Demand response to decarbonization
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Demand response to decarbonization research

Empirical application of economic choice models to understand valuation of energy efficiency in transportation
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Adoptlon of electrlc buses in Rome
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Electric buses (e-buses) are rapidly becomlng pivotal for the

| W|despread adoptlon of clean technologies in road transport

zero-emission as of 2030

* 411 battery electric buses expected to be introduced in Rome
(110 starting operation around the end of 2024)

« By 2028 whole fleet expected to be low or zero-emission
« Research question: will e-buses attract new users?

* Online survey of 600 commuters in Rome to understand
preferences
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Electric buses in Santiago
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31% of buses already electri?;1 00% elctrification by 203
« Second largest electric bus fleet in the world
* 60% of users and 75% of drivers report noise has decreased

Research project with Matias Navarro and Shanjun Li (Cornell):

contractual incentives and strategic behavior in public transit
provision

» Exploit changes in incentive contracts to study how private bus
,/ operators’ strategic operational responses and electric bus
adoption affect demand behavior in the short and long runs




Metro/urban train
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Metro/urban train
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Transit is almost always better than LDVs

Private cars over 2% the energy and greenhouse gas emissions per
passenger-kilometer compared to buses and significantly more than
any form of micromobility

* A standard 40-passenger diesel bus requires a minimum of
seven riders to surpass the efficiency of a typical passenger vehicle

* Train cars must be at least 19% full to outperform individual
passenger LDVs in energy efficiency

Cities must boost ridership for optimal emission reductions
e But: risk of overcrowding
* Willingness to accept crowding given efficiency gains?
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Hypercongestion in vehicles,
stations, stops, and public
access-ways is a major
externality affecting transit
systems

€he New Jork Eimes

Surge in Ridership Pushes New York
Subway to Limit

£F Gvethisarticle &> []  [Jseo

Riders waiting for the L train on a packed subway platform at Union Square in

Manhattan last month. Subway use, now at nearly 1.8 billion rides a year, has not been
this high in New York City since 1948. Sam Hodgson for The New York Times

By Emma G, Fitzsimmons
May 3, 2016



Delays: major externality from subway
overcrowding

Causes of subway delays

30,000 incidents
Overcrowding

20,000

Track maintenance

10,000
Signal failures or other
track problems
| | | | |
2012 2013 2014 2015 2016 2017
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NYC Daily Subway Ridership

MTA data In 2019, the typical weekday
subway load was 5.5M
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Source: MTA -« Get the data + Created with Datawrapper
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Hypercongestion, reflected in overcrowding, has a direct impact
on transit users’ decisions leading to unexpected behavioral
patterns in mode and route choices that are neglected in strategic
models used for planning

Furthermore, demand and service shocks (general disruptions
and hazards, social unrest, pandemics) lead to crowd avoidance
behaviors that need better understanding and modeling

Open research question: effects on optimal pricing of transit
(value of time affected by density — crowding multiplier)
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Time perceptions in transportation economics

Subjective time is measured by its marginal disutility
Travel choices are a function of subjective time, not objective time

Value of Time (VoT): marginal rate of substitution between travel
time and cost

* VoT of on-trip time less than VoT of walking, waiting times
 Value of waiting time may be less than that of on-trip for TNCs

Passengers per square meter =

2 .
pass/m Cornell University




Crowding Level | Density Equivalent Diagram

(Before the pandemic) .

Estimation of crowding multipliers (CM)

* Measurement of the impact of passenger density on
the value of travel time savings

o

1 p;n/ln"

3 2 pax/m’

* No official US estimates: MTA uses London values
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Journal of Choice Modelling

Volume 31, June 2019, Pages 124-140 : 6 pax/m’

(Technical Capacity)

Flexible estimates of heterogeneity in crowding
valuation in the New York City subway

Cornell University

Prateek Bansal * 2, &, Ricardo Hurtubia ? =, Alejandro Tirachini © &, Ricardo A. Daziano * &



Crowding multipliers

stylized facts
Conditional logit § w

« CM is higher if the passenger is standing

1.0

« CM of 2.65 at technical capacity (6 pax/m?2), for a standing rider ° RO 4
(vs. 2.13 when sitting)

Santiago sitting =~ == Santiago standing

wgr—= London SE sitting =~ &~ London SE standing
. . e . Paris sitting - @~ Paris standing
On average standing riders are willing to pay: o ‘Swedenisiting ¢ Swedicistandng

$8.06 per hour at technical capacity vs $3.05 in non-crowded conditions

Semiparametrics (Logit with Dirichlet prior)
« Median estimates at technical capacity: 2.80-4.09 (standing); 2.11-3.25 (sitting)
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Virtual Reality
https://doi.org/10.1007/510055-022-00713-8
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Affective experience in a virtual crowd regulates perceived travel time
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Abstract

Time sometimes feels like it is flying by or slowing down. Previous research indicates objective number of items, subjective
affect, and heart rate all can influence the experience of time. While these factors are usually tested in isolation with simple
stimuli in the laboratory, here we examined them together in the ecological context of a virtual subway ride. We hypoth-
esized that subjective affective experience associated with objective crowding lengthens subjective trip duration. Partici-
pants (N=41) experienced short (1-2 min) immersive virtual reality subway trips with different levels of public crowding.
Consistent with the immersive nature of decreased interpersonal virtual space, increased crowding decreased pleasantness
and increased the unpleasantness of a trip. Virtual crowding also lengthened perceived trip duration. The presence of one
additional person per square meter of the train significantly increased perceived travel time by an average of 1.8 s. Degree
of pleasant relative to unpleasant affect mediated why crowded trips felt longer. Independently of crowding and affect, heart
rate changes were related to experienced trip time. These results demonstrate socioemotional regulation of the experience
of time and that effects of social crowding on perception and affect can be reliably created during a solitary virtual experi-
ence. This study demonstrates a novel use of Virtual Reality technology for testing psychological theories in ecologically
valid and highly controlled settings.

Keywords Time perception - Crowding - Virtual reality - Emotion - Heart rate
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In-lab VR experience




Results showed that crowding level inside the subway car had a
significant effect on one’s perception of travel time:

one additional passenger per m? on average increased perceived
duration of a 1-minute trip by around 1.8 seconds

This effect was explained by subjective feelings

* Increased virtual crowding made a trip feel longer and more
unpleasant

* It was this latter subjective feeling that mediated the former effect of
crowding on time perception: A more crowded trip was perceived
longer to the extent that it induced negative feelings
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Dynamic environments as a primer to traditional surveys
* Demand for shared modalities affected by crowd aversion?

Contents lists available ar ScienceDirect

‘
hivd Transport Policy

journal hemepage: www.alsevier.com/ocate/tranpo
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Crowding multipliers on shared transportation in New York City: The effects 55

of COVID-19 and implications for a sustainable future _
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Subway crowding multipliers as a function of
mask compliance
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Future research
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