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New Passenger Vehicle Demand Elasticities: Estimates and

Policy Implications

Benjamin Leard* and Yidi Wu

August 2023

Abstract

We apply a simple methodology to estimate own- and cross-price elasticities of new passenger

vehicle demand based on household-level survey data. Our methodology combines own-price

elasticity estimates with diversion fractions constructed from second-choice data. We obtain a

set of elasticities that are relevant for policy analysis, including an aggregate market elasticity,

a matrix of car and light truck elasticities, and a matrix of gasoline and electric vehicle (EV)

elasticities. Our results have implications for evaluating incidence of fuel economy and greenhouse

gas standards for passenger vehicles and policies for increasing EV adoption.

1 Introduction

Estimating consumer demand for products has numerous applications for economic analysis,

including assessing mergers, identifying pricing strategies, and estimating costs and benefits of

regulations. In this paper, we apply a general methodology for estimating own- and cross-price

elasticities of consumer demand based on survey data. We apply the methodology to estimate

elasticities for passenger vehicle demand based on a survey of new vehicle buyers. Our estimates yield

a set of plausible nameplate-level own- and cross-price elasticities and aggregated elasticities that

are relevant for current passenger vehicle regulations, including Corporate Average Fuel Economy

(CAFE) and greenhouse gas (GHG) standards for passenger vehicles and policies for increasing the

adoption of electric vehicles (EVs). In particular, we estimate the aggregate market-price elasticity

of new vehicle demand, own- and cross-price elasticities at the car-light truck level, and own- and

cross-price elasticities at the gasoline-EV level. Our approach is computationally simple, making it

*Benjamin Leard (bleard@utk.edu) is an assistant professor in the department of agricultural and resource economics
and a faculty fellow in the Baker School for Public Policy and Public Affairs at the University of Tennessee and a
university fellow at Resources for the Future. Yidi Wu (yw648@georgetown.edu) is a Ph.D. candidate in the economics
department at Georgetown University. We are grateful to Oak Ridge National Laboratory for supporting the research.
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widely accessible, and our application informs current design of policies for reducing GHG emissions

in the transportation sector.

Our approach builds on the methodology used by Bordley (1993), which centers on constructing

diversion fractions using market-level data and micro-level second-choice data to estimate price

elasticities. Leard (2022) expands this approach to estimate substitution patterns between new and

used vehicles. We further develop this methodology to allow for flexible definition of vehicle category

based on attributes. In particular, we expand the vehicle category of analysis to obtain elasticity

estimates at the aggregated body style and fuel type levels. Furthermore, our approach disaggregates

consumers by income group, thus accounting for consumer heterogeneity in all of our price elasticity

estimates. Our methodology differs from other studies that use second-choice data in the vehicle

demand estimation literature because it does not require estimating complex models of demand with

random coefficients, such as in Berry et al. (2004) or Grieco et al. (2023).

We obtain plausible estimates on various price elasticities of interest. Our estimates for the market-

price elasticity for new vehicles show considerable heterogeneity across consumer income groups,

ranging from −0.2 for the highest income group to −0.84 for the lowest. The average is −0.5, which
is similar in magnitude to the parameter value used by the Environmental Protection Agency (EPA)

and the National Highway Traffic Safety Administration (NHTSA) in their final regulatory impact

analysis of the 2024–2026 fuel economy and GHG standards (NHTSA 2022). In terms of category

elasticities, we find that car and EV buyers are more price sensitive than light truck and gasoline

vehicle buyers.

Using the estimated cross-price elasticities along with sales data, we simulate sales changes for

gasoline vehicles in response to price drops in EVs and calculate the average fuel economy of vehicles

that would have been purchased absent the EV price change. Similar to prior studies such as Xing

et al. (2021) and Muehlegger and Rapson (2023), we find that new EVs replace relatively fuel-efficient

vehicles that have an average fuel economy that is 4 miles per gallon greater than that of the fuel

economy a typically purchased new gasoline vehicle. However, we find evidence that this replacement

fuel economy is likely to converge to the fleet-wide average as more electric sport utility vehicles

(SUVs) and pickup trucks enter the market.

We organize the rest of this paper as follows. In Section 2, we briefly describe the data, highlighting

the key role of the second-choice data in the estimation. In Section 3, we outline our estimation

strategy, which shows that vehicle substitution patterns depend on the relevant diversion fractions.

We then present our empirical results in Section 4. In Section 5, we show the results from an application

of our model to analyze the fuel economy of vehicles being replaced by EVs. We then discuss the policy

implications of our results in Section 6 and make concluding remarks in Section 7.
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2 Data

The primary data source that we use for estimation is the 2018 wave of the New Vehicle Customer

Survey (NVCS) administered by InMoment (formerly called MaritzCX). These are household-level

survey data with a sample of nearly 250,000 U.S. households. The 2018 wave includes surveys of

households that purchased or leased a new vehicle in the fourth quarter of 2017 through the third

quarter of 2018. The data provide detailed vehicle information, including including firm, make, model,

fuel type, and body style identifiers, financing, purchase prices, and engine characteristics including

the number of cylinders. The data also include self-reported household income groups (e.g., $85,000–

$100,000). The survey data represent about 1–2% of national new vehicle transactions during the

sampled time period.

The survey aims to create a nationally representative sample of new vehicle transactions and

samples households until vehicle model-level sampling quotas are met; quotas are based on a database

of national registrations. However, this sampling method does not guarantee a perfect representation of

the entire universe of households buying or leasing vehicles. Furthermore, due to constraints imposed

by the sampling methodology, a select number of luxury brands are not sampled in certain states.1 We

address these data concerns in a few ways. First, we aggregate the sample by household income group

and analyze the data across the income groups. Our investigation of the data illustrates plausible

purchase and lease patterns across households, providing some assurance of the data quality and

alleviating the first concern.2 Second, we aggregate the sample to the national level and do not

formulate the model at the brand or state level. Third, we use survey weights provided by InMoment

to weight the data in all of our estimation, elasticity, and simulation calculations. The survey weights

represent monthly nameplate-level national sales derived from IHS Automotive registration data,

which InMoment uses during the sampling process to send surveys out to new vehicle owners and

lessees.3

1InMoment does not sample BMW, Jaguar-Land Rover, Mercedes Benz, MINI, Porsche, Smart, and Tesla purchase
or lease transactions in the following states: Alaska, Arizona, California, Hawaii, Illinois, Kansas, Maryland, Montana,
Nevada, New Hampshire, New York, Oregon, Pennsylvania, South Dakota, and Washington.

2Leard et al. (2023) use NVCS data from 2010 to 2018 and provide further analysis of how representative the data
are of the universe of new vehicle transactions.

3We use the national sales weights when aggregating nameplate counts. To weight the counts, we first aggregate
counts by make-model-fuel type-body style and compute a market share for each vehicle combination. We also aggregate
the value of the weight variable across all months of the data by the same vehicle identifiers and compute a weight
share for each nameplate, which represents nationally representative market shares for the sample period. We then
compute the final weight for each nameplate as the ratio of the two shares. For example, if we observe 2 percent of
survey observations as a Ford F-150, but the aggregated weight variable has the market share at 3 percent, then the
final weight for Ford-150’s is 0.03/0.02 = 1.5. In other words, we count each Ford F-150 in the survey data as 1.5 sales.
We can then aggregate the weighted sales to the demographic group at the nameplate level.
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The NVCS data also include information about vehicles they considered besides the one they

purchased or leased, including the model that was most seriously considered, but did not end up

buying or leasing. The survey allows respondents to provide details on the seriously considered

vehicle, including make, model, fuel type, body style, and the desire to acquire it new or used. From

these responses, we are able to define a nameplate for roughly two-thirds of respondents.4 Following

convention in the literature (Berry et al. 2004), we denote these data as second-choice data, as they

represent plausible second choices that would have been chosen had the purchased or leased vehicle

not been available. From these data, we are able to construct diversion fractions, as described in

Bordley (1993). We do so for purchased and leased vehicles in the data. For example, among the

respondents in the $55,000–$85,000 income group who purchased or leased a Ford F-150, 9 percent

of them reported a Toyota Tacoma as their second choice.

We merge the NVCS data with vehicle characteristics from Wards Automotive. These data include

fuel economy (miles per gallon), horsepower, weight, and size and also. drive type (e.g., all-wheel

drive) as a discrete characteristic. After merging, we aggregate the vehicle characteristics data to the

nameplate level, which is a unique make-model-fuel type-body style combination (e.g., Honda Accord

gasoline sedan), by taking averages of vehicle characteristics, including non-price characteristics from

Wards and transaction prices reported by respondents in the NVCS. We assign a single average

transaction price for each vehicle nameplate in the data.

To incorporate household preference heterogeneity in our model, we use self-reported annual

household income data to create five approximately evenly distributed income groups and produce

a survey sales count for each nameplate by income group. The income groups are less than $55,000,

$55,000–$85,000, $85,000–$125,000, $125,000–$200,000, and over $200,000. The survey sales count

represents the number of households in each income group that bought or leased a particular type

of vehicle nameplate. For example, 319 surveyed households with reported incomes under $55,000

purchased or leased a Chevrolet Malibu, and only 88 survey households with reported incomes of

$125,000–$200,000 did so.5

We use the survey data to construct an average purchase price for each vehicle nameplate by

observed income group combination.6 To address a tiny number of observations with unrealistically

4The remaining one-third of respondents reported insufficient information for us to identify a vehicle at the nameplate
level, e.g., some provided only make information.

5In 2018, the Chevrolet Malibu was considered an affordable, entry-level new sedan. In our data, its average purchase
price is $24,857, which is much lower than the overall average purchase price paid for a vehicle (see Table 1). Therefore,
this vehicle was especially popular among budget-constrained, low-income households.

6When constructing our price data, we do not account for state or federal incentive programs, such as tax credits
for EVs. In particular, we omit EV tax credits because we do not observe whether households claimed the credits or
the pass-through rate. Therefore, we base our methodology for estimating elasticities on transaction cost variation and
do not exploit other sources of price variation.
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low reported purchase prices, when computing the averages we exclude prices that are less than

$10,000.

2.1 Summary statistics

Table 1 summarizes the key variables in our data by household income groups. All calculations

except household counts are done using the weights, as explained in the previous subsection.

The first four rows show the means of vehicle characteristics. Price is the mean of the average

transaction price of all nameplates within an income group. Gallons per mile is computed as 1 divided

by the city/highway average fuel economy rating.7 Horsepower/weight is a vehicle’s horsepower divided

by its weight, denoted in hp/pounds. This variable is highly correlated with a vehicle’s 0–60 miles

per hour acceleration time and represents its engine performance (Leard et al. 2023). Footprint is

wheelbase multiplied by its width, measured in thousand square inches, and represents a vehicle’s

size.8 The statistics in the table show that high-income households tend to purchase more expensive,

larger vehicles with greater acceleration.

The rows with first- and second-choice information show the share of each vehicle type in the survey,

where electric includes both electric and plug-in hybrid vehicles. The electric share increases in income

group, accounting for 6 percent of the highest-income households. This reflects that many EV models

are much more expensive than the average new vehicle (e.g., most Tesla models). The market share

of plug-in hybrid and battery EVs is 2 percent, which is representative of the national market sales

share for EVs in 2018. Furthermore, the share of a used car as the second choice steadily decreases

by income group. The overall average is 9 percent – slightly higher than the frequency reported in

Leard (2022), which uses 2013 data. Finally, the last row provides a sense of the household income

distribution, with the middle group comprising about a quarter of households in the survey.

2.2 Second-choice data statistics

An advantage of the NVCS data is its second-choice information, which is a key empirical

component of our estimation strategy. These second-choice vehicles are realistic candidates for

households that respond to a price increase. Bordley (1993) and Leard (2022) assume that second-

choice vehicles would be purchased in this way, and we adopt a similar assumption. Table 2 shows that

households’ first and second choices are closely related in terms of price and vehicle segments across all

income groups.9 The first row is the correlation coefficient between the transaction price of the first-

7We include gallons per mile in the model instead of miles per gallon because a vehicle’s fuel costs are proportional
to gallons per mile.

8This variable approximately equals the rectangular surface area between where a vehicle’s wheels touch the ground.
9We use our constructed weights for all calculations in this table.
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choice vehicle and the average transaction price of all second-choice vehicles with that same first choice.

For example, the lowest-income group has a correlation coefficient of 0.79, which suggests a strong

and positive relationship between average prices of first- and second-choice vehicles. The remaining

rows show the shares of households that had a second choice of the same body style/fuel type as their

first choice (e.g., among the lowest-income group purchasing a pickup truck, 87 percent had another

pickup as their second choice). This table shows consistency in household preferences between their

first and second choice with respect to relevant vehicle attributes, and provides justification for our

assumption that second choices represent plausible substitution patterns for households.

3 Estimation Strategy

The estimation strategy for obtaining own- and cross-price elasticities of demand builds on Bordley

(1993) and Leard (2022). Bordley (1993) states that own- and cross-price elasticities can be obtained

from two empirical components:

1. How much share a product loses when its own price increases.

2. The fraction of that lost share diverted to various other products.

The first statistic is defined by an own-price elasticity of demand. Bordley (1993) denotes the second

statistic as the diversion fraction. We use household-level data to estimate both statistics for the entire

set of new vehicles sold in the United States in 2018.

3.1 Own-price elasticities

The first step is to estimate nameplate-level own-price demand elasticities. We do so separately

by income group using instrumental variables.10 This yields a set of own-price elasticities by vehicle

nameplate and income group. We then aggregate these elasticities to nameplate level (e.g., Toyota

Prius hybrid sedan) and category level (e.g., EV) following the methodology outlined next.

3.1.1 Nameplate own-price elasticity

We estimate the nameplate-level own-price elasticity of new vehicle sales using a log-log

specification. We assume that the natural log of nameplate j sales counts purchased by income group g,

10The survey data include other demographics, such as age of respondent, which would allow us to disaggregate the
model over a broader set of household characteristics. We chose to organize the model by income group only as a way
to capture relevant consumer heterogeneity (i.e., it is typical for vehicle demand models to show price responsiveness
as a function of household income) yet maintain a large enough sample in each group to estimate own-price elasticities
accurately. Further disaggregation would pose a problem of fewer sales observations per demographic group, which
would make it more challenging to estimate a plausible set of own-price elasticities.
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denoted by qgj, is a linear function of the natural log of the average transaction price for vehicle j. We

control for a series of continuous nonprice vehicle attributes, including gallons per mile, performance

measured as the ratio of horsepower to weight, and size measured by footprint. We include a control

variable for the average model year of each vehicle and the number of cylinders and dummy variables

for all-wheel and rear-wheel drive.. We also include fixed effects for body style (e.g., pickup truck) by

fuel type (e.g., hybrid) and firm. The estimation equation is

ln(qgj) = βg ln(pj) + θXj + ϵgj. (1)

The coefficient of interest is βg, which represents the average own-price elasticity of demand for

new vehicles for income group g. This is interpreted as the percentage change in household group g

purchases of vehicle j due to a 1 percent increase in the price of vehicle j. To address concerns about

price endogeneity, we instrument for the log of transaction price following Berry et al. (1995) and

Train and Winston (2007), using the sums of gallons per mile, horsepower divided by weight, and

footprint of other vehicles sold by the same manufacturer, the sum of the continuous characteristics

of other vehicles sold by other manufacturers in the same body style category, and squared values of

each sum.

We can aggregate these elasticity estimates to the nameplate level using the following formula:

εj = d ln qj

d ln pj

= dqj

dpj

pj

qj

, (2)

where qj = ∑
g qgj. Substituting the definition of the group-specific elasticity βg = d ln qgj

d ln pj
= dqgj

dpj

pj

qgj

and canceling terms yields

εj =
∑

g

βg
qgj∑
g qgj

. (3)

This elasticity is interpreted as the percentage change in total sales of vehicle j (across all groups

of consumers) due to a 1 percent increase in the price of vehicle j.

Given the functional form assumption in equation (1), we define a household-group specific

elasticity as

εgj = d ln qgj

d ln pj

= βg. (4)
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3.1.2 Category own-price elasticity

Our methodology yields closed-form solutions of vehicle category elasticities. Vehicle category c

can represent any subset of nameplates, such as body style segment (e.g., all light trucks) or fuel

type by body style category (e.g., all hybrid cars). We define εc as the percentage change in vehicle

category c sales, in response to a 1 percent increase in the price of every vehicle in category c:

εc =
∑
j∈C

d
∑

k∈C

∑
g qgk

dpj

pj∑
k∈C

∑
g qgk

. (5)

This can be rearranged as

εc =
∑
j∈C

∑
k∈C

∑
g

dqgk

dpj

 pj∑
k∈C

∑
g qgk

. (6)

Define δgjc′ as the percentage of vehicle j sales for household group g going to purchases of vehicles

in categories other than c in response to a vehicle j price increase. Then 1 − δgjc′ defines the fraction

of sales going to other vehicles in category c in response to a price increase, and the following identity

holds:

∑
k ̸=j,k∈C

dqgk

dpj

= −(1 − δgjc′)dqgj

dpj

. (7)

Rearranging yields

∑
,k∈C

dqgk

dpj

= δgjc′
dqgj

dpj

. (8)

Substituting (8) into (6) yields

εc =
∑
j∈C

(∑
g

δgjc′
dqgj

dpj

)
pj∑

k∈C

∑
g qgk

. (9)

Define the nameplate own-price elasticity of demand for household group g as

εgj = dqgj

dpj

pj

qgj

= βg. (10)

Rearranging yields
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βgqgj = dqgj

dpj

pj. (11)

Substituting (11) into (9) yields

εc =
∑
j∈C

∑
g

δgjc′βg
qgj∑

k∈C

∑
g qgk

. (12)

The vehicle category own-price elasticity is a sales-weighted average of diversion fractions

multiplied by nameplate-level own-price elasticities. The weights are equal to the fraction of vehicle

sales in each household group.

3.2 Cross-price elasticities

To estimate cross-price elasticities at the nameplate level, we combine the estimates of the

nameplate own-price elasticities with second-choice data that represent diversion fractions. Cross-

price elasticities are identified by two features: the degree to which sales of a vehicle falls in response

to a price increase and the degree to which these lost sales are diverted to other products. The first

statistic is derived from estimates of own-price elasticities. The second statistic is defined according

to diversion fractions. We use the second-choice data to calculate diversion fractions (see Sections 2

and 2.2).

3.2.1 Nameplate cross-price elasticity

We can derive vehicle cross-price elasticities based on the estimated own-price elasticities and

diversion fractions. Define the nameplate cross-price elasticity as

εjk = d ln qk

d ln pj

=
∑

g

dqgk

dpj

pj

qk

. (13)

This cross-price elasticity is interpreted as the percentage change in vehicle k sales due to a 1
percent increase in the price of vehicle j. Define δgjk as the fraction of households in group g that

switch to vehicle k as a result of a vehicle j price increase. Mathematically, this is equivalent to

dqgk

dpj

= −δgjk
dqgj

dpj

. (14)

Substituting equation (14) into (13) yields
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εjk =
∑

g

−δgjk
dqgj

dpj

pj

qk

. (15)

Substituting the definition of group g average own-price elasticity βg = dqgj

dpj

pj

qgj
gives

εjk =
∑

g

−δgjkβg
qgj

qk

. (16)

3.2.2 Vehicle category cross-price elasticity

Define εcd as the percentage change in vehicle category c sales in response to a 1 percent increase

in the price of every vehicle in category d:

εcd =
∑
j∈D

d
∑

k∈C

∑
g qgk

dpj

pj∑
k∈C

∑
g qgk

. (17)

This can be rearranged as

εcd =
∑
j∈D

∑
k∈C

∑
g

dqgk

dpj

 pj∑
k∈C

∑
g qgk

. (18)

Define δgjc as the fraction of vehicle j sales for household group g going to purchases of vehicles

in category c in response to a vehicle j price increase, where vehicle j is in category d (and not in

category c). Then, for household group g,

∑
k∈C

dqgk

dpj

= −δgjc
dqgj

dpj

. (19)

Substituting (19) into (18) yields

εcd =
∑
j∈D

(∑
g

−δgjc
dqgj

dpj

)
pj∑

k∈C

∑
g qgk

. (20)

Substituting the definition for the nameplate-level own-price elasticity (11) into (20) yields

εcd = −
∑
j∈D

∑
g

δgjcβg
qgj∑

k∈C

∑
g qgk

. (21)
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This equation appears similar to (12) but has three key differences. The first is that the summation

for j is across vehicles in category d, not c. The second is that the diversion fraction δgjc represents

sales diverted from vehicle j, which is in category d, to vehicles in a different category c. The third is

that the last term, which represented a weight in (12) now does not add up to 1, because vehicle j is

not in category c.

4 Estimation results

4.1 Nameplate own-price elasticities

We present estimates of own-price elasticities in Table 3. The dependent variable in each

specification is the natural log of sales counts. Columns (1)–(5) report estimates using ordinary least

squares (OLS), and columns (6)–(10) report instrumental variables (IV) results. Each column includes

observations for a specific household income group.11 For example, column (7) reports IV results for

the $55,000–$85,000 group.

We include a set of vehicle attributes in each model, including the natural log of purchase price,

the inverse of fuel economy denoted as gallons per mile, performance as measured by horsepower

divided by weight, and vehicle size as measured by footprint.12 All coefficients are estimated with the

expected sign. Households prefer to purchase vehicles that have a lower price, lower driving costs,

better performance, and larger size.

The coefficient of interest is the natural log of vehicle price, which is interpreted as a demand

elasticity. For a given income group, the magnitude of the estimate is larger for the IV specification,

suggesting some degree of price endogeneity in the OLS specifications. The average own-price elasticity

across all income groups for the IV specifications is −4.85, which falls within the range of model-level

demand elasticities in Berry et al. (1995) and is similar to the average own-price elasticity in Leard

et al. (2023) and Leard (2022).

11For simplicity, we estimate the elasticities using only observed sales by each income group. This set up allows for a
simple log-log IV estimation approach, but creates an uneven sample size across the groups. Our approach could result
in selection bias from ignoring zero sales observations. However, we believe this bias is minimal for several reasons. First,
the set of vehicles appearing in each estimation equation has a large overlap, with only about a 15 percent difference
in the number of unique nameplates observed with positive sales (comparing the lowest-income group to the highest).
Second, selection bias caused by treating zero sales observations as the outside option in demand modeling typically
causes estimated elasticities to be biased toward zero (Gandhi et al. 2023). Our estimates imply elasticities in the range
of those from the literature (e.g., Berry et al. (1995)). Finally, the group with the fewest positive sales observations
(lowest income) has the largest elasticity magnitude, contrary to what we would expect if bias was substantial.

12For plug-in hybrid and battery EVs in the sample, we use the EPA fuel economy miles per gallon equivalent rating
to create an equivalent gallons per mile value. For example, the Tesla Model X has a miles per gallon equivalent rating
of 93, which converts to a gallons per mile of 0.01.
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For both OLS and IV specifications, the magnitude of the coefficient is smaller in magnitude

for higher-income groups. This is intuitive because higher-income households tend to be less price

sensitive, a pattern that is consistent with new vehicle demand modeling literature (Petrin 2002;

Train and Winston 2007; Beresteanu and Li 2011). The lowest group has an own-price elasticity of

around −6, whereas the highest group has a demand elasticity of −2.7.

In Figure 1, we plot average nameplate-level own-price elasticities and purchase prices. Our model

yields a plausible relationship between the two where more expensive vehicles tend to be purchased

by consumers that are less price sensitive (Berry et al. 1995; Beresteanu and Li 2011). For example,

vehicles with an average purchase price of $20, 000 have an own-price elasticity of demand of about

−5.5, while vehicles with an average purchase price of $60, 000 have an own-price elasticity of about

−4.

4.2 Selected nameplate own- and cross-price elasticities

Table 4 presents substitution patterns from our estimated elasticities for a selected group of

nameplates shown in the first column.13 The next three columns show their average sales, price, and

own-price elasticities. The demand for less expensive vehicles tends to be more price sensitive, which

is consistent with Figure 1. More expensive options, such as the Tesla Models S and X have lower

own-price elasticities. The remaining columns show, respectively, the best and second-best substitutes

for each vehicle and their cross-price elasticities. Specifically, for each nameplate in the first column,

we define its best substitute as the one with the largest cross-price elasticity out of all nameplates

in our sample. Similarly, its second best substitute has the second-largest cross-price elasticity. Thus,

the best substitute for the Honda Civic (Gas-Car) is the Kia Forte5 (Gas-Car), and the second best

substitute is the Hyundai Veloster (Gas-Car).

The substitution patterns in Table 4 are intuitive. Both substitutes are of the same fuel type-body

style category for most of the selected nameplates. This shows that household preferences are stable

within a category, which is consistent with Table 2. This pattern is highlighted for the battery EVs.

Despite the relatively few model offerings and sales, all of them have other battery EVs as their

best substitute. Additionally, the alternatives of the same fuel type-body style category tend to have

vehicles with prices similar to the original vehicle. For example, for the Tesla Model X (BEV-SUV),

the best and second-best substitutes are the Tesla Model S (BEV-Car) and Land Rover Range Rover

(Gas-SUV), respectively; both are luxury models priced over $90,000.

13We chose these vehicles because they represent a diverse mix of fuel types and body styles. They also have some of
the highest sales in their respective categories and display significant price variation.
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4.3 Category elasticities

To draw policy implications from our estimates, we aggregate the price elasticities using equations

(12) and (21). We present aggregated price elasticities in Table 5 along with their standard errors.

Panel A shows elasticities aggregated to the new-vehicle market level and across all income groups.

We see an expected pattern across the income distribution. Low-income households have a larger

market-price elasticity of demand, with the lowest group having an elasticity of −0.84 and the highest

income group an elasticity of −0.2. Low-income households are more price sensitive with a larger

own-price elasticity of demand relative to high-income households (see Table 3) and more likely to

leave the new vehicle market in response to a new vehicle price increase, as indicted by their diversion

fractions (see Table 1). Together, this yields a realistic pattern for the elasticities across the income

distribution.

The average market-price elasticity of new vehicle demand is −0.5, which is smaller to the estimate

in McCarthy (1996) and larger than that in Leard (2022); a key reason for this has to do with the

correlation between own-price elasticities and diversion fractions. Low-income households tend to be

more sensitive to changes in nameplate prices and more frequently state that they would leave the

new vehicle market altogether if their chosen vehicle was not available. This positive correlation leads

to a larger aggregate elasticity, as it is essentially the product of the two statistics summed across

vehicles and households.

Panel B of Table 5 shows elasticities aggregated to the car and light truck level, where light truck

includes SUVs, pickup trucks, and vans. The diagonal of the panel represents own-price elasticities, and

the off-diagonals represent cross-price elasticities. The column names denote the vehicle type that has

all of its options increase in price by 1 percent, and the row names represent the percentage change in

sales of a vehicle type. For example, the bottom left estimate of 0.51 represents the cross-price elasticity

interpreted as the percentage change in sales of all new light trucks as a result of a 1 percent increase

in the price of all new cars. The magnitudes of the elasticities are in line with expectations, with the

own-price elasticities being larger than the market-level price elasticities reported in Panel A. Car

buyers tend to be much more price sensitive, because many car models represent entry level-options

for households that want to buy a new vehicle.

Panel C of Table 5 reports elasticities aggregated to two fuel types: gasoline and electric. Gasoline

includes gasoline and hybrid vehicles, and electric includes plug-in hybrid and battery EVs. The

own-price elasticity of demand for all new gasoline vehicles is −0.53, which is only slightly larger in

magnitude than our estimate of the aggregate new vehicle market price elasticity because gasoline

vehicles represent a large share of the new vehicle market in the sample. Our estimate of the cross-price

elasticities is of particular interest. Specifically, we find that a one percent increase in the price of all
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new electric cars leads to a 0.03 percent increase in sales of gasoline cars. This is three times as large

as the baseline assumption in Holland et al. (2021), which relies on estimates from Xing et al. (2021)

that uses 2014 data. This difference could be due to several factors, including that our estimates are

based on a different methodology with more recent data.

5 EV replacement

To illustrate an application of our estimated elasticities, we analyze how households substitute

between gasoline vehicles and EVs. Several recent studies have suggested that EVs replace relatively

fuel-efficient gasoline vehicles (Muehlegger and Rapson 2023; Xing et al. 2021). In other words,

households would have bought a vehicle with high fuel economy had EVs not been available. This

substitution pattern reduces the environmental benefits of EVs, which are defined relative to the fuel

use of a counterfactual replacement gasoline vehicle. Our cross-price elasticity estimates and data

allow us to calculate how households substitute among vehicles in response to a price change, which

is a type of measurement of what EVs are replacing. This measurement is especially relevant because

the prices of EVs are expected to fall over time due to declining battery costs and product entry.

We use our estimated nameplate-level cross-price elasticities along with data on sales to simulate

sales changes for gas and hybrid vehicles in response to a 1 percent reduction in plug-in hybrid EV

and battery EV prices. We then multiply these sales changes by fuel economy ratings to calculate

the simulated average fuel economy of vehicles that would have been purchased without the EV price

change.

Table 6 shows the results along with their standard errors. The last row shows that the average fuel

economy among all gasoline and hybrid vehicles is 25.9 miles per gallon, which serves as a comparison

for the average among vehicles that EVs are replacing. The remaining rows show the average fuel

economy of replacement vehicles. For the full sample, it is 30.2, which is about 4 miles per gallon

higher than the comparison average. Therefore, the increased EV sales are pulling from vehicles

with relatively high fuel economy. This simulated replacement fuel economy sits between differences

reported in Xing et al. (2021) and Muehlegger and Rapson (2023), which also find that EVs replace

relatively fuel-efficient vehicles.

We calculate the average fuel economy of gasoline and hybrid vehicles being replaced with

alternative samples to see how the results vary depending on vehicle attributes. The Tesla Model

3 was the best-selling EV in 2018 and represented a relatively affordable option for going electric.

Prior studies used data before the entry of the Model 3, which included many expensive EV models.

Restricting the sample to include only the Tesla Model 3 reduces the replacement vehicle fuel economy

average to about 28 miles per gallon, which is about 2 miles per gallon higher than the comparison
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average. This difference is substantially less than that found in prior studies, suggesting that the EV

market has been moving toward replacing more vehicles with average fuel economy.

Another distinct feature of the EV market in 2018 was the lack of available options for SUVs and

pickup trucks: only a few SUVs and no pickups were for sale. However, this is quickly changing, as

many new electric SUV and pickup models enter the market, such as the Ford F-150 Lightning. We

explore whether body style availability plays a role in the fuel economy of replacement vehicles by

restricting the sample to electric SUVs only.14 For this sample, we simulate the replacement vehicle

fuel economy average to be about 25 miles per gallon, which is slightly less than the comparison

average. This reflects how households sort based on body style: those deciding to buy an electric

SUV would have likely otherwise purchased a gasoline or hybrid SUV that is relatively fuel inefficient.

Therefore, as more electric SUVs and pickup trucks enter the market, we can expect the average fuel

economy of replacement vehicles to converge to the comparison average.

6 Policy implications

We draw several policy implications based on our estimates. First, based on the results in Panel

A of Table 5, new vehicle price increases due to tightening CAFE and GHG standards are likely to

lead to disproportionately more low-income households leaving the new vehicle market. This raises

vehicle affordability concerns, which have been highlighted by the EPA (EPA 2016). This implication

also motivates federal agencies to model effects of CAFE and GHG standards across the income

distribution to assess these concerns.

Second, our results provide a new estimate for a key input in the federal agencies analysis of CAFE

and GHG standards. Our estimate for the aggregate new vehicle own-price elasticity of demand of

−0.5 is larger than the assumed new vehicle sales elasticity of −0.4 used in the final RIA of the

2024–2026 fuel economy and GHG standards (NHTSA 2022). Our estimate, however, is interpreted

as a demand elasticity rather than a policy elasticity, where the latter accounts for market equilibrium

adjustments as a result of a new vehicle price increase (Jacobsen et al. 2021). In particular, increasing

new vehicle prices causes household demand for new vehicles to fall and demand for used vehicles to

increase, which raises used vehicle prices. This price adjustment leads to an increase in the demand for

new vehicles, which dampens the direct effect of the new vehicle price increase. Therefore, the implied

equilibrium policy elasticity is generally smaller than the demand elasticity. Jacobsen et al. (2021)

argue that a policy elasticity is the more appropriate application for evaluating the sales impacts of the

standards and find that policy elasticities are roughly half as large as the assumed demand elasticity.

14Specifically, this sample includes all vehicles that are classified as an SUV and a plug-in hybrid or battery EV.
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Half of our estimated demand elasticity would be moderately smaller than what the agencies assume

in their central case.

Third, the results have implications for compliance costs of federal fuel economy and GHG

standards. Panel B of Table 5 shows that cars have almost a twice as large an own-price elasticity

relative to light trucks. Leard et al. (2023) find that pass-through of costs associated with fuel economy

and GHG standard requirements is related to price-sensitivity: the more price sensitive a consumer

group, the more expensive it is to raise prices because of a fuel economy increase. Therefore, our results

suggest that it will be more costly for manufacturers to pass through the cost increase of the same

fuel-economy technology adoption applied to cars versus light trucks. This has potentially significant

implications for the incidence of the standards across manufacturers, given that traditionally certain

manufacturers tend to sell disproportionately more cars than light trucks.

Fourth, the results have implications for the interaction of CAFE and GHG standards with the

used vehicle market. The federal agencies model how the standards interact with the used vehicle

market using a used vehicle scrappage adjustment model. The underlying theory is that new vehicle

buyers respond to higher new vehicle prices due to tightening standards by substituting to used

vehicles. The increase in used vehicle demand increases used vehicle prices and reduces the rate at

which used vehicles are scrapped, which is known as the Gruenspecht effect (Gruenspecht 1982).

The literature has shown that this effect erodes gasoline savings and emissions reductions due to

the standards (Jacobsen and van Benthem 2015). This effect could be different across vehicle types,

namely cars and light trucks. The literature on vehicle scrappage has identified that light trucks tend

to last longer and be scrapped less often than cars (Lu 2006; Greene and Leard 2023). They also

typically are less fuel efficient and emit more carbon dioxide per mile, implying that changes in the

rate at which used light trucks are scrapped could have significant effects on the emissions reductions

due to the standards. The elasticities in Panel B of Table 5 suggest that light truck buyers are less

likely than car buyers to leave the new vehicle market in response to a 1 percent price increase;

this is indicated by a relatively small own-price elasticity and a relatively large cross-price elasticity

appearing in the light truck column of Panel B. Therefore, increases in new light truck prices may

result in a smaller Gruenspecht effect as fewer light truck buyers leave the new car market due to

tightening standards.

Fifth, the results have implications for policy analysis of programs that ban the sale of gasoline

vehicles, such as California Air Resources Board’s Advanced Clean Cars II rule, which requires all new

vehicles sold in the state to be zero-emissions by 2035. The welfare cost of such programs depends on

the degree of substitution between electric and gasoline vehicles. If these two are poor substitutes, a

gasoline ban may result in large deadweight loss as EV adoption begins too early (Holland et al. 2021).

In general, Holland et al. (2021) show that the effectiveness of gasoline vehicle bans is likely sensitive
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to gasoline-electric cross-price elasticities. The larger this estimate, the better substitutes EVs are

to gasoline vehicles. Holland et al. (2021) show that as EVs and gasoline vehicles become better

substitutes, a ban on new gasoline vehicle sales leads to a smaller deadweight loss. Our cross-price

elasticity estimate of 0.03 is larger than the benchmark value of 0.01 assumed in Holland et al. (2021),

suggesting that the deadweight loss from banning gasoline vehicles is smaller than what those authors

find. However, they show that the deadweight loss is large relative to the environmental benefits of

EV adoption as long as the cross-price elasticity remains in the range of 0.01 to 1.15 Nonetheless,

optimal policy design can benefit from correct and up-to-date estimates of the underlying structural

parameters.

7 Conclusion

Our methodology and estimation results have several caveats. The first is that we calculate our

diversion fractions using survey responses that may not reflect how consumers substitute among

vehicles in response to price changes. Based on our exploratory analysis of the data (e.g., Table 2)

and our elasticity estimates, however, it seems plausible that these data reveal useful information

about household substitution patterns. Nevertheless, the analysis could be improved by using data in

a survey with a more direct question for what vehicles households would consider if their purchased

vehicle were more or less expensive.

Second, our simulation analysis of EV substitution is based on data from 2018. Since 2018, the

new EV sales share has significantly increased. 16 Our analysis suggests that EVs have become better

substitutes for gasoline vehicles relative to when manufacturers began selling EVs. We expect this

trend to continue as manufacturers introduce many new EV models. Repeating this analysis with

recent sales and diversion fraction data would reveal whether this trend has continued and valuable

information about how EV substitution has evolved over time.

Nevertheless, our methodology produces plausible own- and cross-price elasticities of new vehicle

demand that can be used as inputs for simulation models, such as those for estimating the costs

and benefits of CAFE and GHG standards and policies for increasing EV sales. The computational

simplicity of our methodology makes it straightforward for policy analysts to apply it to evaluating

current and future regulations.

15Table 2 and Figure 2 in Holland et al. (2021) illustrate this point by showing the optimal policy as a function of
the cross-price elasticity.

16The new EV market share was 7.1 percent in January 2023. For more details, see
https://insideevs.com/news/657660/us-electric-car-sales-january2023/.
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8 Figures and Tables

Figure 1: The relationship between implied average own-price elasticities of demand and average
transaction prices

Notes: This graph shows the relationship between the average own-price elasticity of demand and

the average transaction price. Each circle represents a unique make-model-fuel type-body style

combination in our dataset. The own-price elasticity is a weighted average across all income groups.
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Table 1: Summary Statistics

Income group < 55k 55–85k 85–125k 125–200k > 200k All
Price ($) 29,198 32,648 35,207 38,362 47,751 35,094
Gallons per mile 0.038 0.04 0.041 0.042 0.042 0.04
Horsepower/weight 0.057 0.059 0.061 0.063 0.066 0.06
Footprint 8.01 8.27 8.39 8.46 8.57 8.3
First choice SUV 0.44 0.50 0.52 0.53 0.56 0.5
First choice pickup 0.11 0.15 0.15 0.13 0.09 0.13
First choice electric 0.00 0.01 0.02 0.03 0.06 0.02
Second choice used 0.13 0.10 0.09 0.08 0.07 0.09
Household count 42,403 40,910 48,039 42,899 30,300 204,551
Notes: This table shows summary statistics of key variables by income group, which we weight

by sales counts. Price is defined as the average purchase price for each vehicle make-model-fuel

type-body style combination. Gallons per mile is computed as 1 divided by the city/highway

average fuel economy rating. Horsepower/weight is a vehicle’s horsepower divided by its weight,

measured in hp/lb. Footprint is a vehicle’s wheelbase multiplied by its width, measured in

thousand square inches. The rows with first choice and second-choice information show the

share of each vehicle type in the survey, where electric includes both electric and plug-in hybrid

vehicles.
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Table 2: First- and Second-Choice Comparisons

Attribute correlation < 55k 55–85k 85–125k 125–200k > 200k All
Price 0.79 0.81 0.83 0.85 0.87 0.86
Car 0.75 0.76 0.8 0.81 0.81 0.77

Pickup 0.87 0.89 0.91 0.92 0.92 0.9
SUV/Van 0.82 0.86 0.87 0.86 0.86 0.85
Electric 0.58 0.63 0.65 0.69 0.71 0.68
Gasoline 0.99 1.00 0.99 0.99 0.99 0.99

Notes: This table shows comparisons between the first and second choices by income

group with weighted sales counts. Price correlation for a given income group is the

correlation coefficient between the transaction price of the first-choice vehicle and the

average transaction price of all second-choice vehicles with that same first choice. The

remaining rows show the shares of households with a second choice of the same body

style/fuel type as their first choice; for example, among households with an annual income

less than or equal to $55,000 that purchased a pickup truck, 87 percent of them had a

pickup as their second choice. The electric attribute includes both plug-in hybrid and

battery electric vehicles.
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Table 3: Nameplate Own-Price Elasticity Estimates

Dependent Variable: Ln(Sales)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Specification OLS IV

Income group < 55k 55–85k 85–125k 125–200k > 200k < 55k 55–85k 85–125k 125–200k > 200k

Ln(Price) −4.26 −3.46 −2.87 −1.97 −0.53 −5.96 −5.00 −4.98 −4.29 −2.71

(0.53) (0.46) (0.41) (0.39) (0.38) (1.38) (1.42) (1.64) (1.79) (1.73)

Gallons per mile −103.6 −76.81 −68.24 −58.00 −37.19 −94.62 −68.89 −59.45 −35.96 −18.40

(19.81) (18.90) (19.50) (17.46) (16.21) (21.96) (21.10) (22.56) (26.55) (24.92)

Horsepower/weight 20.13 23.00 19.38 10.45 7.116 35.94 37.25 40.16 33.82 28.58

(7.25) (7.44) (6.63) (6.27) (6.85) (13.32) (14.17) (16.87) (19.31) (18.49)

Footprint 0.51 0.73 0.79 0.58 0.61 0.81 1.01 1.18 0.96 0.96

(0.167) (0.149) (0.150) (0.140) (0.158) (0.286) (0.304) (0.344) (0.332) (0.34)

Model year 0.71 0.82 1.11 1.35 1.04 0.83 0.89 1.25 1.53 1.19

(0.37) (0.37) (0.31) (0.33) (0.32) (0.37) (0.37) (0.33) (0.35) (0.33)

Constant −1, 388 −1, 613 −2, 204 −2, 696 −2, 091 −1, 608 −1, 750 −2, 466 −3, 054 −2, 381

(754.9) (740.1) (616.8) (665.7) (645.2) (750.9) (737.4) (660.5) (696.3) (666.9)

Observations 344 376 394 403 404 344 376 394 403 404

R-squared 0.68 0.62 0.61 0.52 0.42 0.66 0.61 0.58 0.48 0.37

Notes: The dependent variable in each specification is the natural log of weighted sales counts. We define the weighted sales variable as

the number of weighted observations of each unique vehicle make-model-fuel type-body style combination by income group. Weights are

constructed based on InMoment weights representing national monthly model-level registrations. Each column in this table represents a

separate set of estimates by income group. Columns (1)–(5) include results using OLS and columns (6)–(10) show results using instrumental

variables. The variable Ln(Price) is the natural log of average transaction price, implying that the coefficient estimate for this variable is

interpreted as the average own-price elasticity of demand with respect to price. Gallons per mile is computed as 1 divided by the city/highway

average fuel economy rating. Horsepower/weight is a vehicle’s horsepower divided by its weight, measured in hp/lb. Footprint is a vehicle’s

wheelbase multiplied by its width, measured in thousand square inches. For the models in columns (6)–(10), we treat the natural log of

transaction price as endogenous and calculate instruments as the sums of cost per mile, horsepower/weight, and footprint of other vehicles

sold by the same manufacturer, the sum of the continuous characteristics of other vehicles sold by other manufacturers in the same body

style category, and the squares of each sum. Coefficient estimates for models for the lowest-income group (households that report an annual

income less than or equal to $55,000) appear in columns (1) and (6). Standard errors are clustered by vehicle model nameplate (e.g., Honda

Accord) and reported in parentheses.
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Table 4: Own- and Cross-Price Elasticities for Selected Nameplates

Vehicle Sales Price ($) Own Best substitute Cross Second best substitute Cross

Honda Civic (Gas-Car) 5,382 23,691 -5.16 Kia Forte5 (Gas-Car) 1.72 Hyundai Veloster (Gas-Car) 1.65

Toyota Camry (Gas-Car) 4,628 26,969 -5.28 Honda Accord (Gas-Car) 1.50 Chevy Impala (Gas-Car) 1.32

Honda CR-V (Gas-SUV) 5,631 30,508 -4.87 Toyota RAV4 (Gas-SUV) 1.29 Toyota RAV4 (Hybrid-SUV) 1.16

Toyota RAV4 (Gas-SUV) 5,319 30,514 -5.32 Honda CR-V (Gas-SUV) 1.17 Subaru Forester (Gas-SUV) 0.66

Ford F-150 (Gas-Pickup) 5,864 40,789 -5.00 Chevy Silverado (Gas-Pickup) 2.11 Toyota Tundra (Gas-Pickup) 1.81

Chevy Silverado (Gas-Pickup) 5,370 40,623 -5.04 Ford F-150 (Gas-Pickup) 2.05 GMC Sierra (Gas-Pickup) 1.85

Tesla Model 3 (BEV-Car) 1,117 56,096 -3.73 Chevy Bolt (BEV-Car) 3.92 Nissan Leaf (BEV-Car) 1.31

Tesla Model S (BEV-Car) 344 95,581 -2.96 Chevy Bolt (BEV-Car) 0.35 BMW 540 Series (Gas-Car) 0.28

Chevy Bolt (BEV-Car) 304 36,449 -3.96 Nissan Leaf (BEV-Car) 1.73 Tesla Model 3 (BEV-Car) 0.35

Tesla Model X (BEV-SUV) 290 105,015 -2.94 Tesla Model S (BEV-Car) 0.33 Land Rover Range Rover (Gas-SUV) 0.16

Toyota Prius Prime (PH-Car) 409 30,741 -4.47 Chevy Volt (PH-Car) 0.99 Honda Clarity (PH-Car) 0.63

Chevy Volt (PH-Car) 275 34,590 -4.41 Honda Clarity (PH-Car) 0.63 Toyota Prius Prime (PH-Car) 0.56

Notes: This table shows average own-price elasticities for a selected sample of nameplates and the average cross-price elasticities of their best

and second-best substitutes. For the vehicles in the first column, their best substitutes are the ones with the largest cross-price elasticity out

of all the vehicles in our sample. Similarly, their second-best substitutes are those with the second-largest cross-price elasticity. Own-price

elasticities reported in the Own column are interpreted as the percentage change in sales of a nameplate in response to a 1 percent increase

in its price. Each cross-price elasticity reported in the Cross columns is interpreted as the percentage change in sales of the substitute vehicle

in response to a 1 percent increase in the price of the nameplate defined in the first column. These elasticities are calculated based on

own-price elasticity estimates presented in Table 3, diversion fraction data, and equations (4) and (16). These are averages across all income

groups. Specifically, we apply our estimates and data to equations (4) and (16) by income group and vehicle, then take averages across

income groups for each vehicle. The terms in parentheses indicate the fuel type-body style combination. BEV and PH stand for battery

electric and plug-in hybrid fuel types, respectively.
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Table 5: Aggregate Price Elasticities

Panel A: New vehicle market price elasticity
Income group Aggregate elasticity

< 55k
−0.84
(0.11)

55–85k
−0.48
(0.06)

85–125k
−0.41
(0.04)

125–200k
−0.32
(0.03)

> 200k
−0.20
(0.02)

Average
−0.50
(0.03)

Panel B: Car-light truck elasticity matrix
Class Car Light Truck

Car
−1.60 0.82
(0.17) (0.06)

Light truck
0.51 −0.85
(0.05) (0.07)

Panel C: Gasoline-electric elasticity matrix
Fuel type Gasoline Electric

Gasoline
−0.53 0.03
(0.03) (0.01)

Electric
1.71 −1.91
(0.16) (0.41)

Notes: This table presents price elasticities aggregated to certain vehicle

classification levels. Panel A shows elasticities aggregated to the entire

new vehicle market for each income group along with their standard

errors. These elasticities are defined as the percentage change in new

vehicle sales as a result of a 1 percent increase in all new vehicle prices.

We compute these elasticities with own-price elasticity estimates from

Table 3, diversion fraction data, and equation (12). In Panels B and C,

columns represent changes in prices of a particular vehicle type and rows

represent changes in sales of a type. The category Light truck in Panel

B includes all SUVs, pickup trucks, and vans, and the category Electric

in Panel C includes both plug-in hybrid electric vehicles and battery

electric vehicles. The own-price elasticities along the diagonals are the

percentage change in sales of a vehicle type in response to a 1 percent

increase in the price of all vehicles that share that same type. The cross-

price elasticities along the off diagonals represent the percentage change

in sales of a vehicle type indicated by a row name of the matrix in

response to a 1 percent change in the price of all vehicles that share the

same type indicated by a column name of the matrix. We compute these

elasticities with own-price elasticity estimates from Table 3, diversion

fraction data, and equations (12) and (21). We bootstrap standard

errors with 200 random draws, which we report in parentheses.
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Table 6: Average Fuel Economy of EV Replacement Vehicles

Sample Average fuel economy

Full sample
30.2
(0.84)

Battery EVs only
27.3
(0.80)

Plug-in hybrid EVs only
33.1
(1.45)

Exclude Tesla Model 3
31.0
(1.05)

Tesla Model 3 only
28.0
(1.38)

Sport utility EVs only
24.8
(0.57)

Average fuel economy of gasoline vehicles 25.9

Notes: This table reports the simulated sales-weighted average fuel economy

of gasoline and hybrid vehicles that would have been purchased had prices

of all EVs been 1 percent higher. Each row besides the bottom represents

subsets of the sample of EVs. The row titled “Battery EVs only,” for example,

excludes plug-in hybrid EVs. We bootstrap standard errors with 200 random

draws, which we report in parentheses below each corresponding estimate.
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