Subsidy Effects on Used EV Purchases

Simon Levin
March 15, 2024
University of Maryland, AREC

Motivation

RQ: How will the IRA's introduction of subsidies for used EVs affect vehicle purchases?

- How does this affect used BEV penetration?
- What do substitution patterns looks like?

Why do we care?

- Secondary market adoption of BEVs is key for decarbonizing vehicle fleet
- Used vehicles accounted 70\% of U.S. vehicle sales between 2010 and 2019
- Distributional effects - previous Federal EV subsidies only applied to new vehicle

Modeling Approach

Broadly...

- Use Washington state title transactions from 2017 through 2020
- Estimate parameters for a discrete choice model, including new and used vehicles as choices
- Generate prices for used BEVs under IRA subsidies
- Compute counterfactual sales under new prices

Related Research

- Holland et al. (2016) examines emissions benefits associated with EV adoption and finds that on average, the optimal national subsidy for new EVs is negative, based on 2010-2012 electric grid
- Holland et al. (2020) updates findings based on 2017 grid, finding optimal subsidies to be positive, but significantly lower than $\$ 7,500$ credit
- Springel (2021) examines network effects on adoption of EVs, finding subsidies for charging stations to be more effective
- Xing et al. (2021) looks at subsitution between EVs and non-EVs and finds that EVs tend to replace already fuel efficient vehicles

Data

- Primary dataset is title transactions from Washington state between 2017 and 2020
- Contains all title transactions, with transaction prices
- Can identify new and used vehicles, buyer location, dealership transactions, out-of-state transfers, lease buyouts, and vehicles purchased for businesses
- Limit data to 10 -year old vehicles and newer, transacted at dealerships
- Covers 78% of title transactions in this period
- Dealership transactions required for IRA credit
- Secondary datasets used for characteristics
- NHTSA vPIC database, EPA Fuel Economy Data,EPA Vehicle Testing Data

Data

Summary Statistics for Select
 Characteristics

	New	Used
Mean Price	$\$ 34,800$	$\$ 20,400$
Mean MPG	29.2	25.1
Mean Age	-	3.96
Total Sales	759,522	948,221
\% BEV	3.6%	1.1%
\% Hybrid	6.8%	3.6%
\% ICE	88.7%	94.7%
\% PHEV	0.9%	0.6%

Data

Used Purchase Percentage and Median Income

Data

BEV Market Share and Median Income

Modeling Consumer Choices

- Estimate parameters that govern demand for new and used vehicles
- Emphasis on modeling parameters related to price
- Random-coefficients logit model
- Extends logit discrete choice model by introducing heterogeneous taste preferences
- Uses market shares to model consumer utility from vehicle choice:
- $u_{i j}=\phi_{j}+\mu_{i j}-\alpha p_{j}+\epsilon_{i j}$
- $\phi_{j}=\beta^{\prime} x_{j}+\xi_{j}, \mu_{i j}=x_{k}^{\prime} \Sigma \nu_{i}$
- Implemented using BLP methodology
- Involves simulating draws for ν_{i} and integrating over draws to form choice probabilities

Results

Quick overview:

- Estimated linear parameters are significant and signed as expected
- Negative estimated coefficients on price, fuel cost, and age
- Positive estimated coefficients on horsepower/weight, range, weight, and dummy for new vehicles
- Reasonable, but slightly low, own-price elasticities

Elasticities

Price Elasticities

	BEV	Hybrid	ICE	PHEV
	Own-Price			
New	-1.56	-2.42	-2.37	-2.41
Used	-1.68	-1.94	-1.99	-2.11

Cross-Price

New	$-1.34 \mathrm{e}-05$	$-3.99 \mathrm{e}-05$	$-3.15 \mathrm{e}-05$	$-2.79 \mathrm{e}-05$
Used	-	$-4.77 \mathrm{e}-05$	$-3.70 \mathrm{e}-05$	$-4.83 \mathrm{e}-05$

Own-Price Elasticity by Age

Counterfactual Scenario

Goal: Model impact of IRA subsidy for used BEVs

- Subsidy applies to 2 -years and older vehicles, purchased at dealerships
- Average modeled subsidy of $\$ 3,140$
- Caveats:
- Currently not modeling impact on PHEV
- Assumes elastic supply of used BEVs
- Assumes full pass-through and all consumers are eligible

Counterfactual Results

Sales, Actual vs. Counterfactual

	Actual	Counterfactual	Δ
New BEV	27,505	27,492	-13
New Hybrid	51,658	51,623	-35
New ICE	673,583	673,176	-407
New PHEV	6,776	6,772	-4
Used BEV	10,165	14,449	4,284
Used Hybrid	34,291	34,253	-38
Used ICE	898,183	897,448	-735
Used PHEV	5,582	5,576	-6

Discussion

- Model predicts that subsidies should have a fairly significant effect on used-EV sales
- Counterfactual predicts 42% increase in sales
- Increase adds 3,046 additional vehicles to fleet size (roughly 0.18\% increase)
- Fleet fuel-economy gains are small
- Average replaced vehicle has slightly above average fuel economy of 27.1 MPG
- Overall average changes from 26.9 MPG to 27.1 MPG
- Estimating changes in GHG emissions requires modeling VMT

Going Forward...

- What does this look like when the supply side is incorporated?
- Used vehicles are limited and full pass-through of subsidy is unrealistic
- Is the policy worth it? What about alternatives?
- GHG implications
- Carbon tax
- What are the distributional impacts?

References

Holland, Stephen P. et al. (2016). "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors" . In: The American Economic Review 106.12, pp. 3700-3729.

- (2020). "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation". In: American Economic Journal: Economic Policy 12.4, pp. 244-274.
Springel, Katalin (Nov. 2021). "Network Externality and Subsidy Structure in Two-Sided Markets: Evidence from Electric Vehicle Incentives". In: American Economic Journal: Economic Policy 13.4, pp. 393-432. Xing, Jianwei, Benjamin Leard, and Shanjun Li (2021). "What does an electric vehicle replace?" In: Journal of Environmental Economics and Management 107.

Appendix: Model Results

	Beta	Sigma
Intercept		
	-	2.17613
	-	(0.40163)
\$/Mile	-1.44730	0.53646
	(0.139061)	(0.040852)
Horsepower/Weight	-2.21576	-
	(0.293567)	-
Range	18.57319	-
	(1.769104)	-
EV Range	0.00238	-
	(0.000072)	-
Tons	0.00052	-
	(0.000478)	-
Age	0.76744	-
	(0.08635)	-
New Vehicle Dummy	-0.25619	0.00000
	(0.02013)	(0.087213)
EV Dummy	0.61286	0.38516
	(0.05879)	(0.212431)
Hybrid Dummy	0.49200	0.00000
PHEV Dummy	(0.073418)	(0.427816)
	-0.60298	-

