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Abstract

Decisions with significant and long-lasting consequences can be influenced by conditions at the
moment of choice, such as weather. Using administrative data from an online retailer, we exam-
ine whether temperature and other weather variables affect the search and purchase of energy-using
durables, namely, air conditioners (ACs) and dryers. We observe more sales of ACs on hot days and
fewer sales of dryers on hot, windy days. We find no impact for appliances whose usefulness is not
affected by the weather. For AC, weather-induced searches and purchases are in lower-efficiency en-
ergy classes. Product search data allow us to look into the process leading up to purchase. Prospective
AC buyers search less intensively when the temperature is higher, and the opposite holds for buyers
of dryers when temperature and wind speed increase. Models of memory and attention can explain
these behavioral patterns. Understanding these dynamics is important for designing energy-efficiency
policies, given the energy needs of cooling technologies and their increased demand and usefulness in
a rapidly warming world.

Keywords: Projection bias; salience; energy appliances

JEL classification codes: D91, D12, L81



1 Introduction

Decisions that have future consequences are ubiquitous. Although traditional economics assumes that
individuals can correctly estimate future costs and benefits, evidence shows that decisions with large and
long-lasting consequences are heavily influenced by tastes, emotions, and circumstances at the moment of
choice (Busse et al., 2015; Simonsohn, 2010). Recent salience models (Bordalo et al. (2022), henceforth
BGS) offer a unifying framework for a wide range of deviations from standard economic theory, such as
projection bias (Loewenstein et al., 2003), reference dependence (K&szegi and Rabin, 2006; Kahneman
and Tversky, 1979) and framing effects (Bordalo et al., 2013). Specifically, BGS model attention as
influenced, bottom-up, by contrasting, surprising, or prominent stimuli.

We analyze a decision with long-lasting consequences, the purchase of an energy-using durable, and show
how it is affected by daily weather. We consider two types of appliances with significant impacts on
household energy consumption: air conditioners (ACs) and dryers. Using data from an Italian online
retailer, we investigate the impact of weather on the decision to buy and the search process leading up
to it. We focus on two main weather dimensions that may affect these appliances’ perceived usefulness:
average daily temperature and wind speed.

We find that higher daily temperature increases purchases of ACs and decreases those of dryers; higher
wind speed reduces dryer purchases but has no impact on ACs. Other dimensions of weather meaningfully
correlate with purchase likelihood: an index of discomfort, capturing perceived temperature and increasing
with humidity, affects purchases of ACs but not dryers. Consistent with these results, higher temperature
leads to a faster search process for ACs and a slower one for dryers. Temperature also impacts the energy
efficiency of ACs purchased and viewed, shifting users’ attention toward lower-efficiency products. We
find no effect of temperature or wind speed on the energy efficiency of dryers viewed or bought or on sales
of other types of appliances, such as washing machines or dishwashers. Our results are robust to using
various samples; to controlling for temporal and spatial patterns of variation in sales; to considering non-
linear effects of temperature. Finally, a survival analysis of the search process also produces consistent
results.

Our findings are consistent with a model of salience, adapted from BGS, that we propose. Weather affects
the perceived usefulness of the appliance and, through it, the likelihood of purchase. As the appliance’s
attributes related to its usefulness become more salient, other attributes, such as its energy efficiency, lose
prominence. These mechanisms have implications for the search process, which becomes faster and more
superficial when weather makes the perceived usefulness of an appliance more salient.

We examine potential alternative explanations for our results. Rational behavior may explain users’ be-
havior in several ways. First, customers could be already set on buying the appliance and weather just

influences the timing of the purchase, inducing them to "pull the trigger" on it. In this case, we would



observe a weather-induced intertemporal substitution of sales in our data. Second, weather may lead cus-
tomers to use the appliance and realize that it is broken. Under this scenario, our results would be driven
by appliance replacements. Third, weather may allow users to acquire new knowledge connected to the
usefulness of the appliance. Fourth, the purchase may address the need to urgently deal with the weather
conditions. Our findings could also be explained by rational learning about future temperatures or by a
general tendency to remain home, search, and buy under particular weather conditions. Finally, selec-
tion issues and the impact of heat on cognitive performance could also be potential drivers of the results.
Through a series of ancillary exercises and analyses, we provide evidence that our data are not consistent
with any of these mechanisms and instead further support salience as the key channel behind the impact
of weather on actual investment decisions.

Our analysis has limitations. First, we can only observe users on the retailer’s website. This setting allows
us to observe behavior under minimal demand effects, but our results can only speak of the effect of daily
weather on sales on the website, rather than on overall purchases on the market. Second, the retailer did
not provide us with data on prices. We address this limitation in two ways. We retrieve prices for a subset
of products in our sample through web scraping and price tracking services. In addition, we have data
on the promotions active on products and always control for them in the analysis. Third, our data does
not include any information on the supply side. We do not know how the stock of appliances in different
energy classes changed with the weather, nor whether the retailer placed certain products on sale more
prominently depending on the weather. We test for the presence of weather-related strategic behavior on
the part of the retailer, but our ability to explore this channel is limited. Finally, we have no proxy for
purchases’ welfare impact, such as the probability of returns, as in Conlin et al. (2007).

Our results are important from a policy perspective. ACs and dryers are expensive, with impacts on
residential energy use lasting up to 15 years. Space cooling and clothes drying are responsible for nearly
20 and 6 percent of residential buildings’ energy consumption, respectively (IEA, 2018; Bendt, 2010).
AC generates additional impacts on global warming due to its emissions of greenhouse gases but is also
a critical tool in adapting to rising global temperatures, which explains its growing adoption rates (Colelli
et al., 2023). Understanding whether decisions with such large and long-lasting environmental impacts
are subject to bias is important to designing policies that maximize consumer and social welfare. Effective
policy response, however, requires identifying which bias is at work. Our results suggest that efforts
to make the information on AC energy efficiency salient should be highest on hot days when weather
increases sales of this type of good. Policymakers should also protect consumers from marketing strategies
exploiting salience biases.

This paper’s results contribute to the literature on projection and salience bias in consumer purchases.

Several studies show the impact of daily weather or pollution on consumers’ decisions (Conlin et al.,



2007; Busse et al., 2015; Acland and Levy, 2015; Buchheim and Kolaska, 2017; Chang et al., 2018;
Qin et al., 2019; Liao, 2020; Lamp, 2023) and life choices with long-lasting consequences (Simonsohn,
2010).! Compared to these papers, our study has unique data on the search process that allows us to
analyze decision-making from the start. By exploiting these search data and information on appliance
energy-efficiency classes, our paper provides additional evidence on the process behind salience-induced
decisions. Moreover, the available data on both AC and dryers allow us to test the broader salience-induced
effects of weather on sales. As in Busse et al. (2015), we document that salience and projection bias can
lead to a change in the sale probability in both directions. He et al. (2022) specifically analyzed the effect
of weather on the decision to purchase ACs and found that deviations from comfort temperature increase
the likelihood of purchasing Energy Star models. We improve on this paper by providing evidence on
search; by using a more precise indicator of energy efficiency, i.e., EU energy classes; and by analyzing
the impact of weather at finer temporal granularity (weekly).

Studies typically pit salience and projection bias as two alternative mechanisms. However, despite agree-
ing that both are behind the evidence they present, they cannot ultimately distinguish empirically between
them. Recent theoretical developments in the salience literature overcome the distinction between these
two mechanisms by making projection bias a manifestation of the broader effects of salient stimuli on
attention and choice (Bordalo et al., 2022). We apply this framework to explain our findings. In addition,
our analysis of search provides the first evidence, to the best of our knowledge, of how bottom-up salience
affects how individuals seek and attend to information.

The remainder of the paper is organized as follows. Section 2 describes the field where the analysis is
conducted, Section 3 provides a theoretical framework for our findings, Section 4 describes the empirical
approach and presents results for AC and dryers, Section 5 discusses possible alternative mechanisms and

Section 6 concludes.

2 Setting and data

We use data from a large Italian online retailer. We can access consumers’ search and purchasing data
and examine the decision-making process and its outcomes. Although only about 16 percent of appliance
sales occurred online in Italy during 2018, online channels played a crucial role in purchase decisions: 74
percent of buyers of large appliances initiated their search online (Flavidn et al., 2020). Restrictions due to
the COVID-19 pandemic have caused a 64 percent increase in online sales in Europe.? Reopening physical

stores has not restored online sales to their prepandemic values. These figures highlight the relevance of

! Projection bias is documented not only in the field but also in experimental settings (Augenblick and Rabin, 2019).
2 Source: Eurostat, available at https://ec.europa.eu/eurostat/statistics—explained/index.php?
title=E-commerce_statistics_for_ individuals.
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the online setting now and in the future.

The penetration rates of ACs and dryers in Italy are still limited, though rapidly growing. In 2021, only
48.8 and 15.2 percent of Italian families owned an AC and a dryer, respectively ISTAT (2022). These
figures were 29.4 and 3.3 percent in 2013 ISTAT (2014). The life cycle is estimated to be around 15
years for ACs and 13 years for dryers. Therefore, we expect that in our data, these appliances are mainly
purchased for the first time.

Our data comprise the full navigation history of 112,428 website users between June 1 and October 16,
2018. We identify customers primarily through their registration ID. Users making a purchase must be
logged in to the website. Instead, simply navigating the website does not require users to be registered
or logged in. In these cases, we identify users through cookie-based tracking. Cookies are linked to the
computer’s [P address and browser. This implies that we cannot identify as the same user someone who
visits the website from different computers or browsers or clears cookies. We also cannot distinguish if
multiple individuals view the website from the same shared computer. These limitations primarily affect
our ability to follow users’ full navigation history if they are not logged-in to the website when browsing,
hence our analysis of search behavior.?

For each page viewed by a user during the study period, we have information on the type of product viewed
(AC, dryer, washing machine, dishwasher, refrigerator, freezer), the type of page (e.g., product, listing, or
cart), and the number of seconds spent on the page. We also know whether the user ordered the product.
We match the navigation data with product data obtained from the retailer. We have information on the
energy class for each model, identified by a unique product identifier. The EU energy label is displayed
on each product page and lists the energy consumption in kWh and the energy class (Figure A.1). En-
ergy classes are the results of engineering estimates based on the appliance’s size, energy consumption,
and other parameters and range from D (least efficient) to A+++ (most efficient).* Energy classes are an
important tool for consumers to gauge energy efficiency, given the complexity of energy consumption in-
formation expressed in kWh (d’Adda et al., 2022; Houde, 2018). Labels based on similar energy-efficiency
classes are widely used worldwide, such as in China, India, Brazil, and South Korea.

Our data include other product information. For ACs, we know whether they are portable or fixed. For
all appliances, we have information on active promotions on the day of navigation, such as free delivery
or zero interest rate for payments in installments. The retailer data do not include product prices. We
retrieved this information to the best of our ability through web scraping between June and July 2022. We
used product codes to collect current prices from the same online retailer or other major retailers for all

the products still on the market in 2022. We gathered price information for 220 AC models (out of 517 in

3 See d’Adda et al. (2022) for more information.
4 The new EU energy label, introduced in 2021, relabeled energy classes on a scale from G (least efficient) to A (most efficient)
without changing how efficiency is calculated.



our sample) and 168 dryer models (out of 282). These prices are used to control for the relative price of
products by energy class. Even if the price levels have changed in two years, the relative prices of products
in different energy classes should not differ. We provide suggestive support for this claim by collecting
2018 prices through an online tracker. They are only available for 22 AC models. Finally, for ACs, we
use web scraping to collect information on their size, proxied by the number of external and internal units
associated with each product code, for the same sample of models for which we collect 2022 prices.
Appendix Table A.1 provides the average prices in 2022 by energy class. Higher energy efficiency cor-
responds to higher prices, as expected. For the limited sample of ACs (22) for which we have both 2022
and 2018 prices, the Pearson correlation is 0.80. These statistics validate the use of 2022 prices when we
specifically analyze purchases of appliances in the different energy classes.

We geolocate IP addresses to identify users’ municipalities during browsing, which allows us to match
users with weather data. We collect mean temperature, wind speed, and rainfall for each day and mu-
nicipality. The source for meteorological data is the E-OBS Temperature and Precipitation Data Sets
(Cornes et al., 2018), an ensemble dataset available on a 0.1- and 0.25-degree resolution. We downscale
the gridded data to a municipal level, averaging each municipal centroid’s four nearest gridded points. In
addition, from Mistry (2020), we retrieve information on the thermal discomfort index, which includes

different meteorological drivers of discomfort, such as temperature and humidity.’

3 Theoretical framework

Recent contributions to the theoretical literature on salience attempt to interpret within the same framework
results previously explained by separate models, such as projection bias, present bias, reference-point de-
pendence, and framing effects. The critical insight of the unified model proposed by BGS is that attention
is influenced, bottom-up, by salient environmental stimuli. Contrast with surroundings, surprise relative
to prior experiences, and prominence within the decision context determine salience. Salience can distract
decision-makers from their goals or other relevant choice attributes. In our setting, high temperature or
other weather variables vary the salience of the attributes linked to the appliances’ usefulness. Weather
thus affects the likelihood of sales of ACs and dryers through its impact on their perceived usefulness.

We adapt the framework proposed by BGS to formally explain how weather conditions affect the users’
valuation of the two appliances. We denote the K > 1 attributes of ACs or dryers as (aq, ..., ax) and
distinguish between those whose salience is influenced by environmental stimuli, belonging to subset P,

and those not directly influenced, belonging to subset /. The intrinsic valuation of the good is:

> The dataset on discomfort has a smaller geographical coverage compared to that of temperature, wind, and precipitation. For
six municipalities, we have missing information on discomfort.



keP kel
The first term captures the valuation of attributes (a)ep, the second term captures the valuation of fea-
tures (ay)res, and wy, and Wy, represent the distortions to decision weights (directly and indirectly) induced
by salience. a} represents the database of normal attribute values from memory. In our context, the promi-
nence of an attribute is triggered by variations in outside daily weather that affect the decision weight
attached to it (7). A crucial attribute that is part of the subset P in the first term of Equation (1) is the
usefulness of the appliance (the ability to cool a room or dry clothes). Heat distorts upward the valuation
of this attribute for AC, while cold temperature and lack of wind distort it upward for dryers. Therefore,
we expect that higher temperature increases the probability of purchasing an AC and lower temperature
and higher wind speed increase the probability of purchasing a dryer.

We assume weight normalization as in Bordalo et al. (2012, 2013), which implies that the attention devoted

to a salient attribute is diverted from nonsalient ones.

Zwkﬂ'k—i-zmkﬂ'k:l (2)

keP kel

When it is warmer, the high salience of the usefulness of the ACs obscures their other attributes, such
as energy efficiency, that are part of the subset  in the second term of Equation (1). A similar effect
is triggered by lower temperatures and higher wind speed for dryers. Correspondingly, when weather
makes the usefulness of these appliances less prominent, other attributes become relatively more relevant
and receive more attention. These other attributes may concern price, energy efficiency, or other product
dimensions. However, it is hard to identify and test which attributes, among the many possible ones,
become more salient due to this process.

According to our model and empirical tests, the presence of a correlation between daily weather and pur-
chases is evidence of biased decision-making. Our analysis will, therefore attempt to rule out alternative
rational explanations for a correlation between weather and sales, such as intertemporal substitution, re-
placement, learning or urgency of purchases. What our model does not claim is that decision-making at
optimal weather is unbiased and that we can quantify the magnitude of the bias as weather moves away

from it.



4 Results

4.1 Descriptive statistics

The total sample of users of the retailer’s website over the study period includes 112,428 individuals who
viewed at least one appliance page (AC, dryer, washing machine, dishwasher, refrigerator, freezer) in the
study period. A subset, 48,076, searched for products over multiple days. About 12,984 users viewed
an AC page and 12,648 a dryer page at least once. Of these viewers, about 55 percent navigated the
website on more than one day in the period (Table 1). We observe 2,250 sales of ACs and 3,424 of dryers,
respectively. 1,409 and 2,090 of these AC and dryer sales, respectively, occur after more than one day of
search.

Table 1 presents the summary statistics. On average, the time between a buyer’s first entry on the website
and the moment of purchase is 3.4 days for ACs and 5 days for dryers. This time interval does not
correspond to the number of days of searching, as days of search may not be contiguous. On average,
buyers of ACs search for 8 minutes daily and view 1.6 products over the search period, and buyers of
dryers search for 9 minutes and view 1.4 products. Nonbuyers search much less intensively: average daily
minutes of search shrink to 2 and 3 minutes, and the number of products viewed decreases to 0.9 and 0.8
for AC and dryer nonbuyers, respectively. The differences in search time and intensity between buyers
and nonbuyers are statistically significant.®

Figure 1 (panel a) plots the average daily temperature in Italy over the study period, and Figure 2 (panels
a, b, ¢) shows the average daily temperature across municipalities over three consecutive Wednesdays
within our study period, as an example. These figures show that we can leverage variability across time
and space. It is not uncommon for heat waves to hit the north (or the south) and then move down (or up)
the peninsula. Moreover, large variations in altitude or distance to the sea over small distances imply that
municipalities within the same region and near each other may be exposed to different temperatures. We

find high levels of variation for wind speed as well (Figure 1, panel b and Figure 2, panels d, e, f).

4.2 Sales

We present the results on the impact of weather on sales. Before discussing each result, we describe the
empirical strategy behind it. We estimate the effect of weather on AC/dryer sales at the municipality level

using the following specification:

Yme = P Temperature,,; + hy + gm + Eme 3)

6 All p-values of the two-sided t-tests are < 0.000.



Yme 18 @ count variable equal to the total number of AC/dryer sales on the retailer’s website in municipality
m and day t. Temperature measures the average temperature for municipality m on day ¢. g, are munic-
ipality fixed effects, and h,, are week fixed effects. We cluster standard errors at the municipality level.
The sample includes 3,899 Italian municipalities, about half of the total number of municipalities. The
analysis period is June 1, 2018 to October 16, 2018.

The results are shown in Columns 1 and 4 of Table 2. A higher mean daily temperature significantly
increases the purchases of ACs and reduces those of dryers. Given that the average number of AC and dryer
daily purchases in municipalities are 0.004 and 0.007, a 1 degree C increase in temperature is associated
with a 7 percent increase in the number of AC purchases and a 6 percent decrease in dryer purchases.
These are statistically significant variations. Results are consistent with Busse et al. (2015), where the
temperature has the opposite effect on purchases of convertibles and four-wheel drive.

Our main specification estimates the following individual-level equation:

Yimt = BlTempeTaturemt + BgPromot + hw + gi + €imt (4)

Yime 15 an indicator variable equal to 1 if individual ¢ located in municipality m purchased an AC/dryer in
day t. We consider all days when user i is on the website. Temperature is again the average temperature
in day ¢ and municipality m, Promo; is an indicator variable for the presence of any promotions in day
t on at least one of the ACs/dryers viewed by the user, g; are individual fixed effects, and h,, are week
fixed effects. The latter should absorb the average trend in purchases at the weekly level. We assume
this seasonal variation is not area-specific but common for all municipalities in the dataset. Moreover, we
believe that week fixed effects adequately absorb the temporal average pattern of purchases, given that, as
indicated in Appendix Figure A.2, purchases do not follow a regular pattern within the week. We relax
these assumptions in the robustness analysis. We cluster standard errors at the municipal level.

The sample includes the users of the retailer’s website who viewed at least one appliance page and accessed
the website more than one day in the period. This specification’s results, which rely on within-individual
variation in outside temperature, are displayed in Columns 2 and 5 of Table 2. They are consistent with
the municipal-level results. Users are more likely to buy an AC on warmer days, and the opposite holds
for dryers.

This finding is confirmed when we focus on the sample of AC and dryers viewers (columns 3 and 6 of Table
2). This sample is restricted to multiple-day users who viewed at least one AC or dryer page. According to
this specification, if the temperature increases by 1 degree C, the incidence of ACs purchases increases by
0.23 percentage points, corresponding to 6 percent over the sample mean. The same increase in average

daily temperature reduces the incidence of dryer purchases by 0.16 percentage points, or 3 percent over



the mean.”

These findings are confirmed in Figure 3, where we plot the daily ratio of purchases to total views of any
type of appliance on the website as temperature increases, for AC (panel a) and dryers (panel b). This ratio
grows with temperature for ACs but decreases for dryers.

As discussed in Section 3, salience theory posits that temperature may affect the likelihood that users
purchase ACs or dryers because it affects the salience of their usefulness. To support this claim, we
test if other dimensions of weather meaningfully affect purchases. We consider two additional variables:
discomfort and wind speed. As mentioned, discomfort captures perceived temperature and depends on
temperature and other factors, such as humidity. Higher perceived discomfort should make more salient
the usefulness of AC. Lower wind speed is expected to increase the time that drying clothes outdoors
takes, thus increasing the salience of the usefulness of dryers.

We run Equation (4), replacing temperature with the mean discomfort index at the day-municipality level
(Table 3, Columns 1 and 2). Higher discomfort increases the likelihood that users purchase an AC on the
website but does not affect dryer sales. We think that discomfort should not decrease dryers’ perceived
usefulness because it correlates with higher humidity. In Columns 3 and 4, we consider wind speed and
find that stronger winds reduce dryer purchases but do not affect ACs. Although discomfort strongly cor-
relates with temperature (Pearson correlation rho = 0.913), wind speed and temperature do not show a
strong correlation (rho = -0.091). Therefore, we run a specification with both wind speed and temper-
ature, excluding discomfort (Columns 5 and 6). Temperature alone influences AC purchases, and both
higher temperatures and stronger wind negatively and significantly affect dryer purchases. In light of its
explanatory power beyond that of temperature, in what follows, we include wind speed in all regressions

examining dryer purchases and search.’

4.3 Search

We have seen that variations in daily weather affect sales on the website. We now examine whether these
effects are reflected in changes in the search process leading up to them. We first test whether temperature
affects the viewing of AC or dryer pages on a given day. Consistent with the analyses on purchases, we
first run a specification at the municipal level and then provide results at the individual level.

At the municipality level, we run Equation (3), where y,,; is a count variable equal to the total individuals

who viewed an AC/dryer in municipality m and day z. The results are displayed in Column 1 of Table

7 We rule out that the opposite effects of temperature on sales of ACs and dryers are due to substitution between the two
appliances, as only 0.8% of the 112,428 users view both ACs and dryers, and thus may consider buying both appliances.

8 All the results from the analysis presented in what follows are confirmed when we do not include wind speed in the dryers’
specifications. Results, are available upon request.
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4. Panel A refers to ACs and Panel B to dryers. We find that temperature does not influence the search
intensity of either appliance and that wind speed does not influence the search process of dryers.

We then run Equation (4), where the dependent variable, ¥;,,;, is an indicator equal to 1 if individual ¢
located in municipality m viewed at least one AC/dryer page in day ¢. Column 2 of Table 4 shows results
for the full sample of users. Consistently with the municipal level specifications, neither temperature nor
wind speed affects views. Although we cannot check whether the composition of viewers changes as
temperature increases, the limited influence that we find of temperature and wind speed on the likelihood
of search for both appliances alleviates selection concerns. We discuss this point in Section 5.

To further examine the search process, we test whether daily weather affects daily search patterns. We run
Equation (4), where the dependent variable, ¥;,,.¢, 1s the number of distinct ACs/dryers viewed in a day and
the seconds spent viewing AC/dryer pages in a day. We focus on the sample of viewers. Daily weather
has no significant impact on the number of distinct items viewed (Column 3) or seconds spent on product
pages (Column 4) for both appliances.

For AC, this null effect may result from two opposite temperature impacts on the search. On the one hand,
higher temperature increases the likelihood of purchasing an AC and, through this channel, the search
depth. As we saw in Table 1, prospective buyers search more intensively and view more products than
nonbuyers. On the other hand, higher temperatures might make the search process faster and less thorough
in terms of the number of different items viewed. The opposite would hold for dryers: higher temperature
and wind speed may reduce search time and intensity through their negative effect on the likelihood of
purchase and increase them by inducing users to search longer and more intensively, resulting in the
observed null effect.

To substantiate these claims, we provide two further pieces of evidence on the impact of weather on the
speed at which users arrive at a purchase decision and the number of items they view in the process. First,
we analyze the effect of daily temperature on the number of times the same AC/dryer is revisited daily. A
revisit happens when users view a product that they had seen before during the day. Revisits characterize
the end of the search process, when users focus on a few products they may consider buying and switch
between them to compare them in more depth. We define daily revisits as the number of times a user views
the same product, averaged over all products (ACs or dryers) viewed by the user on the day. The results in
Column 5 indicate that a higher temperature on a day is associated with a significantly higher number of
revisits among AC viewers and a marginally lower number among dryer viewers on that day. The result
is consistent with the effect of temperature on purchases: for ACs, higher temperature pushes the search

process toward its final stage, which takes up a larger share of the overall search. The opposite holds for
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dryers, whose purchases decrease as temperature increases.’

Second, we analyze the duration and intensity of the search as a whole for buyers. In particular, we test
whether the average temperature and wind speed buyers experience over their navigation period affect
their search in terms of total search duration and the total number of distinct items viewed. We estimate

the following specification:

Yim = B1Temperature,, + hy, + im &)

where y;,,, measures the number of days elapsed between the day the user first entered the retailer’s website
and the day of purchase of the AC/dryer or the number of distinct ACs/dryers viewed in this period. The
temperature is the average temperature over the period between the day the user first entered the retailer’s
website and the day of purchase of the AC/dryer. The sample only includes buyers.

Higher temperature leads to shorter search periods (Column 6) and fewer products viewed overall (Col-
umn 7) for ACs but has the opposite effect for dryers. These results confirm our hypotheses that higher
temperatures make the search process faster and more superficial for ACs and longer and more intense for

dryers.

4.4 Energy efficiency of sales and views

Next, we break down the impact of weather on sales and views by energy class. A first inspection of the
data reveals that ACs purchased on the website belong, on average, to lower classes than those viewed. For
example, let’s take the sample of all ACs viewed at least once and split them into energy-efficiency classes.
A quarter of ACs viewed belong to class A or less.!” However, within the sample of ACs purchased, 32
percent belong to group A or less (Figure 4). We detect the opposite relationship for dryers, with purchased
dryers having higher energy efficiency than those viewed. The figure indicates that in the sample of viewed
dryers, 19 percent belong to the most efficient class, A+++; those purchased are 26 percent.

We turn to regression analysis to study the effect of weather on the class of the products sold. Evaluating
the effect of weather on buying an appliance in a specific energy class from the website requires that we
control for other features of the product. For instance, as demonstrated in Table A.1, energy-efficiency
class and prices are positively correlated, meaning that more energy-efficient products tend to be more

expensive. We build a dataset where each observation is a product code, or model, p viewed by individual

% That the increase in the number of revisits does not entail an increase in search time can be explained by the fact that revisits
take less than first product views on average: 61 and 68 seconds for revisits versus 85 and 99 seconds for first views for ACs
and dryers, respectively (both p-values = 0.000).

10 In our sample, very few appliances fall in energy classes lower than A. Therefore, we group products in classes below A
together with the A class.
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i on day . Products viewed multiple times on the same day appear only once per day in the dataset. For
each product, the data include some characteristics, including the 2022 price. We then run the following

specification at the individual-day and product code level.

yicpmt = 51T€mperatur€mt + ﬁ2PriC€p + 63Xp + hw + gi + Eipmt (6)

Yipme 18 an indicator variable equal to 1 if individual ¢ located in municipality m purchased an AC/dryer
with product code p that belongs to efficiency class ¢, where c are the classes A or less, A+, A++ and
A+++; Price, is the price of product code p, retrieved in 2022, as described in Section 2. In the AC
specification, X, is a vector of product characteristics, such as the number of external and internal units
and whether the AC is portable. The sample includes users who viewed an AC/dryer.!!

Panel A of Table 5 displays the effect of temperature on the efficiency class of ACs sold on the website.
Higher temperature shifts the distribution of sales toward products in the lowest class (A or less).!> Panel
B presents results for dryers. We find no strong evidence of an effect of temperature or wind speed on the
likelihood of buying dryers in any energy class.

To check the validity of these last results and ensure that the different samples and units of observation
are not affecting them, we use this product-individual-day level dataset to replicate our main specification
that employed an individual-day level dataset. The positive and significant effect of temperature on the
probability of AC sales in any energy class is confirmed (Appendix Table A.2, Column 1, Panel A).
Similarly, the effect of temperature and wind speed on dryers sold in Panel B is consistent with the findings
in Table 2.

We also estimate product views by class, using Equation (6), where y; ., is a dummy variable equal to 1
if the AC or dryer viewed by individual 7 in day ¢ belongs to one of the four energy classes. Panel A of
Table 6 shows the results of this analysis for ACs. The higher temperature takes viewers’ attention away
from high-efficiency products. In particular, higher temperatures increase the probability of viewing items
in low-efficiency classes, A or less and A+, and decrease the probability of viewing ACs in the A++ class.
Panel B displays the effects of temperature and wind speed on dryers’ energy class. We find no effect of
weather on the different classes, except for A or less.

Overall, search and purchase decisions for ACs are consistent in that we observe a qualitatively similar

shift away from high-efficiency classes and towards low-efficiency ones in response to a higher tempera-

' The number of observations in this individual-day-product dataset is smaller than in the individual-day one for three main
reasons: users view few products on average, as shown in Table 1; the former dataset considers only days when users viewed
an AC/dryer, but the latter includes all navigation days; and prices are not available for all products.

12 He et al. (2022) analyzes the effect of temperature on Energy Star AC purchase. They find that the probability of such a
purchase increases with a temperature above 22 °C. Given that 75 percent of their transactions concern Energy Star ACs, we
think our results are not at odds with their findings in the US context.

13



ture. These findings are consistent with the theoretical framework described in Section 3. ACs’ attributes
related to being an effective remedy against heat become salient when the temperature is high. This
leads to other attributes, such as their energy efficiency, receiving relatively less attention during hot days.
Inattention to operating costs is considered one of the behavioral biases that constrain the adoption of
energy-efficient appliances and vehicles (Allcott and Taubinsky, 2015; Gerarden et al., 2017; Allcott and
Knittel, 2019). During hot days, neglect of energy costs increases because of the salience-induced effect
of temperature. This behavioral bias affects the entire search process leading to a sale.

For dryers, the temperature appears to have a weaker influence on the salience of the energy classes. This
result is consistent with the model’s prediction that when the temperature is high, the ability to dry clothes
may become less salient for individuals. However, it is not clear which other attributes become more
salient as a result.

Studies have attempted to distinguish salience from projection bias. Given an intertemporal choice frame-
work, whereby an agent receives utility from consuming a good from time ¢ until period T, projection bias
is defined as a situation where the agent’s future utility is influenced by the state at time 7 (Loewenstein
et al., 2003). A consumer’s decision is not optimal because she employs current tastes to predict future
tastes. BGS explain projection bias as resulting from salience-induced attention and thus include it in their
framework, making the debate between salience and projection bias redundant.

However, our results can speak to a finer distinction for projection bias in the behavioral biases literature:
between utility and states. The former refers to a situation where agents correctly anticipate the future
states but erroneously predict the utility they will receive by consuming the good in that state. The latter
captures mistaken beliefs about how the world will look in the future, with agents overestimating the
likelihood that future states resemble the current one.

We argue that projection bias of states implies that higher temperatures on a day should lead users to
believe that they will use an AC more and a dryer less because hot days will be more frequent. For ACs,
increased predicted usage comes with increased predicted running costs. Therefore, we would expect
more, rather than less, attention to energy efficiency if the primary mechanism were projection bias of
states. Our results that temperature shifts AC views and purchases away from high-efficiency classes are
instead in line with projection bias of utility, whereby consumers are affected by mistaken beliefs of the

utility derived from using the AC.

4.5 Robustness

We check the robustness of our results along different dimensions.
Nonlinearity of temperature effects. We estimate the effect of temperature using a more flexible spec-

ification that allows heterogeneous effects across temperature bins. We replace daily temperature with
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2-degree bins in our main specification on appliance purchases. Appendix Figure A.3 shows the regres-
sion results graphically. Consistent with the main findings, higher temperature increases the likelihood
of AC purchases and decreases that of dryers. Conversely, if we add squared temperature to our main
specification, the coefficients of the temperature terms turn nonsignificant (Appendix Table A.3). We thus
reject the hypothesis of a nonlinear relationship between temperature and AC/dryer purchases.
Event-history analysis of the search process. We adopt a more flexible way to model the search pro-
cess by performing an event-history analysis.!> We focus on buyers and ask whether the likelihood that a
purchase occurs on the first, second, or n-th day of the search is affected by temperature on that day. This
analysis confirms that higher temperature leads to faster purchases for ACs and slower ones for dryers
when temperature enters the analysis linearly, and we use temperature bins (Appendix Table A.4). The
estimates in Columns (1) and (3) indicate that a temperature increase by one degree Celsius is associ-
ated with a 3.5 percent increase and an 8.4 percent decrease in the likelihood of buying an AC or dryer,
respectively, on a day among buyers, conditional on not having made a purchase yet. Appendix Figure
A.4 displays the results of this analysis for a selected subset of temperature bins. It shows how the share
of buyers who still have not made a purchase changes throughout the search. It drops on the first day,
consistent with the large share of buyers who purchase on the same day as they start their search, and then
decreases at a slower rate as the number of days of search increases. Higher temperatures are associated
with higher drops in the early portion of the survival curve among AC buyers and lower drops among
buyers of dryers. These results are consistent with our regression analysis of purchases and search.
Examining the role of prices. The impact of temperature on purchases might be due to the retailer
changing its prices as the weather gets hot. Or, more generally, the seasonal trend in temperature may be
correlated with seasonality in prices, and our temperature effects may, therefore, be capturing the effect of
prices. Our empirical strategy addresses this concern in two ways. First, we identify temperature effects by
exploiting local variations, while prices are set at the national level. Second, the inclusion of the "Promo"
dummy in Equation (4) controls for possible promotions that the online retailer may strategically launch
during hot days. In addition, below we conduct additional analysis to show that our results are robust
when we control for prices (under the limitations of price data availability already discussed).

We begin by exploiting the data on the daily price of products that we retrieved for 2018 on a subset of
22 ACs in our sample to examine the relationship between daily temperature and price (Appendix Figure
A.5). An exploratory analysis indicates a positive relationship between temperature and price. Considering
the small sample size, we find suggestive evidence that prices increase on average by 4.2 Euro for each

additional degree of temperature.'* Investigating the reasons for this would be beyond the scope of this

13 We use a logit-hazard model where the time indicators and the covariates are associated with the logistic transformation of
the hazard (Singer and Willett, 1993).
14 The coefficient of temperature is statistically significant at the 1 percent level. Results are available upon request.
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paper. However, the price increase when the temperature rises implies that users who purchase an AC on
a hot day do so at greater expense than on a cooler day.

Next, we check whether our results are robust to controlling for price.!> The results, presented in Column
2 of Appendix Table A.2, suggest that the effects of temperature and wind speed on the probability of
purchases are robust to including current prices. We also further explore the role of promotions. Rather
than including an indicator for whether a promotion was offered on any of the ACs/dryers during the day
in our user-level sample, we include a set of dummies for the specific promotions targeting the different
products in the product-level sample. Among these are promotions that try to generate a sense of urgency
in the users and that the online retailer may strategically launch during hot days. The coefficients of
temperature and wind speed are robust to the inclusion of a complete set of promo dummies (Column 3)
or to controlling only for the Promo impatience dummy.

We may worry that other retailers strategically place offers on AC/dryers depending on daily temperature,
affecting the behavior of users in our dataset. We do not observe offers on ACs or dryers of other retailers,
so we have no data to directly test the relevance of this concern. However, the fact that our results are con-
sistent when we include (Column 3) or exclude (Column 1) the promotions applied by our partner retailer
suggests that unobserved promotions by other retailers may similarly not exert a significant influence on
the behaviors that we observe in our data.

Robustness to alternative specifications. We test alternative specifications by changing the set of controls
included in the regression and the analysis sample.

First, we make more stringent assumptions on the temporal and spatial pattern of purchase variation.
Specifically, we replace week fixed effects with province-by-week fixed effects to allow the weekly vari-
ation in purchases to differ across provinces, which corresponds to NUTS3 geographical units (Appendix
Table A.5, columns 1 and 2).'¢

In an alternative specification, we allow for within-week variation in purchase patterns. If individuals have
more time for shopping, including online shopping, during weekends, using week fixed effects would not
capture this pattern. Therefore we add weekend fixed effects to our main specification (Appendix Table
A.5, Columns 3 and 4). The results remain stable to the alternative specifications.

Second, we test the sensitivity of our results to different definitions of the sample. In our main specification
(4) with individual fixed effects, the sample includes only users who visit the website on multiple days.
However, 57% of viewers appear only for a single day in the database (Column 1 of Table 1). As a

robustness check, we run that specification without individual fixed effects, on the sample that includes

15 As described in the analysis, we use the information on current product prices retrieved in 2022. However, they are shown to
be highly correlated with prices at the study time.

16 We include province-by-week fixed effects, rather than municipality-by-week fixed effects, because our main weather vari-
able is municipality-time specific. The latter approach would capture most of the variability we exploit in the analysis.
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users from both single and multiple days (Appendix Table A.6 Columns 1 and 2). Our results are robust
to changes in the analysis sample and the specification used. The coefficient of temperature on purchases
of ACs in Column 1 is positive and statistically significant, albeit smaller than our main specification.
Columns 3 and 4 report the estimates of a specification that does not employ individual fixed effects on
our preferred sample of users with multiple observations and find similar results.!” This implies that the
impact of weather on users buying on the same day as we observe them entering the website is similar to
that of users navigating on multiple days.

The sample of buyers in our main specification also includes individuals who purchase more than one
appliance of the same type in the period.'"® As a robustness check, we drop from the sample multiple
transactions and keep only the first purchase. The results are robust (Table A.7).

Energy class of products viewed and purchased. Finally, we test whether our results on the energy class
of viewed products are robust to different ways to define them. We analyze the effect of temperature on
the class of the first product viewed in the day or the class of the least or most efficient products viewed
during the day. We find results consistent with previous findings (Appendix Table A.8). Temperature tends
to lower the class of ACs but not dryers. During hot days, the class of the first AC, least efficient AC, and
most efficient AC viewed are lower.

5 Alternative mechanisms

Salience is consistent with all the evidence that we collect using our data: the effect of temperature on the
likelihood of purchase of AC and dryers, the additional effect of wind speed on dryer purchases, and the
impact of temperature on the energy class of purchased ACs. In addition, we show how salience works
through the search process in generating decision outcomes. Neglecting nonsalient and complex attributes
helps explain why the search process is quicker and more superficial for ACs, yet the opposite holds for
dryers. The reduced attention paid to the energy efficiency of ACs at high temperatures is also reflected in
the time spent viewing products in different classes during the search process.

We consider two possible alternative explanations for our results and discuss the evidence related to each.

17 This should alleviate concerns related to our potential limited ability to track users as they navigate on the website on multiple
days.

18 Multiple purchases are primarily due to issues with the initial order, such as problems with the payment method (e.g., prepaid
card without enough credit) or delivery. See d’Adda et al. (2022) for further details.

17



5.1 Rational behavior

Users’ behavior may be rational. They may already consider buying an appliance, but they may not be
perfectly aware of the value they place on the appliance. If so, it would be rational for them to wait to
actually buy until the value of the appliance to them is perfectly revealed, thanks to daily weather. In the
case of ACs, a hot day may make people realize that no other adaptation behavior —using a fan, letting
air circulate in the house, etc.— is sufficient to make the heat bearable; or they may already own an AC
and realize that it is broken when turning it on on a hot day; or they may be monitoring daily variations
in prices and exploit discounts present on hot days. For dryers, cooler and damper weather may have the
same effects. In all these cases, weather affects the timing of a purchase that would ultimately take place.
In other words, weather induces users to "pull the trigger" on a purchase that they were going to make
anyway.

We conduct a set of exercises to exclude that any of the above instances is the explanation of our results.
First, we check for the presence of intertemporal substitution. If weather only affects the timing, but not
the likelihood of a purchase, we should observe that temperature induces substitution across days in the
number of sales. For instance, if warm weather two days ago encourages someone to purchase an AC on
that day, then they would not purchase it today, even if it is a hot day. Similarly, if they bought an AC
today because it is hot, then they will not purchase it in two days when it is hot again. A similar reasoning
holds for dryers. We test for intertemporal substitution in sales by including 15-day temperature lags in
our main specification.!® If an intertemporal substitution occurs, we would expect the coefficient at time
0 to be equal in magnitude but opposite in sign to the sum of the lagged coefficients. This is not what
we find: the lagged coefficients are both positive and negative both for Acs and dryers (Appendix Figure
A.6). Similarly, the effect of the current temperature on purchases is not accompanied by a corresponding
opposite effect of temperature in subsequent days. Based on this evidence, we exclude that our results
simply capture the effect of temperature on the timing of purchases by people already considering buying
an AC or a dryer. Temperature changes the likelihood of purchases rather than only shifting when people
buy the appliance.

Second, we explore the possibility that users already own ACs, but realize that their systems do not work
only when a hot day comes along and they turn the AC on. Our results would thus be explained by the
probability of replacing an AC being higher on hot days because that is when users discover a malfunction.
We believe that this is not the case for two reasons. First, as mentioned, the penetration rate of AC in Italy
is still limited. Recall that the penetration rate of AC was 48.8% in 2021 and 29.4% in 2013. Moreover,
the average lifespan of an AC is between 10 and 30 years (Litardo et al., 2023). It is therefore unlikely

19 This strategy follows Busse et al. (2015). We use fewer lags, 15 versus 60, because our sample period (3 months) is shorter
than theirs (7 years).
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that the main driver of purchases in 2018 is replacement. Second, the probability of repairing, rather than
immediately replacing it with a new one, is positively related to the item replacement cost (Jaeger-Erben
et al., 2021), which is high for large appliances such as ACs. This reasoning holds even more for dryers,
given the lower penetration rate of dryers relative to ACs in Italy.

To more formally test the role of replacement, we split the sample by quartiles of the regional penetration

rate of ACs and run separate regressions (Appendix Table A.10).2°

If replacement were relevant, we would
observe larger effects of temperature on sales in regions with high AC penetration. This analysis can also
assess the validity of another rational explanation for our results, namely that users do not know the weight
7, that they attach to the cooling power of ACs, as described in Equation 1. People living in areas with
low rates of penetration of ACs might be particularly unaware of their usefulness. If this were the case, we
would expect the effect of temperature on sales to be stronger in regions with low penetration rates. We
do not find support for either explanation. First, contrary to the replacement explanation, temperature also
affects sales in regions in the second quartile of AC penetration, and the magnitude of the coefficients on
temperature are smaller in the regressions run on the sub-samples of regions in the top two quartiles than in
the two bottom ones. Second, temperature significantly affects sales in the top quartile of AC penetration,
against the learning explanation.

Third, we discuss the possibility that users who are set on buying an appliance may monitor the website and
purchase the item during days in which prices are low. If daily variations in prices are negatively correlated
with temperature for ACs, our results may be explained by low prices rather than high temperatures. Our
exploration of the correlation between prices and temperature revealed that, contrary to this explanation,
AC prices and temperature are positively correlated (Appendix Figure A.S).

Fourth, in our sample, about 40% of AC or dryer buyers appear only for a single day in the database
(Columns 2 and 3 of Table 1), implying that they purchase on the same day as they enter the website.
Recall that our results are robust to including these buyers and this result is confirmed by event-history
analysis (Appendix Table A.6 and Appendix Figure A.4). Available statistics indicate that buyers of large
appliances start their search for an appliance online rather than in physical shops (Flaviadn et al., 2020).
Therefore, we exclude that single-day buyers were set on buying the appliance before we observed them
on the website.

These additional tests and considerations reasonably discarded the possibility that temperature only affects
the timing of a purchase that would occur anyway. Below, we consider other rational explanations whereby
temperature may induce people to purchase an appliance under correct beliefs on the future usefulness of
the appliance.

First, users may buy the appliance to address an urgent need generated by the daily weather. In the case of

20 We cannot conduct the same analysis for dryers because regional breakdowns of dryers’ penetration rates are not available.
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AC, this would be the need for cooling on a hot day. The utility derived from satisfying such need during
hot days may outweigh any cost consideration, regardless of any correct beliefs on the utility from future
usage. In our setting, it is unlikely that any urgent need can be satisfied by purchasing an AC. Most ACs
purchased online require delivery and installation, which may take weeks.?! This creates a gap between
the purchase time and when buyers will perceive the benefits from it. Such gap is likely to increase further
at peak demand. We can test whether purchases aim to satisfy an urgent need by exploiting the presence
in our data of portable ACs, which require no installation and thus allow users to quickly satisfy an urgent
need, as usage is possible immediately upon delivery. We test whether our main result is driven by the
purchases of portable ACs by testing the effect of temperature on ACs that require installation and portable
ACs, separately. The effect of temperature on the likelihood of purchase is indistinguishable between the
two groups of ACs (Appendix Table A.11).2? This result suggests that the desire to satisfy an urgent need is
not behind the effect of temperature on our observed AC purchases. In the case of dryers, this explanation
is even less compelling, as we struggle to consider the need to dry clothes as one that must be urgently
met.

Another possibility is that current temperature may affect purchases because of rational learning about
future temperatures. In a warming climate, hot days may be associated with acquiring knowledge about
the increasing frequency of heat waves and rising global temperatures. AC purchases would be a rational
response to this knowledge. Our results on the impact of wind speed on dryer purchases and of temperature
on the energy class of AC purchased suggest that this is not the only mechanism at work in our setting.
Finally, the temperature effect on ACs could result from a general tendency to stay home on hot days to
avoid the heat. This could lead to more browsing and buying online. If that were the case, we would
observe a similar effect of temperature on both AC and dryer purchases. This is not what we find, as the
temperature effect on dryers is of the opposite sign than that on ACs. Moreover, if this were the mech-
anism, we would find an effect of temperature on purchases of other appliances. We test this hypothesis
by running our main specification on the likelihood of purchase of other appliance types (refrigerators,

dishwashers, and washing machines) and find no effect (Appendix Table A.12).

5.2 Selection

Our results could be due to selection. A specific type of buyer, with a higher willingness to pay and a
lower preference for energy efficiency, could be more likely to browse and buy on hot days. Our existing
analysis offers three arguments against this possibility. First, the use of individual fixed effects in our

main specification alleviates the potential relevance of this explanation, as it allows us to isolate the effect

21 This consideration generalizes to the ACs bought in physical stores.
22 The t-test on the equality of the coefficients in the two regressions is 0.74.
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of temperature variations across days for the same individual. Second, the null effect of temperature and
wind speed on the likelihood of search at individual and municipality levels suggests that temperature
does not induce selection. Third, the robustness of our results to the multiple specifications and samples
we adopt is also reassuring.

We can also conduct heterogeneity analysis to assess the relevance of selection for our results on the
energy efficiency of AC sales. The higher probability of buying low energy-efficient ACs during hot days
may be driven by selection, in that more liquidity-constrained users may be more likely to go on the
website to buy an AC on hot days. To test this possibility, we separately analyze the effect of temperature
on purchases of products in the lowest class (A or less), by quartiles of the income of the municipality
where users live (Appendix Table A.9). An explanation based on liquidity constraints would imply a
stronger effect of temperature in lower-income municipalities. Transactions of ACs of any class during
hot days are concentrated among users living in the richest municipalities (Column 7) and these users tend
to purchase low-efficiency appliances (Column 8). The coefficient is in line with that reported in Table 5,
thus discarding the liquidity constraint hypothesis.

A second type of selection refers to the representativeness of our sample. Our sample comprises users
of an online retailer’s website: it may be selected along some characteristics and thus be different from
the average population. Given our data’s lack of individual-level characteristics, we cannot address this
limitation. Given that our partner retailer was one of the major players on the Italian online market for
appliances at the time of the study, we believe our sample to be broadly representative of the population

of online shoppers at that time, although we have no data to substantiate this claim.

5.3 Cognitive ability

A growing literature documents the effect of temperature on cognitive ability and preferences. Evidence
shows that heat, specifically temperature above 26 degrees C, makes it harder for people to focus and
reduces cognitive performance in high-stakes decision settings (Heyes and Saberian, 2019; Graff Zivin
et al., 2020). If so, the effect of heat on the decision process could result from cognitive impediment rather
than salience. Two of our results are not consistent with this direct effect. First, we find opposite effects
of temperature on AC and dryer sales and search and no effect of temperature on sales of other types of
appliances. Second, the impact of wind speed on dryer purchases suggests that our findings are not specific

to temperature.
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6 Conclusion

We find that salience bias explains the effect of daily weather on the decision to purchase ACs and dryers,
the entire process leading up to it, and the energy efficiency of viewed and purchased ACs. Methodolog-
ically, our results offer novel evidence of how salience works through the search process in generating
decision outcomes. Moreover, our analysis adds to existing literature, documenting a behavioral bias in
a policy domain that is particularly relevant in the face of the current climate and energy crises. Transi-
tory conditions significantly influence decisions with long-lasting and large economic and environmental
consequences.

Our results suggest that policymakers should focus on incentives or information interventions to boost the
energy efficiency of AC purchases during hot days when many of these decisions are likely to occur. If
individuals purchase ACs on those days, then encouraging efficient choices at that time is likely to have
long-term repercussions on aggregate energy consumption.

Our work has limitations, primarily concerning the nature of our setting and the data available. As our data
come from an online retailer, we have no information on what its users do when they are not on its website,
which may include searching for or purchasing products elsewhere. Users of online retailers may also not
be a representative sample of the population—although online shopping is increasingly widespread—and

our lack of individual-level data does not allow us to assess the extent of any selection issues.
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Notes: Average daily temperature (Panel a) and wind speed (Panel b) across Italian municipalities over the study period

Figure 1: Daily temperature and wind speed over the study period
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(b) July 25 2018
S

(d) July 18 2018 (e) July 25 2018 (f) August 1 2018

Notes: The figure depicts the average temperature (top panels) and wind speed (bottom panels) in Italian municipalities on
specific days of the sample period. Each dot refers to a municipality included in the sample. The values in the legend represent
the right bound of temperature and wind speed ranges starting from the previous value. For example, 15 degrees C means that

the municipality experienced a daily temperature in the range of 14-15 degrees C.

Figure 2: Daily temperature and wind speed over the study period
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Notes: The figure plots the average daily temperature and the conversion rate for ACs (panel a) and dryers (panel b).

Conversion rate is the ratio between the number of users who purchased an AC/dryer and those who viewed at least one

appliance in the day.

Figure 3: Conversion rate and temperature
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Notes: The figure provides the number of ACs (panel a) and dryers (panel b) viewed and purchased by energy class as a share
of the total number of ACs and dryers viewed and purchased over the study period, respectively.

Figure 4: Share of purchases and views by energy class
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Table 1: Summary Statistics

ey (2) 3)
All Appliances  AC Dryers
Viewers 112,428 12,984 12,648
Viewers—multiple days 48,076 7,098 6,921
Buyers 2,250 3,424
Buyers—multiple days 1,409 2,090
Days from entry to purchase 34 5
Seconds of search—buyers 500 557
Seconds of search—nonbuyers 126 171
Products viewed—buyers 1.6 1.4
Products viewed—nonbuyers 0.9 0.8
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Table 2: Effect of temperature on purchases

(1 2) 3) “) &) (6)

Dep. Var. AC purchase Dryer purchase
Sample Municipalities  All users Viewers  Municipalities All users  Viewers
Temperature 0.0003** 0.0005%**  0.0023%** -0.0004** -0.0004**  -0.0016%**

(0.0001) (0.0001) (0.0005) (0.0002) (0.0002)  (0.0007)
Individual FE No Yes Yes No Yes Yes
Weekly FE Yes Yes Yes Yes Yes Yes
Municipality FE Yes No No Yes No No
Promo Dummy No Yes Yes No Yes Yes
Observations 538,062 193,582 39,772 538,062 193,582 38,822
Number of id 3,899 48,076 7,098 3,899 48,076 6,921
Mean Dep. Variable 0.00439 0.00786 0.0382 0.00653 0.0113 0.0562

Notes: The dependent variable in Column 1 is the number of AC purchases in municipality m and day ¢; in Columns 2
and (3) it is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and 0 otherwise; in Column 4, it is the
number of dryer purchases in municipality m and day #; in Columns 5 and 6, it is a dummy variable equal to 1 if individual
i purchased a dryer in day ¢ and O otherwise; the sample in Columns 2 and 5 includes all users of the retailer’s website
who viewed at least one appliance page (AC, dryer, washing machine, dishwasher, refrigerator, freezer) in the period; the
sample in Columns 3 and 6 includes only users who visualized at least one AC or dryer page in the period, respectively.
Standard errors in parentheses are clustered at the municipality level. *** significance at the 1% level, ** at the 5% level, *

at the 10% level.
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Table 3: Effect of weather on purchases

(1 (2) 3) “4) &) (6)
Dep. Var. Purchase of
AC Dryer AC Dryer AC Dryer
Sample All users
Discomfort 0.0006***  -0.0002
(0.0001)  (0.0002)
Wind speed -0.0001 -0.0008*  -0.0001 -0.0009*
(0.0003) (0.0004) (0.0003)  (0.0005)
Temperature 0.0005***  -0.0004**
(0.0001)  (0.0002)
Individual FE Yes Yes Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes Yes Yes
Promo Dummy Yes Yes Yes Yes Yes Yes
Observations 193,563 193,563 193,582 193,582 193,582 193,582
Number of ind. 48,072 48,072 48,076 48,076 48,076 48,076
Mean Dep. Variable  0.00786 0.0113  0.00786 0.0113 0.00786 0.0113

Notes: The dependent variable in odd columns is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and
0 otherwise; in even columns, it is a dummy variable equal to 1 if individual i purchased a dryer in day ¢ and O otherwise;
the sample includes all users. The sample size in Columns 1 and 2 is smaller by six municipalities, due to discomfort index
data limitation. Standard errors in parentheses are clustered at the municipal level. *** significance at the 1% level, ** at
the 5% level, * at the 10% level.
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Table 5: Effect of weather on purchases by energy efficiency classes

) 2) 3) 4)
Dep. Var. Purchase
A or less A+ A++ A+++
Sample Products viewed

Panel A: ACs
Temperature 0.0018***  0.0007 0.0011 -0.0002
(0.0006)  (0.0006) (0.0007) (0.0001)

Observations 32,613 32,613 32,613 32,613
Number of ind 6,311 6,311 6311 6,311
Mean Dep 0.015 0.010 0.020 0.001
Panel B: Dryers
Temperature 0.0001 0.0003  -0.0011* -0.0011
(0.0002)  (0.0004) (0.0006) (0.0007)
Wind speed 0.0004 -0.0008  -0.0021  -0.0008
(0.0003) (0.0011) (0.0015) (0.0016)
Observations 36,561 36,561 36,561 36,561
Number of ind 6,706 6,706 6706 6,706
Mean Dep 0.002 0.009 0.029 0.025
Individual FE Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes
Price Yes Yes Yes Yes

Notes: The dependent variable is a dummy variable equal to 1 if individual ¢ purchased an AC (Panel A) or a dryer (Panel
B) in the energy class indicated at the top of the column in day ¢ and O otherwise. The sample includes all different models
(product codes) of ACs (Panel A) or dryers (Panel B) viewed by individual ¢ in day ¢. Standard errors in parentheses are
clustered at the municipal level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.
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Table 6: Effect of weather on search by energy efficiency classes

ey (2) 3) 4)

Dep. Var. View

A or less A+ A++ A+++
Sample Products viewed
Panel A: ACs
Temperature 0.0035** 0.0040* -0.0072** -0.0012

(0.0015) (0.0022) (0.0028) (0.0012)
Observations 32,613 32,613 32,613 32,613
Number of ind 6,311 6,311 6,311 6,311
Mean Dep 0.338 0.216 0.400 0.0338
Panel B: Dryers
Temperature 0.0013** -0.0002  -0.0011 -0.0000

(0.0006) (0.0012) (0.0020) (0.0018)
Wind speed 0.0005  -0.0022 0.0011 0.0006

(0.0014) (0.0027) (0.0042) (0.0033)
Observations 36,561 36,561 36,561 36,561
Number of ind 6,706 6,706 6,706 6,706
Mean Dep 0.0335 0.175 0.447 0.345
Individual FE Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes
Price Yes Yes Yes Yes

Notes: The dependent variable is a dummy variable equal to 1 if the AC (Panel A) or the dryer (Panel B) viewed by
individual ¢ in day ¢ belongs to the energy class indicated at the top of the column and O otherwise. The sample includes
all different models (product codes) of ACs (Panel A) or dryers (Panel B) viewed by individual ¢ in day ¢. Standard errors
in parentheses are clustered at the municipal level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.
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Appendix

A Additional figures and tables
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Figure A.1: Energy efficiency labels
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Notes: The figure plots the total number of ACs (Panel a) and dryers (Panel b) sold daily at the national level, over the study
period.

Figure A.2: Daily purchases
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Notes: The figure plots the estimated coefficients of temperature bins on the probability of purchasing an AC (Panel a) and a
dryer (Panel b). The omitted temperature category is less than 15°C.

Figure A.3: The impact of temperature bins on purchase
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ranges, from the model estimated in Table A.4.

Figure A.4: ACs and dryers’ purchase process, survival analysis
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Figure A.5: Temperature and average AC price

41



.0015
1

.001
1

0005
1
—a—
—
-
L
i
.-
-

0005 0
1
M
-
]
P
——t

Effect of temperature on AC purchase

5.
" T T T T T T T T T
0 2 4 6 8 10 12 14 16
Lag
‘l Coef +F—— Cljos
(a) ACs
S 4
Q
()
®
>0
a°
g
5 | [ w
5° ] 1 i
g
20
© D
oo
8
IS
2 [ ]
58
g
=
W
é_
v T T T T T T T T
0 2 4 6 8 10 12 14 16

Lag

|m Coef ——— Clus

(b) Dryers
Notes: The figure plots the estimated coefficients of 15-day lags of temperature on the probability of purchasing an AC (Panel
a) or a dryer (Panel b) in a model like Equation (4).

Figure A.6: The impact of lags of temperature on purchase
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Table A.1: Prices by energy class

AC Dryer
Aorless 688.07 549.51
A+ 897.78 581.14
A++ 927.24 757.49

A+++ 1,038.27 1,123.97
Notes: average market price (in euros) of ACs (N=220) and dryers (N=168) in 2022 by energy class.
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Table A.2: Effect of weather on purchases

ey 2) 3) “4)
Dep. Var. Purchase
Sample Products viewed
Panel A: ACs
Temperature 0.0036***  0.0036***  0.0037*** 0.0036%**
(0.0010) (0.0010) (0.0010) (0.0010)
Observations 32,613 32,613 32,613 32,613
Number of ind 6311 6311 6311 6311
Mean Dep 0.0450 0.0450 0.0450 0.0450
Panel B: Dryers
Temperature -0.0018*  -0.0018*  -0.0018*  -0.0018*
(0.0010) (0.0010) (0.0010) (0.0010)
Wind Speed -0.0032 -0.0032 -0.0032 -0.0032
(0.0022) (0.0022) (0.0022) (0.0022)
Observations 36,561 36,561 36,561 36,561
Number of ind 6706 6706 6706 6706
Mean Dep 0.0643 0.0643 0.0643 0.0643
Individual FE Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes
Price No Yes No No
Promo dummies No No Yes No
Promo impatience dummy No No No Yes

Notes: the dependent variable is a dummy variable equal to 1 if individual 7 purchased an AC (panel A) or a dryer (Panel
B) in day ¢ and O otherwise. The sample includes all different models (product codes) of ACs (Panel A) or dryers (Panel
B) viewed by individual ¢ in day ¢. Standard errors in parentheses are clustered at the municipal level. *** significance at
the 1% level, ** at the 5% level, * at the 10% level.
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Table A.3: Effect of weather on purchases, robustness check with squared temperature

() 2)
Purchase of
Dep. Var. AC Dryers
Sample All users
Temperature -0.0005 -0.0013
(0.0008) (0.0010)
Temperature squared  0.0000  0.0000
(0.0000) (0.0000)
Wind speed -0.0009*
(0.0005)
Individual FE Yes Yes
Weekly FE Yes Yes
Promo Dummy Yes Yes
Observations 193,582 193,582
Number of ind 48,076 48,076
Mean Dep 0.0079 0.0113

Notes: the dependent variable in odd columns is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and
0 otherwise; in even columns, it is a dummy variable equal to 1 if individual i purchased a dryer in day ¢ and O otherwise;

the sample includes all users. Standard errors in parentheses are clustered at the municipal leve

level, ** at the 5% level, * at the 10% level.
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Table A.4: Effect of temperature on purchases’ timing, survival analysis

() (2) 3) 4)
Dep. Var. Purchase hazard
AC Dryer
Sample Buyers
Temperature 0.0415%%* -0.0879#**
(0.0078) (0.0057)
<15 1.0651%** 1.1182%%*%*
(0.3515) (0.0855)
15-17 1.2603#** 1.1300%*%*
(0.2856) (0.0894)
17-19 0.6873%** 1.0157%%*%*
(0.2187) (0.0904)
19-21 0.7459%** 0.6637%**%*
(0.0881) (0.0748)
21-23 (0.5453 % (0.4823 7%
(0.0595) (0.0567)
23-25 (0.7395%** 0.27417%*%*
(0.0699) (0.0571)
25-27 1.0553 % 0.1237
(0.0582) (0.0772)
>27 L.O777%*%* 0.2178%*
(0.0852) (0.0884)
Constant Yes No Yes No
Observations 9,372 9,372 20,000 20,000
Number of ind. 2,250 2,250 3,424 3,424

Notes: the table shows a discrete hazard model estimated with a logit model Singer and Willett (1993). The dependent
variable equals 1 if individual ¢ buys the product in the d-th day after the first visit, and time-dependence is flexibly
accounted for by including indicators for days from the first visit. Estimates in Columns 1 and 3 assume linearity on
the logit hazard. Estimates in Columns 2 and 4 relax the linearity of the temperature on the logit hazard by discretizing
temperature into 2 °C-bins. The sample in Columns 1 and 2 (3 and 4) includes only ACs (dryers) buyers. Standard errors
in parentheses are clustered at the municipal level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.

46



Table A.5: Effect of weather on purchases, robustness check with various fixed effects

(1 2) 3) “4)
Dep. Var. Purchase of

AC Dryers AC Dryers
Sample All Users

Temperature 0.0005***  -0.0003*  0.0005*** -0.0004**
(0.0001)  (0.0002) (0.000) (0.000)

Wind speed -0.001 1*%* -0.0008*
(0.0005) (0.000)
Individual FE Yes Yes Yes Yes
Province*Week Yes Yes No No
Weekly FE No No Yes Yes
Weekend FE No No Yes Yes
Promo Dummy Yes Yes Yes Yes

Observations 193,541 193,541 193,582 193,582

Number of ind. 48,066 48,066 48,076 48,076

Mean Dep 0.00785 0.0113 0.00786 0.0113
Notes: The dependent variable is a dummy variable equal to 1 if individual ¢ purchased an AC/dryer in day ¢ and O
otherwise. The sample includes all users . Variations in sample sizes are due to the exclusion of different sets of singletons,

depending on the fixed effects used. Standard errors in parentheses are clustered at the municipal level. *** significance at
the 1% level, ** at the 5% level, * at the 10% level.

Table A.6: Effect of weather on purchases, robustness check with individuals on the website for one day

(1 (2) 3) 4)
Purchase of
AC Dryers AC Dryers
Sample Single and Multi-day Users Multi-day users

Temperature 0.0002%** —-0.0003***  (0.0002***  -0.0002*
(0.0001) (0.0001) (0.0001) (0.0001)

Wind Speed -0.0008** -0.0009%3**
(0.0003) (0.0003)
Individual FE No No No No
Weekly FE Yes Yes Yes Yes
Promo Dummy Yes Yes Yes Yes
Observations 257,934 257,934 193,582 193,582
Number of ind 112,428 112,428 48,076 48,076
Mean Dep 0.00916 0.0136 0.00786 0.0113

Notes: The dependent variable in odd columns is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and
0 otherwise; in even columns, it is a dummy variable equal to 1 if individual i purchased a dryer in day ¢ and O otherwise;
the sample in Columns 1 and 2 includes users navigating the website over one or multiple days, and in Columns 3 and 4, it
only includes those on the website over multiple days. Standard errors in parentheses are clustered at the municipal level.
*** significance at the 1% level, ** at the 5% level, * at the 10% level.
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Table A.7: Effect of weather on purchases, robustness check excluding multiple transactions

(1 2)
Purchase of
AC Dryers
Sample All Users
Temperature 0.0005%**  -0.0004%***
(0.000) (0.000)

Wind speed -0.0009**
(0.000)
Individual FE Yes Yes
Weekly FE Yes Yes
Promo Dummy Yes Yes
Observations 193,457 193,482
Mean Dep 0.00722 0.00784
Number of ind. 48,063 48,067

Notes: the dependent variable in Column 1 is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and 0
otherwise; in Column 2, it is is a dummy variable equal to 1 if individual i purchased a dryer in day ¢ and O otherwise; the
sample includes all users and excludes those who purchased more than one AC/dryer. Standard errors in parentheses are
clustered at the municipal level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.
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Table A.8: Effect of weather on search, by energy efficiency classes

(D () ) “4) ) (6)
First class Max class Min class First class Max class Min class
Dep. Var. . . . . . .
viewed viewed viewed viewed viewed viewed
AC Dryer
Sample Product

Temperature -0.0091*  -0.0095** -0.0105**  0.0016 -0.0013 -0.0032
(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

Wind speed 0.0108 0.0080 0.0025
(0.007) (0.007) (0.007)

Individual FE Yes Yes Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes Yes Yes
Price Yes Yes Yes Yes Yes Yes
Observations 12,029 12,723 12,877 14,292 14,624 14,370
Number of ind 3,484 3,656 3,690 4,138 4,199 4,149
Mean Dep 2.228 2.334 2.079 3.062 3.282 2.957

Notes: The dependent variable in Columns 1 and 4 is the class of the first model (product code) viewed in the day, with
the class coded equal to 1 for A or less; 2 for A+, 3 for A++, and 4 for A+++; in Columns 2 and 5, it is the lowest class
viewed by individual i in day #; in Columns 3 and 6, is the highest class viewed by individual i in day ¢. In Column (1), the
sample includes one model of AC (Panel A) or dryer (Panel B) viewed by individual i in day ¢. The sample includes only
one product per person per day. Standard errors in parentheses are clustered at the municipal level. *** significance at the
1% level, ** at the 5% level, * at the 10% level.
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Table A.10: Effect of weather on purchases, for different quartiles of regional penetration rates of ACs

(1) (2) 3) 4)

Dep. Var. Purchases of AC
Sample All users
Quartile of Penetration rate Bottom  Second Third Fourth
Temperature 0.0007  0.0007**  0.0004*** (0.0006**

(0.001)  (0.000) (0.000) (0.000)
Individual FE Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes
Promo Dummy Yes Yes Yes Yes
Observations 3,590 34,847 104,276 41,819
Number of ind 824 8558 25254 9959
Mean Dep 0.00557 0.00841 0.00734  0.00820

Notes: the dependent variable is a dummy variable equal to 1 if individual i purchased an AC in day ¢ and O otherwise; the
sample includes all users of the retailer’s website who viewed at least one appliance page (AC, dryer, washing machine,
dishwasher, refrigerator, freezer) in the period. We exclude from the sample users for which the identification of the region
of residence was ambiguous. Standard errors in parentheses are clustered at the municipal level. *** significance at the 1%
level, ** at the 5% level, * at the 10% level.

Table A.11: Effect of temperature on purchase of portable vs. fixed ACs

) 2)
Purchase of
Fixed AC  Portable AC
Sample All users
Temperature 0.0003#**  (0.0002%*%*
(0.000) (0.000)

Individual FE Yes Yes
Weekly FE Yes Yes
Promo Dummy Yes Yes
Observations 193,582 193,582
Number of ind. 48076 48076
Mean Dep 0.00231 0.00527

Notes: the dependent variable is a dummy variable equal to 1 if individual i purchased a fixed AC (Column 1) or a portable
AC (Column 2) in day ¢ and O otherwise. The sample includes all users. Standard errors in parentheses are clustered at the
municipal level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.
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Table A.12: Effect of temperature on purchase of various appliances

(1) (2) 3) 4) )
Dep. Var. Purchase of
Other Freezer refrigerator Dish — Washing
appliances washer Machine
Sample All users

Temperature 0.0003 -0.0001 0.0003 0.0001  0.0002
(0.000) (0.000) (0.000) (0.000)  (0.000)

Individual FE Yes Yes Yes Yes Yes
Weekly FE Yes Yes Yes Yes Yes
Observations 193,582 193,582 193,582 193,582 193,582
Number of ind 48,076 48,076 48,076 48,076 48,076
Mean Dep 0.130 0.00640 0.0715 0.00757  0.0486
Notes: the dependent variable is a dummy variable equal to 1 if individual i purchased an appliance named in the heading

in day r and O otherwise. The sample includes all users; standard errors in in parentheses are clustered at the municipal
level. *** significance at the 1% level, ** at the 5% level, * at the 10% level.
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