# How Does the Public Charging Network Fuel Plug-in Electric Vehicle Uptake?

Lavan T Burra, Cinzia Cirillo, Joshua Linn University of Maryland

Transportation Engineering, Economics, and Policy Workshop March, 2024

## Policy action targeting plug-in vehicle sales and use

- Bipartisan Infrastructure Bill (2021)
  - ▶ \$7.5 billion investment in charging stations
  - ► Expect a network of a half million charging stations by 2030
- Inflation Reduction Act (2022)
  - ► Light-duty plug-in electric (PEV) tax credit/subsidy
  - ▶ EV charging equipment tax credit

#### New investments prioritize:

- Public charging in low-income, rural, and multi-family housing regions
- Fast-charging network along the highway/interstate corridor
- !! First round of funding under the CFI program released recently

## Questions we ask

- How does public charging affect EV sales? Distinguish the effects of level-2 and level-3 (DC) fast-chargers.
- ② How strongly do low-income and rural vehicle buyers respond to public charging stations?

#### To answer these questions

- We use household level survey data from 2010 to 2020
- Estimate an econometric model to predict consumer choices

#### Policy evaluation

- Predict the future demand based on the current rounds of investment
- Cost-effectiveness of the scheme and other ways of subsidizing consumers

## Data description

- Survey data of new car buyers from 2010-2020, including:
  - ▶ Details of the new vehicle purchased, transaction price, and vehicle attributes
  - ▶ Household demographics and residential zipcode
  - ▶ Info on other vehicle holdings and other vehicle(s) considered
- Annual new registrations by state and vehicle
- Public charging stations with location, service date, and characteristics

### Data Coverage

- Total obs=2.26 million
  - $\blacktriangleright$  Sample represents about 1.7% of the new car buyers from 2010-2020
  - Weight observations to account for non-random response
- $\bullet$  Overall, the data capture 74% of the total sales from 2010-2020
  - ▶ 73% of the total PEV regs
  - ► Some states/automakers aren't included
    - $\rightarrow$  For example, Tesla buyers from AZ, PA, and some other states

## Infrastructure and PEV sales growth

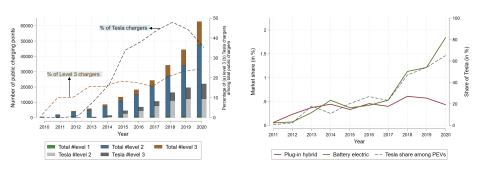



Figure: Public charging points

Figure: PEV market share

## Public charging density in 2020



Figure: Level-2 charging

Figure: Level-3 charging

### Plug-in electric vehicles per household by zipcode in 2020

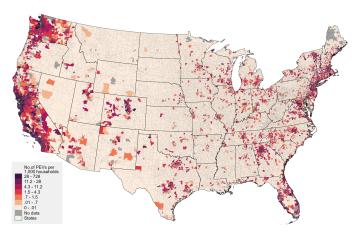



Figure: Uptake of EVs

### PEV market share in 2020

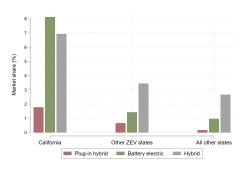



Figure: by regions

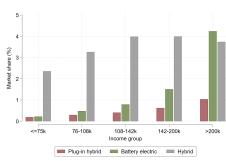
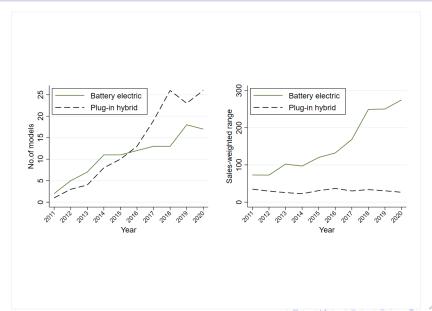
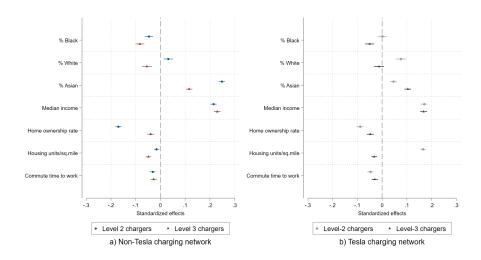





Figure: by income groups

### Trends in the PEV market



## Charging stations and demographics



## Endogeneity of Charging Stations

Chicken and egg problem

- Charging station availability affects EV adoption
- Higher EV adoption leads to increased demand for charging infrastructure
- More charging stations encourage further EV purchases
- ⇒ Feedback loops in the EV market
- ⇒ Makes it challenging to accurately model the relationship

## Approach

#### We build an econometric model

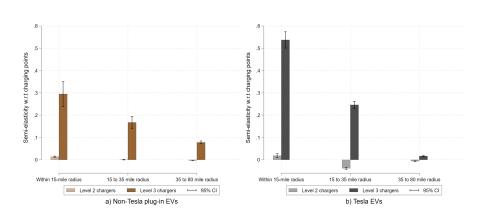
- $\rightarrow$  distinguishing between the demand for Tesla and non-Tesla plug-ins
- $\rightarrow$  assuming investments in charging stations depend on historic sales and expected future sales

### We predict the probability of buying a plug-in EV as a function of

- availability of level-2 and level-3 charging points
- household income and other demographics
- residential location characteristics
- travel patterns, regional gas price
- other national shocks and trends

#### Results

Effect of chargers on Tesla and non-Tesla plug-ins




◀ Tesla vs non-Tesla buyers

### Results (contd)

Effect of chargers on Tesla and non-Tesla plug-ins

If we include counts of charging points within 15 miles, 15-35 miles, and 35-80 miles from the centroid of the residential zip code



## Heterogeneous effects of charging availability

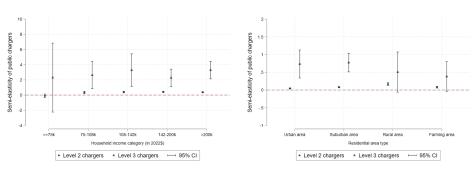



Figure: by household income

Figure: by residential area type

## Heterogeneous effects of charging availability (contd)

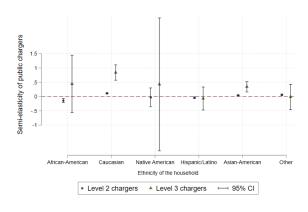



Figure: by household race

### To sum up

#### Main findings:

- Level 3 chargers have a stronger effect on the PEV demand
- The effect of public chargers diminishes with the distance
- Stronger impact on higher-income, urban and suburban demographics
  - $\rightarrow$  demand disparity in PEV adoption
- Demand for Tesla vehicles is more responsive to its chargers

#### Future work

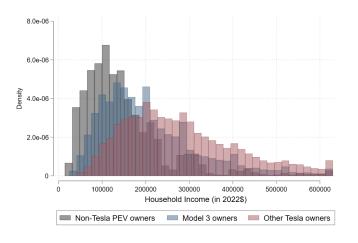
- Tesla opened access to its Supercharger network to other EVs
  → Implications on the demand for non-Tesla plug-ins
- Estimate charging side of the market
- Predict the effect of CFI & NEVI program
  - $\rightarrow$  across regions by share of households in multifamily housing
- Additional suggestions?
  - $\rightarrow$  other forms of heterogeneity
  - $\rightarrow$  other policy scenarios to consider

Thank you Return

Contact info: ltburra@umd.edu

### Outline

Appendix




### Designated US EV charging corridor



Source: U.S. DoT Federal Highway Administration

#### Income distribution of households with Tesla and non-Tesla PEVs





