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Abstract 

This report analyzes the differences between risk profiles posed by fossil assets, such 
as natural gas power generation and gas-powered vehicles, and those of “green” 
alternatives, such as wind power and electric vehicles. Fossil assets tend to be 
exposed primarily to uncertainty in operational expenditures (OPEX) such as fuel 
prices, whereas green assets tend to be exposed primarily to uncertainty in capital 
expenditures (CAPEX). This report builds a quantitative dynamic economic model of 
investment under uncertainty that accounts for these different kinds of risk. The 
results show the relative value of such CAPEX-exposed green assets over OPEX-
exposed fossil assets for reducing exposure to future cost uncertainty. The model’s 
key conclusions are that (1) correlated OPEX risk across assets implies that an all-
green portfolio has lower uncertainty than an all-fossil one even when the assets 
themselves have similar total cost uncertainty, (2) adding a green asset option to an 
otherwise all-fossil investment strategy typically reduces cost uncertainty by more 
than adding a fossil option to an all-green strategy does, and (3) actually owning such 
a green asset almost uniformly reduces cost uncertainty by shielding society 
(investors and consumers) from OPEX risk. The primary mechanisms driving these 
results are threefold: first, an investment in CAPEX-exposed assets immediately 
resolves substantial cost uncertainty, second, spikes in fuel prices increase OPEX for 
all existing fossil assets whereas spikes in green CAPEX costs only affect new 
investments, and third, the availability of multiple options for future asset replacement 
decisions avoids locking in exposure to CAPEX risk. 

  



Operational versus Capital Expenditure Risk in a Clean Energy Transition                 iv 

Contents 

1.  Introduction 1 

2.  Methods 3 

2.1.  Model Formulation 3 

2.2.  Parameterizing the Model 5 

3.  Results 8 

3.1.  Cost-Harmonized Scenario 8 

3.2.  Vehicle Choice Example: ICEV versus EV 13 

3.3.  Power Plant Choice Example: Natural Gas versus Wind 16 

4.  Discussion 19 

5.  Conclusions 20 

References 22 

Appendix A.  EV and ICEV Model Parameters 24 

A.1.   Drift and Volatility Parameters 24 

A.2.  OPEX and CAPEX Values 27 

Appendix B.  Natural Gas and Wind Model Parameters 27 

B.1.  Drift and Volatility Parameters 27 

B.2.  OPEX and CAPEX Values 29 

 



Resources for the Future   1 

1.  Introduction 

Recent spikes in the price of crude oil have highlighted the risks to which individuals 
and the economy are exposed when reliant on vehicles that run on petroleum. In the 
electricity sector, fossil fuel–based power plants are similarly exposed to price 
volatility, as demonstrated by the spikes in recent years in natural gas and coal prices. 
The growing connection of US natural gas prices to increasingly volatile global 
markets may also serve to magnify the risk exposure of natural gas power generation. 
Many see clean energy investments, including zero-carbon electricity, battery storage, 
and electric vehicles (EVs), as ways to reduce such exposure to unpredictable 
commodity prices. On the other hand, a counterargument is that those clean energy 
assets are made using minerals that can also exhibit volatile prices. This raises the 
question, Will a clean energy transition simply substitute one kind of commodity price 
risk for another? We assess this question using a stochastic dynamic economic model 
drawing from the economic literature on investment under uncertainty (Dixit and 
Pindyck 1994), concluding that the answer is no because clean-energy technologies 
are exposed to qualitatively different kinds of risks.  

While this concern about clean energy risk exposure has some surface-level 
plausibility, it neglects to recognize a key difference between the two kinds of price 
uncertainty. In particular, fossil fuel purchases such as natural gas for electricity 
generation or gasoline for internal combustion engines (ICEs) represent operational 
expenses (OPEX). Once one has invested in such a long-lived asset, one is typically 
exposed to OPEX risk for the entirety of the asset’s useful life. By contrast, low-carbon 
“green” assets like renewable and nuclear power or EVs typically feature high capital 
expenditures (CAPEX) but minimal OPEX, resulting in little to no exposure to variable 
fuel costs over time. 1 While there remains uncertainty in the future CAPEX 
replacement cost of such a green asset at the end of its useful life, once the CAPEX is 
sunk to construct the project, it remains insulated from variable OPEX. Moreover, the 
option to switch to alternative technologies at the end of an asset’s useful life further 
shields investors and consumers from future uncertainty in CAPEX. 

In this report, we demonstrate this point quantitatively by developing a stochastic 
dynamic programming model that reveals differences in the nature of risk exposure 
associated with these two types of costs. For example, when gasoline prices spike, the 
owner of an ICE vehicle (ICEV) will immediately see a largely unavoidable surge in 
operating costs. Naturally, EV owners are insulated from this gasoline price risk, but 
they are also mostly insulated from potential increases in critical minerals. The most 
obvious reason for this is that the cost of those minerals was locked in when the 
vehicle was acquired. The model developed in this report is general enough to 

 
1 While operating expenditures entail more than just fuel costs, other operating and 
maintenance costs tend to be smaller and less uncertain than capital and fuel costs. See, for 
example, EIA (2022). For this reason, we consider OPEX uncertainty as effectively representing 
fuel price uncertainty.   
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represent choices between assets with OPEX-centric and those with CAPEX-centric 
risk profiles, but we also apply it to two specific examples of investment choices, 
considering first the choice between gasoline and electric vehicles, and second the 
choice between natural gas–fired and wind electricity. 

Throughout this report, the key metric of interest representing exposure to cost 
uncertainty is the standard deviation of the present value (PV) of long-run discounted 
expenditures to build and operate the portfolio of assets. We focus on how three 
factors affect this standard deviation.  

First, we consider the overall cost uncertainty across a portfolio of all-fossil or all-
green assets, where each individual fossil or green asset nonetheless has similar total 
cost uncertainty. We find that an all-fossil portfolio creates positively correlated OPEX 
risks across the portfolio because spikes in fuel prices increase OPEX for all existing 
fossil assets whereas spikes in green CAPEX costs only affect new investments. 

Second, we consider both the effect of adding the green investment option to an 
otherwise all-fossil investment strategy and the effect of adding the fossil investment 
option to an otherwise all-green investment strategy. By introducing the option to 
switch to a lower-cost investment when its price is lower, adding an investment option 
(whether fossil or green) is typically expected to reduce cost uncertainty, but the size 
of this effect can vary between the green and fossil assets.  

Third, we consider the additional effect of actually having an all-green portfolio at a 
given point in time, rather than an all-fossil one, conditional on having both assets as 
options. Adding either asset as an option, whether fossil or green, generally reduces 
uncertainty in expenditures for both asset types (since the option need not be 
exercised), but actually having the green asset in hand further reduces uncertainty 
because it purely reduces exposure to OPEX risk, whereas future CAPEX risk is 
managed by investors’ future optimizing behavior. For the same reason, switching 
from a green-dominated portfolio to a fossil-dominated one has the reverse effect and 
generally increases uncertainty because it purely increases exposure to OPEX risk, 
with little implication for future CAPEX risk. 

In principle, these effects depend on the current uncertain CAPEX and OPEX costs 
and the probability distributions of their future trajectories. For example, if the fossil 
asset’s OPEX costs are currently high and are expected to remain high into the future, 
having the green asset (either simply as an option or actually held in one’s portfolio) 
will substantially reduce uncertainty, as it offers a way to reduce exposure to 
persistently high fuel costs. By contrast, if OPEX costs are low and expected to remain 
low, then the green asset’s added value is smaller.  

To demonstrate the qualitative difference between these two kinds of assets, we start 
by showing cost uncertainty at CAPEX and OPEX values that harmonize the means 
and standard deviations of the fossil and green assets’ costs, while nonetheless letting 
those values vary over time. This isolates the conceptually distinct effects of CAPEX 



Resources for the Future   3 

versus OPEX uncertainty. The results demonstrate that adding the green investment 
option to an otherwise all-fossil investment strategy reduces the uncertainty in the 
present value of expenditures, and on average, it causes a greater reduction than does 
adding a fossil option to an all-green strategy. The results also demonstrate that the 
value of owning the green asset, rather than simply having the option to do so, nearly 
uniformly reduces cost uncertainty by shielding investors and consumers from OPEX 
risk without necessarily locking them into future CAPEX risk. 

We then use CAPEX and OPEX calibrations based on more realistic data about 
uncertain future prices for fossil fuels (gasoline and natural gas) and green 
technologies (EVs and onshore wind). The projections we use feature a modest 
upward drift in fossil fuel prices over time with a relatively high degree of volatility, 
whereas wind power and EV prices are projected to gradually decline and exhibit more 
stability (Larsen et al. 2023). These differences magnify the conceptual advantage 
found for green technologies in the stylized model where the central cost values are 
assumed to be harmonized. Deploying the model with recent historical data on fossil 
versus green energy costs demonstrates the current risk-reducing advantages of 
green assets. 

These conclusions come with a number of caveats, however. While the dynamic 
programming model allows for a nuanced treatment of decision-making under 
uncertainty, it nonetheless requires simplifying assumptions that do not fully reflect all 
the complexities of the real world. For example, we model only two types of 
technologies, fossil and green, when the real set of assets is much richer and more 
nuanced than that. In Section 4, we note other factors omitted from the model for 
simplicity, such as national security and political risks and the role of hedging. 

2.  Methods 

2.1.  Model Formulation 

To develop a simple model that captures the CAPEX/OPEX dynamics described in 
Section 1, we consider an investor maintaining a mixed portfolio with some combination 
of fossil and green assets, where each asset can be thought of as a power plant or a 
vehicle. The investor manages this portfolio with the goal of minimizing the expected 
present value of operating costs. The investor can be thought of either as a company or 
as a social planner minimizing the total social costs of maintaining a portfolio of assets 
needed to meet energy service demands. Thus the model and its lessons are applicable 
not only to investors but also to consumers and society writ large.  

Each asset has a useful life of 𝐿𝐿 years, where we focus on the case of 𝐿𝐿 = 10 years. 
These assets are characterized by upfront CAPEX costs denoted 𝑘𝑘𝑓𝑓 and 𝑘𝑘𝑔𝑔,𝑡𝑡 and 
annual OPEX costs 𝑐𝑐𝑓𝑓,𝑡𝑡 and 𝑐𝑐𝑔𝑔 . As indicated by the subscript 𝑡𝑡 representing time, the 
only distinction between these two assets is that for the fossil asset, OPEX 𝑐𝑐𝑓𝑓,𝑡𝑡 is 
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uncertain and varies over time (owing to uncertainty in oil or natural gas prices), 
whereas for the green asset, CAPEX 𝑘𝑘𝑔𝑔,𝑡𝑡 is the uncertain variable. Each cost 
parameter is assumed to follow geometric Brownian motion with drift, meaning year-
on-year changes are normally distributed with known percentage drift parameters 𝜇𝜇𝑔𝑔 
and 𝜇𝜇𝑓𝑓 and percentage volatility parameters 𝜎𝜎𝑔𝑔 and 𝜎𝜎𝑓𝑓 . 

The investor maintains and operates a portfolio of 𝐿𝐿 assets and thus replaces one 
retiring asset each year. 2 The portfolio of 𝐿𝐿 − 1 legacy assets that are not retiring is 
denoted by the vector 𝐴𝐴𝑡𝑡 = �𝑎𝑎1,𝑡𝑡, … ,𝑎𝑎𝐿𝐿−1,𝑡𝑡� with 𝑎𝑎𝑖𝑖,𝑡𝑡 ∈ {𝑔𝑔,𝑓𝑓}. The first subscript on 
each 𝑎𝑎𝑖𝑖,𝑡𝑡 reflects each asset’s remaining useful life, meaning 𝑎𝑎𝑖𝑖,𝑡𝑡 will retire in period 
𝑡𝑡 + 𝑖𝑖. 

The state space is thus defined by the green asset’s capital cost 𝑘𝑘𝑔𝑔,𝑡𝑡  and the fossil 
asset’s operating cost 𝑐𝑐𝑓𝑓,𝑡𝑡 , as well as the portfolio of legacy assets represented by 𝐴𝐴𝑡𝑡 . 
The timeline for the investor’s decision and the resolution of uncertainty is as follows: 
in period 𝑡𝑡, the investor observes the current known values of CAPEX costs 𝑘𝑘𝑔𝑔,𝑡𝑡, 
OPEX costs 𝑐𝑐𝑓𝑓,𝑡𝑡, and the existing portfolio of legacy assets 𝐴𝐴𝑡𝑡 , collectively referred to 
as the “state.” Based on this state and the known probability distributions, the investor 
makes a decision to build either the fossil asset or the green one to replace the 
retiring asset. Once the investment decision is made, the investor immediately pays 
the capital cost 𝑘𝑘𝑓𝑓 or 𝑘𝑘𝑔𝑔,𝑡𝑡 for the chosen asset. For simplicity, the new asset begins 
operating immediately at annual costs of 𝑐𝑐𝑓𝑓,𝑡𝑡 and 𝑐𝑐𝑔𝑔 for the fossil and green assets, 
respectively. We then move to period 𝑡𝑡 + 1, where the legacy asset portfolio 𝐴𝐴𝑡𝑡+1 is 
updated based on the newly chosen asset and the retiring one, 3 and new values of 
𝑘𝑘𝑔𝑔,𝑡𝑡+1 and 𝑐𝑐𝑓𝑓,𝑡𝑡+1 are realized. In period 𝑡𝑡 + 1, the investor faces an analogous 
investment based on the new state. The investor is assumed to use a discount rate of 
𝑟𝑟 = 10% per year (Dixit and Pindyck 1994). 

We can write this investment problem in terms of the recursive Bellman equation, 
denoted 𝑉𝑉�𝑘𝑘𝑔𝑔,𝑡𝑡 , 𝑐𝑐𝑓𝑓,𝑡𝑡 ,𝐴𝐴𝑡𝑡�, which represents the cost-minimizing present value of the 
flow of current and future expenditures: 

𝑉𝑉�𝑘𝑘𝑔𝑔,𝑡𝑡, 𝑐𝑐𝑓𝑓,𝑡𝑡,𝐴𝐴𝑡𝑡� = 𝑁𝑁𝑓𝑓,𝑡𝑡𝑐𝑐𝑓𝑓,𝑡𝑡 + 𝑁𝑁𝑔𝑔,𝑡𝑡𝑐𝑐𝑔𝑔 

+ min�
𝑘𝑘𝑓𝑓 + 𝑐𝑐𝑓𝑓,𝑡𝑡 +

1
1 + 𝑟𝑟

𝐸𝐸�𝑉𝑉�𝑘𝑘𝑔𝑔,𝑡𝑡+1, 𝑐𝑐𝑓𝑓,𝑡𝑡+1,𝐴𝐴𝑡𝑡+1��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓�,

𝑘𝑘𝑔𝑔,𝑡𝑡 + 𝑐𝑐𝑔𝑔 +
1

1 + 𝑟𝑟
𝐸𝐸�𝑉𝑉�𝑘𝑘𝑔𝑔,𝑡𝑡+1, 𝑐𝑐𝑓𝑓,𝑡𝑡+1,𝐴𝐴𝑡𝑡+1��𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔�

� 

 
2 For simplicity, we set the life of the asset in years equal to the portfolio size, which itself is 
staggered in increments of one year. This implies that the investor is making a single discrete 
decision each year: whether to invest in a fossil or green asset to replace the retiring asset that 
is at the end of its useful life. 
3 That is, the values of 𝑎𝑎𝑖𝑖,𝑡𝑡 each shift left by one, representing one year of aging, 𝑎𝑎𝑖𝑖,𝑡𝑡+1 =
𝑎𝑎𝑖𝑖+1,𝑡𝑡 for 𝑖𝑖 ∈ {1, … , 𝐿𝐿 − 2}, and the last element of 𝐴𝐴𝑡𝑡 , 𝑎𝑎𝐿𝐿−1,𝑡𝑡 , is replaced by {𝑓𝑓} if a fossil 
asset is chosen in period 𝑡𝑡 and by {𝑔𝑔} otherwise. 



Resources for the Future   5 

where 𝑁𝑁𝑓𝑓,𝑡𝑡 is the number of legacy fossil assets in the portfolio (𝑁𝑁𝑓𝑓,𝑡𝑡 =
∑ 1�𝑎𝑎𝑖𝑖,𝑡𝑡 = {𝑓𝑓}�𝑖𝑖 ), and 𝑁𝑁𝑔𝑔,𝑡𝑡 is the number of legacy green assets (𝑁𝑁𝑓𝑓,𝑡𝑡 +𝑁𝑁𝑔𝑔,𝑡𝑡 = 𝐿𝐿 −
1). In this recursive form, 𝑉𝑉�𝑘𝑘𝑔𝑔,𝑡𝑡 , 𝑐𝑐𝑓𝑓,𝑡𝑡,𝐴𝐴𝑡𝑡� represents the cost-minimizing present 
value of the infinite flow of capital and operating expenditures. The first row of the 
Bellman equation represents the cost of operating the legacy fossil and green assets 
at today’s fuel costs; this is dictated by past choices and is unaffected by today’s 
investment decision. The two rows inside the minimization operator represent the 
costs of choosing the fossil and green assets, respectively. The first two terms of each 
row inside the minimization operator correspond to the immediate CAPEX and OPEX 
expenditures, whereas the final term represents the consequences of this investment 
choice for discounted expected future expenditures. This final term reflects how 
uncertainty in future OPEX drives immediate decisions. For example, even if current 
fossil fuel prices are low and hence annual OPEX 𝑐𝑐𝑓𝑓,𝑡𝑡 is low, uncertainty in their future 
values over the 𝐿𝐿-year life of the asset will affect today’s investment decision through 
this final term. 

We use a technique called “value function iteration” (Dixit and Pindyck 1994) to solve 
this model for the optimal choice of whether to replace the retiring asset in each 
period with a new fossil or green one, a choice that depends on the current state: 
current CAPEX and OPEX values, their future probability distributions, and the current 
portfolio of legacy assets. Finally, we use Monte Carlo simulation to calculate the 
degree of uncertainty in future costs, as measured by the standard deviation of PV 
total expenditures. We solve the model and compute this uncertainty metric under 
three alternative investment approaches: the optimal strategy, an all-fossil strategy, 
and an all-green strategy. The second and third strategies represent scenarios where 
only one option is assumed to be available; these serve as benchmarks against which 
we compare the cost-minimizing strategy. 

2.2.  Parameterizing the Model 

Because the present value of expenditures depends on both current CAPEX and 
OPEX cost values, we begin by focusing on their values when the two assets are 
defined in a stylized but symmetric fashion to feature the same central CAPEX and 
OPEX parameters: that is, 𝑘𝑘𝑡𝑡,𝑔𝑔 = 𝑘𝑘𝑓𝑓 and 𝑐𝑐𝑔𝑔 = 𝑐𝑐𝑓𝑓,𝑡𝑡 at initial time 𝑡𝑡. Their probability 
distributions are calibrated such that the present values of costs over a single cycle of 
𝐿𝐿 = 10 years have the same expectations and standard deviations. 4 This harmonizes 
the overall average and variance in costs across the assets (Table 1), meaning the only 

 
4 Specifically, we first set 𝜇𝜇𝑓𝑓 = 𝜇𝜇𝑔𝑔 = 0, meaning no drift. Because  𝑘𝑘𝑔𝑔,𝑡𝑡 = 𝑘𝑘𝑓𝑓 and 𝑐𝑐𝑔𝑔 = 𝑐𝑐𝑓𝑓,𝑡𝑡 in 
the initial period, this zero-drift assumption aligns expected costs. We then choose 𝜎𝜎𝑔𝑔 = 5% 
and numerically solve for the value of 𝜎𝜎𝑓𝑓 such that it equalizes the variances in the present 
value of total expenditures of a single asset purchased 𝐿𝐿 years into the future. We compute the 
present value of the costs of a future asset purchase to induce uncertainty in 𝑘𝑘𝑔𝑔,𝑡𝑡+𝐿𝐿 . Note that 
because the fossil OPEX volatility parameter applies only to OPEX, which is a smaller portion of 
total costs than CAPEX in this example, 𝜎𝜎𝑓𝑓 must be larger than 𝜎𝜎𝑔𝑔 to equalize the variance in 
total expenditures. 
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difference between the two assets is what kind of cost uncertainty they are exposed 
to—CAPEX or OPEX. This therefore isolates the distinct effects of each kind of risk 
exposure. 

Table 1. Parameter Calibrations 

 
Cost-harmonized 

Vehicle  
choice example 

Power plant  
choice example 

Variable Fossil Green Fossil Green Fossil Green 

CAPEX value ($, 𝒌𝒌𝒇𝒇,𝒌𝒌𝒈𝒈,𝒕𝒕) $450M $450M $31.23k $39.09k $297.6M $464.6M 

OPEX value ($/year, 𝒄𝒄𝒇𝒇,𝒕𝒕, 𝒄𝒄𝒈𝒈) $25M $25M $1,141 $746 $21.21M $0 

Drift (%, OPEX for fossil, 
CAPEX for green, 𝝁𝝁𝒇𝒇, 𝝁𝝁𝒈𝒈) 

0% 0% 0.67% –1.16% 3.66% –1.76% 

Volatility (%, OPEX for fossil, 
CAPEX for green, 𝝈𝝈𝒇𝒇, 𝝈𝝈𝒈𝒈) 

12.23% 5% 13.85% 4.80% 14.49% 5.80% 

Note: In all cases, the values reported for uncertain variables (e.g., green CAPEX) correspond to the central initial value. The 
fossil OPEX volatility in the “cost-harmonized” columns was computed numerically to align the mean and variance of total 
expenditures. 

We also consider two examples based on historical data of competing clean and fossil-
fuel investments. The first example models a choice between EVs and ICEVs. The 
second is a power generation example where the fossil asset is represented by a 
natural gas power plant and the green asset by onshore wind (Table 1). In both cases, 
we calibrated the model using data from the “Rhodium Climate Outlook” (Larsen et al. 
2023), which presents estimates of future fossil fuel prices, EV battery costs, and 
renewable energy capital costs. These estimates are probabilistic, a key feature that 
allows us to estimate volatility parameters for our model. Scaling from the variables 
included in the report to realistic OPEX and CAPEX representations also required the 
use of other domain-specific resources. 

For the example of choosing between two vehicles, we estimate the parameters of the 

𝑘𝑘𝑔𝑔,𝑡𝑡 and 𝑐𝑐𝑓𝑓,𝑡𝑡 distributions using projected EV battery costs in 2050 (in $/kWh) and 

Brent crude oil prices in 2030 (in $/barrel), as well as standard deviations thereof and 

corresponding contemporaneous values, all taken from the “Rhodium Climate 
Outlook” (Larsen et al. 2023; see Appendix A for details of this calculation). 5 We also 

estimate corresponding (constant) 𝑘𝑘𝑓𝑓 and 𝑐𝑐𝑔𝑔 values. ICEV prices (𝑘𝑘𝑓𝑓) and the 

 
5 The “Rhodium Climate Outlook” projects costs for renewable energy sources in 2050 and 
costs for fossil-fuel energy sources in 2030. 
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relationship between battery prices and EV CAPEX (𝑘𝑘𝑔𝑔,𝑡𝑡) are based on a white paper 

by the International Council on Clean Transportation (Slowik et al. 2022), from which 

we chose the “crossover” type of vehicle with a battery range of 250 miles. For 𝑐𝑐𝑓𝑓,𝑡𝑡 , we 

converted Brent crude oil price and price uncertainty projected for 2030 to gasoline 
prices based on a simple least-squares regression using historical data from the 

Federal Reserve Economic Data (FRED) database (R2 = 0.94) for the “US Regular All 
Formulations Gas Price” variable (EIA, n.d.d). Because the starting value in the 

“Rhodium Climate Outlook” data was for 2022, a year with a spike in oil prices that has 
since reversed, we calibrated the model beginning in 2023 using the Brent crude oil 

data in FRED (IMF, n.d.). We then converted gasoline prices to operating expenses by 
unit conversion based on estimates of miles per gallon for a crossover ICEV (Slowik et 

al. 2022) and average annual mileage per driver (FHWA, n.d.). We estimated 𝑐𝑐𝑔𝑔 using 

the same annual mileage estimate, an estimate of power efficiency for a crossover EV 
(Slowik et al. 2022), and average US residential electricity costs in $/kWh (EIA, n.d.a). 6 

Once the model was calibrated, we deployed it using historical EV battery 
(BloombergNEF 2023) and gasoline (EIA, n.d.d) prices to demonstrate its behavior in 
the context of actual observed price trends and fluctuations.  

For the power generation example, we use an analogous method with simpler 

conversions (see Appendix B for details of this calculation). We base 𝑘𝑘𝑔𝑔,𝑡𝑡 on 

projections for onshore wind overnight capital cost in 2050 ($/kW) and 𝑐𝑐𝑓𝑓,𝑡𝑡 on Henry 

Hub natural gas price in 2030 ($/MMBtu), calibrating the model for a start year of 

2023 using Henry Hub data from FRED (EIA, n.d.c) because of the 2022 price spike. 

We source 𝑘𝑘𝑓𝑓 estimates from the National Renewable Energy Laboratory’s “Annual 

Technology Baseline” (NREL 2023), specifically using the average 2023 value for 

combined cycle plants. The 𝑘𝑘𝑔𝑔,𝑡𝑡  and 𝑘𝑘𝑓𝑓 parameters are calculated to scale the size of 

the systems to generate the same amount of electricity given their differing capacity 

factors (Prest et al. 2021) and to capitalize fixed operations and maintenance costs 
(NREL 2023) of wind and natural gas plants using the same 10-year lifespan and 10 

percent discount rate. We convert 𝑐𝑐𝑓𝑓,𝑡𝑡 values from Henry Hub data to $/MWh using 

heat rate data for natural gas combined cycle plants (EIA, n.d.b), plus estimated 
variable operations and maintenance costs (NREL 2023). Since fixed operating and 

maintenance costs were capitalized into the CAPEX parameters and thus captured in 

𝑘𝑘𝑔𝑔,𝑡𝑡, we assume no operating expenditures for the wind asset, yielding 𝑐𝑐𝑔𝑔 = 0. We use  

 
6 The assumption of a deterministic OPEX for EVs is weaker than in the wind case. In reality, 
EVs face OPEX risk from electricity prices, which do fluctuate over time, although much less 
than oil or gas prices do. Accounting for electricity price uncertainty is beyond the scope of our 
model, which assigns all green cost risk to CAPEX uncertainty. Future work could extend this 
model to allow for both assets to face both kinds of uncertainty, but that would introduce 
considerably more conceptual and computational complexity. 
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historical data for installed wind power project costs (Wiser et al. 2023) and Henry 
Hub natural gas prices (EIA, n.d.c) to examine the model in a real-world context, as 

with the vehicle choice example. 

3.  Results 

We present the results for our three scenarios in turn. For the stylized cost-
harmonized scenario, to build intuition, we present detailed model results on cost 
exposure under alternative strategies and scenarios and at a variety of starting 
CAPEX/OPEX cost values. We focus on three key metrics: (1) how cost uncertainty 
compares under an all-fossil strategy versus under an all-green one, (2) how much 
adding the green (or fossil) option to the choice set reduces cost uncertainty, and (3) 
how much the acquisition of an all-green portfolio reduces cost uncertainty. We then 
move on from the stylized, cost-harmonized scenarios to more realistic, empirically 
calibrated ones representing power generation and vehicle choice. We deploy these 
models on the realized historical movements of fossil fuel prices (driven by Henry Hub 
natural gas prices for the power generation example and gasoline prices for the 
vehicle example) and green CAPEX values (driven by onshore wind capital costs for 
the power generation example and electric vehicle battery costs for the vehicle 
example). 

3.1.  Cost-Harmonized Scenario 

Figure 1 shows the uncertainty in PV costs, as measured by the standard deviations of 
long-run (100-year) discounted expenditures, under three strategies: fossil-only, 
green-only, and the optimal strategy with both options. All values in Figure 1 are based 
on the harmonized cost parameterizations shown in Table 1; that is, the results shown 
there correspond to a deterministic green OPEX cost that is equal to the current value 
of the uncertain fossil OPEX (both $25 million/year) and a deterministic fossil CAPEX 
that is equal to the current uncertain green CAPEX value (both $450 million). The key 
distinction is whether cost uncertainty owes to CAPEX or OPEX uncertainty. 

Figure 1 demonstrates that realized uncertainty is highest under the fossil-only 
strategy, lower under the green-only strategy, and lower still under the optimal 
strategy that permits the investor to choose the cheaper option in response to relative 
prices that change over time. The portfolio’s overall cost uncertainty is lower under 
the green-only strategy (second column) than under the fossil-only strategy (first 
column) even though we calibrated the parameters such that individual green and 
fossil assets have the same mean and variance of total expenditures. The fact that the 
fossil-only portfolio’s uncertainty is larger owes to the correlated risks created by fuel 
lock-in. If fuel prices spike, it increases OPEX expenditures for all fossil assets in one’s 
portfolio, thereby creating positively correlated risks across fossil assets. By contrast, 
if green CAPEX costs spike, it only affects the capital costs of new investments. 
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The uncertainty reductions from the two columns on the left side to those on the right 
represent how optionality reduces uncertainty by allowing investors to respond to 
evolving price fluctuations. Adding the green asset to a fossil-only strategy (going 
from the first column to the third or fourth) reduces uncertainty more than adding the 
fossil asset to a green-only strategy (second column to third or fourth). 

In addition, we can observe the uncertainty reduction not merely from having the 
option to choose the green asset but in fact from having an all-green portfolio, which 
can be seen by comparing the two columns on the right-hand side. The final column 
shows the uncertainty in costs when both options are available and the investor 
currently owns an all-green portfolio. Uncertainty is lowest in this case because (1) the 
all-green portfolio shields the investor from OPEX (fuel price) uncertainty in the short 
run (that is, at least until the asset portfolio turns over 𝐿𝐿 years in the future), and (2) 
having both options in the investor’s choice set allows them to adjust to any potential 
spikes in green CAPEX prices. 

The bar charts in Figure 1 show the relative uncertainties at the starting values of 
CAPEX and OPEX costs that harmonize their cost parameters, as shown in Table 1. 
These results depend, of course, on the current CAPEX and OPEX values. For example, 
if fossil fuel prices are currently low, the uncertainty in fossil OPEX might naturally be 
smaller, and vice versa, which would affect the interpretation of Figure 1. Thus, Figure 
2 shows the analogous bar charts at low and high values of fossil OPEX and green 
CAPEX. The benefits of optionality (i.e., the reduction in the standard deviation going 
from a fossil-only or green-only strategy to the optimized one) are largest when there 
are larger differences in current costs of the two asset types—for example, when fossil 
fuel prices are high but the costs of green assets are low (bottom right panel of Figure 
2), since the option of gaining access to the lower-cost asset is appealing and helps 
hedge against risk. By contrast, when both assets are cheap or both are expensive 
(bottom left or top right panel), the benefit of optionality is smaller.  

Figure 3 further generalizes the results in Figure 2 by showing the standard deviation 
in PV costs for all values of current fossil OPEX prices (bottom left axis) and green 
CAPEX prices (bottom right axis). Panels a and b show these under the fossil-only and 
green-only strategies. Naturally, these results depend only on their own respective 
price values, with uncertainty increasing with current cost levels.  

Panels c and d of Figure 3 show uncertainty under the optimized strategy across both 
options, where the investor is starting from a state with either an all-fossil portfolio 
(panel c) or an all-green portfolio (panel d). These surfaces somewhat resemble the 
lower envelope of panels a and b, reflecting the investor optimizing between the two 
options, but with several nuanced results worth highlighting. First, cost uncertainty is 
smaller under the all-green portfolio (panel d relative to panel c) because it insulates 
the investor from OPEX risk. Second, cost uncertainty in the all-green portfolio 
depends substantially less on fossil OPEX prices, as illustrated by the slope along the 
OPEX axis being smaller in panel d than in panel c. For example, in the region where  
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green CAPEX is at its lowest (bottom left of the surface in each panel), cost 
uncertainty increases with OPEX prices (i.e., along the bottom left axis) in the all-fossil 
portfolio (panel c) but not in the all-green portfolio (panel d).  

Panels e and f demonstrate the reductions in uncertainty from adding the green and 
fossil options to an otherwise all-fossil or all-green strategy, respectively. Naturally, 
the green option reduces uncertainty more when it is cheaper than the fossil asset 
(i.e., when fossil OPEX is high and green CAPEX is low), and vice versa for the fossil 
option. Consistent with the results in Figure 1, the green option reduces uncertainty 
more on average across the range of OPEX and CAPEX values shown in Figure 3, a 
range that is symmetric about the cost-harmonized case in Figure 1. 

Finally, panel g shows the uncertainty reduction within the optimized strategy case 
from owning an all-green portfolio relative to an all-fossil one—that is, uncertainty 
reduction from panel d versus c. This is nearly always negative (99 percent of the 
time) across the range of current OPEX/CAPEX prices, indicating that owning the 
green asset yields broad uncertainty reductions regardless of the current state of 
OPEX/CAPEX prices. 

These results illustrate the way in which assets with low OPEX risk can reduce 
exposure to volatility in fuel prices. They nonetheless reflect an abstract model with 
harmonized parameters. Thus in Sections 3.2 and 3.3, we deploy the model reflecting 
more realistic parameters representing power generation and vehicle investments. In 
each section, we solve the model again using the updated parameterizations and run it 
based on historical realizations of fossil fuel price (OPEX) and green capital costs 
(CAPEX) over the past decade. 
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Figure 1.  Uncertainty in Net Present Value of Costs, Cost-Harmonized Scenario, at Starting 
OPEX and CAPEX Values 

 

Figure 2. Uncertainty in Net Present Value of Costs, Cost-Harmonized Scenario, at Low and 
High OPEX and CAPEX Values 
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Figure 3. Uncertainty in Net Present Value of Costs, Cost-Harmonized Scenario, by Current OPEX/CAPEX Cost Values 

 

 

 

 

 

 

 

 

 

 

(b) Green-only strategy(a) Fossil-only strategy

(f) Reduced uncertainty when fossil option is
available versus unavailable, i.e., (d) - (b)

(c) Optimal strategy, beginning with fossil

(g) Reduced uncertainty after having
acquired green assets with both

options available, i.e., (d) - (c)

(e) Reduced uncertainty when green option is
available versus unavailable, i.e., (c) - (a)

(d) Optimal strategy, beginning with green
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3.2.  Vehicle Choice Example: ICEV versus EV 

Figure 4 shows the model deployed historically for the vehicle choice scenario, where 
each vehicle lasts 𝐿𝐿 = 10 years and the investor manages a fleet of 10 vehicles, 
replacing one each year. Each panel has colored lines that correspond with the 
analogues to the strategies previously discussed: ICEV only (brown), EV only (green), 
optimized starting with an ICEV fleet (red), and optimized starting with an EV fleet 
(blue). The blue and green lines, reflecting relatively green portfolios, show less 
exposure to variable fuel prices, as exhibited by the lower volatility in OPEX costs 
(panel a). Further, the option to diversify one’s portfolio over time reduces the overall 
level and volatility of OPEX costs, as shown by similarities in both OPEX and CAPEX 
costs toward the end of the time period. Because the price of EVs was much higher in 
the early to mid-2010s, an all-EV strategy pursued then would have been quite 
expensive (panel b); therefore, the optimized model avoids EVs until 2019, at which 
point it begins purchasing EVs exclusively, regardless of the composition of the 
original portfolio (panel c). This results in a diversified portfolio of an approximately 
even number of ICEVs and EVs in the fleet by 2021–23. This significantly reduces the 
exposure to the spike in OPEX during these years amid the post-pandemic rise in oil 
prices. While an all-EV strategy beginning in 2014 would have completely eliminated 
the exposure to the price of gasoline, it would not have been optimal in our model 
because it would have required investing in early-stage EVs before they came close to 
reaching cost parity.  

Figure 5 shows the movement of historical fossil OPEX values (on the y-axis, driven by 
variation in oil prices) and EV CAPEX values (on the x-axis, driven by variation in 
battery prices) during the historical window. This demonstrates the rapid decline in 
EV prices over the past decade, which brought EVs to cost parity in expected-value 
terms over the past several years. The brown region in this figure reflects price points 
where it is optimal for the investor to buy an ICEV, and the green region is where an 
EV is optimal. Note that the notion of optimality in this model accounts for the 
expected drift and volatility of future OPEX and CAPEX prices. In some sense, it is 
fortuitous in this modeling exercise that EVs become optimal in 2019, leading to 
diversification of the modeled fleet just before oil prices spiked. If EV prices had been 
somewhat higher or expectations about future oil prices had been lower, the model 
may not have diversified in time, and the exposure to the 2021–23 oil price spike would 
have been more severe. 
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Figure 4. Historical Simulations, Vehicle Choice Example 
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Figure 5. Optimal Strategy Matrix with Historical OPEX/CAPEX Values, Vehicle Choice Example 
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3.3.  Power Plant Choice Example: Natural Gas versus 
Wind 

Figure 6 shows the historical simulation for the power plant scenario. Once again, the 
all-fossil strategy features large exposure to natural gas prices, as illustrated by the 
volatility in OPEX in the brown line in panel a. While the all-wind strategy (green line) 
would eliminate that OPEX exposure, high wind CAPEX costs in the early years imply 
that wind investments do not reach (unsubsidized) cost parity until 2019. As a result, 
in the optimal strategy scenarios (red and blue lines), high wind prices in the first half 
of the decade coupled with falling natural gas prices result in a gas-heavy portfolio by 
2020. Only in 2019, 2021, and 2022 does the model start investing in wind, somewhat 
conveniently ahead of the large spikes in natural gas prices that occurred in 2021–22. 
While this investment in wind is somewhat last-minute, it serves to mitigate exposure 
to natural gas prices relative to the all-gas strategy (compare the red and blue lines 
with the brown one in panel a).  

The greater variation in fossil OPEX in Figure 7 than in Figure 5 highlights the fact that 
natural gas prices have historically been more volatile than gasoline prices, which 
could lead to more instances of the optimal investment choice changing from year to 
year, as it does in the model between years 2018 (gas), 2019 (wind), and 2020 (gas). 
An important caveat to this example is that our model’s optimization procedure does 
not reflect the many complexities in the electricity grid, such as wind’s intermittency, 
the value of dispatchable capacity, and other fuels, all of which would affect the 
optimal resource mix in practice. In that sense, this application remains highly stylized, 
but it nonetheless illustrates the value of low-OPEX assets in hedging against fuel 
price risk. 
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Figure 6. Historical Simulations, Power Plant Choice Example 

 



Operational versus Capital Expenditure Risk in a Clean Energy Transition                 18 

Figure 7.   Optimal Strategy Matrix with Historical OPEX/CAPEX Values, Power Plant Choice 
Example 
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4.  Discussion 

Our results demonstrate that green assets—which tend to have higher capital costs 
but low or no operating costs—can help insulate households and the economy from 
uncertain future fuel prices. In addition to the differences we have already discussed, 
other nuanced factors implicit in our model are also worth drawing out. The first 
relates to the time value of money. For example, while the cost of replacing an electric 
vehicle at the end of its useful life remains, and spikes in the prices of critical minerals 
can affect those long-run expenditures, those risks occur in the future, whereas 
operational costs occur repeatedly throughout the life of the investment. The time 
value of money means this future risk is less important than equivalent near-term 
risks. This factor is captured implicitly in Figures 1–3, which show the uncertainty in 
discounted costs. 

Second, a key insight from economics is that the ability to optimize over multiple 
options allows consumers to reduce both costs and risk. In particular, consumers can 
further insulate themselves from exposure to future critical mineral costs by 
optimizing over what kinds of minerals are used to replace an asset at the end of its 
useful life. For example, if the price of cobalt rises in the future, nothing is forcing 
consumers to buy cobalt-based batteries if other options exist or are developed in the 
future, such as iron phosphate–based alternatives (for example, as Ford began to 
implement in some of its 2023 vehicles; see Miller 2023) or—setting aside climate 
concerns—returning to a conventional ICEV if no other cost-effective alternatives 
emerge in the coming decades. As our model features only one type of green asset, 
this is an additional benefit of CAPEX-centric investments not captured in our results. 
Future work could demonstrate this value by adding other types of green assets 
representing alternative types of low-carbon power generation or EV battery 
chemistries. 

The model and its results nonetheless come with caveats. First, we focus on how cost 
uncertainty varies across assets with a specific kind of risk profile: OPEX risk versus 
CAPEX risk. In practice, there may be other relevant aspects of risk exposure. For 
example, the geographic distribution of risks, such as the concentration of certain 
resources in individual countries with particular political or economic situations, may 
inject national security or political economy dynamics that do not lend themselves to 
incorporation into a quantitative economic model. However, to the extent that those 
risks simply make a particular resource’s price more volatile, this factor could be 
represented in our model by a larger volatility parameter. 

We also abstract away from the role of hedging contracts. We deem this an acceptable 
simplification for several reasons. First, hedging contracts are often short-duration 
products and generally are relatively thinly traded beyond a few years. 7 Second, while 

 
7 For example, see the analysis in Davis (2024) demonstrating essentially no trading in 2024 of 
Henry Hub natural gas futures delivering beyond 2026.  
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investors can individually use hedges to mitigate exposure to cost shocks, society as a 
whole cannot rely on financial engineering to eliminate real resource risks. Hedge 
contracts simply change who bears the cost of a resource shock. If the cost of 
producing a resource spikes, society pays this cost one way or another. For the same 
reason, we abstract away from pass-through of natural gas prices into wholesale 
electricity prices. 

Finally, for computational reasons, our model assumes a 10-year useful life of each 
asset. 8 This may be a reasonable assumption in the context of vehicles, but it certainly 
understates the typical useful life of a power plant. Thus in the power generation 
example, this 10-year life assumption understates the true risk exposure of the fossil 
asset because the true cumulative OPEX costs and duration of fuel “lock-in” are both 
larger than we assume. We reserve an extension of the model to represent longer 
useful lifetimes for future work. 

5.  Conclusions 

We began this paper with a question: Will a clean energy transition simply substitute 
one kind of commodity price risk for another? Since this question is fundamentally a 
dynamic one about unknown future pathways of alternative prices, we have addressed 
it by building a stochastic dynamic programming model that accounts for uncertainty 
in both fossil fuel prices and future capital costs of low-carbon assets. The results 
suggest that the answer to the question is no: investments in green assets today 
reduce exposure to volatile fuel prices without necessarily locking us into any 
particular future CAPEX risks. These conclusions flow from three key factors: first, the 
decision to invest in an asset tied to a particular fuel to operate (e.g., natural gas 
power plants or gasoline-powered vehicles) locks one into exposure to volatile fuel 
prices for the life of the asset, and therefore spikes in fuel prices increase OPEX for all 
existing fossil assets, whereas spikes in green CAPEX costs only affect new 
investments. Second, and by contrast, in the context of an asset with primarily CAPEX 
rather than OPEX exposure, the investment decision resolves cost uncertainty 
immediately. Third, while uncertainty remains about the future replacement cost at 
the end of the asset’s useful life, an optimizing investor is not bound to choose the 
same asset type in a future investment decision. Should CAPEX costs rise in the 
future, an optimizing investor will consider other options to minimize costs.  

The model developed herein demonstrates these insights quantitatively using a 
dynamic model of optimal investment under uncertainty given two stylized asset 
choices: fossil (OPEX-exposed) and green (CAPEX-exposed). Our cost-harmonized 

 
8 The state space of the legacy asset portfolio, denoted 𝐴𝐴𝑡𝑡 = {𝑎𝑎1,𝑡𝑡 , … , 𝑎𝑎𝐿𝐿−1,𝑡𝑡}, has a dimension 
size of 2𝐿𝐿−1 because each of the 𝐿𝐿 − 1 legacy assets could take on one of two values (green 
or fossil). For 𝐿𝐿 = 10 years, this dimension is a moderately manageable 512 potential portfolio 
permutations. For 𝐿𝐿 = 25 years, this becomes an unmanageable 16.8 million different portfolio 
permutations over which to solve the model. 
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results demonstrate that otherwise equivalent CAPEX-exposed assets reduce exposure 
more than OPEX-exposed ones do. Moreover, by deploying the model using the past 
decade of realized volatility in fossil fuel prices and green capital costs, we show how 
the green investments served to mute exposure to the rise in oil and gas prices in 
recent years. Finally, these conclusions would be amplified by a factor that remains 
uncaptured by our model: technological innovation.  Whereas our model features only 
one stylized fossil and one green asset, the set of low-carbon technologies is likely to 
expand over time. This diversity further reduces risk exposure by providing more 
options that investors can leverage to minimize cost and risk. So, does an energy 
transition simply swap one risk for another? The qualitatively different types of risk 
posed by green versus fossil investments mean that the answer is a clear no. 
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Appendix A.  EV and ICEV Model 
Parameters 

Expanding on the explanation in Section 2, this appendix delineates the entire process 
by which we calculated all model parameters presented in Table 1 for the example of 
choosing between EVs and ICEVs (𝜇𝜇𝑓𝑓 , 𝜇𝜇𝑔𝑔 , 𝜎𝜎𝑓𝑓 , 𝜎𝜎𝑔𝑔, 𝑘𝑘𝑓𝑓 , the initial value of 𝑘𝑘𝑔𝑔,𝑡𝑡, the initial 
value of 𝑐𝑐𝑓𝑓,𝑡𝑡, and 𝑐𝑐𝑔𝑔). To do so, we used data from a number of sources: the “Rhodium 
Climate Outlook” (Larsen et al. 2023); a white paper published by the International 
Council on Clean Transportation (Slowik et al. 2022); the “US Regular All Formulations 
Gas Price” (EIA, n.d.d) and “Global Price of Brent Crude” (IMF, n.d.) time series from 
the FRED database; average US residential electricity prices from the “Electric Power 
Monthly” dataset (EIA, n.d.a); and average annual miles per driver (FHWA, n.d.). 

A.1.   Drift and Volatility Parameters 

The role of the drift (𝜇𝜇) and volatility (𝜎𝜎) parameters in the geometric Brownian 
motion of 𝑘𝑘𝑔𝑔,𝑡𝑡 and 𝑐𝑐𝑓𝑓,𝑡𝑡 can be formalized as follows: 

E�𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ�𝑘𝑘𝑔𝑔,𝑡𝑡� = 𝑘𝑘𝑔𝑔,𝑡𝑡𝑔𝑔𝜇𝜇𝑔𝑔ℎ, 

Var�𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ�𝑘𝑘𝑔𝑔,𝑡𝑡� = 𝑘𝑘𝑔𝑔,𝑡𝑡
2 𝑔𝑔2𝜇𝜇𝑔𝑔ℎ�𝑔𝑔𝜎𝜎𝑔𝑔

2ℎ − 1�, 

E�𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ�𝑐𝑐𝑓𝑓,𝑡𝑡� = 𝑐𝑐𝑓𝑓,𝑡𝑡𝑔𝑔𝜇𝜇𝑓𝑓ℎ, 

Var�𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ�𝑐𝑐𝑓𝑓,𝑡𝑡� = 𝑐𝑐𝑓𝑓,𝑡𝑡
2 𝑔𝑔2𝜇𝜇𝑓𝑓ℎ �𝑔𝑔𝜎𝜎𝑓𝑓

2ℎ − 1�, 

where E[𝑥𝑥𝑡𝑡+ℎ|𝑥𝑥𝑡𝑡] is the expected value—and Var[𝑥𝑥𝑡𝑡+ℎ|𝑥𝑥𝑡𝑡] is the variance—of 
variable 𝑥𝑥 at time 𝑡𝑡 + ℎ, contingent on the value of 𝑥𝑥 at time 𝑡𝑡. Solving for 𝜇𝜇 yields: 

𝜇𝜇𝑔𝑔 = ln (E�𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ�𝑘𝑘𝑔𝑔,𝑡𝑡� 𝑘𝑘𝑔𝑔,𝑡𝑡)� ℎ⁄ , 

𝜇𝜇𝑓𝑓 = ln (E�𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ�𝑐𝑐𝑓𝑓,𝑡𝑡� 𝑐𝑐𝑓𝑓,𝑡𝑡)� ℎ⁄ . 

Solving for 𝜎𝜎 yields: 

𝜎𝜎𝑔𝑔 = �ln �Var�𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ�𝑘𝑘𝑔𝑔,𝑡𝑡� E�𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ�𝑘𝑘𝑔𝑔,𝑡𝑡�
2� + 1� ℎ� , 

𝜎𝜎𝑓𝑓 = �ln �Var�𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ�𝑐𝑐𝑓𝑓,𝑡𝑡� E�𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ�𝑐𝑐𝑓𝑓,𝑡𝑡�
2� + 1� ℎ� , 
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In the context of our model, 𝑡𝑡 is a time near the present day, and 𝑘𝑘𝑔𝑔,𝑡𝑡+ℎ and 𝑐𝑐𝑓𝑓,𝑡𝑡+ℎ are 
projected values ℎ years in the future relative to 𝑡𝑡. We use future projections sourced 
from the “Rhodium Climate Outlook” (Table A.1), but several steps are required to 
convert these values into OPEX and CAPEX units before 𝜇𝜇 and 𝜎𝜎 parameters can be 
calculated.  

Table A.1.  Projected EV Battery Costs and Oil Prices 

Variable Year Future expected 
value 

Standard 
deviation 

2022 
value 

Unit of 
measurement 

EV batteries 2050 $112.00 $86.88 $240.83 $/kWh 

Brent crude oil price 2030 $88.08 $43.46 $100.90 $/barrel 

Source: Larsen et al. (2023). 

To calculate drift and volatility parameters for 𝑘𝑘𝑔𝑔,𝑡𝑡, we converted EV battery price 
expressed in $/kWh to the total price of an EV using values from the International 
Council on Clean Transportation white paper (Slowik et al. 2022), arbitrarily choosing 
a “crossover” body type and a range of 250 miles. We assumed that the only projected 
change in vehicle price was attributable to change in battery price, so we used a 
baseline vehicle cost corresponding to the estimated 2022 cost of an EV with our 
chosen specifications ($39,543) and a conversion factor based on a power efficiency 
of 0.34 kWh/mile. Using this conversion and the formulas for 𝜇𝜇𝑔𝑔 and 𝜎𝜎𝑔𝑔, we find 

𝜇𝜇𝑔𝑔 =
ln �39,543 + 250 × 0.34 × (112 − 240.83)

39,543 �

2050− 2022
= −1.16%, 

𝜎𝜎𝑔𝑔 =
�ln� (250 × 0.34 × 86.88)2

�39,543 + 250 × 0.34 × (112 − 240.83)�2
+ 1�

2050− 2022
= 4.80%, 

noting that variance depends only on the source of uncertainty—the EV battery 
price—and applicable conversion factors. All vehicle prices from Slowik et al. (2022) 
were estimated from their Figure 4 using appropriate graphics software. Lastly, while 
the values shown in Appendixes A and B are rounded, precise values were used to 
calculate model parameters. 

As a first step toward calculating drift and volatility parameters for 𝑐𝑐𝑓𝑓,𝑡𝑡 , we used the 
mean ($82.81) of the January–October 2023 values ($84.08, $83.63, $79.26, $83.54, 
$75.75, $74.98, $80.11, $85.17, $92.67, $88.95) of the global price of Brent crude from 
FRED (IMF, n.d.) in place of a 2022 starting value to avoid having our results biased by 
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the 2022 price spike, which has since reversed. The November and December values 
were not available at the time of our analysis, but we still used 𝑡𝑡 = 2023. Brent crude 
prices and gasoline prices are highly correlated, with the latter being the relevant 
variable for our example of ICEVs. Using historical monthly data from FRED for both 
variables (IMF, n.d.; EIA, n.d.d), spanning from September 1990 to October 2023, we 
conducted ordinary least squares regression, arriving at slope and intercept 
coefficients of 0.0241 and 0.64 for converting from crude oil prices to gasoline prices, 
with an R2

 value of 0.94 (Figure A.1). Using this conversion and the formulas for 𝜇𝜇𝑓𝑓 and 
𝜎𝜎𝑓𝑓 , we found 

𝜇𝜇𝑓𝑓 =
ln �0.0241 × 88.08 + 0.64

0.0241 × 82.81 + 0.64�
2030 − 2023

= 0.67%, 

𝜎𝜎𝑓𝑓 = �ln � (0.0241 × 43.46)2
(0.0241 × 88.08 + 0.64)2 + 1�

2030 − 2023
= 13.85%, 

noting that variance depends only on the source of uncertainty—crude oil price—and 
the slope coefficient. No intercept is used when estimating variance, and the 
subsequent conversions used to arrive at annual OPEX are not important for 
estimating ratios. 

Figure A1.  Linear Regression to Convert between Crude Oil and Gasoline 
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A.2.  OPEX and CAPEX Values 

Estimating initial values for 𝑘𝑘𝑔𝑔,𝑡𝑡 and 𝑐𝑐𝑓𝑓,𝑡𝑡 and constant values for 𝑘𝑘𝑓𝑓 and 𝑐𝑐𝑔𝑔 is 
straightforward. For 𝑘𝑘𝑔𝑔,𝑡𝑡 , we used the 2022 EV price from Slowik et al. (2022) along 
with our 𝜇𝜇𝑔𝑔 estimate to find a value for our start year of 2023: 

𝑘𝑘𝑔𝑔,𝑡𝑡 = 𝑔𝑔ln(39,543)−0.01158 = $39,088. 

For 𝑘𝑘𝑓𝑓 , we used the estimate of the 2023 price for a crossover ICEV from Slowik et al. 
(2022): $31,229. For 𝑐𝑐𝑓𝑓,𝑡𝑡 , we used the 2023 gasoline price that we estimated using the 
regression methods described in Appendix A.1, transforming to annual OPEX with 
conversion factors for miles per gallon (mpg) and average annual miles per driver. 
Slowik et al. (2022) give values for 2020 (28.0 mpg) and 2022 (30.1 mpg), so we 
estimated the 2023 value using simple extrapolation, producing a value of 31.15 mpg. 
Using this and the estimate of 13,476 annual miles per driver (FHWA, n.d.), we arrived 
at an annual OPEX estimate of 

𝑐𝑐𝑓𝑓,𝑡𝑡 = (0.0241 × 82.81 + 0.64) ÷ 31.15 × 13,476 = $1,141. 

We estimated 𝑐𝑐𝑔𝑔 using the same annual mileage estimate, the estimate of power 
efficiency used to estimate 𝜇𝜇𝑔𝑔 and 𝜎𝜎𝑔𝑔, and average US residential electricity costs in 
$/kWh, estimated at $0.1629 (EIA, n.d.a): 𝑐𝑐𝑔𝑔 = 13,476 × 0.34 × 0.1629 = $746. 

Appendix B.  Natural Gas and Wind 
Model Parameters 

Determining model parameters for the onshore wind versus natural gas example was 
simpler than for the EV versus ICEV example because fewer conversions were 
required. Data sources used include the “Rhodium Climate Outlook” (Larsen et al. 
2023); “2023 Annual Technology Baseline” (NREL 2023); Waiting for Clarity (Prest et 
al. 2021); the “Henry Hub Natural Gas Spot Price” time series from FRED (EIA, n.d.c); 
and heat rate estimates from the “Annual Electric Generator Report” (EIA. n.d.b). 

B.1.  Drift and Volatility Parameters 

As with the vehicle choice example, future projections were taken from the “Rhodium 
Climate Outlook” (see Table B.1). No conversions were required to calculate 𝜇𝜇𝑔𝑔 and 
𝜎𝜎𝑔𝑔; we did so using only the values from this one source: 

𝜇𝜇𝑔𝑔 =
ln(928 1519.08⁄ )

2050− 2022
= −1.76%, 
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𝜎𝜎𝑔𝑔 = �ln(291.762 9282⁄ + 1)
2050 − 2022

= 5.80%. 

Similarly to crude oil, natural gas experienced a price spike in 2022 that later reversed, 
so we used 2023 values to calculate 𝑐𝑐𝑓𝑓,𝑡𝑡 as we did for the vehicle choice example. Data 
were available from the “Henry Hub Natural Gas Spot Price” time series on FRED (EIA, 
n.d.c) for January–November 2023 ($3.27, $2.38, $2.31, $2.16, $2.15, $2.18, $2.55, $2.58, 
$2.64, $2.98, $2.71), producing a mean value of $2.54. Using this in place of the 2022 
value from Table B.1, we calculated 𝜇𝜇𝑓𝑓 and 𝜎𝜎𝑓𝑓 : 

𝜇𝜇𝑓𝑓 =
ln(3.28 2.54⁄ )
2030− 2023

= 3.66%, 

𝜎𝜎𝑓𝑓 = �ln(1.302 3.282⁄ + 1)
2030− 2023

= 14.49%. 

See Appendix A for derivation of the formulas used here. 

Table B1.  Projected Natural Gas and Onshore Wind Prices 

Variable Year Future 
expected value 

Standard 
deviation 

2022 value Unit of 
measurement 

Wind land overnight 
capital cost 

2050 $928.00 $291.76 $1,519.08 $/kW 

Henry Hub natural 
gas price 

2030 $3.28 $1.30 $6.45 $/MMBtu 

Source: Larsen et al. (2023). 
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B.2.  OPEX and CAPEX Values 

We sought to estimate costs for onshore wind and natural gas plants with equal power 
generation, choosing a scale of 1 million MWh per year for convenience. To convert 
from prices expressed in $/kW to 𝑘𝑘𝑔𝑔,𝑡𝑡 and 𝑘𝑘𝑓𝑓 values representing total CAPEX for 
such a plant, we used estimates from the literature of fixed annual operations and 
maintenance costs (NREL 2023) and capacity factors (Prest et al. 2021), as well as the 
same 10-year lifespan and 10 percent discount rate as was used throughout the model. 
Similarly to the vehicle choice example, we also used 𝜇𝜇𝑔𝑔 to estimate 2023 prices from 
the 2022 value for the onshore wind variable in Table B.1. Using these data along with 
a conversion factor between $/kW and $/million MWh per year (1,000,000,000/
8,760 = 114,155) yielded the following estimates: 

𝑘𝑘𝑔𝑔,𝑡𝑡 = �𝑔𝑔ln(1519.08)−0.0176 +�29.35(0.9𝑖𝑖)
10

𝑖𝑖=1

� ÷ 0.409 × 114,155

= $464.6 million, 

𝑘𝑘𝑓𝑓 = �1254.4 + �30.65(0.9𝑖𝑖)
10

𝑖𝑖=1

�÷ 0.550 × 114,155 = $297.6 million. 

For 𝑐𝑐𝑓𝑓,𝑡𝑡 , we estimated the sum of fuel costs and variable operations and maintenance 
costs. We converted fuel costs from $/MMBtu to $/MWh using the estimated average 
combined cycle heat rate for 2022 from the “Annual Electric Generator Report” (EIA, 
n.d.b), subsequently adding our estimate of variable operations and maintenance 
costs based on values from the “2023 Annual Technology Baseline” (NREL 2023), also 
in $/MWh. Lastly, we multiplied by 1 million to reach 1 million MWh per year of 
generation: 

𝑐𝑐𝑓𝑓,𝑡𝑡 = (2.54 × 7.596 + 1.94) × 1,000,000 = $21.21 million. 

Having capitalized fixed operating and maintenance costs within 𝑘𝑘𝑔𝑔,𝑡𝑡, we assumed 
zero variable operating and maintenance costs (and zero fuel costs) for onshore wind, 
yielding 𝑐𝑐𝑔𝑔 = 0. 
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