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Bacterial Resistance and the Optimal Use of Antibiotics 

Ramanan Laxminarayan 

Abstract 
The increasing resistance of harmful biological organisms (bacteria, parasites, and pests) to 

selection pressure from the widespread use of control agents such as antibiotics, antimalarials, and 
pesticides is a serious problem in both medicine and agriculture.  Modeling resistance —or, conversely, 
the effectiveness of these control agents as a biological resource—yields insights into how these agents 
should be optimally managed to maximize their economic benefit to society.  This paper uses a model of 
evolution of bacterial resistance to antibiotics—in which resistance places an evolutionary disadvantage 
on the resistant organism—to develop a simple sequential algorithm of optimal antibiotic use.  Although 
the solution to this problem follows the well-recognized rule of using resources in the order of increasing 
marginal cost, the unique ways in which these economic costs arise from differing biological traits 
distinguishes this problem from others in the natural resources arena. This paper also examines the option 
of periodically rotating between two or more antibiotics and characterizes the economic and biological 
criteria under which a cycling strategy is superior to simultaneous use of two or more antibiotics. 
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Bacterial Resistance and the Optimal Use of Antibiotics 

Ramanan Laxminarayan1,2 

 

Introduction 
There is a small but growing body of literature on the optimal use of drugs, pesticides, and other 

resources whose effectiveness may be conveniently modeled as a natural resource.  There are three key 

features of this type of resource that distinguishes it from other natural resources such as fish, trees or 

copper.  First, unlike in the case of these other resources, the use (or extraction of effectiveness) of 

biological control agents typically involves two dynamic externalities, one positive and the other 

negative.  Take the case of antibiotics.  On the one hand, antibiotic treatment cures an infected individual, 

thereby preventing disease from being transmitted to other uninfected individuals.  On the other hand, 

using antibiotics reduces their effectiveness for future users, an externality that is not taken into 

consideration by the user.  One can think of the analogous situation in the case of antimalarials, and 

pesticides as well. This type of dual externality is not frequently encountered in the natural resources 

arena and has important policy implications, as we shall soon encounter.  

Second, we cannot readily classify antibiotic effectiveness as a renewable or a depletable 

resource.  Whether effectiveness is renewable or not depends on a biological parameter called the fitness 

cost of resistance.  Resistant parasites may bear an evolutionary disadvantage in the absence of antibiotics 

because they are specially adapted to survive in the presence of antibiotics.  For instance, resistant 

bacteria may have a thicker cell wall to protect them from antibiotics, but the resources devoted to 

protective covering also makes them less fit for survival in an environment devoid of antibiotics.  

Although some studies have demonstrated that resistance does carry a fitness cost (Musher, Baughn et 

al. 1977; Bennett and Linton 1986; Bouma and Lenski 1988), others have shown that fitness cost is 

insignificant (Schrag, Perrot et al. 1997; Bjorkman, Hughes et al. 1998).  The idea of fitness cost of 

                                                 
1 Address correspondence to: Ramanan Laxminarayan, Resources for the Future, 1616 P. St. NW, Washington DC 
20036, phone 202-328-5085, email ramanan@rff.org.   
2 I am grateful to Gardner Brown, Jim Sanchirico, David Simpson and Jim Wilen for useful discussions and to 
participants at the Harvard workshop on Antibiotic Resistance: Global Policies and Options in February 2000 for 
comments. 
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resistance is central to this paper. The third difference between antibiotic effectiveness and other natural 

resources has to do with the functional form of intertemporal dynamics of resource extraction.  For 

instance, the depletion of antibiotic effectiveness takes a peculiar logistic form in which the effect of 

harvest on the stock level is a function of the stock level (unlike in the case of fisheries, for instance).  

This difference is not trivial.  It makes the antibiotic resistance problem both rich and complex and yields 

interesting results, including some that are counterintuitive from the standpoint of standard natural 

resource models. 

In this paper, I focus on the specific question of optimal use of antibiotics.  Antibiotic 

effectiveness may be conveniently modeled as a natural resource for the purpose of analyzing strategies 

for optimal use.  Laxminarayan and Brown introduce this analytical framework to characterize the 

optimal use of two antibiotics that differ in economic costs, rate of evolution of resistance, and initial 

susceptibility (Laxminarayan and Brown 2001).  That paper shows that if two antibiotics differ only with 

respect to the initial level of resistance, then the optimal treatment strategy is to use the more effective 

antibiotic initially until bacterial resistance to the two antibiotics is identical.  From there on, both 

antibiotics are used simultaneously such that their effectiveness is always identical.  The singular feature 

of this socially optimal decision rule is that it also is privately optimal for individual patients to use the 

most effective antibiotic at all times; therefore, theoretically, there is no need for a corrective policy 

intervention to ensure that the socially optimal rule is followed.   

This paper differs from the Laxminarayan and Brown paper in two important respects.  First, I 

relax the assumption that the fitness cost of resistance is zero or negligible.3  Introducing fitness costs of 

resistance alters the results of the earlier paper substantially, and the case without fitness cost is simply a 

special case of the more general model that I discuss here.  I find that when two drugs differ only with 

respect to the fitness cost of resistance and in no other respect (such as treatment costs or initial level of 

effectiveness), then it is optimal to first use the drug with the lower fitness cost of resistance until such 

time that the resistance to the two drugs is of the same ratio as their respective fitness costs.  From this 

                                                 
3 Two other recent papers have approached the same problem, but from different directions.  Wilen tackles the 
problem of optimal use of a single antibiotic and compares strategies that lower the overall transmission of infection 
through better infection control, with those that improve antibiotic use Wilen, J. E. and S. Msangi (2001). Dynamics 
of antibiotic use: ecological versus interventionist strategies. RFF Conference on the Economics of Antibiotic 
Resistance, Airlie House.  Brown and Rowthorn use a two drug framework to characterize the optimal path of 
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point on, it is optimal to use both drugs at a steady state in which the loss of antibiotic effectiveness is just 

matched by the rate at which effectiveness recovers due to the fitness cost of resistance.  Note that the 

coincidence of social and private incentives that one encounters in the Laxminarayan and Brown paper is 

no longer present.   When fitness costs are present, it may sometimes be optimal to first use a drug even if 

it is of relatively lower effectiveness on some fraction of the infected population; such a strategy is not 

always compatible with the individual patient's desire to be treated with the most cost-effective drug. 

Second, I examine the effect of nonconvexities in antibiotic treatment costs on the optimal 

antibiotic use strategy, particularly with respect to the use of cycling strategies that are the subject of close 

scrutiny in the medical literature.  Although mathematical models and optimal control models are rarely, 

if ever, found in this literature, there has been much recent discussion of cycling or switching between 

two or more antibiotics as a potential strategy to address the problem of increasing antibiotic resistance 

(McGowan 1986; Niederman 1997; Bergstrom, Lipsitch et al. 2000; John and Rice 2000).  The 

concept of cycling, as discussed in these papers, hinges critically on the fitness cost of resistance.  If the 

fitness cost associated with bacterial resistance to antibiotics is high, then it is argued that one can 

conceive of periodically removing an antibiotic from active use to enable it to recover its effectiveness, 

before bringing it back into active use.4  On the other hand, if fitness cost is insignificant, then antibiotic 

effectiveness always declines, and it makes no sense to cycle antibiotics.5   

In a seminal paper on modeling the evolution of antibiotic resistance, Bonhoeffer et. al. use a 

simple mathematical model of evolution of drug resistance and infection to show that it is never optimal 

to cycle between two antibiotics that are identical, even if the fitness cost of resistance to the two 

antibiotics is large (Bonhoeffer, Lipsitch et al. 1997).  They demonstrate that cycling is an inferior 

                                                                                                                                                             
antibiotic use when all patients in the population receive treatment Rowthorn, B. and G. M. Brown (Ibid.). Using 
antibiotics when resistance is renewable. 
4 Among the few studies that have analyzed the effectiveness of cycling, one found that switching from gentamicin 
to other aminoglycosides reduced resistance to gentamicin.  However, when gentamicin was reintroduced, resistance 
developed rapidly Gerding, D. N., T. A. Larson, et al. (1991). “Aminoglycoside resistance and aminoglycoside 
usage: Ten years of experience in one hospital.” Antimicrobial Agents and Chemotherapy 35(7): 1284-90.  Another 
study noted a significant decrease in ventilator-associated pneumonia caused by antibiotic resistant bacteria when 
prescribed antibiotics were switched from third-generation cephalosporins to quinolones, but there was no switch 
back to cephalosporins Kollef, M. H., J. Vlasnik, et al. (1997). “Scheduled change of antibiotic classes: A strategy to 
decrease the incidence of ventilator-associate pneumonia.” Am. J. Respir. Crit. Care Med. 156: 1040-48. 
5 In some cases, resistant bacteria can acquire compensating mutations that restore their fitness vis a vis susceptible 
bacteria. 
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strategy when compared to simultaneously treating equal fractions of the population with the two 

antibiotics, or using a combination of the two antibiotics on all patients. 

In this paper, I demonstrate that Bonhoeffer's results rest on the assumption that antibiotic 

treatment costs are convex.6 This may not be the case in reality in a hospital setting.  Often, there is a 

fixed cost of maintaining a drug on the hospital formulary, incurred by way of cost of shelf space, and the 

cost associated with returning unused or expired drug to the wholesaler.  Further, some drug companies 

offer special prices for their products if they are put on the formulary and other substitutes are excluded, 

as well as volume discounts for their products.7 Both of these factors introduce nonconvexities into the 

cost function, which may result in simultaneous use of two antibiotics being economically inefficient.  

Switching from one antibiotic to another also incurs its own set of costs.  First, there is the administrative 

effort of taking one drug off the formulary and adding another one on.  Second, there is a cost associated 

with educating physicians and nurse practitioners about a new drug.  As will be shown in the rest of the 

paper, the cost of switching is critical in determining the length of time that an antibiotic should be used, 

before rotation to a second antibiotic.   

This paper has two goals.  The first is to derive a decision rule that describes the optimal strategy 

for using antibiotics when the fitness cost of resistance is positive.  The second is to describe the 

conditions (if any) under which it may be optimal to cycle between two or more antibiotics.  The simple 

model of evolution of antibiotic resistance and bacterial infection used in this paper is based on the 

modeling framework developed in Laxminarayan and Brown, modified by the assumption that fitness 

cost of resistance is non-zero (Laxminarayan and Brown 2001).  In the interests of avoiding an elaborate 

discussion of the derivation of that model and its assumptions, I refer the interested reader to the earlier 

paper.  

                                                 
6 Typically, in economic analysis, marginal costs are assumed to convex, i.e. they increase with use, but at a 
decreasing rate.  However, when there is a fixed cost associated with use, then the marginal cost of using the first 
unit is much greater than the marginal cost of each additional unit.  
7 For example, hospitals would be quoted the lowest price for Levofloxacin from Ortho-McNeil if ciprofloxacin (an 
antibiotic made by a rival firm) were not on the formulary.  This discount is offered, regardless of how much 
levofloxacin is used.  Therefore, having Ciprofloxacin on the formulary is costly in terms of increasing the price of 
levofloxacin to the hospital (personal communication, Professor Doug Black, Department of Pharmacy, University 
of Washington, Jan 30, 2000). 



Resources for the Future Laxminarayan 

5 

This paper is organized as follows:  section 2 presents the basic model and describes the pattern 

of optimal antibiotic use, when biological fitness costs are present.  Section 3 describes the conditions 

under which cycling antibiotics is optimal from an economic perspective.  Section 4 concludes the paper. 

Model 
Natural selection is the most common mechanism by which antibiotic resistance develops.  Most 

bacteria have a low level of resistance to antibiotics, in the order of one in a million.  Repeated use of 

antibiotics places selection pressure on the susceptible bacteria, thereby favoring this small number of 

resistant bacteria for survival.  Given enough time and antibiotic use, the bacterial population is composed 

entirely of these resistant strains. Treatment of these resistant populations using antibiotics is then quite 

ineffective.8    

As one might imagine, the process of evolution of antibiotic resistance and the elements of human 

behavior that facilitate this process are incredibly complex.  However, we can abstract from this degree of 

complexity to a level where we remain faithful to the essential elements of population genetics that 

govern how resistance evolves.  We follow a model of evolution of resistance that is based on the well-

known Kermack-McKendrick SIS model of evolution of infection (Kermack and McKendrick 1927).9  

The key element of the model used is that bacterial resistance to antibiotics increases in a logistic fashion 

to antibiotic use.10  Although a number of other factors contribute to resistance, such as inappropriate use 

of antibiotics, lack of sufficient infection control methods, and failure by patients to complete a full cycle 

of treatment, an analysis of the economic incentives that influence these other factors lies outside the 

scope of this paper.   

                                                 
8 While natural selection is the most important mechanism for the spread of resistance, a less frequently occurring 
mechanism of resistance is through plasmid transfer.  Bacteria possess the ability to directly transfer genetic material 
between themselves.  These genetic materials, known as plasmids, frequently contain genetic material that codes for 
resistance, and enable the spread of resistance from bacterial species that have been exposed to antibiotics to other 
bacterial species. 
9 The interested reader is referred to the seminal text in this area by Anderson and May (Anderson, R. M. and R. M. 
May.  1991. Infectious Diseases of Humans: Dynamics and Control. New York: Oxford University Press). 
10 A number of studies have demonstrated conclusively that the development of bacterial resistance to antibiotics is 
correlated with the level of antibiotic use Cohen, M. L. 1992. Epidemiology of drug resistance: Implications for a 
post-antimicrobial era. Science 257: 1050-1055. 
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From a medical standpoint, the fundamental responsibility of the individual physician is to 

exercise good judgement in prescribing the optimal dose of the best antibiotic that would bring about a 

favorable clinical outcome (Gerding 2000).  However, the overall objective of hospital infection control 

managers, who are charged with the well-being of all patients in the hospital both in the present and in the 

future, is to ensure that patients recover soon and that bacterial resistance is minimized, rather than just 

one or the other.  Minimizing resistance, by itself, is a meaningless objective and is probably best 

achieved by not using antibiotics at all.  Similarly, improving treatment outcomes in the short term is 

achieved by not imposing any restrictions on antibiotic use at the cost of increasing resistance in the 

future.  It is because the infection control committee's objective is to tradeoff between treatment outcomes 

in the present, with the possibility of future resistance, that economic analysis plays a useful role in 

providing a metric for making comparisons between present and future benefits and costs of antibiotic 

treatment. 

I follow the model and mathematical notation introduced in Laxminarayan and Brown.  Complete 

derivations of the mathematical equations for evolution of infection and drug resistance are contained in 

that paper.  The model presented here differs from the one in that earlier paper in two important respects.  

First, as discussed earlier, I permit the biological fitness cost of drug resistance to be non-zero.  Second, I 

consider the case of N  drugs, rather than two drugs, for reasons explained below.   

              Approximating to two drugs is a special case and not directly generalizable to the N  drug case 

when fitness costs of resistance are involved.11   As we shall soon see, at the steady state, the optimal 

fraction of the infected population that should be treated with each drug is equal to the fitness cost of 

resistance,12 such that the decrease in effectiveness caused by selection pressure imposed by drug 

treatment is exactly offset by the evolutionary pressure exerted in the opposite direction by the fitness cost 

of resistance.  Therefore, the necessary condition to ensure that it is optimal to treat all infected patients at 

                                                 
11 Considering the use of just one antibiotic is problematic for analytical reasons.  Antibiotic resistance models are 
fairly complex to begin with, involving the simultaneous interplay between the effects of antibiotic use on lowering 
infection and on increasing resistance.  Comparing the use of two or more antibiotics permits us to cancel out all 
terms related to the infection state equation and focus on the interplay between the costs and benefits of using two or 
more drugs and makes the model both analytically tractable, as well as realistic from a policy standpoint. 
12 To be more precise, the fraction treated is set equal to the fitness cost of resistance adjusted for the rate of 
recovery with drug treatment.  We implicitly normalize this rate to one for analytical convenience. 
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the steady state is that the fitness cost of all of the individual antibiotics available for use be positive and 

that their sum be equal to one.   

(1) 1
1

=∑
=

N

i
ir  

If the sum of fitness costs was less than one, as it well might be if only two drugs were to be used, then 

we would leave some infected patients untreated at the steady state.  Simultaneously imposing the 

simplifying assumption of two antibiotics with 121 <+ rr , as well as an exogenous constraint that all 

patients must be treated can be misleading, because the problem is implicitly reduced to one of depletable 

drug effectiveness, albeit at a slower pace of depletion than if the fitness cost were zero. 

The model variables are as follows.  ( )tI  denotes the stock of infection and refers to the fraction of the 

hospital population that is infected. r  is the spontaneous or no-treatment rate of recovery from a resistant 

infection.  The fraction of the infected population that carries a susceptible strain (treatable using 

antibiotic i ) is denoted by ( )iw t .  The fitness cost associated with resistance to antibiotic i is represented 

by ir .  The rate of recovery from a susceptible infection with antibiotic treatment is assumed to be 

identical for both antibiotics, and normalized to one.  The equations of motion for the 1+N  state 

variables in the model, ( )tI , ( )twi , Ni ..1=  are given by 

(2)
( )
( ) ( )( ) ( ) ( )( )∑ −−−−=

i
iii rtftwrtI

tI
tI 1β
!

 

(3)
( )
( ) ( )( ) ( )( )1i

i i i
i

w t
f t r w t

w t
= − −

!
 Ni ..1=  

The objective is to choose ( )tfi , the fraction of the infected population to treat with antibiotic i  in each 

period, so as to maximize the discounted net present value of benefits of antibiotic use. The benefit of 

successful (and expedited) recovery through antibiotic treatment is given by Ifbw ii , where b is the 

benefit associated with each successful treatment using antibiotics (measured in dollars per person), 

scaled by the infected population that is treated ( ) ( )tItfi , and the effectiveness of the antibiotic 
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treatment, ( )twi .  The cost of the infected population borne by society is Ici .  The intertemporal 

objective functional can be written as13  

(3.1) ( ) ( ) ( ) ( ) ,max
0

dtetIctftwtbI t
I

i
ii

δ−
∞

∫ ∑ 







−







 

subject to equations (2.1) and (2.2) and the following constraints 

(3.2) ( ) 1≤tI  

(3.3) ( ) 10 ≤≤ tfi  

(3.4) ( )∑ ≤
i

i tf 1  

Antibiotic treatment costs are assumed to be identical for all drugs and therefore normalized.  

Infection enters both the benefit and cost function, and acts as capacity constraint on the extraction of 

antibiotic effectiveness in any given period.  This feature of a moving capacity constraint distinguishes 

the antibiotic problem from other problems of natural resource extraction.  Although infection is 

undesirable and is reflected in the term ( )tIcI , a higher level of infection also implies a greater number of 

patients reap the benefits of successful antibiotic treatment for any given ( )tf i .  We assume that 

                                                 
13 An alternative objective could be to minimize the sum of the cost of infection and the cost of treatment, 

IccfI I+ .  However, the function presented is a more general version of this total cost approach for the following 
reason.  Consider the benefit of recovery from the infected state, the analytical twin of the cost of treatment cfI .  

The benefit to those who are infected with a susceptible infection and who get antibiotics can be written as wfIb1 .  

Patients who get an antibiotic but have a resistant infection get benefit of ( )wfIb −12 .  Patients who do not get any 

antibiotic at all recover at the spontaneous rate of recovery, r , and get a benefit given by rIb3 .  Net benefit (NB) 

of recovery either at faster or slower rate is given by the sum, ( ) IcrIbfIwbwfIbNB I−+−+= 321 1 .  Now, if 
patients care only about being treated and have no preference between recovering faster from a susceptible infection 
and slowly from a resistant infection, then bbb == 21  and 03 =b , then we get IcbfINB I−= , which is 
essentially equivalent to the total cost approach.  However, if the hospital administrator cares only about recovering 
faster, and the cost of infection, 21 bb ≠  and 032 == bb  , then we get IcwfIxNB I−= 1  which what we use 
in the model.  This approach also allows us to focus on the role of antibiotic effectiveness as part of the planner's 
objective function. 
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( ) ( ) 0<−






∑ I
i

ii ctftwb  to ensure that the objective function is non-increasing in the level of 

infection.  We also assume that no patient receives more than one antibiotic. 

In the interest of clarity, time subscripts are suppressed hereon.  The current value Hamiltonian to 

maximize (3.1) subject to constraints is given by 

(4)
( ) ( )

( ) ( )( )∑

∑∑
−−

+














 −−−−+−






=

i
iiiii

i
iiiI

i
ii

wwrf

rfwIrIIIIcfwbIH

1

1

µ

βϕ
 

where δ is the social discount rate and costate variablesϕ and iµ  are associated with I  and iw  

respectively.   

            The necessary first order conditions for a maximization of (7) are: 

(5.1) [ ] ( ) ( ) 01
1
1,0

0

















>
=
<

−−−
















=
∈

=

iiiii wwIwbasf µϕ  for Ni ..1=  

(5.2) ( ) ( )( ) iiiiiiii wrfIrIfb µδµµϕϕ !−=−−−+− 21  for Ni ..1=  

 (5.3) ( ) ϕδϕββϕ !−=






 −−−−+− ∑∑
i

iiiI
i

ii rfwrIcfwb 2  

(5.4) 0lim =−

∞→

tt
ititt
ew δµ  

(5.5) 0lim =−

∞→

t
ttt
eI δϕ  

 

According to the first order condition represented by equation (5.1), our decision on whether or 

not to use antibiotic i is determined by whether the sum of the private ( ibIw )and social benefit of 

treatment ( iIwϕ− ) equals or exceeds the cost to society of decreased antibiotic effectiveness.  The cost to 

society is given by the marginal user cost of antibiotic i , ( iµ ), scaled by the impact of treating another 

infected patient on the overall level of effectiveness, ( ( )1i iw w− ).  ϕ  is the marginal cost to society of 
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another infected individual and is therefore non-positive (see Appendix 1 for proof).  The divergence 

between the socially optimal benchmark on whether to use a particular antibiotic from the privately 

optimal decision is apparent.  In contrast to the social planner who takes both the social benefit of 

treatment in terms of reduced infection transmission as well as the social cost of treatment in terms of 

reduced future effectiveness into account, the individual decision maker will use an antibiotic as long as 

the private marginal benefit of use exceeds the private marginal cost.  

Hereon, I shall take the following approach.  First, I characterize the steady state in which all 

antibiotics are in use.  Then, working backwards from the steady state, I examine the N-jointly singular 

path along which all N antibiotics are being used.  We will see that the steady state lies on the N-jointly 

singular path.  Finally, I examine the case in which only one antibiotic is being used to the exclusion of 

all others.  Having proceeded thus far in a reverse fashion, I illustrate the results shown with an 

example—which we will move forward in time—to reconstruct the optimal pattern of antibiotics use from 

time zero until the steady state is reached.   

At the steady state, 0iw =! , 0=I! .  From equations (2.1) and (2.2), we have 

(6)  ii rf =*  for all Ni ..1=  
 

which implies that all available antibiotics are used at steady state, as long as their fitness cost of 

resistance is non-zero.  We can then solve for the steady state stocks of infection, *I  and antibiotic 

effectiveness, *
iw .   From equation (1), at steady state, 

β
β rI −=* .  

From equation (5.2), and the steady state condition 0iµ =! , we get 

(6.1)  iibIf δµ=  

Substituting for ( ) *Ib ϕ− into equation (5.1), we get 

(6.2) ( ) ( )** 1 i
i wbIfIb −=−

δ
ϕ  for all Ni ..1=  

Since the term on the left hand side is identical for all antibiotics, we have at the steady state 
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(7)               ( ) ( ) ( ) NN fwfwfw *
2

*
21

*
1 1...11 −==−=−  

Equation (7) represents the social optima, which equates the probability that an infected patient 

will be treated with drug 1 and that such treatment will be unsuccessful, with the corresponding 

probabilities for any other drug in the available portfolio of drugs.  Note that at the steady state, the 

socially optimal treatment strategy is independent of considerations of infection or of future antibiotic 

resistance.   

When condition (1) is met, the above steady state is one in which the rate at which antibiotic effectiveness 

is depleted through use is exactly offset by the rate of growth of effectiveness due to the fitness cost of 

resistance.14  A similar state, albeit for a single stock, exists in the case of optimal fish harvesting.  

Furthermore, the steady state lies along the N-jointly singular path.  Therefore, we can reasonably assume 

that it is possible to reach this steady state.   

What is the economic intuition that underlies this steady state?  First of all, the first order 

condition for the maximization problem stipulates that that marginal private benefit of antibiotic use plus 

the marginal social benefit in terms of a reduced stock of infection is identical for all antibiotics that are in 

use.  For each antibiotic that is being used, the marginal benefit of use (private plus social) is exactly 

equal to the marginal social cost measured by the adjusted rental rate on the stock of effectiveness of that 

antibiotic.  Since the first order condition stipulates that the fractions treated with any given antibiotic is 

such that the marginal benefit of all antibiotics in use is identical, the marginal rental cost of all antibiotics 

also is the same at the steady state. 

We now turn to the problem of characterizing the optimal path of antibiotic use leading 

up to the steady state.  The optimization problem is linear in the control variables ( )tfi , where 

                                                 

14 This, of course, rests on the assumption that equation (1) holds.  Suppose 1
1

>∑
=

N

i
ir , then all drugs would be used 

in the steady state, but i
i

i
i

r
f

r
=
∑

.  Therefore, there would be a steady state in which the rate of depletion was 

lower than the rate of growth of effectiveness, in which the effectiveness of all drugs that were being used was rising 
slowly. 
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the N  switching functions are given by the coefficients of N  ( )tfi  controls.  We consider 

various combinations of singular and bang-bang controls: 

Case 1:  All  if ’s are singular  

Assume that all N drugs are being used, and that we are on the N-jointly singular path. 

From equation (5.1), 

 

(8) ( ) ( )ii wIb −=− 1µϕ  for all Ni ..1=  

Therefore, 

(9) ( ) ( )kkjj ww −=− 11 µµ  for , .i j k=  

We demonstrate the condition for joint use of any two antibiotics j and k , obtained by 

synthesizing the control.  Differentiating equation (9) with respect to time, we have 

(10.1) ( ) ( ) iiii wwIIb !!!! µµϕϕ −−=−− 1  

We can substitute for iµ! and iw!  from equations (2.2) and (5.2) and equate for drugs 

j and k , to show that (see Appendix 2 for mathematical derivation) 

(10.2) ( ) ( )kkjj wrwr −=− 11  

 
We refer to equation (10.2) as the joint use condition.  It describes the simple mathematical 

condition for simultaneous use of any two antibiotics to be optimal.  The key feature of this joint use 

condition is that it may be socially optimal to use two antibiotics simultaneously, even if bacterial 

resistance to one drug is greater than to the other.   

At the steady state, when all N drugs are being used and i if r= for all Ni ..1= , the joint 

use condition defines the steady state as represented by equation (7).  From this, we infer that the 

steady state lies along the jointly singular path. 
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From equations (2.1) and (10.2), along the doubly singular path, 

(11) 







−
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




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Differentiating the equation (10.2) with respect to time yields, and combining with 

equation (11), we have  

(12) ( ) ( )kkkjjj rfwrfw −=−  

Therefore, the joint use condition is always satisfied if j jf r=  and k kf r= . 

Case 2: 1=jf and  0=kf  jk ≠∀ . 
From the first order conditions, we have the necessary conditions for antibiotic j to be used 

alone, 

(13) ( ) ( ) 01 =−−− jj wIb µϕ  

and 

(14) ( ) ( ) 01 <−−− kk wIb µϕ  jk ≠∀  

Therefore, 

(15) ( ) ( )kkkk ww −<− 11 µµ  jk ≠∀  

 

This condition can be interpreted as follows:  jµ is the shadow cost of effectiveness of antibiotic j .  

Under a conventional resource use criterion, we would want to use the resource with the lowest marginal 

cost, first.  In the case of antibiotics, the user cost of an antibiotic is reflected in the rental rate on 

antibiotic effectiveness.  Therefore, we would want to use the antibiotic with the lowest rental rate, and 

the highest level of effectiveness first, as shown by the above inequality. 
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In order to represent this optimal path in terms of measurable epidemiological and economic 

parameters, we can differentiate the above inequality with respect to time to obtain, 

(16) ( ) ( ) kkkkjjjj wwww !!!! µµµµ −−<−− 11  jk ≠∀  

We can substitute for jµ!  and kµ!  from equations (5.2), and make the following 

substitution  

(17) ( ) ( ) θµµ =−−− kkkk ww 11  where 0>θ  

to arrive at the following condition15 

(18.1) ( ) ( )[ ] 011 <−−− kkjj wwbI µµ  

The simple decision rule is to use antibiotic j  before using antibiotic k  , as long as 

(18.2) ( ) ( )kkjj wrwr −<− 11  

 

In words, we would use a drug with a combination of relatively low fitness cost and relatively high level 

of effectiveness.  In order to understand the economic intuition underlying this rule, we need to translate 

these biological criteria into economic costs.  We can interpret the biological fitness cost of resistance, ir , 

in economic terms as an inverse measure of the cost of using antibiotic i in terms of declining future 

effectiveness.  The greater the value of ir , the less effect that antibiotic use has on eroding future drug 

effectiveness.  An antibiotic with a larger value of ir  is more valuable and, therefore, the rental rate 

associated with each unit of effectiveness of this drug also is relatively greater.  Hence, our optimal policy 

is to use the drug that is both the most effective as well as “least costly” in terms of user cost of foregone 

antibiotic effectiveness.  This policy is in keeping with the general wisdom of using resources in the order 

of increasing marginal cost of extraction (Weitzman 1976).  Note that a drug with a low fitness cost of 

                                                 

15 This holds when 
k

k
k r

r
w

δ−
> , a condition that is met as long as the fitness cost of resistance of each antibiotic 

is smaller than the discount rate, or effectiveness is sufficiently large.   
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resistance is inherently a “cheaper” drug, not from the standpoint of treatment effectiveness (because 

effectiveness only depends on level of resistance), but from an economic opportunity–cost standpoint.  

Therefore, all else equal, it pays to use this drug first.   

When j kr r= , then the condition for using drug j  alone is that j kw w> .  This is the specific 

case addressed in the earlier paper by Laxminarayan and Brown.16  If two antibiotics have identical 

fitness costs of resistance, then the necessary condition to use drug j  only before drug k  is that 

resistance to drug j  is lower.  Interestingly enough, this coincides perfectly with private incentives.  

Individuals who act in a self-serving manner ignore both the positive social impact of getting treated (in 

reducing the chance that they will transmit the infection to someone else), as well as the negative social 

impact of getting treated (in decreasing future antibiotic effectiveness for the rest of society).  While 

choosing the right antibiotic for their needs, individuals (or, more likely, their physicians) equate the 

probability of successful treatment using any one of the antibiotics available to them and therefore set 

equal the expected probability of treatment cure from all available antibiotics.  Therefore, the socially 

optimal policy is compatible with private incentives for this special case alone. 

When j kr r> , then the necessary condition to use antibiotic j  alone is j kw w> .  In other words, 

if the fitness cost of resistance of drug j  is greater than that of drug k , then it is absolutely necessary 

that the effectiveness of drug j  exceed that of drug k  for the following reason: since drug j  has the 

higher fitness cost of resistance, it is the more costly drug to use, from an economic opportunity cost 

standpoint.  Therefore, its effectiveness will have to be greater in order to compensate for the higher cost 

of using this antibiotic.   

When j kr r< , it is possible that we may want to first use drug j alone even if j kw w< .  This is 

completely counterintuitive to the medical viewpoint that the patient must be treated with the best 

available drug at the lowest cost.  This strange result is easily explained, once the user cost of antibiotic 

effectiveness is taken into consideration.  A drug with the lower fitness cost of resistance is naturally the 

less “costly” drug from a resistance cost standpoint since ceteris paribus, the shadow value, on this drug 

                                                 
16 In fact, they assume that the fitness costs of resistance to the two drugs are not just equal to each other, but also 
equal to zero. 
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will always be lower than for other drugs. Therefore, this drug should be used first.  If jr  is sufficiently 

less than kr , the user cost advantage afforded by drug j  may be large enough to outweigh a disadvantage 

in terms of its lower level of effectiveness.  Therefore, our optimal policy would be to use the "less 

costly" drug, j , even if the level of resistance to this drug is greater. We continue using drug j until the 

level of resistance increases sufficiently so as to ensure that equation (13) holds.  From this point on, it is 

optimal to use both j and k drugs simultaneously, as shown in Case 1.  

Based on the above discussion, we can characterize the optimal pattern of antibiotic use as shown 

in Figure 1.  Consider three drugs, j , k  and l  such that 1j k lr r r+ + = .   The initial level of 

effectiveness of the two drugs is given by ( )0jw , ( )0kw  and ( )0lw  respectively, such 

that ( )( ) ( )( ) ( )( )1 0 1 0 1 0j j k k l lw r w r w r− < − < − .   

Initially, it is optimal to use antibiotic j exclusively for a period of time, before drug k  is also 

brought into use.  During this time, the effectiveness of the drugs k  and l  which are not being used rises 

at a rate determined by kr  and lr  while the effectiveness of drug j declines in response to its use.  This 

continues until time, kτ , when ( ) ( )1 1j k j k k kw r w rτ τ − = −    . 

By integrating equation (2.1), we can rewrite the above condition as  

(19)   ( )
( )

( ) ( )
( )

1

1 11 1
0 0

11
1 01 0

j k k k

j k
rj k r

kj

r r
w w

ee
ww

τ τ− −

   
   
   − = −   
  −−  

−−      
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Figure 1: Pattern of optimal antibiotic use 

From our knowledge of ( )0jw , ( )0kw , jr , and kr , we can solve for the optimal period kτ , 

during which only antibiotic j  is used.  After time kτ , both antibiotics are used simultaneously in the 

fractions proportional to their respective fitness costs.   

The optimal fraction to treat once the joint use condition between any two drugs has been reached 

is identically equal to the fitness cost of resistance of each drug adjusted for the rate of recovery.  It is 

obvious that one would want to use all available antibiotics at the steady state as long as their fitness cost 

of resistance was positive.  If any single antibiotic were not being used, then its effectiveness would rise 

due to the fitness cost of resistance until such time that condition (18.2) was satisfied.  At this time, it 

would be optimal to include that antibiotic in our menu of drugs.  From condition (1), at the steady state, 

the entire population of infecteds receives treatment, and the effectiveness of each antibiotic used remains 

constant.  Imagine for a moment that condition (1) does not hold and 
1

1
N

i
i

r
=

<∑ .  We then either have to 

settle for treating less than the entire population of patients in order to remain at a steady state, or forgo 

the steady state in favor of one where the effectiveness of all drugs is declining.  It is for this reason that 
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the notion of thinking of a world in which only two drugs are available is a spurious approximation, and 

could lead to incorrect policy solutions.   

Cycling Antibiotics 
A topic of current interest related to managing antibiotic resistance is that of cycling between two 

or more antibiotics that are therapeutic substitutes for one another.  In some bacterial populations, it has 

been documented that drug resistance declines once the drug has been withdrawn from active use.  

However, the time taken for antibiotics to recover their effectiveness is longer than the time it takes for 

the initial loss of effectiveness, a fact that is easily explained by equation (3).  A great deal of uncertainty 

persists about the conditions under which cycling is optimal, and the optimal rotation or switching time 

between two or more antibiotics (McGowan 1986; McGowan and Gerding 1996; Bergstrom, 

Lipsitch et al. 2000).  Finally, there is little empirical that promotes using cycling strategies to 

successfully manage resistance in hospitals. (McGowan and Gerding 1996). 

Bonhoeffer and colleagues make it clear that biology confers no advantage on the cycling strategy 

(Bonhoeffer, Lipsitch et al. 1997).  They suggest, “When more than one antibiotic is employed, sequential 

use of different antibiotics in the population or cycling is always inferior to treatment strategies where, at 

any given time, equal fractions of the population receive different antibiotics."  Extending their argument 

to the economic dimension, we can see that, unless the cost of stocking two antibiotics is substantial 

enough to outweigh the biological benefits of simultaneously employing two antibiotics, the issue of 

cycling between two antibiotics, though interesting, may not be an important one. 

Specifically, we can demonstrate that cycling is an optimal strategy only when two essential 

conditions are satisfied.  First, there must be non-convexities in antibiotic costs.  For instance, there may 

be a fixed cost associated with maintaining an antibiotic on the hospital formulary.  If there is no fixed 

cost of storing keeping an antibiotic on the formulary, then it makes sense to maintain the greatest 

diversity of antibiotics on the formulary.  This minimizes the likelihood that selective pressure to any 

single drug or class of drugs would be great enough to lead to bacterial resistance to that drug.  Second, it 

is necessary that there be a cost of switching from one antibiotic to another.  If this second condition is 

not satisfied, then the optimal switching strategy may be to instantaneously switch back and forth between 

the two or more antibiotics. Although economic considerations determine whether or not a cycling 

strategy is optimal, biological considerations, such as the fitness cost of resistance, play an important role 



Resources for the Future Laxminarayan 

19 

in determining the optimal rotation time (the length of the interval during which one antibiotic is used) 

before switching to the other.  In short, in the absence of economic considerations, there is no rationale to 

implement a cycling strategy in place of a simultaneous use strategy, in which all available antibiotics are 

used.  Although the fitness cost of resistance does not determine whether or not cycling is an optimal 

strategy, it does determine the fraction of time devoted to using each antibiotic during a single rotation.      

There are important parallels between the question of cycling antibiotics and the long-studied 

questions in natural resources economics, such as those of crop rotation, and cycling between two or more 

stocks of fish for harvesting (Niederman 1997).17  These analogies can be useful in understanding the 

theoretical underpinnings of cycling strategies for antibiotics.  The most general theoretical analysis of 

cycling is by Lewis and Schmalensee (Lewis and Schmalensee 1977; Lewis and Schmalensee 

1979).  In these papers, they formally characterize the economic conditions under which cyclical 

harvesting is a superior strategy to continuous harvesting.  The most direct analogy of the essence of the 

optimal rotation of antibiotics is represented by the Faustman solution to the problem of optimal rotation 

in tree harvesting (Clark 1976).  In that model, the principle of stationarity is invoked to determine the 

optimal period of time that a tree is grown before it is harvested and the land is reforested.18  The cost of 

planting a new tree in the Faustman solution is similar to the cost of switching from one antibiotic to 

another.  In the absence of this planting cost, the optimal solution in the Faustman problem is to cut trees 

                                                 
17 The literature on cycling in natural resource economics is derived from the Ss model of inventory stocking Reed, 
W. J. (1974). A stochastic model for the economic management of a renewable animal resource. Mathematical 
Biosciences 22: 313-37.  Under this model, there is a fixed cost of harvesting a renewable resource (an activity that 
is the analytical twin of replacing a low effectiveness antibiotic with a more effective one.)   Harvesting is initiated if 
the stock of the resource exceeds some level, s , and continued until the stock reaches a lower bound value of S , 
where sS < .  At this point, harvesting is stopped and the resource is allowed to regenerate.  If the fixed cost 
incurred by harvesting the resource is zero, then sS = , in which case, continuous harvesting is the optimal strategy.  
Other research in this area has shown that, in addition to fixed costs, non-convexities in the optimization problem 
such as those introduced by non-linear cost functions, and positive stock externalities can facilitate cycling.  Clark, 
C. W., F. H. Clarke, et al. (1979). “The optimal exploitation of renewable resource stocks: Problems of irreversible 
investment.” Econometrica 47: 25-47. 
Wirl, F. (1995). “The cyclical exploitation of renewable resource stocks may be optimal.” Journal of Environmental 
Economics and Management 29: 252-61. 
18 The principle of stationarity, which is described in greater detail in the next section, essentially refers to a 
condition in which the optimal strategy is a function only of the state variables (infection and resistance levels in the 
hospital setting) and is independent of the time period during which the strategy is to be executed. 
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down instantaneously after planting, a strategy that bears resemblance to the simultaneous use of two 

antibiotics.19 

In the analysis presented, I examine the economic wisdom of cycling between antibiotics.  As is 

typical in such rotation models, stationarity is assumed. In other words, if the pattern of antibiotic use, 

given by 1f , 2f  … Nf , is optimal for the state variables ( )1tI , ( )11 tw , ( )12 tw , …, ( )1Nw t  at time 1t , 

then the same pattern of use must be optimal when the same states are encountered at some time 12 tt ≠ .  

Therefore, the optimal rotation rule can be expressed as a function of the state variables alone. 

We can show that the necessary condition for cycling (using sliding control) to be preferable to 

continuous optimal control is that cost of treatment is non-convex.  Furthermore, the optimal fraction of 

time devoted to each drug is directly proportional to the fitness cost of resistance to that drug.  The proof 

is as follows.  Consider an infinitesimally small time interval ε .  During this time interval, infection level 

is assumed to be constant.  Under a chattering (or sliding) control strategy, we use each drug i for a 

fraction of time iα of the interval ε . 

(20) 11 =f  and 01 =≠if  for εα 10 ≤≤ t  

 12 =f and 02 =≠if  for ( )εααεα 211 +≤≤ t  

 . 

. 

. 

1=Nf and 0=≠ Nif  for ( ) εεααα ≤≤+++ − tN 121 ...  

 

                                                 
19 The idea that the cost of planting (or tree harvesting) is critical to obtaining a finite rotation time in the Faustman 
solution is not often recognized by resource economists.  Indeed, many papers completely leave these costs out of 
the optimal tree rotation model without acknowledging their importance.  In the Faustman model if there were no 
planting or harvesting costs, the optimal rotation formula would be to instantaneously harvest trees immediately 
after planting to reap a return to capital that approaches infinity.  I am grateful to Gardner Brown for pointing this 
out to me. 
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Further, 

(21) 1=∑
i

iα  

 With chattering (or sliding control),20 the equilibrium state for drug i can be written as 

(22) ( ) ( )1*** −−=∆ iiii
c

ii wwrfw εεα  

Since this is a steady state,  

(23) c
i

i
i f

r
=α    

Benefit of chattering is 

(24) ( )( )∑ −=
i

c
i

c
iii

c fcfwV *εα  

We compare the benefit of chattering over the time interval ε with the benefit of 

continuous control given by 

 

(25) ( )( )∑ −=
i

iii fcfwV **** ε  

where 

(26) ii rf =*  

Chattering (using drugs individually in temporal sequence) is preferable to continuous 

control (when all drugs are used simultaneously in fractions proportional to their fitness cost of 

resistance), if 

                                                 
20 In optimization theory, chattering has two meanings.  The first deals with situations in which optimal control does 
no exist, or rather a minimizing sequence of controls does not tend to any limit in a given class of admissible 
controls.  This is more commonly referred to as sliding control.  In chattering, optimal control has an infinite number 
of switches on a finite time interval Zelikin, M. I. and V. F. Borisov. 1994. Theory of Chattering Control with 
applications to astronautics, robotics, economics and engineering. Boston: Birkhauser.. 
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(27) ( )( ) ( )( )∑∑ −>−
i

iii
i

c
i

c
iii fcfwfcfw **** εεα  

Substituting for c
if  and *

if from above, we can write this condition as 

(28) ( ) 0>







−∑

i i

i
ii

r
crc

α
α  

It is easy to show that the sufficient condition for the above inequality to hold is that the 

cost of treatment is non-convex.21 

 

Our next task is to determine the optimal value of iα . 

(29.1)Minimize ∑ 








i i

i
i

r
c

α
α  

(29.2)Subject to: 1=∑
i

iα  

And  

(29.3) 10 ≤≤ iα  

The i  first order conditions for the Lagrangian are 

(30) λ
ααα

=



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
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Let ( ) kxxc =  where 1<k .  Then 

(31) i

k

i rk
1

1






 −=

λ
α  

                                                 
21 Hint: Let ( ) kxxc = , then 1<k  will ensure that the inequality holds. 
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From equations (18) and (21), we have 

(32)
∑

=

i
i

i
i r

rα  

The optimal fraction of chatter time devoted to any single drug is proportional to the 

fitness cost associated with resistance to that drug.  Using this simple rule one can arrive at a 

chattering strategy that is superior to continuous optimal control from an economic perspective.  

If there is no cost of switching between the drugs, chattering is instantaneous for extremely short 

intervals of length 10 ≤≤ iα .  However, if there is a cost of switching, then it may be optimal to 

linger longer with each drug, as we demonstrate below.   

Consider the following switching problem.  We can assume that costs are nonconvex so 

that sliding control is an optimal strategy.  However, we leave these costs out of the math that 

follows, so as to focus our attention on the dependence of switching time, ε  on switching costs.  

Consider a finite time horizon, T .  Then the number of times we will rotate fully between all 

available drugs (two in the case under discussion) is given by 
ε
T . Fractions treated are chosen to 

ensure return to the steady state at the end of each full rotation.  The benefit associated with 
ε
T  

such rotations is given by 

(33) ( )( )cnGTV R ~−= ε
ε

 

where c~ is the cost of switching between the n drugs for one complete rotation.22  We can 

then choose the optimal ε , by setting 0=
∂

∂
ε

RV  

                                                 
22 It is relatively easy to set up the problem with discounting and to show that the optimal rotation time for an 

infinite horizon problem is given by the condition ( )
( ) ρε

ρ
ε

ε
−−

=
− ecnG

G
1~

' .  From this expression we can verify that 
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(34) ( ) ( )
ε

εε cnGG
~

' −=  

This equation implies that completing a full rotation at time ε  maximizes the average per 

period economic yield.  We can verify the necessary second-order condition for concavity is 

satisfied when ( ) 0'' <εG  (see Appendix 3 for proof).  Fully differentiating the above expression 

with respect to c~ , we get 

(35)
( ) 0

''~ >−=
εε

ε
G

n
cd

d  

Therefore, the optimal length of each full rotation is increasing in the cost of switching 

from one drug to the other.  

Discussion 
Antibiotic effectiveness is a unique natural resource.  Although the optimal use strategy broadly 

conforms to the standard intuition of using the lowest marginal cost resource before turning to resources 

with higher marginal costs, it is not always clear in what form these costs will arise.  The real challenge is 

to interpret different biological traits as economic costs so that we are able to arrange these biological 

resources in the order of increasing marginal cost.  In the problem described in this paper, a low–cost 

resource is one for which the fitness cost of resistance is relatively low.  This may seem counter-intuitive 

from a medical practitioner’s standpoint, since using a drug with a relatively high fitness cost has the 

lowest effect on future resistance to that drug.  From that perspective, it appears to make sense to use such 

a drug in preference over others that develop resistance more rapidly in response to use.  However, from 

an economic standpoint, a drug with a high fitness cost of resistance is also a more valuable one.  The 

rental rate on the effectiveness of such a drug is higher, and so it makes sense to delay the use of this 

drug. 

                                                                                                                                                             

( ) ( ) ( )( ) 0
'''1~ >

−−
−= − ερε

ρε
ρε GGe

n
cd

d .  Furthermore, we can show that 0<
ρ
ε

d
d

.  A higher discount rate 

implies a shorter rotation time. 
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The results in this paper diverge from those in the Laxminarayan and Brown paper in two 

important ways.  In that paper, the optimal treatment strategy was to use the most effective drug first at all 

times, and to use two antibiotics simultaneously only if they were of identical effectiveness.  This strategy 

is perfectly compatible with individual patients' desire to be treated with the most effective available drug.  

Introducing fitness cost of resistance does more than simply add a steady state to the analytical model by 

converting a non-renewable resource problem to one of renewable resources.  It alters this neat 

coincidence of social and private incentives in a significant way.  When bacterial resistance entails an 

evolutionary cost, it may be optimal to use drugs that have different effectiveness at the same time, even 

if they cost the same, as long as the drug that is of greater effectiveness also has a higher fitness cost of 

resistance.   Needless to say, this conclusion is dramatically different from that reached by medical 

practitioners and health economists.  

If one were to follow the standard cost–effectiveness approach, the economic paradigm most 

commonly used in the health economics literature, the optimal first choice of drug is always the one with 

the lowest ratio of cost to effectiveness.  In fact, many papers in the medical literature use the private-cost 

approach to determine the optimal treatment for a communicable disease.  As it turns out, this approach to 

arriving at an optimal treatment strategy is valid as long as the fitness cost of resistance is zero. However, 

the very nature of a communicable disease means there is a potentially large externality associated with 

drug treatments.  Therefore, when bacterial resistance entails a fitness cost, the optimal solution is to use a 

mixed variety of drugs, even if the cost-effectiveness of some of these drugs is unfavorable to certain 

individual patients. 

Cycling of antibiotics has been proposed as a suitable strategy for reducing the pressure on 

resistant organisms.  However, I find that cycling is appropriate only when costs of using antibiotics are 

non-convex, and there is a cost of switching from one antibiotic to another. Further, the usual conditions 

associated with the SIS model of infection, such as static population, no super-infection, no immunity 

must hold.  Although the fitness cost of bacterial resistance to the two antibiotics does not determine 

whether or not it is optimal to use cycling, it is critical in determining the optimal rotation time.  If the 

half-life of resistant organisms in the absence of antibiotic selection pressure is high, then antibiotics can 

be cycled more rapidly.  

The economic analysis presented in this paper has important implications that should be 

considered in antibiotics policy.  In general, the optimal policy when reached from an economist's 

perspective sharply differs from that in the medical literature where economic costs play no role and a 
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convenient framework for thinking about inter-temporal tradeoffs (such as between the benefits of current 

use and the costs of future bacterial resistance) does not exist.23  Economics, while helping determine the 

optimal social policy, can help attain that solution when social optima are not compatible with the 

incentives of individual patients acting in their self-interest.  For instance, when bacterial resistance bears 

a fitness cost, the socially optimal algorithm for using antibiotics differs from that of a myopic individual 

agent.  A case can then be made for a corrective policy prescription, such as a tax on antibiotic treatment, 

or a subsidy on certain antibiotics that should be included in a socially optimal menu, but are not cost-

effective from an individual’s perspective.   

Without a doubt, the model presented in this paper is highly abstracted from reality.  I have 

conveniently swept under the carpet important secondary considerations such as cross-resistance, multiple 

pathogens, drug dosages, compliance, and treatment side effects, among others, in order to focus on key 

issues related to infection and drug resistance.  Empirical studies that are able to estimate key parameters 

such as fitness cost of resistance and the virulence of the pathogen could be valuable in translating 

economic analyses of the kind presented in this paper into practice.  One hardly need emphasize that the 

problem of antibiotic resistance is a critical one and is likely to seriously compromise our ability to treat 

infectious diseases in coming years.  Innovating new antibiotics is a very expensive proposition and there 

may be great economic benefit in efficiently using the antibiotics that we currently have.24  Economic 

analysis, in conjunction with models of mathematical epidemiology, could play an important role in 

designing innovative policies to address this problem. 

                                                 
23 There are similar examples of divergence between epidemiological and economic policy conclusions.  See, for 
instance, work by Tomas Philipson Philipson, T. 1999. Economic epidemiology and infectious diseases. Cambridge, 
MA: NBER.. 
24 The cost of innovating and introducing a new antibiotic is estimated to be in the order of $1 billion.  This number 
is increasing as the most easily discoverable antibiotics have all been discovered. 
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Appendix 1 

When antibiotic 1 is being used along the singular path, from equation (5.2), we have  

( ) ( )( )12 11111111 −−−−−−= wrfIrIfx µϕϕρµµ!  

( ) ( )( )121 1111111111 −−−−−−= wrfIrfw µϕµρµµ!  

( )12 11111111 −−−−= wrIrwf ϕµρµµ!  

[ ]11111111 wxIrwf µµρµµ −−−=!  

( ) 1111111 xIrwrf −−−= µρµµ!  

Differentiating the FOC with respect to time, we get 

( )
( )1

11
1 1 w

wIIx
−

−−−
=

!!!! µϕϕµ  

From the two equations above, we can synthesize the control to get 

( )
( )ϕβ
ρβ

+
++−−

=
x

rwrrxI 221  

ϕ is the co-state variable associated with infection in a maximization problem.  

Therefore, we would expect it to be negative.  If at any point along the optimal path, if 0>ϕ this 

would imply that we would better off with a higher initial stock of infection, which makes no 

sense.  Note that 0<ϕ as long as II ~> , where 

β
ρβ 221~ rwrrI ++−−

=  

Note that when only one drug is being used 

β
ρβ 22111 rwrwwrI ++−−−

=  

However, in order for this level of infection to exceed the minimum level needed to keep 

the shadow price of infection negative, we require that 
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22122111 rwrrwrww +>++−  

or 

111

11

<+
rw

 

which can never hold since both 1w and 1r  are less than one.  Therefore, by backward 

induction, we have shown that it is never optimal to use just one drug along the steady state path. 

 

At the steady state, the level of infection is given by 

β
ρβ −−= rI SS  

At the initial equilibrium, when no antibiotics are being used, infection is given by 

β
ρβ 2211 rwrwrI ++−−

=  

We can see that  

 SSIII >> ~  

As we approach the steady level of infection, note that we would never choose to use one 

drug alone. 

Appendix 2 

For any drug 1, the right hand side of equation (10.2) can be written as  

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 1w b f I r I f r w f r w wρµ ϕ ϕ µ µ− − − − − − − − − −    

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 11 2 1w b f I r I f r w f r w b Iϕ ϕ µ µ ρ ϕ⇒ − − − − − − − + − + −  

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 11 1w b f I r I f r w b Iϕ ϕ µ ρ ϕ⇒ − − − − − − − + −    

( ) ( ) ( ) ( ) ( )1 1 1 1 11 w b f I r I x I f r b Iϕ ϕ ϕ ρ ϕ⇒ − − − − + − − + −    
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( )[ ] ( )1 11 w bIr b Iρ ϕ⇒ − − + −  

Appendix 3 

( ) ( )trf c

ke
tw

111
1

1 −+
=  

The gross benefit of adopting strategy for a single rotation can be written as 

( ) ( ) ( )∫∫ −− +
+

+
=

ε

αε

αε
ε dt

ek
fdt

ek
fG

trf

c

trf

c

cc
1111

2

2
0

1

1

11
 

where *

*1

i

i
i w

wk −
= ,  

α
1

1
rf c =  and 

α−
=

1
2

2
rf c  

Therefore, 
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As derived earlier, let 
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+

=α .  Then  
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For the simplest case in which 21 rr = , where 21 kk =  and 5.0=α , we can show that  

( )
( ) 0

0.5 1

r

r

dG kre
d ke

ε

ε

ε
ε

= − <
+

, and  

( )
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2

2 0
0.5 1
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d G kre
d ke

ε
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= − <
+

. 
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