and deployed because of a variety of reasons other than their energy consumption 
characteristics, such as process improvements to enhance product quality, changes to 
increase productivity, or changes in reaction to the competitive environment. Future 
reductions in unit energy consumption are calculated using technology possibility 
curves, and future energy savings are estimated for both new and existing processes 
and facilities. 

In older facilities, energy gains arise from progressive improvements driven by energy-
saving measures, retrofits of certain technologies, and the closure of inefficient older 
facilities. Estimated UEC values for state-of-the-art (SOA) and advanced technologies 
are also provided. The most recent and proven technologies available at the time 
of investment decision—that is, the SOA—are chosen. Estimated results are then 
compared with UECs of the base year to compute an index of relative energy intensity, 
calculated as the energy use of a new process relative to base-year energy use. The 
efficiency benefit for new facilities depends on the installation of the SOA technologies 
appropriate for that sector. When new technologies are accessible for a specific 
process, a second, occasionally more significant, round of considerable improvements 
may occur. Industrial energy consumption is affected by increased energy efficiency in 
new and old facilities, the industry’s growth rate, and the retirement rate for old plants 
(EIA 2022).
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NEMS has been widely used. For instance, Brown and Baek (2010) study energy 
efficiency impacts of a portfolio of energy and climate policies to mitigate electricity 
and biomass price increases while increasing energy security and lowering CO

2
 

emissions. They evaluate three different national policy scenarios focusing on the 
forest products sector: a renewable electricity standard, a carbon policy, and incentives 
for industrial energy efficiency. They also explore the potential impacts of such market 
shifts on biomass and electricity costs, energy use, and CO

2
 emissions.

Developed by the Pacific Northwest National Laboratory, GCAM is a multisector 
integrated model that analyzes both human and Earth system dynamics (GCIMS). The 
model adopts a set of assumptions and then analyzes them to provide a complete 
picture of pricing, energy, commodity, and other flows across regions and in the long 
term. It represents five distinct interacting and interrelated systems: macroeconomics, 
energy, agriculture and land, water, and physical earth. The energy-economy system 
runs in 32 regions globally, the land system is split into more than 300 subregions, and 
the Earth system module is global. Market equilibrium is the main guiding concept 
of GCAM, in which representative agents decide how to distribute resources based 
on pricing and other potentially relevant information. These representative agents 
communicate with one another through markets. To ensure that supplies and demands 
are balanced throughout all these markets, GCAM solves for a range of market prices. 
The GCAM solution process entails optimizing market pricing until this equilibrium is 
achieved. Given that GCAM is a dynamic recursive model, choices made today do not 
consider future events. 

The energy system module in GCAM models nine detailed industrial sectors: six 
manufacturing sectors (iron and steel, chemicals and petrochemicals, aluminum, 
cement, fertilizers, and other industry) and three nonmanufacturing sectors 
(construction, mining energy use, and agricultural energy use). International trade 

Table C.3.  Global Change Assessment Model (GCAM)

Type

Optimization/
simulation

Partial equilibrium

Industry sectors

Iron and steel

Chemicals

Aluminum

Cement

Fertilizers

Other industry

Approach Bottom-up

Spatial resolution
Global (32 regions, 
300 subregions)

Temporal resolution 5 years to 2100
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is not modeled. Physical outputs (Mt) and general terminology are used to express 
the output of the detailed industry sectors. The remaining industrial sectors are 
represented as “other industries” and are consumers of generic energy services and 
feedstocks. The iron and steel sector is divided into three subsectors: basic oxygen 
furnace (BOF), electric arc furnace with scrap (EAF), and EAF with direct reduced 
iron (DRI). Each subsector has several competing technologies, including fossil 
fuels with and without CCS, electricity, hydrogen, and biomass. The chemicals and 
petrochemicals sector is divided into two parts: chemical energy usage and feedstocks. 
The aluminum manufacturing process consists of two major steps: alumina refining, 
which involves refining bauxite ore into alumina, and aluminum smelting, converting 
alumina to aluminum. There are several competing methods for alumina refining, 
including coal, refined liquids, gas, and biomass with and without CCS. GCAM contains 
a model for cement manufacturing that measures both fuel and limestone-derived CO2 
emissions. Most of the key fossil fuel and low-carbon technologies that are expected 
to be available at least until 2050 are represented in the model. In GCAM, mitigation 
is modeled as a move from high- to low-carbon technologies based on relative costs, 
emissions constraints, and carbon prices.

In a recent application, Peng et al. (2021) investigate twelve mitigation scenarios 
that differ along two dimensions: national mitigation effort and subnational policy 
approach. The first is measured by four national US total greenhouse gas (GHG) 
emissions objectives for 2050. The second is represented by three levels of variability 
in the constraints of state-level climate policy, represented as a uniform carbon price 
calculated by equalizing the marginal abatement cost (MAC) across states in GCAM-
USA. The MAC indirectly evaluates industries’ and households’ willingness to pay 
to reduce carbon emissions in a given state. A greater MAC means a higher carbon 
price and, as a result, stricter climate policy actions.  Peng and colleagues validate the 
widespread conclusion in the literature that deep decarbonization often necessitates 
decarbonizing the electrical sector first before moving on to harder-to-abate sectors 
such as industry, residential, and transport.
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REMIND is a multiregional model developed by Potsdam Institute for Climate Impact 
Research. It is based on the General Algebraic Modeling System (GAMS), which 
incorporates the economy and a detailed description of the energy sector. It employs 
nonlinear optimization to create welfare-optimal regional transformation paths of the 
energy-economic system under climate and sustainability constraints for 2005–2100. 
Under the presumptions of perfect agent foresight and internalization of external 
effects, the solution conforms to the decentralized market outcome. With a specific 
focus on the scaling up of innovative technologies, such as renewables, and their 
integration into energy markets, REMIND can be used to analyze technological 
possibilities and different policy approaches for climate change mitigation (Baumstark 
et al. 2021).

The industry module simulates the total final energy demand and emissions of the 
industry sector and its subsectors: cement, chemicals, iron and steel, and all remaining 
industry energy demand (“other industry”). These shares are fixed at 2005 levels for 
each region. The constant elasticity of substitution production function is used to 
determine whether fuel switching is attractive depending on final energy prices and 
the final energy carriers’ substitution elasticities. Three MAC curves for CCS in the 
cement, chemicals, and iron and steel sectors have been generated from the literature 
and used in all industrial module realizations (Kuramochi et al. 2012). To compute 
industry CO2 emissions and capture levels, sector-specific MAC curves for CCS are 
applied to emissions calculated from energy use and emissions factors based on the 
endogenous CO2 price. Process emissions from the production of cement are counted 
in the cement emissions for which CCS is relevant and are based on an econometric 
estimate of cement production. The integral below the MAC cost curve equals the 
industry CCS costs by subsector (Baumstark et al. 2021).

Table C.4.  Regional Model of Investment and Development 
(REMIND)

Type

Nonlinear 
programming

Optimization

Industry sectors

Cement

Chemicals 

Iron and steel

Other industry

Approach Hybrid

Spatial resolution Global (11 regions)

Temporal resolution
5 years until 2060, 
10 until 2110, 20 
until 2150
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MUSE, developed by Imperial College London, models a partial equilibrium of the 
whole energy system, which includes the extraction of resources like oil, biomass, or 
renewables (in supply sectors), the resource transformation into energy vectors (in 
power systems and refineries), and the consumption of energy vectors for fulfilling 
society needs (in demand sectors) (Giarola et al. 2022). With its agent-based structure, 
the model is used to describe decision goals and strategies of key players in each 
sector, and thus it shows that business and consumer decisionmaking can produce 
macro-level inefficiencies in the energy system. From the technology description, the 
model is bottom-up and technology-rich; it models each technology performance, 
costs, and emissions and records technology stock, investments, operating costs, 
and energy use. The level of technological detail necessary to characterize the 
technologies and agents requires access to large datasets of technoeconomic and 
socioeconomic information, which may not always be publicly available for all countries.

MUSE demand sectors include industry, agriculture, buildings, and transport. In 
addition to iron and steel, industry also covers nonmetallic minerals, nonferrous metals, 
pulp and paper, and chemical and petrochemical products. These other subsectors are 
grouped together as “other industry.” In the hard-to-abate industry sectors, existing 
technologies represent the base year stock, which models existing facilities installation, 
operating production levels, energy consumption, and emissions aggregated at a 
regional scale. The existing capacity is linearly decommissioned; this, alongside the 
capacity needed to meet future demand, is then replaced by new assets, taking 
into consideration evolving legislation, fuel and carbon prices and the availability of 
advanced technologies. 

The model first forecasts future demand for industrial commodities on a worldwide 
scale with a regional disaggregation using historical patterns. Then the production 
of material goods is modeled using a merit-order method based on the investor’s 
decision goal, which could be net present value maximization or cost minimization. 
As a result, until the demand for material goods is satisfied, the processes with the 

Table C.5.  Modular Energy System Simulation Environment 
(MUSE)

Type
SImulation

Partial equilibrium

Industry sectors

Aluminum

Iron and steel

Chemical

Cement

Pulp and paper

Other industry

Approach Bottom-up

Spatial resolution Global (28 regions)

Temporal resolution
5–10 years to 
2050–2100
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highest profits are used to primarily cover the demand. The quantity needed of each 
different fuel is calculated based on the combination of technologies being employed. 
The decarbonization of industry sectors may occur through (1) energy efficiency; (2) 
electrification in the iron and steel industry; (3) fuel switching, with biomethane and 
biomass options available for all industries, and hydrogen available for cement and the 
iron and steel industry; or (4) advanced technologies, which include electric furnace 
and the smelting process in the iron and steel sector, calcium looping in the cement 
sector, and the integration of CCS in all the standard sector technologies with a higher 
installation cost and greater energy consumption. 

One relevant application of the industry model is presented in Budinis et al. (2020), 
which models the decarbonization of the Chinese ammonia industry. This may occur 
via the integration of CCS in addition to fuel switching, investigating the potential 
uptake of negative emissions obtained from the combination of bioenergy with CCS. 
The methodology is has an agent-based formulation, which aims to simulate real 
investment strategies in the energy sector made by agent-investors in China. By 
classifying the market share into small versus large enterprises and international 
versus state-owned companies, the work shows that despite the availability of CCS, 
there are barriers preventing technology innovation, which can be related to the 
decisionmaking process and the capital access of industries.

The TIMES model, developed by Imperial College London and the Grantham Institute, 
is a model generator that combines technical engineering detail and economics in 
energy modeling (Loulou and Labriet 2008). Although the TIMES model generator 
has different realizations at a national level (such as the UKTM, the TIMES model for 
the UK) and at a global scale (such as TIAM-Grantham or TIAM-UCL), the modeling 
approach is a least-cost intertemporal optimization. TIMES assumes perfect foresight, 
which means that all investment choices in each milestone year are optimized with the 
assumption of complete knowledge of future occurrences.

Table C.6.  The Integrated MARKAL-EFOM System (TIMES)

Type Optimization

Industry sectors

Aluminum

Iron and steel

Chemical

Cement

Pulp and paper

Other industry

Approach Bottom-up

Spatial resolution Global (15 regions)

Temporal resolution 10 years to 2100
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We describe here the energy system granularity of TIAM-Grantham as reference. 
The model incorporates all the phases from raw resources into the delivery of energy 
services requested by energy consumers via the chain of activities that transform, 
transport, distribute, and convert energy. On the supply side, it includes fuel mining, 
primary and secondary production, and external imports and exports. Energy is given 
to the demand side via various energy carriers, which are segmented into residential, 
commercial, agricultural, transportation, and industrial sectors.

Energy efficiency, electrification, and fuel switching are the available decarbonization 
options in TIAM. Among the advanced technologies, the model includes the following:

• in the iron and steel sector, blast furnace with direct coal injection, blast furnace 
with top-gas recycling, blast furnace with top-gas recycling and CCS, blast 
furnace with CCS, Corex smelting process, Corex with CCS, DRI with CCS, DRI 
with hydrogen, on-site power generation with recycled gases, on-site power 
generation with CCS

• in the nonmetallic mineral sector, cement precalciner with CCS, cement whole 
plant with CCS

• in the chemical and petrochemical sector, chemical production with CCS, 
ethylene process in chemical sector with CCS, hydrogen for ammonia production 
with CCS, ethylene and propylene process with CCS

• in the pulp and paper sector, steam generation in pulp and paper (coal- or gas-
fired) with CCS, process heat in pulp and paper (coal- or gas-fired) with CCS

• in all the energy-intensive industry sectors, combined heat and power (using coal, 
gas, or recycled gases) with CCS

• in other industries, process heat with CCS

One of the recent model applications is presented by Napp et al. (2019), who focus 
on the challenges posed by decarbonization in industry. The analysis concludes that 
substantial investments in advanced technologies are required to achieve a scenario 
that is consistent with limiting global warming to 1.5°C. Key advanced technologies 
in the industrial sector include hydrogen-based steel, electrification, and CCS from 
cement production.
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Table C.7.  IMAGE

Type Simulation

Industry sectors

Aluminum

Iron and steel

Chemical

Cement

Pulp and paper

Other industry

Approach Bottom-up

Spatial resolution Global (26 regions)

Temporal resolution Yearly to 2100

IMAGE is an integrated framework developed by PBL Netherlands Environmental 
Assessment Agency for modeling interactions between human and natural systems 
(PBL 2021). The model includes two primary systems: the Human system and the 
Earth system. The socioeconomic or Human system illustrates how human activities 
that are important for sustainable development have evolved over time. Environmental 
changes are described by the Earth system. The effects of human activity on the Earth 
system and the effects of environmental change in the Earth system on the Human 
system make the two systems interdependent. The spatial resolution for socioeconomic 
processes is composed of 26 regions chosen for their importance to global 
environmental and development challenges, as well as the high level of consistency 
within these regions. The model framework is well suited to large-scale (global) and 
long-term (until 2100) assessments of human-environment interactions. The impacts 
of human activities on natural systems and natural resources are assessed, as well 
as how such impacts inhibit the availability of ecosystem services to sustain human 
development. 

Focusing on the interaction between the Human and Earth systems, IMAGE defines 
emissions as a function of activity levels in the energy system, industry, agriculture, and 
land cover and land use changes, as well as projected abatement measures. The model 
represents key greenhouse gas emissions and a variety of air pollutants. It is calibrated 
to current global emissions inventories, with its settings adjusted to reproduce the state 
of the world from 1970 to a final base year. Changes in emissions factors over time are 
calculated based on the storyline, and the model may assume that emissions factors 
remain constant or decline over time in parallel with economic progress.

The energy model for the industry sector contains three categories: cement, steel, 
and other industrial activities. IMAGE includes extensive demand models for cement 
and steel. Exogenously specified emissions factors are multiplied by activity levels 
to compute emissions. Other industrial activities, such as copper production and 
solvent manufacture, have activity levels that are formulated as a geographic function 
of industry value added. Emissions are computed by multiplying activity levels by 
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emissions factors. For the steel and cement industries, the heavy industry submodule 
is included. The activity in the generic structure of energy demand is described in 
terms of metric tons of cement and steel, both of which can be traded. Trade demand 
can be met from production that combines a variety of technologies. Costs and 
energy use per unit of production are two characteristics of each technology, and both 
gradually decrease over time. The multinomial logit equation used to determine the 
actual mix of technologies in steel and cement production leads to a larger market 
share for the lowest-cost technologies. Energy efficiency increases because of these 
technologies’ autonomous development. The technology selection represents the 
price-induced improvement in energy efficiency. Price plays a role in fuel substitution, 
but technology type also plays a role because some technologies can only use certain 
types of energy carriers.

Sharmina et al. (2020) compare sector-specific analyses of four key sectors that are 
challenging to decarbonize with economy-wide modeling of 1.5°C and 2°C scenarios: 
aviation, shipping, road freight transport, and industry. To analyze and monitor the 
progress of mitigation in these sectors, the authors create and implement a novel 
framework. They find that in the 1.5°C and 2°C scenarios of the IMAGE model, 
emissions reductions result from significant reductions in CO

2
 intensities and lower 

energy intensities, with relatively slight demand reduction in the activity of these 
sectors. Several additional actions and policy levers that could significantly reduce 
emissions are identified but not explicitly included in the modeled scenarios. These 
options for demand reduction include moving the industry toward a circular economy.

Cement and concrete, plastics, steel, and ammonia are all covered under the Material 
Economics Modelling Framework (Material Economics 2019). The modeling approach 
starts by estimating future activity levels. A baseline scenario for 2050 demand is 
predicted using a variety of models. The primary tool for steel is a dynamic material 
flow analysis, together with estimates about future saturation levels for steel stock in 
various end-use sectors. Activity levels for plastics, cement, and ammonia are based on 
expected building, mobility, food production, and other activity scenarios. The baseline 
scenario assumes no significant changes in material intensity or industrial structure. 
No change in net imports is envisaged because the goal is to define an EU net-zero 
CO

2
 industrial system.

Table C.8.  Material Economics Modelling Framework

Type Simulation

Industry sectors

Steel

Cement and 
concrete

Plastic

Ammonia

Approach Bottom-up

Spatial resolution European Union

Temporal resolution 5 years to 2050
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The second stage is to establish a variety of low-CO
2
 manufacturing approaches. 

The analysis describes each process’s technical maturity, investment needs, energy 
and feedstock inputs, other operational expenses, mass balance, and CO

2
 emissions. 

Energy input costs are calculated for commonly used energy-economic scenarios 
developed by the International Energy Agency and other organizations. CO

2
 emissions 

include not just emissions from power generation, but also carbon contained in items 
that may be discharged as CO

2
 at the end of their useful life. Along with the production 

side, the assessment employs a variety of models to investigate prospects for the 
circular economy: enhanced material efficiency and increased material circularity. 
A packaging model characterizes 35 types and calculates prospects for reduced 
material consumption and replacement with other materials. The third component is a 
description of end-of-life material flows and manufacturing pathways that use them as 
inputs for the manufacture of new materials. 

A dynamic materials flow model is employed for steel to anticipate the future 
availability of steel scrap. For plastics, a variety of end-of-life flows are anticipated 
based on stock levels and product lifetimes; these are evaluated for recycling and 
recovery suitability, including influences on yields, quality, and the consequent effective 
substitution of new production. Chemical recycling is defined as a new plastics 
production method, with an emphasis on high-carbon mass balance approaches. 
Plastic end-of-life incineration is also modeled, and CO

2
 emissions are calculated. The 

potential for cement recycling of concrete particles and unhydrated cement recovery 
is calculated. A scenario analysis combines these three components. All scenarios 
are designed to achieve near-zero CO

2
 emissions from the industrial output by 2050. 

Backcasting is used to build five-year paths that account for capital stock turnover, 
progressive increases in technical maturity, building lead times, and other constraints.

Material Economics (2019) investigates various strategies to maintain EU steel, 
plastic, ammonia, and cement output while achieving net-zero emissions. It estimates 
the possible effects of various solutions and determines that emissions from those 
industries may be decreased to zero by 2050, supporting the conclusions of the paths 
outlined in European Commission (2018).
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Table C.9.  Energy-Environment-Economy Global Macro-Economic 
(E3ME)

Type Macro-econometric

Industry sectors NACE 2-digit

Approach Top-down

Spatial resolution Global (61 regions)

Temporal resolution Yearly to 2050

E3ME is a global, macro-econometric model developed by Cambridge Econometrics 
to address the world’s key economic, social, and environmental issues (Cambridge 
Econometrics 2019). The model has a high level of disaggregation, allowing for an 
exhaustive analysis of sectoral and country-level effects from a variety of scenarios. 
Social impacts are significant model outputs. Another distinguishing feature is the 
econometric specification, which solves problems with macroeconomic models and 
offers a solid empirical foundation for research. The model can accurately examine 
both short- and long-term implications and is not constrained by many of the 
restrictive assumptions that are typical in computable general equilibrium models. 
Analyses of the world’s economies, energy systems, emissions, and material demands 
are also included in E3ME. This makes it possible for E3ME to represent these 
components in a non-linear interaction with two-ways feedbacks.. E3ME includes 
61 worldwide regions, with full sectoral breakdowns in each, and forecasts annually 
through 2050. It is commonly used at the national, European, and global levels, as 
well as for broader European and global policy analyses. E3ME is based on the ESA95 
system of national accounts, along with balances for energy and material demands, as 
well as environmental emissions flows. It also includes detailed historical datasets, time 
series that span the period since 1970, and sectoral disaggregation based on the NACE 
classification of economic activities at the two-digit level.

E3ME is composed of three modules: economy, environment, and energy. The model’s 
economic module is solved for each region. Most economic variables are addressed at 
the sectoral level. Although single-country solutions are feasible, the entire system is 
addressed simultaneously for all industries and areas. Unless there are restrictions on 
available supply, demand determines production and employment. The key explanatory 
variables for aggregate energy demand are economic activity in each of the energy 
users, average real energy prices for each energy user, and technological variables, 
which are represented by investment, R&D spending, and spillovers in major industries 
that manufacture energy-consuming machinery and vehicles. For each of the energy 
consumers in the model, emissions data for CO2 from energy use are accessible, 
and coefficients are calculated from historical data. This establishes the connection 
between energy use and emissions. Process CO2 emissions, such as those from the 
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cement and chemicals industries, are explicitly included in the model but are tied to 
production from those industries rather than energy use. Other emissions are treated 
in a less detailed way, and findings are often not broken down by industry.

Gramkow   and Anger-Kraavi (2019) analyze a change in Brazil’s economy while 
contributing to the Paris targets, using the manufacturing sectors as an example. E3ME 
is used to project Brazil’s growth outlook up to 2030 with and without a portfolio of 
fiscal policies that promote low-carbon investments. The research shows that the right 
combination of strategies can assist in modernizing and decarbonizing the Brazilian 
manufacturing sectors and enable the nation’s economy to grow more quickly while 
reducing CO

2
 emissions.

ISEEM-IS, developed by the Lawrence Berkeley National Laboratory, is a bottom-up 
optimization energy modeling framework for representing impacts of energy policies 
on US iron and steel production (Figure C.1). It is a linear programming optimization 
model that minimizes the costs of production over a set of predefined industrial 
constraints across a set of plants defined by technologies. The modeling framework 
analyzes the use and potential improvements of technologies in the US iron and steel 
sector with respect to reducing carbon and GHG emissions, as well as wider economic 
implications of such energy and environmental policies. It incorporates international 
trade, specifically from India and China; energy and emissions policies; and the key 
assumption that production technologies change and improve gradually over time. 

ISEEM-IS’s main strength is its technological detail and the endogenous representation 
of investment and deployment of new or refined technologies of production and 
supply. Each technology has its own set of constraints, requirements, parameters, 
and rates of growth or change. The model divides production technologies into 
three categories: current, advanced, and energy-efficient. Current production 

Table C.10.  Industrial Sector Energy Efficiency Model for Iron and 
Steel (ISEEM-IS)

Type

Linear 
programming

Optimization

Industry sectors Iron and steelApproach Bottom-up

Spatial resolution
United States, 
China, India

Temporal resolution 2010–50



Resources for the Future 66

technologies are those that are currently in use in the industry, such as basic oxygen 
furnace and electric arc furnace; advanced production technologies represent 
autonomously improved versions of current production technologies; and energy-
efficient technologies are those that improve energy efficiency of current production 
technologies but are associated with extra costs. The full list of production 
technologies included in ISEEM-IS can be found in Karali et al. (2013, Appendixes A 
and C). Despite the technological detail, the energy-efficient technologies are limited 
to methods and processes of production in iron and steel and do not include other 
emissions reduction technologies that are production-adjacent, such as CCS. The 
ISEEM model structure can be applied to other industrial sectors but requires huge 
amounts of data that might not always be available.

Karali et al. (2013) use the model to investigate the impact of carbon reduction 
options on the US iron and steel sector under a set of specific scenarios. They also 
examine how local policies and emissions reduction strategies would affect trade with, 
production in, and CO2 emissions from China’s and India’s iron and steel sectors. The 
policy scenarios impose reductions in global emissions of 10, 20, and 30 percent under 
three variations of the model: (1) without commodity or carbon (allowance) trading 
(ER), (2) with commodity trading but without carbon trading (ET), and (3) with both 
commodity and carbon trading (EC).

One of the key findings of Karali et al. (2013) was how carbon emissions reduction 
policies interact with not just domestic production but also international production 
and trade flows both of the commodity produced (steel) and of carbon. For example, 
under the trading scenarios, the authors find that production partially shifted out of 
the United States to China and India, as it was less expensive to import than to invest 
in energy-efficient technologies domestically. With respect to the baseline in 2030 
under the EC- and ET-30 scenarios, US imports increased by about 55 percent, and US 
production decreased by about 25 percent. Furthermore, under the trading scenarios, 
while China’s and India’s energy intensity levels are much reduced, those of the United 
States remained unchanged from the base scenario levels, as there was little to no 
incentive to switch to energy-efficient technologies in the United States.
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Figure C.1.  Production Flow Diagram of the Iron and Steel Sector in the ISEEM-IS Model

Source: Karali et al. (2013)

Table C.11.  Universal Industrial Sectors Integrated Solutions 
(U-ISIS)

Type

Linear 
programming

Optimization

Industry sectors
Cement

Pulp and paper

Approach Bottom-up

Spatial resolution
United States with 
demand and supply 
regions

Temporal resolution 2010–50
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U-ISIS is a bottom-up sector-based dynamic linear programming optimization 
modeling framework developed by the US Environmental Protection Agency (EPA). 
The model optimizes total surplus with respect to various constraints, including supply, 
demand, costs of production, technologies available, and energy policies instituted by 
the US government. The model incorporates multiple industries within a multimarket, 
multiproduct, multipollutant, and multiregion emissions trading framework. It analyzes 
optimal sector operations to meet demand and pollution reduction requirements 
over a specified period of time, while taking into account plant-level economic and 
technical factors and costs, including production capacity changes, fixed and variable 
production costs, transportation costs, import costs, emissions costs, and energy 
intensity and efficiency.

The main strength of U-ISIS is its ability to model industry pollution generation 
pathways and methods for abating emissions resulting from those pathways through 
both mitigation and prevention. The model includes methods for tracking multiple 
pollutant streams—as well as multiple pollutants—associated with controlled and 
uncontrolled emissions, pollution prevention measures, and other control-related 
effects. For the cement industry, pollutants include criteria pollutants, hazardous air 
pollutants (HAPs) such as mercury or hydrochloric acid, CO

2
, nitrogen oxides (NO

X
), 

sulfur dioxide (SO
2
), and particulate matter. The generation pathways include cement 

manufacturing, quarrying operations for raw materials, kiln operations, and fuel 
combustion. The model already includes in its base scenario the extant regulatory 
requirements with respect to pollutants and can run scenario analyses for a variety 
of policy scenarios to address these emissions pathways and abatement options, 
including emissions limits, cap and trade, and emissions taxes under long- and short-
term horizons (decades and annual) and regional or national requirements. U-ISIS 
has an incredible amount of plant-level detail—but that comes at the cost of lengthy 
and regular calibration and recalibration of the modeling framework. Furthermore, 
the model’s existing user interface restricts the kind of scenario that can be run. It is 
unclear from the documentation how flexible the interface is, such as how difficult 
it would be to add a technology or scenario not already within the interface, or how 
necessary it is to run the model.

The U-ISIS model was first used by EPA to examine the US Portland cement industry, 
with a focus on how policies for emissions reduction affect the industry (EPA 2013). 
EPA later adapted the model to examine the US pulp and paper industry (Bhander and 
Jozewicz, 2017). For the cement industry, it addressed the development of efficient 
and effective policy options for managing emissions and air quality resulting from all 
steps of cement production. The model demonstration for pulp and paper focused 
on identifying optimal industry operation through the selection of cost-effective 
controls to meet demand while complying with emissions reduction requirements and 
calibrating a baseline business-as-usual scenario. The demonstration also showcased 
three scenarios for NO

X
 emissions reductions: fuel substitution, installation of controls, 

and implementation of energy efficiency measures.
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Table C.12.  Hybrid Technological Economic Platform (HYBTEP)

Type
Optimization and 
simulation

Industry sectors

Aluminum

Iron and steel

Chemical

Cement

Pulp and paper

Other industry

Approach
Bottom-up and 
top-down

Spatial resolution
Multinational or 
single country

Temporal resolution 2010–50

HYBTEP is a combination of the bottom-up TIMES model (see Appendix C.6) and 
the top-down CGE General Equilibrium Model for Economy, Energy, and Environment 
(GEM-E3) (Fortes et al. 2014). GEM-E3 is a dynamic recursive CGE model that solves 
for the equilibrium price of goods, services, labor, and capital to clear all markets and 
optimize behavior of economic agents simultaneously. Both models are multinational 
but can be adjusted to model a single country. The HYBTEP framework creates a soft 
link between the two systems, solving them concurrently and exchanging information 
between them.

HYBTEP’s main strength is that its soft-link methodology allows users to perform 
integrated assessments of climate and energy policy instruments with detailed 
technology profiles for the energy sector, which is something that neither top-down 
CGE models nor bottom-up models can do on their own. Soft linking maintains 
the structure and individual strengths of each model while   eliminating many of 
the drawbacks. It incorporates an extensive group of technologies and economic 
responses, allowing for greater understanding of the impacts and effects of various 
energy and climate policies. Despite these strengths, HYBTEP does have a few 
limitations, mostly inherited from the two models it links—in particular, the assumption 
of perfectly competitive markets and optimistic views of deployment of future 
technologies. 

The platform was used to provide insights into the advantages of the hybrid system 
through examining the macroeconomic effects of various climate policies in Portugal. 
These policy scenarios were run relative to a calibration scenario (which was not a 
business-as-usual scenario, given the way TIMES optimizes the energy system) and 
included a current policy regulation scenario (CPR), a CO

2
 price scenario (TAX), and 

a renewable energy support scenario (RES). The CPR scenario reflected the current 
state of energy and climate policies, including reductions in GHG emissions, increases 
in renewable energy consumption, and improvement in energy efficiency. The TAX 
scenario added to the CPR scenario a domestic carbon tax (set at the highest level 
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indicated in an EU roadmap for transitioning to a competitive low-carbon economy) 
on GHG emissions from energy consumption instead of the emissions caps from the 
Emissions Trading System (ETS) and non-ETS sources. The RES scenario added a 
monetary incentive for renewable energy (biofuels, solar and biomass consumption, 
renewable electricity) to the CPR assumptions.

The FORECAST model, developed by the Fraunhofer Institute for Systems and 
Innovation Research, is a bottom-up simulation model for the development of long-
term scenarios for future energy demand in the industrial sectors, services, and 
households (Fleiter et al. 2018). It is a multinational model that can be adjusted for a 
single country and can disaggregate results down to the district level if desired. The 
model incorporates plant-level data and includes both energy-intensive industrial 
sectors and less energy-intensive subsectors and applications. Its main output is a 
time series of final and useful energy demand and the related GHG emissions under 
a high level of disaggregation regarding energy carriers, subsectors, end uses, and 
technologies, presented by country and scenario.

One of the core strengths of the FORECAST model is that it incorporates a high level of 
technological detail, policy parameters, and transition paths and costs in an integrated 
approach. FORECAST has six submodels: macro, energy-intensive processes, space 
heating and cooling, electric motors and lighting, furnaces, and steam and hot water. 
Its industrial subsectors include paper and printing, nonmetallic mineral products, 
nonferrous metals, iron and steel, chemicals industry, food and drink and tobacco, 
engineering and other metal, and other nonclassified. The simulations are conducted 
at the individual subsector level (e.g., iron and steel), where energy-intensive processes 
are considered explicitly, and other technologies and energy-using equipment are 
modeled similarly across all subsectors. Further, the model can calculate 

Table C.13.  FORECAST

Type Simulation

Industry sectors

Paper and printing

Nonmetallic 
mineral products

Nonferrous metals

Iron and steel

Chemicals

Other industry

Approach Bottom-up

Spatial resolution
Multinational or 
single country

Temporal resolution 2010–50
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comprehensive transition-decarbonization scenarios for an individual country’s entire 
industry sector through a broad scope of mitigation options. However, the diverse 
methods used to gain sectoral and technological detail reduce transparency and 
render the interpretation of results more difficult. FORECAST is written in Visual Basic.

FORECAST can address numerous questions related to energy demand and GHG 
emissions, specifically in the context of technical change. These questions include 
scenarios for future demand of individual energy carriers, calculations of energy 
savings potentials and their impacts on GHG emissions, abatement cost curves, ex 
ante and ex post policy impact assessments, and low-carbon transition scenarios. The 
mitigation options include energy efficiency (incremental and radical change), fuel 
switching (to renewable and low-carbon energy carriers), CCS, circular economy and 
recycling, and material efficiency and substitution. 

Two examples of FORECAST’s use are a study of the cement industry in Taiwan 
and analysis of energy efficiency and an analysis of a decarbonization pathway for 
Germany’s industrial sectors. In the Taiwan case, Huang et al. (2016) find that adoption 
of energy-efficient technology can result in 25 percent savings for electricity and 9 
percent savings for fuels, of which 91 percent could be implemented cost-effectively 
under an assumed discount rate of 10 percent. In the Germany case, Fleiter et al. (2016) 
consider two scenarios: a reference scenario reflecting current policies, economic, and 
technological trends and a transition scenario achieving a GHG emissions reduction in 
industry of 83 percent by 2050 (with a GHG emissions reduction in the entire economy 
of 80 percent). Under the transition scenario, electricity demand is reduced by 16 
percent and fuel demand by 32 percent by 2050; biomass use increases; coal use is 
phased out in all industry sectors except iron and steel; use of alternative materials 
increases in the paper, cement, glass, and aluminum sectors; and CCS mitigates about 
35 metric tons of CO

2
e in 2050, with total emissions reduced from 140 metric tons in 

2010 (the base year) to 75 metric tons of CO
2
e by 2050 versus 110 metric tons of CO

2
e 

under the reference scenario.
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Appendix D.  Examples of Applications 
Using Different Models

D.1.  World Energy Models
For the World Energy Outlook, WEM uses a scenario approach to look at potential 
changes in the energy sector, modeling the world for 26 regions. Four scenarios were 
simulated in depth for the World Energy Outlook 2021 (see Appendix C.1).

D.2.  NEMS
Huang and Eckelman (2020) model material flow economy in the United States. 

Huang and Eckelman (2021) estimate pollutants from industry in the United States.

Brown and Baek (2010) estimate renewable fuel standards impacts on US industry.

Arora et al. (2018) estimate taxation recycling impacts on US industry.

Ruth et al. (2000) estimate impacts of market-based climate change policies on the US 
pulp and paper industry.

D.3.  GCAM
Liu et al. (2015) use the GCAM-USA version to explore the water-energy nexus 
(multisector analysis). The United States is represented at a state level. 

Peng et al. (2021) estimate the effects of state and national carbon policies (multisector 
analysis). The United States is represented at a state level.

D.4.  REMIND
Luderer et al. (2012) employ a version of the REMIND model to examine Asia’s 
participation in the global effort to mitigate climate change.

D.5.  MUSE
Budinis et al. (2020) model the decarbonization of the Chinese ammonia industry.
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D.6.  TIMES
Napp et al. (2019) use the TIAM version and focus on advances in energy demand 
sectors, including best available technologies in industry. This study models the world 
and represents the United States as one region.

Fais et al. (2016) focus on decarbonization options for UK industry.

D.7.  IMAGE
Qui et al. (2022) focus on direct air capture implications for the power sector. This 
study models the United States as one region. 

Chen et al. (2021) analyze multisector carbon neutrality; industry discussed 
aggregated. This study models the world and represents the United States as one 
region.

Sharmina et al. (2020) include hard-to abate sectors and circular economy for industry. 
This study models the world and represents the United States as one region.

Kermeli et al. (2019) focus on the cement industry. This study models the world and 
represents the United States as one region.

D.8.  Material Economics Modeling Framework
Material Economics (2019) uses this framework to investigate various strategies to 
maintain EU steel, plastic, ammonia, and cement output while achieving net-zero 
emissions.

D.9.  E3ME
Bachner et al. (2020) model decarbonization of iron and steel industry in Europe.

Gramkow  and Anger-Kraavi (2019) model investments in Brazilian industry 
decarbonization.

D.10.  ISEEM-IS
Karali et al. (2013) investigate the impact of carbon reduction options on the US iron 
and steel sector.
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D.11.  U-ISIS
EPA (2013) exmaines the US Portland cement industry using U-ISIS. Bhandar and 
Jozewicz (2017) apply the model to the pulp and paper sector.

D.12.  HYBTEP
Fortes et al. (2014) apply HYBTEP to analyze three climate and energy policy scenarios 
in Portugal.

D.13.  FORECAST
Fleiter et al. (2016) conducts an analysis of a decarbonization pathway for Germany’s 
industrial sectors.

Huang et al. (2016) studies the cement industry in Taiwan.
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