other transportation modes

Low-carbon hydrogen to decarbonize heavy trucks and other transportation modes

Gregory Keoleian

Co-director Center for Sustainable Systems

Co-director MI Hydrogen

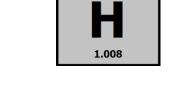
2024 Transportation Engineering, Economics, and Policy Workshop

March 15, 2024

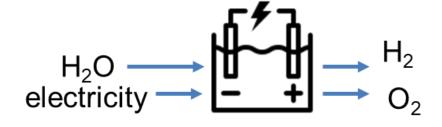
MI Hydrogen

- Integrate UM research expertise to create hydrogen solutions that accelerate clean and just energy transitions
 - Hydrogen has the potential to decarbonize industrial, transportation and other sectors where electrification is problematic
 - Integration across technology, energy systems analysis, policy and social sciences will be emphasized in research and engagement activities.

ER FOR SUSTAINABLE SYSTEMS



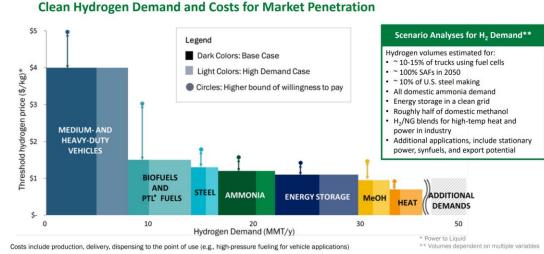
Hydrogen 101


- Hydrogen is the most abundant element
 - but limited occurrence in nature as H₂
- Hydrogen is an energy carrier
 - serves to connect energy resources (e.g., wind, solar, nuclear)
 with end-uses (e.g., transportation)
 - clean hydrogen is produced using clean electricity
 - potential role to decarbonize sectors where electrification is problematic
- Hydrogen as a feedstock
 - used mainly today in petroleum refining and chemical manufacturing
 - produced by steam methane reforming (SMR) of natural gas

(emitting CO₂)

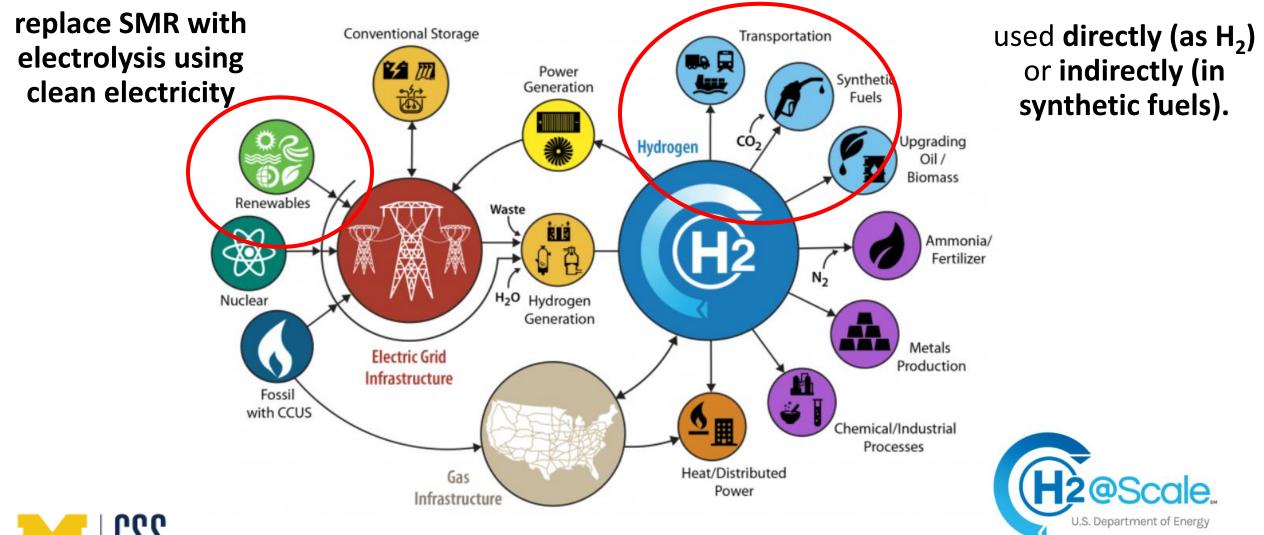
Hydrogen

1

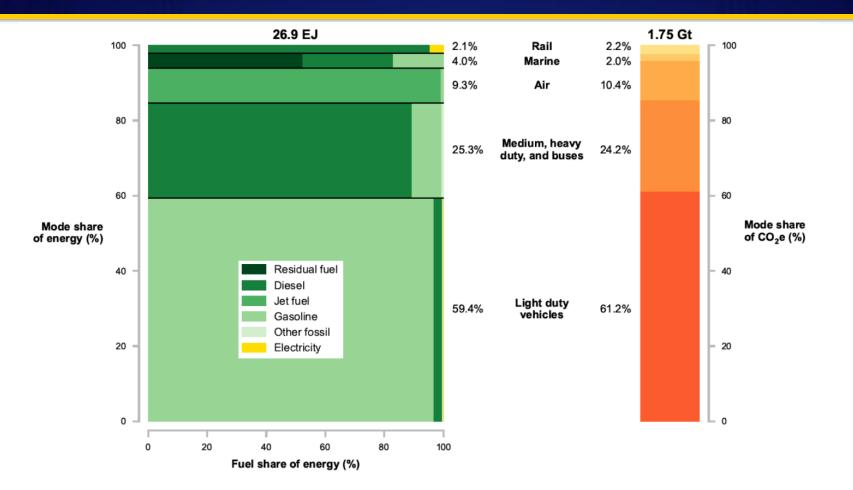


electrolysis

Hydrogen Economics

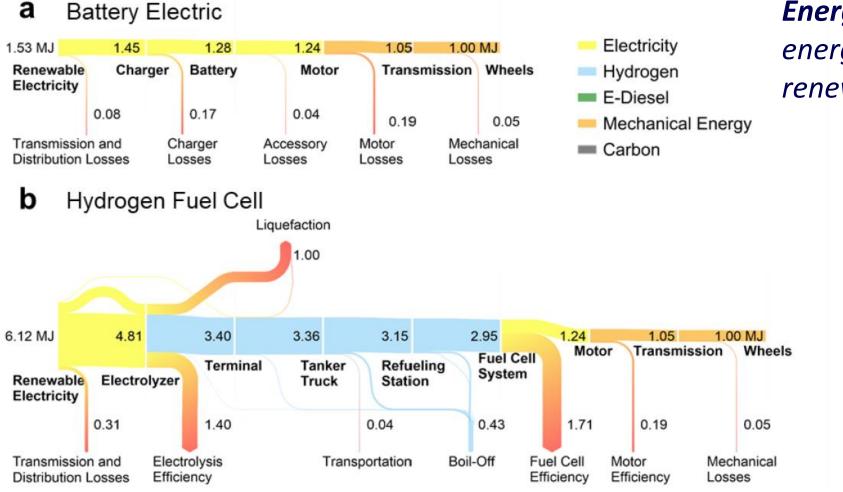

- Energy equivalence
 - Energy content of 1kg H₂ = 1 gallon of gasoline
- Production costs
 - \$1-2/kg H₂ from steam methane reforming
 - \$7.5/kg H₂ from renewable electricity
 - DOE target is to lower this to $1/kg H_2$ by 2031.
 - IRA production tax credit
 - \$3 /kg H₂ tax credit when produced from renewable electricity
- Transport costs and energy requirements are high
 - compressed H₂ 7-8 times less dense than gasoline
 - liquid H₂ 4-5 times less dense than gasoline

Strategy 1: Target High-Impact Uses of Hydrogen



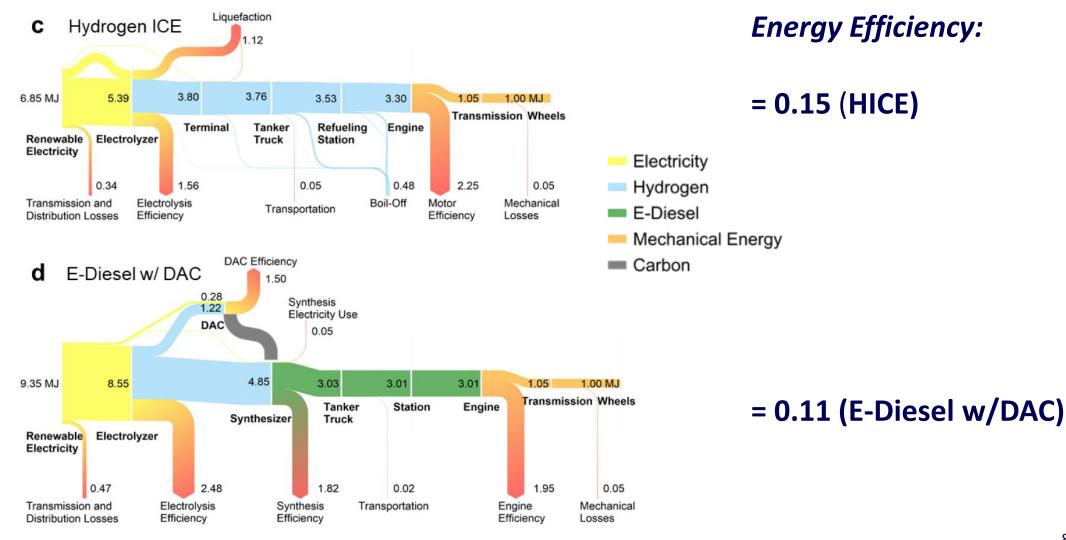
Hydrogen Ecosystem

U.S. Transportation GHG Emissions and Energy Use


Fig. 1: U.S. Transportation Energy Consumption and CO₂ Emissions in 2019

Energy consumed by road, air, marine, and rail transportation in the U.S. broken down by mode share and fuel share and corresponding CO_2 emissions.^{17,18} Energy used for transport using pipelines is not included. The total energy consumption was 26.9 EJ and CO_2 emissions were 1.75 Gt.

Joule journal article in review


Heavy Duty Vehicles

Energy Efficiency = energy delivered to wheels/ renewable electricity = 0.65 (BEV)

Heavy Duty Vehicles

Joule journal article in review

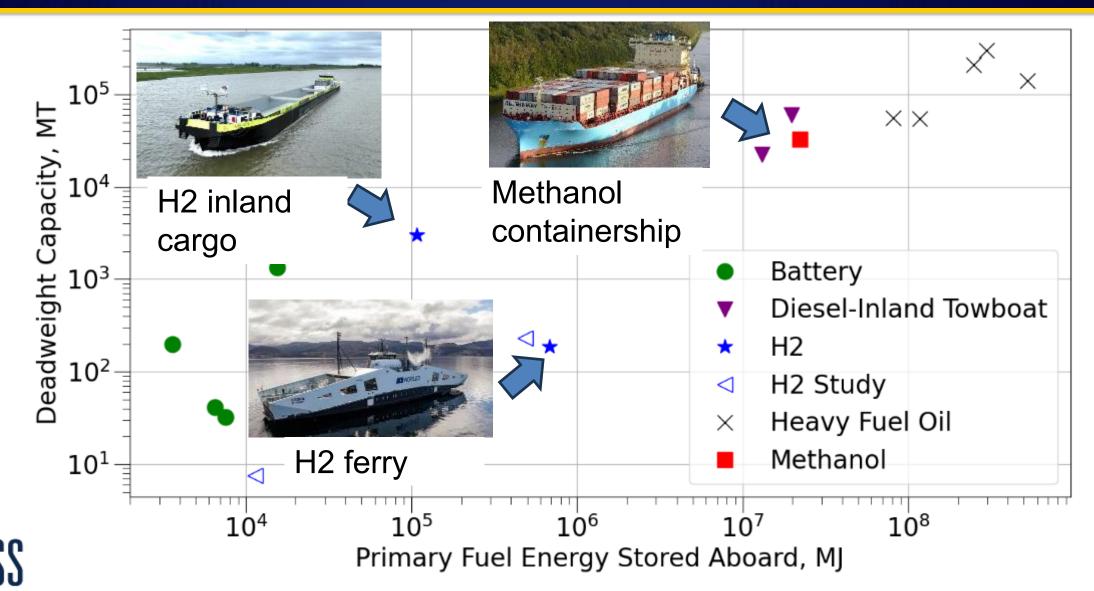
Energy Efficiency Results

Hydrogen options (direct and indirect) have about 10-20% overall energy efficiency and are about 3-7 times less efficient than direct electricity use.

	Road Light	Road	Rail	Marine	Aviation
	Duty	Heavy Duty			
Battery Electric	65.4%	65.4%	70.9%,	51.5%	53.5%
			72.5% ^a		
Hydrogen Fuel Cell (gas)	22.2%	16.3%	17.1%	17.3%	
Hydrogen Fuel Cell		16.3%	17.1%	15.0%	15.8%
(liquid)					
Hydrogen ICE (gas)		14.6%			
Hydrogen ICE (liquid)		14.6%			
Hydrogen Turbofan					18.0%
(liquid)					
E-gasoline	8.4-10.8%				
E-diesel		10.6-14.6%	8.9-11.5%		
E-jet-fuel					10.3-12.8%
E-methanol ICE				10.5-13.7%	
E-methanol Fuel Cell				8.9-11.5%	
E-ammonia ICE				11.9%	
E-ammonia Fuel Cell				8.7%	

Energy Intensities (MJ per passenger km or per tonne km)

Pass	sei	nger							
Passenger Travel Powertrain Mode (Avg.			Powertrain	MJ renewable Freight Travel Pow electricity per Mode		Powertrain	MJ renewable		
Occ Full									
Light Duty Vehicle	-	Freig Mod	ght Travel e	Powert	rain	MJ renewable electricity per tonne km			
			Long	BEV			0.302		
e			Haul	FCEV	(g)		0.963		
Heavy Duty Vehicle			Truck	FCEV	(1)		0.963		
Juty 7	H2 ICI			E (g)		1.06			
avy I				H2 ICH	E (1)	1.06			
Η	E-Dies			el		1.24			
				E-Dies	el w/DA	С	1.59		
	1		Freight		Electric		0.080		
	(1_	Rail	Battery	Electric	0.079			
	Fuel C					0.229			
Rail				Fuel Cell (1)			0.229		
			E-Dies			0.390			
			E-Diesel E-Diesel w/DAC Direct Electric	4.04 1.10 5.21 1.31 0.973 0.133	Kail	Battery Electric Fuel Cell (g) Fuel Cell (l)	0.079 0.229 0.229		
			Battery Electric			0.390			


	Light	Fuel Cell (g)	-	-			E-Diesel w/DAC	0.504
Transit Rail	Transit	Fuel Cell (l)	-	-		Medium Range	Battery	-
	Rail	E-Diesel	-	-	1		H2 ICE	14.7
	(20.5 – 186.0)	E-Diesel w/DAC	-	-			H2 FC	44.4
Hea Trai Rail (24.	Heavy	Direct Electric	0.619	0.130	aft		E-Jet Fuel	17.5
	Transit	Battery Electric	-	-	Aircraft		E-Jet Fuel w/DAC	21.7
	Rail	Fuel Cell (g)	-	-	Air	Long Range	Battery	-
	(24.9 -	Fuel Cell (l)	-	-			H2 ICE	19.1
	144.5)	E-Diesel	-	-	1		H2 FC	-
		E-Diesel w/DAC	-	-			E-Jet Fuel	23.3
	Short Range	Battery	1.93	1.57			E-Jet Fuel w/DAC	28.8
		H2 ICE	2.59	2.20		Bulk	Battery Electric	-
	(40 – 50)	H2 FC	2.02	1.69		Carrier	H2 FC (g)	-
		E-Jet Fuel	3.01	2.57			H2 FC (1)	0.033
		E-Jet Fuel w/DAC	3.73	3.19			Methanol ICE	0.037
	Medium	Battery	-	-			Methanol ICE w/DAC	0.049
aft	Range	H2 ICE	1.47	1.25			Methanol FC	-
Air	(160 –	H2 FC	4.44	3.61	Ships		Methanol FC w/DAC	-
	200)	E-Jet Fuel	1.75	1.50	Sh		Ammonia ICE	0.044
		E-Jet Fuel w/DAC	2.17	1.86			Ammonia FC	-
	Long	Battery	-	-				
	Range	H2 ICE	1.91	1.60				
	(280 -	H2 FC	-	-				
	350)	E-Jet Fuel	2.33	1.96				
		E-Jet Fuel w/DAC	2.88	2.43				

Direct use of electricity is less energy intense than using hydrogen, which is less energy intense than using e-fuels. Results highlight opportunities to use renewable electricity more efficiently: mode shifting and increasing occupancy. Fuel cell aircraft can be a solution beyond 200 mi where battery weight becomes limiting

Brelje and Martins. Aerostructural wing optimization for a hydrogen fuel cell aircraft. AIAA 2021-1132 Adler and Martins. Blended wing body configuration for hydrogenpowered aviation. AIAA 2023-4020 Currently, hydrogen fills a gap between all-electric vessels and hydrocarbon vessels

Hydrogen Outlook for Transportation

- 1. Limited/strategic role for the direct use of hydrogen; electrification (batteries) offers greater energy efficiencies.
 - MDT/HDT (long distance), Rail (long distance where electricity infrastructure is problematic)
 - Ships: Ferries and inland barges (longer distance and where charging time could be a factor)
 - Aviation Flights where battery electrification range and battery weight are a limitation (< 200 miles)
- 2. Carbon-based e-fuels are less attractive than direct hydrogen pathways from an energy efficiency perspective butcan pose fewer infrastructure challenges.
- 3. Hydrogen production and transport costs are a major challenge for adoption in transportation and the industrial sectors
 - IRA investment of \$8 billion expected to drive down costs; DOE target is \$1/kg H₂
 - Abatement costs are estimated to be over \$500-1000/t CO₂e
- 4. Renewable and nuclear electricity opportunity cost for producing hydrogen
 - Clean hydrogen production for domestic demand has the potential to scale from < 1 to 10 million metric ton per year in 2030; up to 200 GW of new renewable energy sources would be needed in 2030</p>
 - Potentially greater environmental benefits to displace fossil-based electricity generation
 - Proposed rules for 45 V tax credit could limit nuclear sources for hydrogen production; delaying hydrogen demonstration and scale up, however, until the grid is fully decarbonized (US target is 2035), would also be problematic
- 5. Given challenges with fueling options sustainable transportation requires demand reduction and modal shifts and other strategies (e.g., trip chaining, rightsizing, increased occupancy, denser development, telework).

Acknowledgements

- (1) Green Hydrogen: Energy Efficiency and Intensity in Ground, Air, and Marine Transportation (in review *Joule*).
- (2) Hydrogen as a Sustainable Ground, Air, and Marine Transportation Fuel: A Critical Review (in prep to submit to *Renewable and Sustainable Energy Reviews*).

my contact email: gregak@umich.edu

