

Carnegie Mellon University

Transportation Decarbonation

Mar 15, 2024

Sean Qian

U.S. National Blueprint by U.S. DOT, 2023

- Implementing System-Level and Design Solutions
- Improving Efficiency through Mode Shift and More Efficient Vehicles
- Deploying **Zero-Emission** Vehicles and Fuels

Inter-connected networks/systems

Mobility, Power Grid, IoTs, Water.. - super networks

Carnegie Mellon University

Civil and Environmental Engineering

Shift to climate-friendly modes

Table 1: Network parameters		
	Name	Value
	Studying period	5:00 AM - 12:00 PM 1:00 PM - 8:00 PM
	Simulation unit interval	5 s
	Length of assignment interval	$15 \min$
	Number of intervals	28
	Number of links	26,357
	Number of nodes	8,706
	Number of origins (destinations)	543
	Number of O-D pairs	138,560
	Number of bus routes	60
	Number of bus stops	2,504

Multi-source data

Carnegie Mellon University

Civil and Environmental Engineering

AM Hours (5AM – Noon) – Network simulations

Civil and Environmental Engineering

6

System-level GHG emissions; granular metrics

7

Other strategies

- Urban and rural: emerging mobility options
- Carrot or stick?

Carnegie Mellon University Civil and Environmental Engineering

Charging behavior of EVs

Estimate EV charging behavior to support infrastructure decisions Public? Private?

Network representation

61 DC fast charging stations

Statewide VINs

10 – 15 min per session: \$20-25, 200 miles

Carnegie Mellon University

Civil and Environmental Engineering

EV Charging

Accumulated vehicles charged, Time: 05:00:00

Carnegie Mellon University Civil and Environmental Engineering

Pricing grid to influence traffic

Morning peak arrivals

- Solar panels
- Ramping up/down cost

Grid pricing + EV

• Optimizing grid operation AND traffic patterns

Carnegie Mellon University Civil and Environmental Engineering