Subsidy Effects on Used EV Purchases

Simon Levin

March 15, 2024 University of Maryland, AREC **RQ:** How will the IRA's introduction of subsidies for used EVs affect vehicle purchases?

- How does this affect used BEV penetration?
- What do substitution patterns looks like?

Why do we care?

- Secondary market adoption of BEVs is key for decarbonizing vehicle fleet
 - Used vehicles accounted 70% of U.S. vehicle sales between 2010 and 2019
- Distributional effects previous Federal EV subsidies only applied to new vehicle

Broadly...

- Use Washington state title transactions from 2017 through 2020
- Estimate parameters for a discrete choice model, including new and used vehicles as choices
- Generate prices for used BEVs under IRA subsidies
- Compute counterfactual sales under new prices

- Holland et al. (2016) examines emissions benefits associated with EV adoption and finds that on average, the optimal national subsidy for new EVs is negative, based on 2010-2012 electric grid
 - Holland et al. (2020) updates findings based on 2017 grid, finding optimal subsidies to be positive, but significantly lower than \$7,500 credit
- Springel (2021) examines network effects on adoption of EVs, finding subsidies for charging stations to be more effective
- Xing et al. (2021) looks at subsitution between EVs and non-EVs and finds that EVs tend to replace already fuel efficient vehicles

- Primary dataset is title transactions from Washington state between 2017 and 2020
 - Contains all title transactions, with transaction prices
 - Can identify new and used vehicles, buyer location, dealership transactions, out-of-state transfers, lease buyouts, and vehicles purchased for businesses
 - Limit data to 10-year old vehicles and newer, transacted at dealerships
 - Covers ~78% of title transactions in this period
 - Dealership transactions required for IRA credit
- Secondary datasets used for characteristics
 - NHTSA vPIC database, EPA Fuel Economy Data, EPA Vehicle Testing Data

Data

Data

Data

- Estimate parameters that govern demand for new and used vehicles
 - Emphasis on modeling parameters related to price
- Random-coefficients logit model
 - Extends logit discrete choice model by introducing heterogeneous taste preferences
 - Uses market shares to model consumer utility from vehicle choice:
 - $u_{ij} = \phi_j + \mu_{ij} \alpha p_j + \epsilon_{ij}$
 - $\phi_j = \beta' x_j + \xi_j, \ \mu_{ij} = x'_k \Sigma \nu_i$
 - Implemented using BLP methodology
 - Involves simulating draws for ν_i and integrating over draws to form choice probabilities

Quick overview:

- Estimated linear parameters are significant and signed as expected
 - Negative estimated coefficients on price, fuel cost, and age
 - Positive estimated coefficients on horsepower/weight, range, weight, and dummy for new vehicles
- Reasonable, but slightly low, own-price elasticities

Price Elasticit	ties
------------------------	------

	BEV	Hybrid	ICE	PHEV
	Own-Price			
New	-1.56	-2.42	-2.37	-2.41
Used	-1.68	-1.94	-1.99	-2.11
	Cross-Price			
New Used	-1.34e-05 -	-3.99e-05 -4.77e-05	-3.15e-05 -3.70e-05	-2.79e-05 -4.83e-05

Goal: Model impact of IRA subsidy for used BEVs

- Subsidy applies to 2-years and older vehicles, purchased at dealerships
- Average modeled subsidy of \$3,140
- Caveats:
 - Currently not modeling impact on PHEV
 - Assumes elastic supply of used BEVs
 - Assumes full pass-through and all consumers are eligible

Sales, A	Actual	vs.	Counter	rfactual
----------	--------	-----	---------	----------

	Actual	Counterfactual	Δ
New BEV New Hybrid New ICE New PHEV	27,505 51,658 673,583 6,776	27,492 51,623 673,176 6,772	-13 -35 -407 -4
Used BEV Used Hybrid Used ICE Used PHEV	$10,165 \\ 34,291 \\ 898,183 \\ 5,582$	$\begin{array}{c} 14,\!449\\ 34,\!253\\ 897,\!448\\ 5,\!576\end{array}$	4,284 -38 -735 -6

- Model predicts that subsidies should have a fairly significant effect on used-EV sales
 - Counterfactual predicts 42% increase in sales
 - Increase adds 3,046 additional vehicles to fleet size (roughly 0.18% increase)
- Fleet fuel-economy gains are small
 - Average replaced vehicle has slightly above average fuel economy of 27.1 MPG
 - Overall average changes from 26.9 MPG to 27.1 MPG
 - Estimating changes in GHG emissions requires modeling VMT

- What does this look like when the supply side is incorporated?
 - Used vehicles are limited and full pass-through of subsidy is unrealistic
- Is the policy worth it? What about alternatives?
 - GHG implications
 - Carbon tax
- What are the distributional impacts?

- Holland, Stephen P. et al. (2016). "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors". In: *The American Economic Review* 106.12, pp. 3700–3729.
- (2020). "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation". In: American Economic Journal: Economic Policy 12.4, pp. 244–274.
- Springel, Katalin (Nov. 2021). "Network Externality and Subsidy Structure in Two-Sided Markets: Evidence from Electric Vehicle Incentives". In: *American Economic Journal: Economic Policy* 13.4, pp. 393–432.
 Xing, Jianwei, Benjamin Leard, and Shanjun Li (2021). "What does an electric vehicle replace?" In: *Journal of Environmental Economics and Management* 107.

Appendix: Model Results

	Beta	Sigma
Intercept	-	2.17613
	-	(0.40163)
Price	-1.44730	0.53646
	(0.139061)	(0.040852)
\$/Mile	-2.21576	-
	(0.293567)	-
Horsepower/Weight	18.57319	-
	(1.769104)	-
Range	0.00238	-
	(0.000072)	-
EV Range	0.00052	-
	(0.000478)	-
Tons	0.76744	-
	(0.08635)	-
Age	-0.25619	0.00000
	(0.02013)	(0.087213)
New Vehicle Dummy	0.61286	0.38516
	(0.05879)	(0.212431)
EV Dummy	0.49200	0.00000
	(0.073418)	(0.427816)
Hybrid Dummy	-0.60298	-
	(0.026714)	-
PHEV Dummy	-0.30287	-
	(0.050295)	-