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Abstract
This monograph is written for the numerate nonspecialist, and hopes to serve three purposes.
First it gathers mathematical material from diverse but related fields of order statistics, records,
extreme value theory, majorization, regular variation and subexponentiality. All of these are
relevant for understanding fat tails, but they are not, to our knowledge, brought together in
a single source for the target readership. Proofs that give insight are included, but for fussy
calculations the reader is referred to the excellent sources referenced in the text. Multivariate
extremes are not treated. This allows us to present material spread over hundreds of pages in
specialist texts in twenty pages. Chapter 5 develops new material on heavy tail diagnostics and
gives more mathematical detail.

Second, it presents a new measure of obesity. The most popular definitions in terms of
regular variation and subexponentiality invoke putative properties that hold at infinity, and this
complicates any empirical estimate. Each definition captures some but not all of the intuitions
associated with tail heaviness. Chapter 5 studies two candidate indices of tail heaviness based
on the tendency of the mean excess plot to collapse as data are aggregated. The probability that
the largest value is more than twice the second largest has intuitive appeal but its estimator has
very poor accuracy. The Obesity index is defined for a positive random variable X as:

Ob(X) = P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) , Xi independent copies of X.

For empirical distributions, obesity is defined by bootstrapping. This index reasonably captures
intuitions of tail heaviness. Among its properties, if α > 1 then Ob(X) < Ob(Xα). However,
it does not completely mimic the tail index of regularly varying distributions, or the extreme
value index. A Weibull distribution with shape 1/4 is more obese than a Pareto distribution
with tail index 1, even though this Pareto has infinite mean and the Weibull’s moments are all
finite. Chapter 5 explores properties of the Obesity index.

Third and most important, we hope to convince the reader that fat tail phenomena pose
real problems; they are really out there and they seriously challenge our usual ways of thinking
about historical averages, outliers, trends, regression coefficients and confidence bounds among
many other things. Data on flood insurance claims, crop loss claims, hospital discharge bills,
precipitation and damages and fatalities from natural catastrophes drive this point home.
AMS classification 60-02, 62-02, 60-07.
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Chapter 1

Fatness of Tail

1.1 Fat tail heuristics

Suppose the tallest person you have ever seen was 2 meters (6 feet 8 inches); someday you may
meet a taller person, how tall do you think that person will be, 2.1 meters (7 feet)? What is the
probability that the first person you meet taller than 2 meters will be more than twice as tall,
13 feet 4 inches? Surely that probability is infinitesimal. The tallest person in the world, Bao
Xishun of Inner Mongolia,China is 2.36 m or 7 ft 9 in. Prior to 2005 the most costly Hurricane
in the US was Hurricane Andrew (1992) at $41.5 billion USD(2011). Hurricane Katrina was
the next record hurricane, weighing in at $91 billion USD(2011)1. People’s height is a ”thin
tailed” distribution, whereas hurricane damage is ”fat tailed” or ”heavy tailed”. The ways in
which we reason from historical data and the ways we think about the future are - or should
be - very different depending on whether we are dealing with thin or fat tailed phenomena.
This monograph gives an intuitive introduction to fat tailed phenomena, followed by a rigorous
mathematical treatment of many of these intuitive features. A major goal is to provide a
definition of Obesity that applies equally to finite data sets and to parametric distribution
functions.

Fat tails have entered popular discourse largely thanks to Nassim Taleb’s book The Black
Swan, the impact of the highly improbable (Taleb [2007]). The black swan is the paradigm shat-
tering, game changing incursion from ”extremistan” which confounds the unsuspecting public,
the experts, and especially the professional statisticians, all of whom inhabit ”mediocristan”.

Mathematicians have used at least three main definitions of tail obesity. Older texts some-
time speak of ”leptokurtic distributions”, that is, distributions whose extreme values are ”more
probable than normal”. These are distributions with kurtosis greater than zero2, and whose
tails go to zero slower than the normal distribution.

Another definition is based on the theory of regularly varying functions and characterizes
the rate at which the probability of values greater than x goes to zero as x → ∞. For a
large class of distributions this rate is polynomial. Unless otherwise indicated, we will always
consider non-negative random variables. Letting F denote the distribution function of random
variable X, such that S(x) = 1 − F (x) = Prob{X > x}, we write S(x) ∼ x−α, x → ∞ to

mean S(x)
x−α → 1, x → ∞. S(x) is called the survivor function of X. A survivor function with

polynomial decay rate −α, or as we shall say tail index α, has infinite κth moments for all κ ≥ α.
If we are ”sufficiently close” to infinity to estimate the tail indices of two distributions, then
we can meaningfully compare their tail heaviness by comparing their tail indices, and many

1http://en.wikipedia.org/wiki/Hurricane Katrina, accessed January 28, 2011
2Kurtosis is defined as the (µ4/σ

4)−3 where µ4 is the fourth central moment, and σ is the standard deviation.
Subtracting 3 arranges that the kurtosis of the normal distribution is zero

5



6 CHAPTER 1. FATNESS OF TAIL

intuitive features of fat tailed phenomena fall neatly into place. The Pareto distribution is a
special case of a regularly varying distribution where S(x) = x−α, x > 1.

A third definition is based on the idea that the sum of independent copies X1 +X2+, . . . Xn

behaves like the maximum of X1, X2, . . . Xn. Distributions satisfying

Prob{X1 +X2+, · · ·+Xn > x} ∼ Prob{Max{X1, X2, . . . Xn} > x}, x → ∞

are called subexponential. Like regular variation, subexponality is a phenomenon that is defined
in terms of limiting behavior as the underlying variable goes to infinity. Unlike regular variation,
there is no such thing as an ”index of subexponality” that would tell us whether one distribution
is ”more subexponential” than another. The set of regularly varying distributions is a strict
subclass of the set of subexponential distributions. Other more exotic definitions are given in
chapter 4.

There is a swarm of intuitive notions regarding heavy tailed phenomena that are captured
to varying degree in the different formal definitions. The main intuitions are:

• The historical averages are unreliable for prediction

• Differences between successively larger observations increases

• The ratio of successive record values does not decrease;

• The expected excess above a threshold, given that the threshold is exceeded, increases as
the threshold increases

• The uncertainty in the average of n independent variables does not converge to a normal
with vanishing spread as n → ∞; rather, the average is similar to the original variables.

1.2 History and Data

A colorful history of fat tailed distributions is found in (Mandelbrot and Hudson [2008]). Man-
delbrot himself introduced fat tails into finance by showing that the change in cotton prices
was heavy-tailed (Mandelbrot [1963]). Since then many other examples of heavy-tailed distri-
butions are found, among these are data file traffic on the internet (Crovella and Bestavros
[1997]), returns on financial markets (Rachev [2003], Embrechts et al. [1997]) and magnitudes
of earthquakes and floods (Latchman et al. [2008], Malamud and Turcotte [2006]).

Data for this monograph were developed in the NSF project 0960865, and are available
from http : //www.rff.org/Events/Pages/Introduction − Climate − Change − Extreme −
Events.aspx, or at public cites indicated below.

1.2.1 US Flood Insurance Claims

US flood insurance claims data from the National Flood Insurance Program (NFIP) are aggre-
gated by county and year for the years 1980 to 2008. The data are in 2000 US dollars. Over this
time period there has been substantial growth in exosure to flood risk, particularly in coastal
counties. To remove the effect of growing exposure, the claims are divided by personal income
estimates per county per year from the Bureau of Economic Accounts (BEA). Thus, we study
flood claims per dollar income, by county and year3.

3Help from Ed Pasterick and Tim Scoville in securing and analysing this data is gratefully acknowledged.
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1.2.2 US Crop Loss

US crop insurance indemnities paid from the US Department of Agriculture’s Risk Management
Agency are aggregated by county and year for the years 1980 to 2008. The data are in 2000 US
dollars. The crop loss claims are not exposure adjusted, as a proxy for exposure is not obvious,
and exposure growth is less of a concern.4

1.2.3 US Damages and Fatalities from Natural Disasters

The SHELDUS database, maintained by the Hazards and Vulnerability Research Group at the
University of South Carolina, has county-level damages and fatalities from weather events. Infor-
mation on SHELDUS is available online: http://webra.cas.sc.edu/hvri/products/SHELDUS.aspx.
The damage and fatality estimates in SHELDUS are minimum estimates as the approach to com-
piling the data always takes the most conservative estimates. Moreover, when a disaster affected
many counties, the total damages and fatalities were apportioned equally over the affected coun-
ties, regardless of population or infrastructure. These data should therefore be seen as indicative
rather than as precise.

1.2.4 US Hospital Discharge Bills

Billing data for hospital discharges for a northeastern US state were collected over the years
2000 - 2008. The data is in 2000 USD.

1.2.5 G-Econ data

This uses the G-Econ database (Nordhaus et al. [2006]) showing the dependence of Gross Cell
Product (GCP) on geographic variables measured on a spatial scale of one degree. At 45 latitude,
a one by one degree grid cell is [45mi]2 or [68km]2. The size varies substantially from equator to
pole. The population per grid cell varies from 0.31411 to 26,443,000. The Gross Cell Product is
for 1990, non-mineral, 1995 USD, converted at market exchange rates. It varies from 0.000103
to 1,155,800 USD(1995), the units are $106. The GCP per person varies from 0.00000354 to
0.905, which scales from $3.54 to $905,000. There are 27,445 grid cells. Throwing out zero and
empty cells for population and GCP leaves 17,722; excluding cells with empty temperature data
leaves 17,015 cells.

The data are publicly available at http : //gecon.yale.edu/world big.html.

1.3 Diagnostics for Heavy Tailed Phenomena

Once we start looking, we can find heavy tailed phenomena all around us. Loss distributions are
a very good place to look for tail obesity, but something as mundane as hospital discharge billing
data can also produce surprising evidence. Many of the features of heavy tailed phenomena would
render our traditional statistical tools useless at best, dangerous at worst. Prognosticators base
predictions on historical averages. Of course, on a finite sample the average and standard
deviation are always finite; but these may not be converging to anything and their value for
prediction might be nihil. Or again, if we feed a data set into a statistical regression package, the
regression coefficients will be estimated as ”covariance over the variance”. The sample versions
of these quantities always exist, but if they aren’t converging, their ratio could whiplash wildly,
taking our predictions with them. In this section, simple diagnostic tools for detecting tail
obesity are illustrated on mathematical distributions and on real data.

4Help from Barbara Carter in securing and analysing this data is gratefully acknowledged.
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1.3.1 Historical Averages

Consider independent and identically distributed random variables with tail index 1 < α < 2.
The variance of these random variables is infinite, as is the variance of any finite sum of these
variables. In consequence, the variance of the average of n variables is also infinite, for any
n. The mean value is finite and is equal to the expected value of the historical average, but
regardless how many samples we take, the average does not converge to the variable’s mean,
and we cannot use the sample average to estimate the mean reliably. If α < 1 the variables have
infinite mean. Of course the average of any finite sample is finite, but as we draw more samples,
this sample average tends to increase. One might mistakenly conclude that there is a time trend
in such data. The universe is finite and an empirical sample would exhaust all data before it
reached infinity. However, such re-assurance is quite illusory; the question is, ”where is the
sample average going?”. A simple computer experiment suffices to convince the sceptic: sample
a set of random numbers on your computer, these are approximately independent realizations
of a uniform variable on the interval [0,1]. Now invert these numbers. If U is such a uniform
variable, 1/U is a Pareto variable with tail index 1. Compute the moving averages and see how
well you can predict the next value.

Figure 1.1 (a)–(b) shows the moving average of respectively a Pareto(1) distribution and a
standard exponential distribution. The mean of the Pareto(1) distribution is infinite whilst the
mean of the standard exponential distributions is equal to one.
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(b) Standard exponential

Figure 1.1: Moving average of Pareto(1) and standard exponential data

As we can see, the moving average of the Pareto(1) distribution shows an upward trend,
whilst the moving average of the Standard Exponential distribution converges to the real mean
of the Standard Exponential distribution. Figure 1.2 (a) shows the moving average of US
property damage from natural disasters from 2000 to 2008. We observe an increasing pattern;
this might be caused by attempting to estimate an infinite mean, or it might actually reflect a
temporal trend. One way to approach this question is to present the moving average in random
order, as in (b),(c), (d). It is important to realize that these are simply different orderings of
the same data set. Note the differences on the vertical axes. Firm conclusions are difficult to
draw from single moving average plots for this reason.
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(a) Natural disaster property damage, temporal
order

(b) Natural disaster property damage, random or-
der 1

(c) Natural disaster property damage, random or-
der 2

(d) Natural disaster property damage, random or-
der 3

Figure 1.2: Moving average US natural disaster property damage

1.3.2 Records

One characteristic of heavy-tailed distributions is that there are usually a few very large values
compared to the other values of the data set. In the insurance business this is called the Pareto
law or the 20-80 rule-of-thumb: 20% of the claims account for 80% of the total claim amount
in an insurance portfolio. This suggests that the largest values in a heavy tailed data set tend
to be further apart than smaller values. For regularly varying distributions the ratio between
the two largest values in a data set has a non-degenerate limiting distribution, whereas for
distributions like the normal and exponential distribution this ratio tends to zero as we increase
the number of observations. If we order a data set from a Pareto distribution, then the ratio
between two consecutive observations also has a Pareto distribution. In Table 1.1 we see the

Number of observations standard normal distribution Pareto(1) distribution

10 0.2343 1
2

50 0.0102 1
2

100 0.0020 1
2

Table 1.1: Probability that the next record value is at least twice as large as the previous record
value for different size data sets
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probability that the largest value in the data set is twice as large as the second largest value for
the standard normal distribution and the Pareto(1) distribution. The probability stays constant
for the Pareto distribution, but it tends to zero for the standard normal distribution as the
number of observations increases.

Seeing that one or two very large data points confound their models, unwary actuaries may
declare these ”outliers” and discard them, re-assured that the remaining data look ”normal”.
Figure 1.3 shows the yearly difference between insurance premiums and claims of the U.S.
National Flood Insurance Program (NFIP) (Cooke and Kousky [2009]).

Figure 1.3: US National Flood Insurance Program, premiums minus claims

The actuaries who set NFIP insurance rates explain that their ”historical average” gives 1%
weight to the 2005 results including losses from hurricanes Katrina, Rita, and Wilma: ”This is
an attempt to reflect the events of 2005 without allowing them to overwhelm the pre-Katrina
experience of the Program” (Hayes and Neal [2011] p.6)

1.3.3 Mean Excess

The mean excess function of a random variable X is defined as:

e(u) = E [X − u|X > u] (1.1)

The mean excess function gives the expected excess of a random variable over a certain threshold
given that this random variable is larger than the threshold. It is shown in chapter 4 that
subexponential distributions’ mean excess function tends to infinity as u tends to infinity. If
we know that an observation from a subexponential distribution is above a very high threshold
then we expect that this observation is much larger than the threshold. More intuitively, we
should expect the next worst case to be much worse than the current worst case. It is also shown
that regularly varying distributions with tail index α > 1, have a mean excess function which is
ultimately linear with slope 1

α−1 . If α < 1, then the slope is infinite and (1.1) is not useful. If
we order a sample of n independent realizations of X, we can construct a mean excess plot as
in (1.2). Such a plot will not show an infinite slope, rendering the interpretation of such plots
problematic for very heavy tailed phenomena.
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e(xi) =

∑
j>i xj − xi

n− i
; i < n, e(xn) = 0; x1 < x2 < . . . xn. (1.2)

(a) Mean excess Pareto 1 (b) Mean excess Pareto 2

Figure 1.4: Pareto mean excess plots, 5000 samples

Figure 1.4 shows mean excess plots of 5000 samples from a Pareto(1) (a) and a Pareto(2)
(b). Clearly, eyeballing the slope in these plots gives a better diagnostic for (b) than for (a).

(a) Mean excess flood claims/income (b) Mean excess crop loss

Figure 1.5: Mean excess plots, flood and crop loss

Figure 1.5 shows mean excess plots for flood claims per county per year per dollar income
(a), and insurance claims for crop loss per year per county (b). Both plots are based on roughly
the top 5000 entries.

1.3.4 Sum convergence: Self-similar or Normal

For regularly varying random variables with tail index α < 2 the standard central limit theorem
does not hold: The standardized sum does not converge to a normal distribution. Instead the
generalized central limit theorem (Uchaikin and Zolotarev [1999]) applies: The sum of these
random variables, appropriately scaled, converges to a stable distribution having the same tail
index as the original random variable.
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This can be observed in the mean excess plot of data sets of 5000 samples from a regularly
varying distribution. In the mean excess plot the empirical mean excess function of a data set
is plotted. Define the operation aggregating by k as dividing a data set randomly into groups of
size k and summing each of these k values. If we consider a data set of size n and compare the
mean excess plot of this data set with the mean excess plot of a data set we obtained through
aggregating the original data set by k, then we find that both mean excess plots are very similar.
Whereas for data sets from thin-tailed distributions both mean excess plots look very different.
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(a) Exponential distribution
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(b) Pareto α = 1
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(c) Pareto α = 2
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(d) Weibull distribution τ = 0.5

Figure 1.6: Standardized mean excess plots

In order to compare the shapes of the mean excess plots we have standardized the data such
that the largest value in the data set is scaled to one. This does not change the shape of the mean
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excess plot, since we can easily see that e(cu) = ce(u). Figure 1.6 (a)–(d) shows the standard-
ized mean excess plot of a sample from an exponential distribution, a Pareto(1) distribution, a
Pareto(2) distribution and a Weibull distribution with shape parameter 0.5. Also shown in each
plot are the standardized mean excess plots of a data set obtained through aggregating by 10
and 50. The Weibull distribution is a subexponential distribution whenever the shape parameter
τ < 1. Aggregating by k for the exponential distribution causes the slope of the standardized
mean excess plot to collapse. For the Pareto(1) distribution, aggregating the sample does not
have much effect on the mean excess plot. The Pareto(2) is the ”thinnest” distribution with
infinite variance, but taking large groups to sum causes the mean excess slope to collapse. Its
behavior is comparable to that of the data set from a Weibull distribution with shape 0.5. This
underscores an important point: Although a Pareto(2) is a very fat tailed distribution and a
Weibull with shape 0.5 has all its moments and has tail index ∞, the behavior of data sets of
5000 samples is comparable. In this sense, the tail index does not tell the whole story. Figures
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(a) Flood claims per income
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(b) National crop insurance

Figure 1.7: Standardized mean excess plots of two data sets

1.7 (a)–(b) show the standardized mean excess plot for two data sets. The standardized mean
excess plot in Figure 1.7a is based upon the income- and exposure-adjusted flood claims from
the National Flood Insurance program in the United States from the years 1980 to 2006. US
crop loss is the second data set. This data set contains all pooled values per county with claim
sizes larger than $ 1.000.000,-. The standardized mean excess plot of the flood data in Figure
1.7a seems to stay the same as we aggregate the data set. This is indicative for data drawn from
a distribution with infinite variance. The standardized mean excess plot of the national crop
insurance data in Figure 1.7b changes when taking random aggregations, indicative of finite
variance.
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1.3.5 Estimating the Tail Index

”Ordinary” statistical parameters characterize the entire sample and can be estimated from the
entire sample. Estimating a tail index is complicated by the fact that it is a parameter of a limit
distribution. If independent samples are drawn from a regularly varying distribution, then the
survivor function tends to a polynomial as the samples get large. We cannot estimate the degree
of this polynomial from the whole sample. Instead we must focus on a small set of large values
and hope that these are drawn from a distribution which approximates the limit distribution.
In this section we briefly review methods that have been proposed to estimate the tail index.

One of the simplest methods is to plot the empirical survivor function on log-log axes and
fit a straight line above a certain threshold. The slope of this line is then used to estimate the
tail index. Alternatively, we could estimate the slope of the mean excess plot. As noted above,
this latter method will not work for tail indices less than or equal to one. The self-similarity of
heavy-tailed distributions was used in Crovella and Taqqu [1999] to construct an estimator for
the tail index. The ratio

R(p, n) =
max{Xp

1 , . . . X
p
n}∑n

i=1X
p
i

; Xi > 0, i = 1 . . . n

is sometimes used to detect infinite moments. If the p−thmoment is finite then limn→∞R(p, n) =
0 (Embrechts et al. [1997]). Thus if for some p,R(p, n) ≫ 0 for large n, then this suggests an infi-
nite p−th moment. Regularly varying distributions are in the ”max domain of attraction” of the
Fréchet class. That is, under appropriate scaling the maximum converges to a Fréchet distribu-
tion: F (x) = exp(−x−α), x > 0, α > 0. Note that for large x, x−α is small and F (X) ∼ 1− x−α

The parameter ξ = 1/α is called the extreme value index for this class. There is a rich literature
in estimating the extreme value index, for which we refer the reader to (Embrechts et al. [1997])

Perhaps the most popular estimator of the tail index is the Hill estimator proposed in Hill
[1975] and given by

Hk,n =
1

k

k−1∑
i=0

(log(Xn−i,n)− log(Xn−k,n)) ,

where Xi,n are such that X1,n ≤ ... ≤ Xn,n. The tail index is estimated by 1
Hk,n

. The idea behind

this method is that if a random variable has a Pareto distribution then the log of this random
variable has an exponential distribution S(x) = e−λx with parameter λ equal to the tail index.

1
Hk,n

estimates the parameter of this exponential distribution. Like all tail index estimators, the

Hill estimator depends on the threshold, and it is not clear how it should be chosen. A useful
heuristic here is that k is usually less than 0.1n. Methods exist that choose k by minimizing the
asymptotic mean squared error of the Hill estimator. Although it works very well for Pareto
distributed data, for other regularly varying distribution functions the Hill estimator becomes
less effective. To illustrate this we have drawn two different samples, one from the Pareto(1)
distribution and one from a Burr distribution (see Table 4.1) with parameters such that the tail
index of this Burr distribution is equal to one. Figure 1.8 (a), (b) shows the Hill estimator for
the two data sets together with the 95%-confidence bounds of the estimate. Note that the Hill
estimate is plotted against the different values in the data set running from largest to smallest.
and the largest value of the data set is plotted on the left of the x-axis. As we can see from
Figure 1.8a, the Hill estimator gives a good estimate of the tail index, but from Figure 1.8b it is
not clear that the tail index is equal to one. Beirlant et al. [2005] explores various improvements
of the Hill estimator, but these improvements require extra assumptions on the distribution of
the data set.
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Figure 1.8: Hill estimator for samples of a Pareto and Burr distribution with tail index 1.

(a) Hill plot for crop loss (b) Hill plot for property damages from natural disas-
ters

Figure 1.9: Hill estimator for crop loss and property damages from natural disasters

Figure 1.9, shows a Hill plot for crop losses (a) and natural disaster property damages (b).
Figure 1.10 compares Hill plots for flood damages (a) and flood damages per income (b). The
difference between these last two plots underscores the importance of properly accounting for
exposure. Figure 1.9 (a) is more difficult to interpret than the mean excess plot in Figure
(1.7)(b).

Hospital discharge billing data are shown in Figure 1.11; a mean excess plot (a), a mean
excess plot after aggregation by 10 (b), and a Hill plot (c). The hospital billing data are a good
example of a modestly heavy tailed data set. The mean excess plot and Hill plots point to a tail
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(a) Hill plot for flood claims (b) Hill plot for flood claims per income

Figure 1.10: Hill estimator for flood claims

(a) Mean excess plot for hospital dis-
charge bills

(b) Mean excess plot for hospital dis-
charge bills, aggregation by 10

(c) Hill plot for hospital discharge
bills

Figure 1.11: Hospital discharge bills, obx = 0.79
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Distribution Obesity index

Uniform 0.5

Exponential 0.75

Pareto(1) π2 − 9

Table 1.2: Obesity index for a number of distributions

index in the neighborhood of 3. Although definitely heavy tailed according to all the operative
definitions, it behaves like a distribution with finite variance, as we see the mean excess collapse
under aggregation by 10.

(a) Mean excess plot for Gross Cell
Product (non mineral)

(b) Hill plot for Gross Cell Product
(non mineral)

Figure 1.12: Gross Cell Product (non mineral) obx=0.77

1.3.6 The Obesity Index

We have discussed two definitions of heavy-tailed distributions, the regularly varying distribu-
tions with tail index 0 < α < ∞ and subexponential distributions. Regularly varying distribu-
tions are a subset of subexponential distributions which have infinite moments beyond a certain
point, but subexponentials include distributions all of whose moments are finite (tail index
= ∞). Both definitions refer to limiting distributions as the value of the underlying variable
goes to infinity. In large finite data sets the diagnostics based on the mean excess plots can
be quite similar. There is nothing like a ”degree of subexponentiality” allowing us to compare
subexponential distributions with infinite tail index, and there is currently no characterization
of obesity in finite data sets.

We therefore propose the following obesity index that is applicable to finite samples, and
which can be computed for distribution functions. Restricting the samples to the higher values
then gives a tail obesity index.

Ob(X) = P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) ;

{X1, ...X4}independent and identically disributed.

In Table 1.2 the value of the Obesity index is given for a number of different distributions. In
Figure 1.13 we see the Obesity index for the Pareto distribution, with tail index α, and for the
Weibull distribution with shape parameter τ .

In chapter 5 we show that for the Pareto distribution, the obesity index is decreasing in
the tail index. Figures 1.13a and 1.13b illustrate this fact. The same holds for the Weibull
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(b) Weibull distribution

Figure 1.13: Obesity index for different distributions.

distribution, if τ < 1; then the Weibull is a subexponential distribution and is considered heavy-
tailed. The Obesity index increases as τ decreases.

Given two random variables X1 and X2 with tail indexes, α1 and α2, α1 < α2, the question
arises whether the Obesity index of X1 larger than the Obesity index of X2. Numerical approxi-
mation of two Burr distributed random variables indicate that this is not the case. Consider X1,
a Burr distributed random variable with parameters c = 1 and k = 2, and a Burr distributed
random variable with parameters c = 3.9 and k = 0.5. The tail index of X1 is equal to 2 and the
tail index of X2 is equal to 1.95. But numerical approximation indicate that the Obesity index
of X1 is approximately equal to 0.8237 and the Obesity index of X2 is approximately equal to
0.7463. Of course this should not come as a surprise; the obesity index in this case is applied to
the whole distribution, whereas the tail index applies only to the tail.

A similar qualification applies for any distributions taking positive and negative values. For
a symmetrical such as the normal or the Cauchy the Obesity index is always 1

2 . The Cauchy
distribution is a regularly varying distribution with tail index 1 and the normal distribution is
considered a thin-tailed distribution. In such cases it is more useful to apply the Obesity index
separately to positive or negative values.

1.4 Conclusion and Overview of the Technical Chapters

Fat tailed phenomena are not rare or exotic, they occur rather frequently in loss data. As
attested in hospital billing data and Gross Cell Product data, they are encountered in mundane
economic data as well. Customary definitions in terms of limiting distributions, such as regular
variation or subexponentiality, may have contributed to the belief that fat tails are mathematical
freaks of no real importance to practitioners concerned with finite data sets. Good diagnostics
help dispel this incautious belief, and sensitize us to the dangers of uncritically applying thin
tailed statistical tools to fat tailed data: Historical averages, even in the absence of time trends
may may be poor predictors, regardless of sample size. Aggregation may not reduce variation
relative to the aggregate mean, and regression coefficients are based on ratios of quantities that
fluctuate wildly.

The various diagnostics discussed here and illustrated with data each have their strengths
and weaknesses. Running historical averages have strong intuitive appeal but may easily be
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confounded by real or imagined time trends in the data. For heavy tailed data, the overall
impression may be strongly affected by the ordering. Plotting different moving averages for
different random orderings can be helpful. Mean excess plots provide a very useful diagnostic.
Since these are based on ordered data, the problems of ordering do not arise. On the downside,
they can be misleading for regular varying distributions with tail indices less than or equal to
one, as the theoretical slope is infinite. Hill plots, though very popular, are often difficult to
interpret. The Hill estimator is designed for regularly varying distributions, not for the wider
class of subexponential distributions; but even for regularly varying distributions, it may be
impossible to infer the tail index from the Hill plot.

In view of the jumble of diagnostics, each with their own strengths and weaknesses, it is
useful to have an intuitive scalar measure of obesity, and the obesity index is proposed here
for this purpose. The obesity index captures the idea that larger values are further apart, or
that the sum of two samples is driven by the larger of the two, or again that the sum tends
to behave like the max. This index does not require estimating a parameter of a hypothetical
distribution; in can be computed for data sets and computed, in most cases numerically, for
distribution functions.

In Chapter 2 and 3 we discuss different properties of order statistics and present some results
from the theory of records. These results are used in Chapter 5 to derive different properties of
the index we propose. Chapter 4 discusses and compares regularly varying and subexponential
distributions, and develops properties of the mean excess function.
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Chapter 2

Order Statistics

This chapter discusses some properties of order statistic that are used later to derive properties
of the Obesity index. Most of these properties can be found in David [1981] or Nezvorov [2001].
Another useful source is Balakrishnan and Stepanov [2007] We consider only order statistics from
an i.i.d. sequence of continuous random variables. Suppose we have a sequence of n independent
and identically distributed continuous random variables X1, ..., Xn ; if we order this sequence in
ascending order we obtain the order statistics

X1,n ≤ ... ≤ Xn,n.

2.1 Distribution of order statistics

In this section we derive the marginal and joint distribution of an order statistic. The distribution
function of the r-th order statistic Xr,n, from a sample of a random variable X with distribution
function F , is given by

Fr,n(x) = P (Xr,n ≤ x)

= P (at least r of the Xi are less than or equal to x)

=
n∑

m=r

P ( exactly m variables among X1, ..., Xn ≤ x)

=
n∑

m=r

(
n

m

)
F (x)m (1− F (x))n−m

Using the following relationship for the regularized incomplete Beta function1

n∑
m=k

(
n

m

)
ym(1− y)n−m =

∫ y

0

n!

(k − 1)!(n− k)!
tk−1(1− t)n−kdt, 0 ≤ y ≤ 1,

we get the following result

Fr,n(x) = IF (x) (r, n− r + 1) , (2.1)

where Ix(p, q) is the regularized incomplete beta function which is given by

Ix (p, q) =
1

B (p, q)

∫ x

0
tp−1(1− t)q−1dt,

1http://en.wikipedia.org/wiki/Beta function, accessed Feb.7 2011

21
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and B(p, q) is the beta function which is given by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1dt.

Now assume that the random variable Xi has a probability density function f(x) = d
dxF (x).

Denote the density function of Xr,n with fr,n. Using (2.1) we get the following result.

fr,n(x) =
1

B(r, n− r + 1)

d

dx

∫ F (x)

0
tr−1(1− t)n−rdt,

=
1

B(r, n− r + 1)
F (x)r−1 (1− F (x))n−r f(x) (2.2)

Where {k(1), ..., k(r)} is a subset of the numbers 1, 2, 3, ..., n, and k(0) = 0, k(r + 1) = n + 1
and finally 1 ≤ r ≤ n, the joint density of Xk(1),n, ..., Xk(r),n is given by

fk(1),...,k(n);n(x1, ..., xr) =
n!∏r+1

s=1(k(s)− k(s− 1)− 1)!
r+1∏
s=1

(F (xs)− F (xs−1))
k(s)−k(s−1)−1

r∏
s=1

f(xs), (2.3)

where −∞ = x0 < x1 < ... < xr < xr+1 = ∞. We prove this for r = 2 and assume for
simplicity that f is continuous at the points x1 and x2 under consideration. Consider the
following probability

P (δ,∆) = P
(
x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆

)
.

We show that as δ → 0 and ∆ → 0 the following limit holds.

f(x1, x2) = lim
P (δ,∆)

δ∆

Now define the following events

A = {x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆ and the intervals

[x1, x1 + δ) and [x2, x2 +∆) each contain exactly one order statistic},
B = {x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆ and

[x1, x1 + δ) ∪ [x2, x2 +∆) contains at least three order statistics}.

We have that P (δ,∆) = P (A) + P (B). Also define the following events

C = {at least two out of n variables X1, ..., Xn fall into [x1, x1 + δ)}
D = {at least two out of n variables X1, ..., Xn fall into [x2, x2 +∆)}.

Now we have that P (B) ≤ P (C) + P (D). We find that

P (C) =

n∑
k=2

(
n

k

)
(F (x1 + δ)− F (x1))

k (1− F (x1 + δ) + F (x1))
n−k

≤ (F (x1 + δ)− F (x1))
2

n∑
k=2

(
n

k

)
≤ 2n (F (x1 + δ)− F (x1))

2

= O(δ2), δ → 0,



2.2. CONDITIONAL DISTRIBUTION 23

and similarly we obtain that

P (D) =

n∑
k=2

(
n

k

)
(F (x2 +∆)− F (x2))

k (1− F (x2 +∆) + F (x2))
n−k

≤ (F (x2 +∆))
n∑

k=2

(
n

k

)
≤ 2n (F (x2 +∆)− F (x2))

2

= O
(
∆2
)
, ∆ → 0.

This yields

lim
P (δ,∆)− P (A)

δ∆
= 0 as δ → 0, ∆ → 0.

It remains to note that

P (A) =
n!

(k(1)− 1)!(k(2)− k(1)− 1)!(n− k(2))!
F (x1)

k(1)−1 (F (x1 + δ)− F (x1))

(F (x2)− F (x1 + δ))k(2)−k(1)−1 (F (x2 +∆)− F (x2)) (1− F (x2))
n−k(2) .

From this equality we see that the limit exists and that

f(x1, x2) =
n!

(k(1)− 1)!(k(2)− k(1)− 1)!(n− k(2))!
F (x1)

k(1)−1 (F (x2)− F (x1))
k(2)−k(1)−1

(1− F (x2))
n−k(2)f(x1)f(x2),

which is the same as the joint distribution we wrote down earlier. Note that we have only found
the right limit of f(x1 + 0, x2 + 0), but since f is continuous we can obtain the other limits
f(x1 + 0, x2 − 0), f(x1 − 0, x2 + 0) and f(x1 − 0, x2 − 0) in a similar way.

Also note that when r = n in (2.3) we get the joint density of all order statistics and that
this joint density is given by

f1,...,n;n(x1, ..., xn) =

{
n!
∏n

s=1 f(xs) if, −∞ < x1 < ... < xn < ∞
0, otherwise.

(2.4)

2.2 Conditional distribution

When we pass from the original random variables X1, ..., Xn to the order statistics, we lose
independence among these variables. Now suppose we have a sequence of n order statistics
X1,n, ..., Xn,n, and let 1 < k < n. In this section we derive the distribution of an order statistic
Xk+1,n given the previous order statisticXk = xk, ..., X1 = x1. Let the density of this conditional
random variable be denoted by f(u|x1, .., xk). We show that this density coincides with the
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distribution of Xk+1,n given that Xk,n = xk, denoted by f(u|xk)

f(u|x1, ..., xk) =
f1,...,k+1;n(x1, ..., xk, u)

f1,...,k;n(x1, ..., xk)

=

n!
(n−k−1)! [1− F (u)]n−k−1∏k

s=1 f(xs)f(u)

n!
(n−k)! [1− F (xk)]

n−k∏k
s=1 f(xs)

=

n!
(k−1)!(n−k−1)! [1− F (u)]n−k−1 F (xk)

k−1f(xk)f(u)

n!
(k−1)!(n−k)! [1− F (xk)]

n−k F (xk)k−1f(xk)

=
fk,k+1;n(xk, u)

fk,n(xk)
= f(u|xk).

From this we see that the order statistics form a Markov chain. The following theorem is useful
for finding the distribution of functions of order statistics.

Theorem 2.2.1. Let X1,n ≤ ... ≤ Xn,n be order statistics corresponding to a continuous distri-
bution function F . Then for any 1 < k < n the random vectors

X(1) = (X1,n, ..., Xk−1,n) and X(2) = (Xk+1,n, ..., Xn,n)

are conditionally independent given any fixed value of the order statistic Xk,n. Furthermore,
the conditional distribution of the vector X(1) given that Xk,n = u coincides with the uncondi-
tional distribution of order statistics Y1,k−1, ..., Yk−1,k−1 corresponding to i.i.d. random variables
Y1, ..., Yk−1 with distribution function

F (u)(x) =
F (x)

F (u)
x < u.

Similarly, the conditional distribution of the vector X(2) given Xk,n = u coincides with the uncon-
ditional distribution of order statistics W1,n−k, ...,Wn−k;n−k related to the distribution function

F(u)(x) =
F (x)− F (u)

1− F (u)
x > u.

Proof. To simplify the proof we assume that the underlying random variables X1, ..., Xn have
density f . The conditional density is given by

f(x1, ..., xk−1, xk+1, ..., xn|Xk,n = u) =
f1,...,n;n(x1, ..., xk−1, xk+1,n, ..., xn)

fk;n(u)

=

[
(k − 1)!

k−1∏
s=1

f(xs)

F (u)

][
(n− k)!

n∏
r=k+1

f(xr)

1− F (u)

]
.

As we can see the first part of the conditional density is the joint density of the order statistics
from a sample size k− 1 where the random variables have a density f(x)

F (u) for x < u. The second
part in the density is the joint density of the order statistics from a sample of size n− k where
the random variables have a distribution F (x)−F (u)

1−F (u) for x > u.
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2.3 Representations for order statistics

We noted that one of the drawbacks of using the order statistics is losing the independence
property among the random variables. If we consider order statistics from the exponential
distribution or the uniform distribution there are a few useful properties of the order statistics
that can be used when studying linear combinations of the order statistics.

Theorem 2.3.1. Let X1,n ≤ ... ≤ Xn,n, n = 1, 2, ..., be order statistics related to independent
and identically distributed random variables with distribution function F , and let

U1,n ≤ ... ≤ Un,n,

be order statistics related to a sample from the uniform distribution on [0, 1]. Then for any
n = 1, 2, ... the vectors (F (X1,n), ..., F (Xn,n)) and (U1,n, ..., Un,n) are equally distributed.

Theorem 2.3.2. Consider exponential order statistics

Z1,n ≤ ... ≤ Zn,n,

related to a sequence of independent and identically distributed random variables Z1, Z2, ... with
distribution function

H(x) = max
(
0, 1− e−x

)
.

Then for any n = 1, 2, ... we have

(Z1,n, ..., Zn,n)
d
=

(
v1
n
,
v1
n

+
v2

n− 1
, ...,

v1
n

+ ...+ vn

)
, (2.5)

where v1, v2, ... is a sequence of independent and identically distributed random variables with
distribution function H(x).

Proof. In order to prove Theorem 2.3.2 it suffices to show that the densities of both vectors in
(2.5) are equal. Putting

f(x) =

{
e−x, if x > 0,

0 otherwise,
(2.6)

and substituting equation (2.6) into the joint density of the n order statistics given by

f1,2,...,n;n (x1, ..., xn) =

{
n!
∏n

i=1 f(xi), x1 < ... < xn,

0, otherwise,

we find that the joint density of the vector on the LHS of equation (2.5) is given by

f1,2,...,n;n(x1, ..., xn) =

{
n! exp{−

∑n
s=1 xs}, if 0 < x1 < ... < xn < ∞,

0, otherwise.
(2.7)

The joint density of n i.i.d. standard exponential random variables v1, ..., vn is given by

g(y1, ..., yn) =

{
exp{−

∑n
s=1 ys}, if y1 > 0, ..., yn > 0,

0, otherwise.
(2.8)

The linear change of variables

(v1, ..., vn) = (
y1
n
,
y1
n

+
y2

n− 1
,
y1
n

+
y2

n− 1
+

y3
n− 2

, ...,
y1
n

+ ...+ yn)
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with Jacobian 1
n! which corresponds to the passage to random variables

V1 =
v1
n
, V2 =

v1
n

+
v2

n− 1
, ..., Vn =

v1
n

+ ...+ vn,

has the property that
v1 + v2 + ...+ vn = y1 + ...+ yn

and maps the domain {ys > 0s = 1, ..., n} into the domain {0 < v1 < v2 < ... < vn < ∞}. Equa-
tion (2.8) implies that V1, ..., Vn have the joint density

f(v1, ..., vn) =

{
n! exp {−

∑n
s=1 vs} , if 0 < v1 < ... < vn,

0, otherwise.
(2.9)

Comparing equation (2.7) with equation (2.9) we find that both vectors in (2.5) have the same
density and this proves the theorem.

Using Theorem 2.3.2 it is possible to find the distribution of any linear combination of order
statistics from an exponential distribution, since we can express this linear combination as a
sum of independent exponential distributed random variables.

Theorem 2.3.3. Let U1,n ≤ ... ≤ Un,n, n = 1, 2, ... be order statistics from an uniform sample.
Then for any n = 1, 2, ...

(U1,n, ..., Un,n)
d
=

(
S1

Sn+1
, ...,

Sn

Sn+1

)
,

where
Sm = v1 + ...+ vm, m = 1, 2, ...,

and where v1, ..., vm are independent standard exponential random variables.

2.4 Functions of order statistics

In this section we discuss different techniques that can be used to obtain the distribution of
different functions of order statistics.

2.4.1 Partial sums

Using Theorem 2.2.1 we can obtain the distribution of sums of consecutive order statistics,∑s−1
i=r+1Xi,n. The distribution of the order statistics Xr+1,n, ..., Xs−1,n given that Xr,n = y

and Xs,n = z coincides with the unconditional distribution of order statistics V1,n, ..., Vs−r−1

corresponding to an i.i.d. sequence V1, ..., Vs−r−1 where the distribution function of Vi is given
by

Vy,z(x) =
F (x)− F (y)

F (z)− F (y)
, y < x < z. (2.10)

From Theorem 2.2.1 we can write the distribution function of the partial sum in the following
way

P (Xr+1 + ...+Xs−1 < x) =

∫
−∞<y<z<∞

P (Xr+1 + ...+Xs−1 < x|Xr,n = y,Xs,n = z) fr,s;n(y, z)dydz

=

∫
−∞<y<z<∞

V (s−r−1)∗
y,z (x)fr,s;n(y, z)dydz,

where V
(s−r−1)∗
y,z (x) denotes the s− r − 1-th convolution of the distribution given by (2.10).
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2.4.2 Ratio between order statistics

Now we look at the distribution of the ratio between two order statistics.

Theorem 2.4.1. For r < s and 0 ≤ x ≤ 1

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s− r)ts−1(1− t)n−sdt, (2.11)

where

Qx(t) =
F
(
xF−1(t)

)
t

.

Proof.

P

(
Xr,n

Xs,n
≤ x

)
=

∫ ∞

−∞
P

(
y

Xs,n
≤ x|Xr,n = y

)
fXr,n(y)dy,

=

∫ ∞

−∞
P
(
Xs,n >

y

x
|Xr,n = y

)
fXr,n(y)dy,

=

∫ ∞

−∞

∫ ∞

y
x

fXs,n|Xr,n=y(z)dzfXr,n(y)dy,

=

∫ ∞

−∞

∫ zx

−∞
fXr,n(y)fXs,n|Xr,n=y(z)dydz,

= C

∫ ∞

−∞

∫ zx

−∞
F (y)r−1 [1− F (y)]n−r f(y)

[F (z)− F (y)]s−r−1 [1− F (z)]n−s f(z)

[1− F (y)]n−r dydz,

where C = 1
B(r,n−r+1)B(s−r,n−s+1) . We apply the transformation t = F (z) from which we get

the following

P

(
Xr,n

Xs,n
≤ x

)
= C

∫ 1

0

∫ xF−1(t)

−∞
F (y)r−1f(y) [t− F (y)]s−r−1 dy (1− t)n−s dt.

Next we use the transformation F (y)
t = u.

P

(
Xr,n

Xs,n
≤ x

)
= C

∫ 1

0

∫ F (xF−1(t))
t

0
tr−1ur−1 (t− tu)s−r−1 tdu (1− t)n−s dt,

= C

∫ 1

0

∫ F (xF−1(t))
t

0
ur−1 (1− u)s−r−1 duts−1 (1− t)n−s dt

We can rewrite the constant C in the following way

C =
1

B(r, n− r + 1)B(s− r, n− s+ 1)

=
n!

(r − 1)!(n− r)!

(n− r)!

(s− r − 1)!(n− s)!

=
1

(s− r − 1)!(r − 1)!

n!

(n− s)!

=
(s− 1)!

(s− r − 1)!(r − 1)!

n!

(n− s)!(s− 1)!

=
1

B(r, s− r)B(s, n− s+ 1)
.
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If we substitute this in our integral, and define Qx(t) =
F (xF−1(t))

t , we get the following

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0

∫ Qx(t)
0 ur−1 (1− u)s−r−1 du

B(s, s− r)
ts−1 (1− t)n−s dt

=
1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s− r)ts−1 (1− t)n−s dt.

In this chapter we looked at the distribution of order statistics and derived different properties
of order statistics. We use these properties in chapter 5 to derive properties of the obesity index
and the distribution of the ratio between order statistics. In the next chapter we review the
theory of records which we use in Chapter 5.



Chapter 3

Records

Records are used in Chapter 5 to explore possible measures of tail obesity. Records are closely
related to order statistics. This brief chapter discusses the theory of records and summarizes the
main results. For a more detailed discussion see Arnold [1983],Arnold et al. [1998] or Nezvorov
[2001], where most of the results we present here can be found. Records are closely related to
extreme values and related material can be found in A.J. McNeil and Embrechts [2005], Coles
[2001]and Beirlant et al. [2005].

3.1 Standard record value processes

Let X1, X2, ... be an infinite sequence of independent and identically distributed random vari-
ables. Denote the cumulative distribution function of these random variables by F and assume
it is continuous. An observation is called an upper record value if its value exceeds all previous
observations. So Xj is an upper record if Xj > Xi for all i < j. We are also interested in the
times at which the record values occur. For convenience assume that we observe Xj at time j.
The record time sequence {Tn, n ≥ 0} is defined as

T0 = 1 with probability 1

and for n ≥ 1,
Tn = min

{
j : Xj > XTn−1

}
.

The record value sequence {Rn} is then defined by

Rn = XTn , n = 0, 1, 2, ...

The number of records observed at time n is called the record counting process {Nn, n ≥ 1}
where

Nn = {number of records among X1, ..., Xn}.

We have that N1 = 1 since X1 is always a record.

3.2 Distribution of record values

Let the record increment process be defined by

Jn = Rn −Rn−1, n > 1,

with J0 = R0. It can easily be shown that if we consider the record increment process from a
sequence of i.i.d. standard exponential random variables then all the Jn are independent and
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Jn has a standard exponential distribution. Using the record increment process we are able
to derive the distribution of the n-th record from a sequence of i.i.d. standard exponential
distributed random variables.

P (Rn < x) = P (Rn −Rn−1 +Rn−1 −Rn−2 +Rn−2 − ...+R1 −R0 +R0 < x)

= P (Jn + Jn−1 + ...+ J0 < x)

Since
∑n

i=0 J + i is the sum of n+1 standard exponential distributed random variables we find
that the record values from a sequence of standard exponential distributed random variables
has the gamma distribution with parameters n+ 1 and 1.

Rn ∼ Gamma(n+ 1, 1), n = 0, 1, 2, ...

If a random variable X has a Gamma(n, λ) distribution then it has the following density function

fX(x) =

{
λ(λx)n−1e−λx

Γ(n) , x ≥ 0

0, otherwise

We can use the result above to find the distribution of the n-th record corresponding to a
sequence {Xi} of i.i.d. random variables with continuous distribution function F . If X has
distribution function F then

H(X) ≡ − log(1− F (X))

has a standard exponential distribution function. We also have that X
d
= F−1(1− e−X∗

) where
X∗ is a standard exponential random variable. Since X is a monotone function of X∗ we can
express the n-th record of the sequence {Xj} as a simple function of the n-th record of the
sequence {X∗}. This can be done in the following way

Rn
d
= F−1(1− e−R∗

n), n = 0, 1, 2, ...

Using the following expression of the distribution of the n-th record from a standard exponential
sequence

P (R∗
n > r∗) = e−r∗

n∑
k=0

(r∗)k

k!
, r∗ > 0,

the survival function of the record from an arbitrary sequence of i.i.d. random variables with
distribution function F is given by

P (Rn > r) = [1− F (r)]
n∑

k=0

− [log(1− F (r))]k

k!
.

3.3 Record times and related statistics

The definition of the record time sequence {Tn, n ≥ 0} was given by

T0 = 1, with probability 1,

and for n ≥ 1

Tn = min{j : Xj > XTn−1}.
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In order to find the distribution of the first n non-trivial record times T1, T2, ..., Tn we first look
at the sequence of record time indicator random variables. These are defined in the following
way

I1 = 1 with probability 1,

and for n > 1
In = 1{Xn>max{X1,...,Xn−1}}

So In = 1 if and only if Xn is a record value. We assume that the distribution function F , of
the random variables we consider, is continuous. It is easily verified that the random variables
In have a Bernoulli distribution with parameter 1

n and are independent of each other. The joint
distribution for the first m record times can be obtained using the record indicators. For integers
1 < n1 < ... < nm we have that

P (T1 = n1, ..., Tm = nm) = P (I2 = 0, ..., In1−1 = 0, In1 = 1, In1+1 = 0, ..., Inm = 0)

= [(n1 − 1)(n2 − 1)...(nm − 1)nm]−1 .

In order to find the marginal distribution of Tk we first review some properties of the record
counting process {Nn, n ≥ 1} defined by

Nn = {number of records among X1, ...Xn}

=

n∑
j=1

Ij .

Since the record indicators are independent we can immediately write down the mean and the
variance for Nn.

E [Nn] =
n∑

j=1

1

j
,

Var(Nn) =
n∑

j=1

1

j

(
1− 1

j

)
.

We can obtain the exact distribution of Nn using the probability generating function. We have
the following result.

E
[
sNn

]
=

n∏
j=1

E
[
sIj
]

=

n∏
j=1

(
1 +

s− 1

j

)
From this we find that

P (Nn = k) =
Sk
n

n!

where Sk
n is a Stirling number of the first kind. The Stirling numbers of the first kind are given

by the coefficients in the following expansion .

(x)n =
n∑

k=0

Sk
nx

k,
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where (x)n = x(x− 1)(x− 2)...(x− n+ 1). The record counting process Nn follows the central
limit theorem.

Nn − log(n)√
log(n)

d→ N(0, 1)

We can use the information about the record counting process to obtain the distribution of Tk.
Note that the events {Tk = n} and {Nn = k + 1, Nn−1 = k} are equivalent. From this we get
that

P (Tk = n) = P (Nn = k + 1, Nn−1 = k)

= P (In = 1, Nn−1 = k)

=
1

n

Sk
n−1

(n− 1)!

=
Sk
n−1

n!
.

We also have asymptotic log-normality for Tk.

log(Tk)− k√
k

d→ N(0, 1)

3.4 k-records

There are two different sequences that are called k-record values in the literature. We discuss
both definitions here. First define the sequence of initial ranks ρn given by

ρn = #{j : j ≤ n and Xn ≤ Xj}, n ≥ 1.

We callXn a Type 1 k-record value if ρn = k, when n ≥ k. Denote the sequence that is generated

through this process by
{
R

(k)
n

}
. The Type 2 k-record sequence is defined in the following way,

let T0(k) = k, R0(k) = Xn−k+1,k and

Tn(k) = min
{
j : j > T(n−1)(k), Xj > XT(n−1)(k)−k+1,T(n−1)(k)

}
,

and define Rn(k) = XTn(k)−k+1
as the n-th k-record. Here a k record is established whenever

ρn ≥ k. Although the corresponding Xn does not need to be a Type 2 k-record, unless k = 1,
but the observation eventually becomes a Type 2 k-record value. The sequence

{
Rn(k), n ≥ 0

}
from a distribution F is identical in distribution to a record sequence {Rn, n ≥ 0} from the
distribution function F1,k(x) = 1− (1−F (x))k. So all the distributional properties of the record
values and record counting statistics do extend to the corresponding k-record sequences.

The difference between the Type 1 and Type 2 k-records can also be explained in the fol-
lowing way. We only observe a new Type 1 k-record whenever an observation is exactly the
k-th largest seen yet. Whilst we also observe a new Type 2 k-record whenever we observe a new
value that is larger than the previous k-th largest yet.



Chapter 4

Regularly Varying and
Subexponential Distributions

In this chapter we discuss a number of classes of heavy-tailed distributions and study their
properties in relation to those discussed in Chapter 1. This material is found in Embrechts et al.
[1997], Bingham et al. [1987], Rachev [2003]and Resnick [2005].

4.0.1 Regularly varying distribution functions

An important class of heavy-tailed distributions is the class of regularly varying distribution
functions. A distribution function is called regular varying at infinity with index −α if:

lim
x→∞

F (tx)

F (x)
= t−α, α ∈ [0,∞]

where F (x) = 1− F (x). The parameter α is called the tail index.

Regularly varying functions

In this section we discuss some results from the theory of regularly varying function. A more
detailed discussion is found in Bingham et al. [1987].

Definition 4.0.1. A positive measurable function h on (0,∞) is regularly varying at infinity
with index α ∈ R if:

lim
x→∞

h(tx)

h(x)
= tα, t > 0. (4.1)

We write h(x) ∈ Rα. If α = 0 we call the function slowly varying at infinity.

Instead of writing that h(x) is a regularly varying function at infinity with index α we simply
call the function h(x) regularly varying. If h(x) ∈ Rα then we can rewrite the function h(x) in
the following way

h(x) = xαL(x), (4.2)

where L(x) is a slowly varying function. Karamata’s theorem is an important tool for studying
the behavior of regularly varying functions.

Theorem 4.0.1. Let L ∈ R0 be locally bounded in [x0,∞) for some x0 ≥ 0. Then

1. for α > −1, ∫ x

x0

tαL(t)dt ∼ (α+ 1)−1xα+1L(x), x → ∞,

33



34 CHAPTER 4. REGULARLY VARYING AND SUBEXPONENTIAL DISTRIBUTIONS

2. for α < −1 ∫ ∞

x
tαL(t)dt ∼ −(α+ 1)−1xα+1L(x), x → ∞.

3. if α = −1 then
1

L(x)

∫ x

x0

L(t)

t
dt → ∞, x → ∞.

and 1
L(x)

∫ x
x0

L(t)
t dt ∈ R0

4. if α = −1 and 1
L(x)

∫∞
x

L(t)
t dt < ∞ then

1

L(x)

∫ ∞

x

L(t)

t
dt → ∞, x → ∞.

and 1
L(x)

∫∞
x

L(t)
t dt ∈ R0

Regular variation for distribution functions

The class of regularly varying distributions is an important class of heavy-tailed distributions.
This class is closed under convolutions as can be found in Applebaum [2005], where the result
was attributed to G. Samorodnitsky.

Theorem 4.0.2. If X and Y are independent real-valued random variables with FX ∈ R−α and
F Y ∈ R−β, where α, β > 0, then FX+Y ∈ Rρ, where ρ = min{α, β}.

The same theorem, but with the assumption that α = β can be found in Feller [1971].

Proposition 4.0.3. If F1 and F2 are two distribution functions such that as x → ∞

1− Fi(x) = x−αLi(x) (4.3)

with Li slowly varying, then the convolution G = F1 ∗ F2 has a regularly varying tail such that

1−G(x) ∼ x−α (L1(x) + L2(x)) . (4.4)

From Proposition 4.0.3 we obtain the following result using induction on n.

Corollary 4.0.1. If F (x) = x−αL(x) for α ≥ 0 and L ∈ R0, then for all n ≥ 1,

Fn∗(x) ∼ nF (x), as x → ∞, (4.5)

P (Sn > x) ∼ P (Mn > x) as x → ∞. (4.6)

Proof (Embrechts et al. [1997]) (4.5) follows directly from Proposition 4.0.3. To prove (4.6),
consider an i.i.d. sample X1, ..., Xn with common distribution function F , and denote the partial
sum by Sn = X1 + ... +Xn and the maximum by Mn = max {X1, ..., Xn}. Then for all n ≥ 2
we find that

P (Sn > x) = Fn∗(x)

P (Mn > x) = Fn(x) = 1− F (x)n

= F (x)

n−1∑
k=0

F k(x)

∼ nF (x), x → ∞.
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Thus, we have
P (Sn > x) ∼ P (Mn > x) as x → ∞.

�
Table 4.1 gives a number of distribution functions from the class of regularly varying distri-

butions.

Distribution F (x) or f(x) Index of regular variation

Pareto F (x) = x−α −α

Burr F (x) =
(

1
xτ+1

)α
−τα

Log-Gamma f(x) = αβ

Γ(β) (ln(x))
β−1 x−α−1 −α

Table 4.1: Regularly varying distribution functions

4.0.2 Subexponential distribution functions

A generalization of the class of regularly varying distributions is the class of subexponential
distributions. In this section we discuss several properties of distributions with subexponential
tails.

Definition 4.0.2. A distribution function F with support (0,∞) is a subexponential distribution,
written F ∈ S, if for all n ≥ 2,

lim
x→∞

Fn∗(x)

F (x)
= n. (4.7)

Note that, by definition, F ∈ S entails that F is supported on (0,∞). Whereas regular vari-
ation entails that the sum of independent copies is asymptotically disributed as the maximum,
from equation (4.7) we see that this fact characterizes the subexponential distributions:

P (Sn > x) ∼ P (Mn > x) as x → ∞ ⇒ F ∈ S.

Noting that t−α ∼ F (ln(tx))

F (ln(x))
if and only if F (ln(t)+ln(x))

F (ln(x))
∼ e−αln(t), we find the following is a useful

property:

Lemma 4.0.4. A distribution function F with support (0,∞) satisfies

F (z + x)

F (z)
∼ e−αx, as z → ∞, α ∈ [0,∞] (4.8)

if and only if
F ◦ ln ∈ R−α (4.9)

.

The first equation is equivalent to F (x−y)

F (x)
∼ eαy, as x → ∞.

In order to check if a distribution function is a subexponential distribution we do not need to
check equation (4.7) for all n ≥ 2. Lemma 4.0.5 gives a sufficient condition for subexponentiality.

Lemma 4.0.5. If

lim sup
x→∞

F 2∗(x)

F (x)
= 2,

then F ∈ S.
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Lemma 4.0.6 gives a few important properties of subexponential distributions, (Embrechts
et al. [1997]).

Lemma 4.0.6. 1. If F ∈ S, then uniformly in compact y-sets of (0,∞),

lim
x→∞

F (x− y)

F (x)
= 1. (4.10)

2. If (4.10) holds then, for all ε > 0,

eεxF (x) → ∞, x → ∞

3. If F ∈ S then, given ε > 0, there exists a finite constant K such that for all n ≥ 2,

Fn∗(x)

F (x)
≤ K(1 + ε)n, x ≥ 0. (4.11)

Proof. The proof of the first statement involves an interesting technique. If X1, . . . Xn+1 are
positive i.i.d. variables, then

Fn+1(x)− F (n+1)∗(x) = P{
∪
t≤x

{ω|Xn+1(ω) = t ,

n∑
i=1

Xi(ω) > x− t}}

=

∫ x

0
Fn∗(x− t)dF (t).

F 2∗(x)

F (x)
=

1− F 2∗(x)

F (x)

=
F (x) + F (x)− F 2∗(x)

F (x)

= 1 +

∫ x
0 F (x− t)dF (t)

F (x)

= 1 +

∫ y
0 F (x− t)dF (t)

F (x)
+

∫ x
y F (x− t)dF (t)

F (x)
.

Since F (x−t)

F (x)
> 1 and F (x−t)

F (x)
> F (x−y)

F (x)
we have

F 2∗(x)

F (x)
≥ 1 + F (y) +

F (x− y)

F (x)
(F (x)− F (y)).

Re-arranging gives
F 2∗(x)

F (x)
− 1− F (y)

F (x)− F (y)
≥ F (x− y)

F (x)
≥ 1.

The proof of the first statement concludes by using (4.0.5) to show that the left hand side
converges to 1 as x → ∞. Uniformity follows from monotonicity in y. For the second statement,
note that by lemma (4.0.4) F ◦ ln ∈ R0, which implies that xεF (ln(x)) → ∞. The third
statement is a fussy calculation for which we refer the reader to (Embrechts et al. [1997] p.42).

Note that if F ∈ S, then α = 0 in lemma (4.0.4).
Table 4.2 gives a number of subexponential distributions. Unlike the class of regularly

varying distributions the class of subexponential distributions is not closed under convolutions,
a counterexample was provided in Leslie [1989].
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Distribution Tail F or density f Parameters

Lognormal f(x) = 1√
2πσx

e
−(ln(x)−µ)2

2σ2 µ ∈ R, σ > 0

Benktander-type-I F (x) =
(
1 + 2β

α ln(x)
)
e−β(ln(x))2−(α+1) ln(x) α, κ > 0

Benktander-type-II F (x) = e
α
β x−(1−β)e

−αxβ

β α > 0, 0 < β < 1

Weibull F (x) = e−cxτ
c > 0, 0 < τ < 1

Table 4.2: Distributions with subexponential tails.

4.0.3 Related classes of heavy-tailed distributions

In this section we first give two more classes of heavy-tailed distributions, after this we discuss
the relationships between these classes. The first class we give is the class of dominatedly varying
distribution functions denoted by D

D =

{
F d.f. on (0,∞) : lim sup

x→∞

F
(
x
2

)
F (x)

< ∞

}
The final class of distribution functions we define is the class of long-tailed distributions, denoted
by L, which is defined in the following way

L =

{
F d.f. on (0,∞) : lim

x→∞

F (x− y)

F (x)
= 1 for all y > 0

}
The two classes of distribution functions we already discussed are the regularly varying distri-
bution functions (R) and the subexponential distribution functions (S).

R =
{
F d.f. on (0,∞) : F ∈ R−α for some α ≥ 0

}
,

S =

{
F d.f. on (0,∞) : lim

x→∞

Fn∗(x)

F (x)
= n

}
.

For these classes we have the following relationships

1. R ⊂ S ⊂ L and R ⊂ D,

2. L ∩ D ⊂ S,

3. D * S and S * D.

4.1 Mean excess function

A popular diagnostic for heavy-tailed behavior is the mean excess function. An accessible dis-
cussion is found in Beirlant and Vynckier This is due to the fact that if a distribution function
is subexponential the mean excess function tends to infinity. Whilst for the exponential distri-
bution the mean excess function is a constant and for the normal distribution the mean excess
function tends to zero. The mean excess function of a random variable X with finite expectation
is defined in the following way.

Definition 4.1.1. Let X be a random variable with right endpoint xF ∈ (0,∞] and E [X] < ∞,
then

e(u) = E [X − u|X > u] , 0 ≤ u ≤ xF ,

is the mean excess function of X.
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In insurance e(u) is called the mean excess loss function where it is interpreted as the expected
claim size over some threshold u. In reliability theory or in the medical field e(u) is often called
the mean residual life function. In data analysis one uses the empirical counterpart of the mean
excess function which is given by

ên(u) =

∑n
i=1Xi,n1Xi,n>u∑n

i=1 1Xi,n>u
− u.

The empirical version is usually plotted against the values u = xi,n for k = 1, ..., n− 1.

4.1.1 Basic properties of the mean excess function

For positive random variables the mean excess function can be calculated using the following
formula.

Proposition 4.1.1. The mean excess function of a positive random variable with survivor func-
tion F can be calculated as:

e(u) =

∫ xF

u F (x)dx

F (u)
, 0 < u < xF ,

where xF is the endpoint of the distribution function F .

The mean excess function uniquely determines the distribution.

Proposition 4.1.2. For any continuous distribution function F with density f supported on
(0,∞):

F (x) =
e(0)

e(x)
exp

{
−
∫ x

0

1

e(u)
du

}
. (4.12)

Proof. The hazard rate r(u) = f(u)

F
determines the distribution via

F (x) = e−
∫ x
0 r(u)du.

Differentiate F (u)e(u) to obtain, for some constant A

r(u) =
1 + due(u)

e(u)
(4.13)

−
∫ x

0
r(u)du = −

∫ x

0

1

e(u)
du− ln(e(x)) +A (4.14)

F (x) =
eA

e(x)
e
−

∫ x
0

1
e(u)

du
. (4.15)

Since F (0) = 1,, it follows that eA = e(0).

Table 4.3 gives the first order approximations of the mean excess function for different
distribution functions. The popularity of mean excess function as a diagnostic derives from
the following two propositions.

Proposition 4.1.3. If a positive random variable X has a regularly varying distribution function
with a tail index α > 1, then

e(u) ∼ u

α− 1
, as x → ∞.
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Distribution Mean excess function

Exponential 1
λ

Weibull x1−τ

βτ

Log-Normal σ2x
ln(x)−µ(1 + o(1))

Pareto κ+u
α−1 , α > 1

Burr u
ατ−1(1 + o(1)), ατ > 1

Loggamma u
α−1(1 + o(1))

Table 4.3: Mean excess functions of distributions

Proof. Since we consider a positive random variable we can use proposition 4.1.1 to find that

e(u) =

∫∞
u F (x)dx

F (u)
(4.16)

Since F ∈ R−α there exists a slowly varying function l(x) such that

F (x) = x−αl(x) (4.17)

Using equations (4.16) and (4.17) we find that∫∞
u F (x)dx

F (u)
=

∫∞
u x−αl(x)dx

u−αl(x)
. (4.18)

From theorem 4.0.1 we find that∫∞
u x−αl(x)dx

u−αl(x)
∼ u

α− 1
, u → ∞

A direct calculation with the survivor function of a Pareto distribution with finite mean,
F (x) = ( k

k+x)
α; α > 1, shows that e(u) = k+u

α−1 . In other words, e(u) is linear with intercept k
α−1

and slope 1
α−1

Proposition 4.1.4. Assume that F is the distribution function of a positive continuous random
variable X which is unbounded to the right and has a finite mean. If for all y ∈ R

lim
x→∞

F (x− y)

F (x)
= eγy, (4.19)

for some γ ∈ [0,∞], then

lim
u→∞

e(u) =
1

γ
.

Proof. By lemma (4.0.4) and (4.2), F ◦ ln ∈ R−γ which implies F (x) ∼ x−γL(x); L(tx)L(x) ∼ 1. We
have

e(u) =

∫∞
u F (x)dx

F (u)

=

∫ ∞

eu

z−1F (ln(z))dz

F (ln(eu))

∼
∫ ∞

eu

z−(1+γ)L(z)dz

e−γuL(eu)
.

By (4.0.1.2) this is equal to 1/γ
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Note that if F ∈ S, then equation (4.19) is satisfied with γ = 0. If a distribution function is a
subexponential distribution function the mean excess function e(u) tends to infinity as u → ∞.
If a distribution function is regularly varying with a tail index α > 1 then we know that the mean
excess function of this distribution is eventually linear with slope 1

α−1 . One of the drawbacks
of the mean excess function is that if we consider a regularly varying distribution function with
a tail index α < 1, then the mean excess function of this distribution function does not exist.
However, when we plot the empirical mean excess function the slope of this plot is always finite.



Chapter 5

Indices and Diagnostics of Tail
Heaviness

In this chapter we look for diagnostics for tail obesity using the self-similarity - or lack thereof
- of the mean excess plot. We examine how the mean excess plot changes when we aggregate
a data set by k. From this we define two new diagnostics; the first is the ratio of the largest
to the second largest observation in a data set. The second, termed the Obesity index, is the
probability that the sum of the largest and the smallest of four observations is larger than
the sum of the other two observations. A note on terminology: heuristic suggests a (possibly
inaccurate) shortcut, a diagnostic is a way of identifying something already defined, a measure
entails a definition, but not necessarily a method of estimation. Index is less precise but suggests
all of these. Tail index is already preempted, moreover we seek a characterization which applies
equally to selected data, eg the largest values, as well as to entire distributions, heavy tailed or
otherwise. The term Obesity index is enlisted for this purpose. It defines a property of empirical
or theoretical distributions and in this sense includes a method of estimation. For the rest, the
terms ”heuristic” and ”diagnostic” are used indiscriminately.

5.1 Self-similarity

One of the heuristics discussed in Chapter 1 was the self-similarity of heavy-tailed distributions
and how this could be seen in the mean excess plot of a distribution. Now consider a data set of
size n and create a new data set by dividing the original data set randomly into groups of size
k and sum each of the k members of each group. We call this operation ”aggregation by k”.
If we compare the mean excess plots of regularly varying distribution function with tail index
α < 2, then the mean excess plot of the original data set and the data set obtained through
aggregating by k look very similar. For distributions with a finite variance the mean excess plots
of the original sample and the aggregated sample look very different.

41
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(a) Exponential distribution
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(b) Pareto α = 1
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(c) Pareto α = 2
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(d) Weibull distribution τ = 0.5

Figure 5.1: Standardized mean excess plots

This can be explained through the generalized central limit theorem: normalized sums of
regularly varying random variables with a tail index α < 2 converge to a stable distribution
with the same tail index. If α > 2 then the normalized sums converge to a standard normal
distribution whose mean excess function tends to zero. In Figures 5.1 we see the standardized
mean excess plot of a number of simulated data sets of size 1000. As we can see, the mean excess
plots of the exponential data set quickly collapses under random aggregations.The mean excess
plot of the Pareto(2) and Weibull data sets collapse more slowly and the mean excess plot of the
Pareto(1) does not change much when aggregated by 10; aggregation by 50 leads to a shift in the
mean excess plot but the slope stays approximately the same. Of course, aggregation by k is a
probabilistic operation, and different aggregations by k will produce somewhat different pictures.
Although we might anticipate this behavior from the generalized central limit theorem, it is af-
terall simply a property of finite sets of numbers. Of course, aggregation by k is a probabilistic
operation, and different aggregations by k will produce somewhat different pictures. Figures 5.2
(a)–(b) (also in the introduction) are the standardized mean excess plots of the NFIP database
and the national crop insurance data. The standardized mean excess plot in Figure 5.2c is based
upon a data set that consists of the amount billed to a patient upon discharge. Note that each
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(a) NFIP
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(b) National crop insurance
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(c) Hospital

Figure 5.2: Standardized mean excess plots of a few data sets

of the mean excess plots in Figure 5.2 shows some evidence of tail-heaviness since each mean
excess plot is increasing. The NFIP data set shows very heavy-tailed behavior, the other data
sets appear less heavy, as the mean excess plot collapses under aggregation. This indicates that
the NFIP data is drawn from a distribution with infinite variance and that the two other data
sets are drawn from a finite variance distribution.

Denote the largest value in a data set of size n by Mn and the largest value in the data
set obtained through aggregation by k by Mn(k). By definition Mn < Mn(k), but for regularly
varying distributions with a small tail index the maximum of the aggregated data set does not
differ much from the original maximum. This indicates that Mn is a member of the group which
produced Mn(k). In general it is quite difficult to calculate the probability that the maximum
of a data set is contained in the group that produces Mn(k). But we do know that, for positive
random variables, whenever the largest observation in a data set is at least k times as large as
the second largest observation, then the group that contains Mn produces Mn(k). Let us then
focus on the distribution of the ratio of the largest to the second largest value in a data set.
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5.1.1 Distribution of the ratio between order statistics

In Theorem 2.4.1 we derived the distribution of the ratio between two order statistics in the
general case given by

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s− r)ts−1(1− t)n−sdt, (r < s) (5.1)

where B(x, y) is the beta function, Ix(r, s) the incomplete beta function and Qx(t) =
F (tF−1(x)

t .
We are interested in the case that r = n− 1 and s = n so the distribution function in equation
(5.1) simplifies to

P

(
Xn−1,n

Xn,n
≤ x

)
= n(n− 1)

∫ 1

0
IQx(t)(n− 1, 1)tn−2dt.

It turns out there is a much simpler form for the distribution function of the ratio of successive
order statistics from a Pareto distribution.

Proposition 5.1.1. When X1,n, ..., Xn,n are order statistics from a Pareto distribution then

the ratio between two consecutive order statistics,
Xi+1,n

Xi,n
, also has a Pareto distribution with

parameter (n− i)α.

Proof. The distribution function of
Xi+1,n

Xi,n
can be found by conditionalizing on Xi,n and using

Theorem 2.2.1 to find the distribution of Xi+1,n|Xi,n = x.

P

(
Xi+1,n

Xi,n
> z

)
=

∫ ∞

1
P (Xi+1,n > zx|Xi+1,n = x) fXi,n(x)dx

=

∫ ∞

1

(
1− F (zx)

1− F (x)

)n−i 1

B(i, n− i+ 1)
F (x)i−1 (1− F (x))n−i f(x)dx

=
1

B(i, n− i+ 1)

∫ ∞

1
(1− F (zx))n−iF (x)i−1f(x)dx

=
1

B(i, n− i+ 1)
z−(n−i)α

∫ ∞

1
x−(n−i)α(1− x−α)i−1αx−α−1dx

= z−(n−i)α 1

B(i, n− i+ 1)

∫ 1

0
un−i(1− u)i−1du (u = x−α)

= z−(n−i)α 1

B(i, n− i+ 1)
B(i, n− i+ 1)

= z−(n−i)α.

One might ask whether the converse of proposition 5.1.1 also holds, i.e. if for some k and
n the ratio

Xk+1,n

Xk,n
has a Pareto distribution, is the parent distribution of the order statistics

also a Pareto distribution? That this is not the case is shown by a counter-example of Arnold
[1983]: Let Z1 and Z2 be two independent Γ(12 , 1) random variables, and let X = eZ1−Z2 . If one
considers a sample of size 2, then we find that X1 and X2 are not Pareto distributed, but that
the ratio

X2,2

X1,2
does have a Pareto distribution.

One needs to make additional assumptions, for example, that the ratio of two successive
order statistics have a Pareto distribution for all n, as was shown in H.J.Rossberg [1972]. Here
we will give a different proof of this result. The following lemma is needed to prove the result1.

1Result was found on 1 February 2010 at http://at.yorku.ca/cgi-bin/bbqa?forum=ask an analyst 2006;
task=show msg;msg=1091.0001
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Lemma 5.1.2. If f(x) is a continuous function on [0, 1], and if for all n ≥ 0∫ 1

0
f(x)xndx = 0, (5.2)

then f(x) is equal to zero.

Proof. Since equation (5.2) holds, we know that for any polynomial p(x) the following equation
holds ∫ 1

0
f(x)p(x)dx = 0.

From this we find that for any polynomial p(x)∫ 1

0
f(x)2dx =

∫ 1

0
[f(x)− p(x)] f(x) + f(x)p(x)dx

=

∫ 1

0
[f(x)− p(x)] f(x)dx.

Since f(x) is a continuous function on [0, 1] we find by the Weierstrass theorem that for any
ε > 0 there exists a polynomial P (x) such that

sup
x∈[0,1]

|f(x)− P (x)| < ε.

By the Min-Max theorem there exists a constant M such that |f(x)| ≤ M for all 0 ≤ x ≤ 1.
From this we find that for any ε > 0 there exists a polynomial P (x) such that

|
∫ 1

0
f(x)2dx| = |

∫ 1

0
[f(x)− P (x)] f(x)dx|,

≤
∫ 1

0
|f(x)− P (x)||f(x)|dx,

≤ εM. (5.3)

But since equation (5.3) holds for all ε > 0 we find that∫ 1

0
f(x)2dx = 0. (5.4)

Since f is continuous on [1, 0], it follows that f(x) = 0, x ∈ [0, 1]

Theorem 5.1.3. For positive continuous random variable X with invertible distribution function
F , if there exists α > 0 such that for all n ≥ 2 and alll x > 1:

P

(
Xn,n

Xn−1,n
> x

)
= x−α, (5.5)

then for some κ > 0

F (x) = 1−
(κ
x

)α
,

for x > κ.
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Proof. The two largest of n values can be chosen in n(n− 1) ways, thus

P (Xn,n > Xn−1,nx) = n(n− 1)

∫ ∞

0
(1− F (zx))F (z)n−2f(z)dz = x−α. (5.6)

Since n(n− 1)(1−F (z))F (z)n−2f(z) is the density of the n− 1-th order statistic from a sample
of n:

n(n− 1)

∫ ∞

0
(1− F (z))F (z)n−2f(z)dz = 1, (5.7)

Divide (5.6) by x−α and subtract from (5.7) to find:

n(n− 1)

∫ ∞

0

(
xαF (xz)− F (z)

)
F (z)n−2f(z)dz = 0, (5.8)

Since equation (5.8) holds for all n ≥ 2 we can apply lemma 5.1.2 and find that

xαF (xz) = F (z).

This is a Cauchy equation, whose solution may be written as F (x) = καx−α, x > κ.

As in the above proof, the distribution of the ratio between two upper order statistics can
be obtained by evaluating the following integral:

P

(
Xn,n

Xn−1,n
> x

)
= n(n− 1)

∫ ∞

−∞
(1− F (zx))F (z)n−2f(z)dz (5.9)

For the Weibull distribution an analytic expression for the integral in equation (5.9 ) is:

P

(
Xn,n

Xn−1,n
> x

)
= n(n− 1)

∫ ∞

0
(1− F (zx))F (z)n−2f(z)dz

= n(n− 1)

∫ ∞

0

(
e−(λxz)τ

)(
1− e−(λz)τ

)n−2
τλτzτ−1e−(λz)τdz

= n(n− 1)

∫ 1

0
ux

τ
(1− u)n−2du

= n(n− 1)B(xτ + 1, n− 1).

Figures 5.3 (a)–(b) show the approximation of the probability in equation (5.9), with x = 2,
for the Burr distribution with parameters c = 1 and k = 1 and the Cauchy distribution. This
Burr distribution and the Cauchy distribution both have tail index one. The probability that
the largest order statistic is at least twice as large as the second largest order statistic seems to
converge to a half. This is exactly the probability that the the ratio of the largest to the second
largest order statistic from a Pareto(1) is at least one half, suggesting that the distribution of
the ratio of the two largest order statistics of a regularly varying distribution converges to the
distribution of that ratio from a Pareto distribution with the same tail index. The next theorem
proves this statement. We first recall some results from the theory of regular variation. If the
following limit exists for z > 1

lim
x→∞

F (zx)

F (x)
= β(z) ∈ [0, 1] , z > 1

then the three following cases are possible:

1. if β(z) = 0 for all z > 1, then F is called a rapidly varying function,
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Figure 5.3: P (Xn,n > 2Xn−1,n) for a few distributions

2. if β(z) = z−α for all z > 1, where α > 0, then F is called a regularly varying distribution
function,

3. if β(z) = 1 for all z > 1, then F is called a slowly varying function.

The above suggestion is proved in Balakrishnan and Stepanov [2007].

Theorem 5.1.4. Let F be a distribution function such that F (x) < 1 for all x. If 1 − F is
rapidly varying and 0 < l ≤ k, then

Xn−k+l,n

Xn−k,n

P→ 1, (n → ∞)

If 1− F is regularly varying with index −α and 0 < l ≤ k, then

P

(
Xn−k+l,n

Xn−k,n
> z

)
→

l−1∑
i=0

(
k

i

)
(1− z−α)iz−α(k−i), (z > 1)

If 1− F is a slowly varying distribution function and 0 < l ≤ k, then

Xn−k+l,n

Xn−k,n

P→ ∞, (n → ∞).

The converse of Theorem 5.1.4 is also true, as was shown in Smid and Stam [1975].

Theorem 5.1.5. If for some j ≥ 1, z ∈ (0, 1) and α ≥ 0,

lim
n→∞

P

(
Xn−j,n

Xn−j+1,n
< z

)
= zjα (5.10)

then

lim
y→∞

1− F
(y
z

)
1− F (y)

= zα

From this theorem we get the following corollary
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Corollary 5.1.1. If (5.10) holds for all z ∈ (0, 1), then 1 − F (x) is regularly varying of order
−α as x → ∞.

Theorem 5.1.5 was generalized and extended in Bingham and Teugels [1979].

Theorem 5.1.6. Let s ∈ {0, 1, 2, ...}, r ∈ {1, 2, ...} be fixed integers. Let F be concentrated on

the positive half-line. If
Xn−r−s,n

Xn−s,n
converges in distribution to a non-degenerate limit, then for

some ρ > 0, 1− F (x) varies regularly of order −ρ as x → ∞.

5.2 The ratio as index

In the previous section we have shown that if the ratio between the two largest order statistics
converges in distribution to some non-degenerate limit, then the parent distribution is regularly
varying. This raises the question can we use this as a measure for tail-heaviness of a distribution
function. This section considers estimating the following probability:

P

(
Xn,n

Xn−1,n
> k

)
, (5.11)

from a data set. Consider the following estimator: Given a data set of size n, start with
ntriaLS = 0, nsuccess = 0. If the third observation is larger than the previous second largest
value take ntrials = ntrials+1 and if the largest value is larger than k times the second largest
value in the data set take nsucces = nsucces+1. Repeat this until we have observed all values.

The estimator of P
(

Xn,n

Xn−1,n
> k

)
is defined by nsucces

ntrials . Note that the trials are not independent.

We have not proven that this is a consistent estimator, but simulations show that for the Pareto
distribution the estimator behaves consistently. Note that ntrials is the number of observed
type 2 2-record values, the probability that a new observation is a type 2 2-record value is equal
to

P (Xn > Xn−2,n−1) =

∫ ∞

−∞
P (X > y) fn−2,n(y)dy =

2

n

This means that if we have a data set of size n then the expected number of observed Type 2
2-records equals

n∑
j=3

2

j
= 2

(
n∑

i=1

1

j
− 1.5

)
≈ 2(log(n) + γ − 1.5).

where γ is the Euler-Mascheroni constant and approximately equal to 0.5772. In figure 5.4 we
see the expected number of 2-records plotted against the size of the data set. In a data set of
size 10000 we only expect to see 16 2-records. Since we do not observe a many 2-records we do

not expect the estimator to be very accurate. We have used the estimate for P
(

Xn,n

Xn−1,n
> k

)
on a number of simulated data sets. All these simulated data set were of size 1000. Figures
5.5 (a)–(d) show histograms of this ratio estimator. We calculated the estimator 1000 times
by reordering the data set and calculating the estimator for the reordered data set. For the
Pareto(0.5) distribution, figure 5.5a shows that on average the estimator seems to be accurate
but the estimator ranges from as low as 0.4 to as high as 1. For a Weibull distribution with shape
parameter τ = 0.5 we see that the estimate of the probability is much larger than zero. This is
due to the slow convergence of the probability to zero and the fact that we expect to see more
2-records early in a data set. Table 5.1 summarizes the results of applying the estimators to a
Pareto(0.5) distribution, a Pareto(3) distribution, a Weibull distribution with shape parameter
τ = 0.5 and a standard exponential distribution. We also applied these estimators to the NFIP
data, the national crop insurance data and the hospital data; the results are shown in table 5.2.
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Figure 5.4: Expected number of observed 2-records

Distribution Expected Value Mean Estimate

Pareto α = 0.5 0.7071068 0.7234412

Pareto α = 3 0.125 0.09511546

Weibull τ = 0.5 0 0.3865759

Exponential 0 0.1104443

Table 5.1: Mean estimate of P
(

Xn,n

Xn−1,n
> 2
)

Figure 5.6a shows that the estimate of the probability P
(

Xn,n

Xn−1,n
> 2
)
suggests more heavy-

tailed behavior than the estimate of the probability of the national crop insurance data and the
hospital data, a conclusion supported by the mean excess plots of these data sets. We have
bootstrapped the data set by reordering the data in order to calculate more than one realization
of the estimator. Again, the estimator gives a nice result on average but that the individual
values seem to be very spread out.

5.3 The Obesity Index

The ratio between the largest and second largest observation as a measure of tail-heaviness is
not a good index of tail heaviness; this section opens a different line of attack based on the
probability that under aggregation by k, the maximum of the aggregated data set is the sum of
the group containing the maximum value of the original data set. Consider aggregation by 2 in
a data set of size 4 containing the observation X1, X2, X3, X4 with X1 < X2 < X3 < X4. By
definition we have that X4 + X2 > X3 + X1 and X4 + X3 > X2 + X1, so the only interesting

Dataset Mean estimate

NFIP 0.5857

National crop insurance 0.2190

Hospital 0.0882

Table 5.2: Mean estimate of P
(

Xn,n

Xn−1,n
> 2
)
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)
case arises whenever we sum X4 with X1. Now define the Obesity index by

Ob(X) = P (X4 +X1 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) , Xiiid copies of X. (5.12)

We expect that this probability is larger for heavy-tailed distribution than for thin-tailed distri-
butions. We can rewrite the inequality in the probability in equation (5.12) as:

X4 −X3 > X2 −X1,

which was one of the heuristics of heavy-tailed distributions we discussed in Chapter 1, i.e. the
fact that larger observations lie further apart than smaller observations. Note that the Obesity
index is invariant under multiplication by a positive constant and translation, i.e. Ob(aX+b) =
Ob(X) for a > 0 and b ∈ R. The Obesity index may be calculated for a finite data set, or for a
random variable X by considering independent copies of X in (5.12. The following propositions
calculate the Obesity index for a number of distributions. First note if P (X = C) = 1 where C
is a constant, then Ob(X) = 0.
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Figure 5.6: Histograms of the estimate of P
(

Xn,n

Xn−1,n
> 2
)

Proposition 5.3.1. The obesity index of the uniform distribution is 1
2 .

Proof. The obesity index can be rewritten as:

P (X4 −X3 > X2 −X1|X1 < X2 < X3 < X4) = P (X4,4 −X3,4 > X2,4 −X1,4) . (5.13)

Using theorem 2.3.3 we can calculate the probability in equation (5.13):

P (X4,4 −X3,4 > X2,4 −X1,4) = P (X > Y ) , (5.14)

where X and Y are standard exponential random variables. Since the random variablesX and Y
in equation (5.14) are independent and identically distributed random variables this probability
is equal to 1

2 .

Proposition 5.3.2. The obesity index of the exponential distribution is 3
4 .

Proof. Again we rewrite the obesity index:

P (X4 −X3 > X2 −X1|X1 < X2 < X3 < X4) = P (X4,4 −X3,4 > X2,4 −X1,4) . (5.15)



52 CHAPTER 5. INDICES AND DIAGNOSTICS OF TAIL HEAVINESS

Using theorem 2.3.2:

P (X4,4 −X3,4 > X2,4 −X1,4) = P

(
X >

Y

3

)
, (5.16)

where X and Y are independent standard exponential random variables. We can calculate the
probability on the RHS in equation (5.16):

P

(
X >

Y

3

)
=

∫ ∞

0
P (X > y) fY

3
(y)dy

=

∫ ∞

0
e−y3e−3ydy

=
3

4
.

Proposition 5.3.3. If X is a symmetrical random variable with respect to zero, X
d
= −X, then

the obesity index is equal to 1
2 .

Proof. If X
d
= −X, then FX(x) = 1− FX(−x), and fX(x) = fX(−x). The joint density of X3,4

and X4,4 is now given by

f3,4;4(x3, x4) =
24

2
F (x3)

2f(x3)f(x4), x3 < x4

=
24

2
(1− F (−x3))

2f(−x3)f(−x4), −x4 < −x3

= f1,2;4(−x4,−x3)

This is equal to the joint density of −X1,4 and −X2,4, and from this we find that

X4,4 −X3,4
d
= X2,4 −X1,4.

Hence the obesity index 1
2 .

From proposition 5.3.3 we find that for a distribution which is symmetric with respect to
some constant µ, the Obesity index is equal to zero. Indeed, if X is symmetric with respect to
µ, X−µ is symmetric with respect to zero. We also have that Ob(X) = Ob(X−µ). This means
that the Obesity index of both the Cauchy and the Normal distribution is 1

2 . The Cauchy
distribution has a regularly varying distribution function with tail index 1, and the Normal
distribution is thin-tailed distribution on any definition. Evidently the Obesity index must be
restricted to positive random variables.

Theorem 5.3.4. The Obesity index of a random variable X with distribution function F and
density f can be calculated by evaluating the following integral,

24

∫ ∞

−∞

∫ ∞

x1

∫ ∞

x2

F (x2 + x3 − x1)f(x1)f(x2)f(x3)dx3dx2dx1.

Proof. The obesity index can be rewritten as:

P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) .
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Recall that the joint density of all n order statistics from a sample of n is:

f1,2,...,n;n(x1, x2, ..., xn) =

{
n!
∏n

i=1 f(xi), x1 < x2 < ... < xn,

0, otherwise,

In order to calculate the obesity index we need to integrate this joint density over all numbers
such that

x1 + x4 > x2 + x3, and x1 < x2 < x3 < x4.

We then must evaluate the following integral.

Ob(X) = 24

∫ ∞

−∞
f(x1)

∫ ∞

x1

f(x2)

∫ ∞

x2

f(x3)

∫ ∞

x3+x2−x1

f(x4)dx4dx3dx2dx1

The innermost integral is the probability that the random variable X is larger than x3+x2−x1
so this expression simplifies to

Ob(X) = 24

∫ ∞

−∞

∫ ∞

x1

∫ ∞

x2

F (x2 + x3 − x1)f(x1)f(x2)f(x3)dx3dx2dx1.

Using Theorem 5.3.4 we calculate the Obesity index whenever the parameter α is an integer.
We have done this using Maple, in Table 5.3 the exact and approximate value of the Obesity
index for a number of α are given. From Table 5.3 we can observe that the Obesity index

α Exact value Approximate value

1 π2 − 9 0.8696

2 593− 60π2 0.8237

3 −124353
5 + 2520π2 0.8031

4 19150997
21 − 92400π2 0.7912

Table 5.3: Obesity index of Pareto(α) distribution for integer α

increases as the tail index decreases, as expected. Properties for the Obesity index of a Pareto
random variable are derived using the theory of majorization.

5.3.1 Theory of Majorization

The theory of majorization is used to give a mathematical meaning to the notion that the
components of one vector are less spread out than the components of another vector.

Definition 5.3.1. A vector y ∈ Rn majorizes a vector x ∈ Rn if

n∑
i=1

xi =

n∑
i=1

yi,

and
k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, ..., n

where x[i] are the ordered elements of the vector x such that

x[1] ≥ ... ≥ x[n].

We denote this by x ≺ y.
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Schur-convex functions preserrve the majorization ordering.

Definition 5.3.2. A function ϕ : A → R, where A ⊂ Rn, is called Schur-convex on A if

x ≺ y on A ⇒ ϕ(x) ≤ ϕ(y)

The following proposition gives sufficient conditions for a function ϕ to be Schur-convex.

Proposition 5.3.5. If I ⊂ R is an interval and g : I → R is convex, then

ϕ(x) =
n∑

i=1

g(xi),

is Schur-convex on In.

We prove two theorems about the inequality in the obesity index.

Theorem 5.3.6. If 0 < x1 < x2 < x3 < x4, then as α → 0:

lim
α→0

x
−1/α
1 + x

−1/α
4 > lim

α→0
x
−1/α
2 + x

−1/α
3

Proof. From Hardy et al. [1934] we know that

lim
p→∞

(
n∑

i=1

xpi

) 1
p

= max {x1, ..., xn} .

From this we get that

lim
α→0

(
x
−1/α
1 + x

−1/α
4

)
= max

{
x−1
1 , x−1

4

} 1
α = max

{
x
− 1

α
1 , x

− 1
α

4

}
This means that as α tends to 0, x

−1/α
1 + x

−1/α
4 tends to max

{
x
−1/α
1 , x

−1/α
4

}
, which is x

−1/α
1 .

The same limit holds for x
−1/α
2 + x

−1/α
4 , where the maximum of these two by definition is equal

to x
−1/α
2 . And by definition we have that x

−1/α
1 > x

−1/α
2 .

Lemma 5.3.7. If 1 < y1 < y2 < y3 and

y3 + 1 > y2 + y1

then for all q > 1
yq3 + 1 > yq2 + yq1

Proof. Note that (y1, y2) ≺ (y2 + y1 − 1, 1) and that the function g : R → R defined by

g(x) = xq, q > 1,

is convex. Then the function

ϕ(x1, x2) =

2∑
i=1

g(xi),

is Schur-convex on R2 by Proposition 5.3.5. From this we find that

ϕ(x1, x2) = yq1 + yq2
≤ (y2 + y1 − 1)q + 1

≤ yq3 + 1.
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Theorem 5.3.8. For all 0 < x1 < x2 < x3 < x4 and α > β > 0, if

x
−1/α
4 + x

−1/α
1 > x

−1/α
2 + x

−1/α
3 ,

then
x
−1/β
4 + x

−1/β
1 > x

−1/β
2 + x

−1/β
3 .

Proof. From

x
−1/α
4 + x

−1/α
1 > x

−1/α
2 + x

−1/α
3 .

we obtain

1 +

(
x4
x1

) 1
α

>

(
x4
x2

) 1
α

+

(
x4
x3

) 1
α

.

Now apply Lemma 5.3.7 with q = α
β > 1.

Corollary 5.3.1. If X is a positive random variable and a > 1, then Ob(X) ≤ Ob(Xa).

If X has a Pareto(α) distribution, then Xα/β has a Pareto(β) distribution. This means that
if β < α, then Ob(X) ≤ Ob

(
Xα/β

)
.

From Theorem 5.3.6 we know that
lim
α→0

Ob(X) = 1.

Using Theorem 5.3.4 we have approximated the obesity index of the Pareto distribution, the
Weibull distribution, the Log-normal distribution, the Generalized Pareto distribution and the
Generalized Extreme Value distribution. The Generalized Extreme Value distribution is defined
by

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
,

for 1 + ξ(x − µ)/σ > 0, with location parameter µ ∈ R, scale parameter σ > 0 and shape
parameter ξ ∈ R. In the case ξ = 0 the generalized extreme value distribution corresponds to
the Gumbel distribution. The Generalized Pareto distribution is defined by

F (x;µ, σ, ξ) =

1−
(
1 + ξ(x−µ)

σ

)−1/ξ
for ξ ̸= 0,

1− exp
{
−x−µ

σ

}
for ξ = 0,

for x ≥ µ when ξ ≥ 0, and x ≤ µ − σ
ξ when ξ < 0, with location parameter µ ∈ R, scale pa-

rameter σ > 0 and shape parameter ξ ∈ R. If ξ > 0 the generalized extreme value distribution
and the Generalized Pareto distribution are regularly varying distribution functions with tail
index 1

ξ . As shown in Figures 5.7 and 5.8 the Obesity index of all the distributions considered
here behaves nicely. This is due to the fact that if random variable X that has one of these
distributions, then Xa also has the same distribution but with different parameters. In these
figures we have plotted the Obesity index against the parameter that changes when considering
Xa and that cannot be changed through adding a constant to Xa or by multiplying Xa with a
constant. The figures demonstrate that a Weibull or lognormal distribution can be much more
obese than a Pareto, depending on the choice of parameters.

One can ask whether the Obesity index of a regularly varying distribution increases as the
tail index of this distribution decreases. The following numerical approximation indicates that
the this is not the case in general.
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Figure 5.7: Obesity index for different distributions.

If X has a Pareto distribution with parameter k, then the following random variable has a
Burr distribution with parameters c and k

Y
d
= (X − 1)

1
c .

This holds since when X has a Pareto(k) distribution then

P
(
(X − 1)

1
c > x

)
= P (X > xc + 1) = (xc + 1)−k .

Table 4.1 shows that the tail index of the Burr distribution is equal to ck. This means that
the Obesity index of a Burr distributed random variable with parameters k and c = 1, equals
the Obesity index of a Pareto random variable with parameter k. From this we find that
the Obesity index of a Burr distributed random variable X1 with parameters c = 1, k = 2 is
equal to 593 − 60π2 ≈ 0.8237. If we now consider a Burr distributed random variable X2 with
parameters c = 3.9 and k = 0.5 and we approximate the Obesity index numerically we find that
the Obesity index of this random variable is approximately equal to 0.7463, which is confirmed
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Figure 5.8: Obesity index for different distributions.

by simulations. Although the tail index of X1 is larger than the tail index of X2, we have
that Ob(X1) > Ob(X2). In Figure 5.9 the Obesity index of the Burr distribution is plotted for
different values of c and k.
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Figure 5.9: The Obesity index of the Burr distribution

5.3.2 The Obesity Index of selected Datasets

In this section we estimate the Obesity index of a number of data sets, and compare the Obesity
index and the estimate of the tail index. Table 5.4 shows the estimate of the Obesity index
based upon 250 bootstrapped values, and the 95%-confidence bounds of the estimate. From
Table 5.4 we get that the NFIP data set is heavier-tailed than the National Crop Insurance data
and the Hospital data. These conclusions are supported by the mean excess plots of these data
sets and the Hill estimates. Figure 5.10 displays the Hill estimates based upon the top 20% of
the observations of each data set. Note that the Hill plots in Figures 5.10a and 5.10c are quite
stable, but that the Hill plot of the national crop insurance data in Figure 5.10b is not.
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Dataset Obesity Index Confidence Interval

Hospital Data 0.8 (0.7928,0.8072)

NFIP 0.876 (0.8700,0.8820)

National Crop Insurance 0.808 (0.8009,0.8151)

Table 5.4: Estimate of the Obesity index

The final data set we consider is the G-econ database from Nordhaus et al. [2006]. This data
set consists of environmental and economical characteristics of cells of 1 degree latitude and 1
degree longitude of the earth. One of the entries is the average precipitation. From the mean
excess plot of this data set it is unclear whether this is a heavy-tailed distribution. In figure
5.11 the mean excess plot first decreases and then increases. The obesity index of this data set
is estimated as 0.728 with 95%-confidence bounds (0.6728, 0.7832). This estimate suggests a
thin-tailed distribution. This conclusion is supported if we look at the exponential QQ-plot of
the data set which shows that the data follows a exponential distribution almost perfectly.
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Figure 5.10: Hill estimator of a number of data sets
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Figure 5.11: Mean excess plot average precipitation.
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Figure 5.12: Exponential QQ-plot for the average precipitation.



Chapter 6

Conclusions and Future Research

The data sets discussed in chapter 1 hopefully persuade the reader that heavy tail phenomena
are not incomprehensible bolts from ”extremistan”, but arise in many commonplace data sets.
They are not incomprehensible, but they cannot be understood with traditional statistical tools.
Using the wrong tools is incomprehensible. This monograph reviewed various notions, intuitions
and definitions of tail heaviness. The most popular definitions in terms of regular variation and
subexponentiality invoke putative properties that hold at infinity, and this complicates any
empirical estimate. Each definition captures some but not all of the intuitions associated with
tail heaviness.

Chapter 5 studied two different candidates to characterize the tail-heaviness of a data set
based upon the behavior of the mean excess plot under aggregations by k. We first considered
the ratio of the largest to the second largest observations. It turned out this ratio has a non-
degenerate limit if and only if the distribution is regularly varying. An estimate of the probability
that this ratio exceeds 2 based on the observed Type 2 2-records in a data set was very inaccurate:
the expected number of Type 2 2-records in a data set of size 10000 is 16.58. For thin-tailed
distributions the estimator is biased, since the probability in question decreases to zero but
the estimator is non-negative on initial segments. This is due to the fact that most 2-records
will be observed early in the data set, and then relative frequency of the largest observation
exceeding twice the second largest is still quite large. This motivated the search for for another
characterization of heavy-tailedness. The Obesity index of a random variable was defined as:

Ob(X) = P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) , Xii.i.d. copies of X.

This index reasonably captures intuitions on tail heaviness and can be calculated for distributions
and computed for data sets. However, it does not completely mimic the tail index. We saw that
the obesity index of two Burr distributions could reverse the order of their tail indices. When
applied to various data sets we saw that the Obesity index and the Hill estimator both gave
roughly similar results, in those cases where the Hill estimator gave a clear signal.

As with any new notion, it is easy to think of interesting research questions. We mention
two. The notion of a multivariate Obesity index immediately suggests itself by considering a
joint probability

Ob(X,Y )Ob(X)Ob(Y ) =

P (X1 +X4 > X2 +X3 ∩ Y1 + Y4 > Y2 + Y3 |X1 ≤ X2 ≤ X3 ≤ X4 ∩ Y1 ≤ Y2 ≤ Y3 ≤ Y4) ,

Xi i.i.d. copies of X, Yi i.i.d. copies of Y.

The second question concerns covariates. We might like to explain tail heaviness in terms of
independent variables. An obvious idea is to regress the rank of the dependent variable on the

61
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independent variables; that might get at ”tail” but not ”tail heaviness”. It might be better to
regress the differences in values of the dependent variable on covariate differences. These are
topics for the future.
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